Using Markov Decision Processes to Understand Student Thinking in Performance Tasks

Michelle M. LaMar Educational Testing Service mlamar@ets.org

October 1st, 2015

23 Within a substance, atoms that collide frequently and move independently of one another are most likely in a

A liquid.
B solid.
C gas.
D crystal.

Standard Educational Measurement Paradigm

Traditional Assessment Task

23 Within a substance, atoms that collide frequently and move independently of one another are most likely in a

A liquid.
B solid.
C gas.
D crystal.

Traditional Assessment Task

Not very similar

Real Science Task

Measuring the Power of Learning."'

Assessing Science Skills

Give students some equipment and see what they do.

- What is their goal?
- How much do they care?
- Who is contributing? How much?
- Do they understand how the equipment works?
- Are they using good inquiry skills?
- Do they understand the science content?

Assessing Science Skills

Give students some equipment and see what they do.

- Goals
- Motivation
- Collaboration Skills
- Beliefs \& Understanding of Task Setup
- Science Process Skills
- Science Content Knowledge

Assessing Science Skills

Give students a standard assessment item.
-Goals

- Motivation
- Collaboration
- Beliefs \& Understanding
\rightarrow-Science Process
- Science Knowledge

23 Within a substance, atoms that collide frequently and move independently of one another are most likely in a

A liquid.
B solid.
C gas.
D crystal.

Assessing Science Skills

Give students some equipment and see what they do.

- Goals
- Motivation
- Collaboration
- Beliefs \& Understanding
- Science Process
- Science Knowledge

Assessing Science Skills

Give students some equipment and see what they do.

- Goals
- Motivation
- Collaboration
- Beliefs \& Understanding
- Science Process
- Science Knowledge

Latent-trait Models

Mislevy: The conditional probability model-fragments:

$$
p\left(X_{i j k} \mid \theta_{i}, \beta_{j}, \zeta_{k}\right)
$$

$X_{i j k} \quad$ is the "observable" variable from the action(s) of "Person i " in "Situation j " given other relevant contextual variables k;
$\theta_{i} \quad$ is the "proficiency" variable for "Person i " (might also subscript for time t);
$\beta_{j} \quad$ is the effect of "Situation j "; and
$\zeta_{k} \quad$ is the effect of other relevant contextual variables k.

Cognitive Process Models

Action choice based on human and environment:

$$
p\left(a_{i j k} \mid \theta_{i}, \beta_{j}, \zeta_{k}\right)
$$

$a_{i j k} \quad$ is the "observable" actions of "Person i " in "Situation j " given other relevant contextual variables k;
is the "proficiency" variable for "Person i " (might also subscript for time t);
$\beta_{j} \quad$ is the effect of "Situation j "; and
$\zeta_{k} \quad$ is the effect of other relevant contextual variables k.

Outline

- Peg Solitaire Example
- Markov Decision Process Measurement Model
- The MDP
- The MDP for Measurement
- MDP-MM in Action
- Peg Solitaire
- Microbes
- SimCityEDU Pollution Challenge
- Conclusions

Example: Peg Solitaire Game

- Goal: leave as few pegs on the board as possible
- Jump pegs to remove them

Example: Peg Solitaire Game

- Goal: leave as few pegs on the board as possible
- Jump pegs to remove them

Can we estimate student strategic ability from a single game play record?

Example: Peg Solitaire Game

Example: Peg Solitaire Game

Process Data, Action Sequence:

$$
\begin{aligned}
& (3,3) \rightarrow(1,3) \\
& (3,5) \rightarrow(3,3) \\
& (4,3) \rightarrow(2,3) \\
& (1,3) \rightarrow(3,3) \\
& (3,2) \rightarrow(3,4)
\end{aligned}
$$

Score

Example: Peg Solitaire Game

State Sequence

Example: Peg Solitaire Game

State Space

22 Reachable States

Example: Peg Solitaire Game

Each state presents a choice:

Want $p\left(a \mid s, \theta_{j}\right)=f\left(\boldsymbol{\theta}_{\boldsymbol{j}}, \xi_{s}\right)$

Example: Peg Solitaire Game

Each state presents a choice:

Want $\quad p\left(a \mid s, \theta_{j}\right)=f\left(\boldsymbol{\theta}_{\boldsymbol{j}}, \xi_{s}\right)$

Example: Peg Solitaire Game

Each state presents a choice:

Want $\quad p\left(a \mid s, \theta_{j}\right)=f\left(\boldsymbol{\theta}_{\boldsymbol{j}}, \xi_{s}\right)$

Markov Decision Process

- Model for sequential planning in the presence of uncertainty.
- Developed in the 1950s for process optimization in robotics (Bellman 1957).
- Recently used in cognitive science to model how we infer another person's motivations and beliefs (Baker, Saxe, Tennenbaum, 2009)

Markov Decision Process

Reward Structure
 $$
R\left(s, a, s^{\prime}\right)
$$

$$
\text { Policy: } p(a \mid s, \xi)
$$

Markov Decision Process

$p(a \mid s, \xi)=f($ The value of action a)

Markov Decision Process

$p(a \mid s, \xi)=f$ (The value of action a)

Markov Decision Process

$p(a \mid s, \xi)=f$ (The value of action a)

Markov Decision Process

$p(a \mid s, \xi)=f$ (The value of action a)

Markov Decision Process

The expected rewards for taking action a in state s is expressed by the Q-function (Bellman, 1957):

$$
Q(s, a)=\sum_{s^{\prime} \in S} p\left(s^{\prime} \mid s, a\right)\left(R\left(s, a, s^{\prime}\right)+\gamma \sum_{a^{\prime} \in A} p\left(a^{\prime} \mid s^{\prime}\right) Q\left(s^{\prime}, a^{\prime}\right)\right)
$$

Markov Decision Process

The expected rewards for taking action a in state s is expressed by the Q-function (Bellman, 1957):
$Q(s, a)=\sum_{s^{\prime} \in S} p\left(s^{\prime} \mid s, a\right)\left(R\left(s, a, s^{\prime}\right)+\gamma \sum_{a^{\prime} \in A} p\left(a^{\prime} \mid s^{\prime}\right) Q\left(s^{\prime}, a^{\prime}\right)\right)$

Value of choosing action a in state s

Immediate
Reward

Discounted Expected Future Reward

Decision Process

In robotics, solve for the optimal policy:

$$
\pi(s) \equiv \underset{a \in A}{\operatorname{argmax}}\left(Q^{*}(s, a)\right), \quad p(a \in \pi(s) \mid s)=1
$$

In psychology, the Boltzmann policy is used

$$
\begin{gathered}
p\left(x_{s j}=a \mid s\right) \propto e^{\beta Q(s, a)} \\
\beta \in[0, \infty)
\end{gathered}
$$

Consider β_{j} as a person-specific "capability"

$$
p\left(x_{s j}=a \mid \beta_{j}, s\right) \propto e^{\beta_{j} Q\left(s, a \mid \beta_{j}\right)}
$$

MDP as a Measurement Model

Full MDP Measurement model:

$$
\begin{gathered}
p\left(x_{s j}=a \mid s, \beta_{j}\right)=\frac{\exp \left(Q\left(s, a \mid \beta_{j}\right) \beta_{j}\right)}{\sum_{a^{\prime} \in A_{s}} \exp \left(Q\left(s, a^{\prime} \mid \beta_{j}\right) \beta_{j}\right)} \\
\beta_{j} \sim \operatorname{lnN}(\mu, \sigma)
\end{gathered}
$$

MDP as a Cognitive Model

MDP as a Cognitive Model

MDP as a Cognitive Model

Adapted from: Baker, C., Saxe, R., \& Tenenbaum, J. (2011). Bayesian theory of mind:

MDP-MM Parameter Space

MDP-MM Parameter Space

MDP-MM Parameter Space

Transition Parameters

Totally Free

A 1	S 1	S 2	S 3	S 4	S 5	S 6	S 7	S 8	\ldots
S 1	λ_{11}	λ_{12}	λ_{13}	λ_{14}	λ_{15}	λ_{16}	λ_{17}	λ_{18}	
S 2	λ_{21}	λ_{22}	λ_{23}	λ_{24}	λ_{25}	λ_{26}	λ_{27}	λ_{28}	
S 3	λ_{31}	λ_{32}	λ_{33}	λ_{34}	λ_{35}	λ_{36}	λ_{37}	λ_{38}	
S 4	λ_{41}	λ_{42}	λ_{43}	λ_{44}	λ_{45}	λ_{46}	λ_{47}	λ_{48}	
S 5	λ_{51}	λ_{52}	λ_{53}	λ_{54}	λ_{55}	λ_{56}	λ_{57}	λ_{58}	
S 6	λ_{61}	λ_{62}	λ_{63}	λ_{64}	λ_{65}	λ_{66}	λ_{67}	λ_{68}	
S 7	λ_{71}	λ_{72}	λ_{73}	λ_{74}	λ_{75}	λ_{76}	λ_{77}	λ_{78}	

MDP-MM Parameter Space

Transition Parameters

Fixed by Objective Reality

A1	S1	S2	S3	S4	S5	S6	S7	S8	\ldots
S1	1	0	0	0	0	0	0	0	
S2	0	1	0	0	0	0	0	0	
S3	0	0	1	0	0	0	0	0	
S4	0	0	0	0.1	0	0	0	0.9	
S5	0	0	0	0	1	0	0	0	
S6	0	0	0	0	0	1	0	0	
S7	0	0	0	0	0	0	1	0	

MDP-MM Parameter Space

Transition Parameters

Targeted

A1	S1	S2	S3	S4	S5	S6	S7	S8	\ldots
S1	1	0	0	0	0	0	0	0	
S2	0	1	0	0	0	0	0	0	
S3	0	0	1	0	0	0	0	0	
S4	0	0	0	λ_{1}	0	0	0	$1-\lambda_{1}$	
S5	0	0	0	0	1	0	0	0	
S6	0	0	0	0	0	1	0	0	
S7	0	0	0	0	0	0	1	0	

MDP-MM Parameter Space

Transition Parameters

Fixed by Misconception

A1	S1	S2	S3	S4	S5	S6	S7	S8	\ldots
S1	1	0	0	0	0	0	0	0	
S2	0	1	0	0	0	0	0	0	
S3	0	0	1	0	0	0	0	0	
S4	0	0	0	1	0	0	0	0	
S5	0	0	0	0	$\mathbf{0 . 1}$	0	0	0.9	
S6	0	0	0	0	0	1	0	0	
S7	0	0	0	0	0	0	1	0	

MDP-MM Parameter Space

Transition Parameters

Categorical by Belief:

$$
T=\left\{H_{1}, H_{2}\right\}
$$

$H_{1} \rightarrow$ A1 may work in S4
$H_{2} \rightarrow$ A1 may work in S5

MDP-MM Estimation

We use marginal maximum likelihood (MML) to estimate the population and group level parameters

$$
\begin{gathered}
L(\xi \mid O)=\prod_{j=1}^{N} \prod_{t=1}^{T_{j}} p\left(a_{j t} \mid s_{j t}, \xi\right) \\
L(\mu, \sigma \mid O)=\int \prod_{t=1}^{T_{j}} \frac{\exp \left(Q\left(s_{t}, a_{t} \mid \beta_{j}\right) \beta_{j}\right)}{\sum_{a^{\prime} \in A} \exp \left(Q\left(s_{t}, a^{\prime} \mid \beta_{j}\right) \beta_{j}\right)} P\left(\beta_{j} \mid \mu, \sigma^{2}\right) d \beta_{j} \\
\beta_{j} \sim \ln \mathrm{~N}\left(\mu, \sigma^{2}\right)
\end{gathered}
$$

And MLE to estimate the person level parameters.

MDP-MM Estimation

Q-Function is recursive - must be solved using dynamic programming.

$$
Q(s, a)=\sum_{s^{\prime} \in S} p\left(s^{\prime} \mid s, a\right)\left(R\left(s, a, s^{\prime}\right)+\gamma \sum_{a^{\prime} \in A} p\left(a^{\prime} \mid s^{\prime}\right) Q\left(s^{\prime}, a^{\prime}\right)\right)
$$

MDP-MM in Action

Peg Solitare

Peg Solitaire Simulation Studies

Game boards with
varying complexity

Tiny Cross

Big L

Big Cross

Diamond

Peg Solitaire Parameters

No Transition Parameters.
Capability parameters: β_{j}, μ, σ
Rewards:

Parameter	Function	Example Value	
$R_{\text {win }}$	Reward for scoring with one peg left	5.0	Fixed
$R_{\text {peg }}$	Add to reward for each extra peg	-1.0	Fixed
$R_{\text {move }}$	Cost of a move	-0.1	Est.
$R_{\text {reset }}$	Cost of reset	-1.0	Est.

Estimating Capability

Big L

Diamond

Board	Ceiling Thresh.	Students Remaining	$\boldsymbol{\beta}_{\boldsymbol{j}}$	
Bias	RMSE			
Tiny Cross	2.03	0.80	-0.064	0.395
Big Cross	2.33	0.84	-0.036	0.362
Big-L	2.62	0.88	-0.072	0.365
Diamond	2.28	0.84	-0.045	0.327

Estimating Capability \& Motivation

At the population level.
200 students/group. 25 games/student/board.

Sample	Capability	Motivation	μ	σ	$R_{\text {move }}$
1	High	High	0.5	0.75	-0.05
2	High	Low	0.5	0.75	-0.75
3	Low	High	-0.5	0.75	-0.05
4	Low	Low	-0.5	0.75	-0.75

Estimating Capability \& Motivation

At the population level.
200 students/group. 25 games/student/board.

| Sample | Capability | Motivation | μ | σ | $R_{\text {move }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | High | High | 0.5 | 0.75 | -0.05 |
| 2 | High | Low | 0.5 | 0.75 | -0.75 |
| 3 | Low | High | -0.5 | 0.75 | -0.05 |
| 4 | Low | Low | -0.5 | 0.75 | -0.75 |

Estimating Capability \& Motivation

At the population level.
200 students/group. 25 games/student/board.

| Sample | Capability | Motivation | μ | σ | $R_{\text {move }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | High | High | 0.5 | 0.75 | -0.05 |
| 2 | High | Low | 0.5 | 0.75 | -0.75 |
| 3 | Low | High | -0.5 | 0.75 | -0.05 |
| 4 | Low | Low | -0.5 | 0.75 | -0.75 |

Estimating Capability \& Motivation

MDP-MM in Action

PBS-Kids Microbes

Application: Microbes

Application: Microbes

MDP Model for Microbes

6 Game Levels. Each modeled as a separate MDP

State Space	State Variables: - Microbe Config $=484$ States - Win History
Action Set	Buy Mito, Buy Chloro Play Level, Stop
Rewards	Win, Lose, Buy
Transitions	Play $\Rightarrow\left\{\begin{array}{lc} \text { win } & p(\text { win } \mid s, a=\text { play }) \\ \text { lose } & 1-p(\text { win } \mid s, a=\text { play }) \end{array}\right.$

Estimating Capability

- Transition parameters are fixed.
- Rewards either fixed or estimated at the population level.

	Post-test Correlations	AIC
MDP-MM Fixed R	0.507	15465
MDP-MM Est R	0.516	11243
IRT First Try	0.317	
IRT Multi-try PC	0.379	

The estimates for β_{j} from the MDP models correlated better with the posttest than the IRT estimates for θ_{j}.

Microbes Transition Parameters

$$
\text { Play } \rightarrow\left\{\begin{array}{lc}
\text { win } & p(\text { win } \mid s, a=\text { play }) \\
\text { lose } & 1-p(\text { win } \mid s, a=\text { play })
\end{array}\right.
$$

To get at student beliefs, assume each student has an ideal microbe configuration.
$c_{j}=$ student j 's ideal \# of chloroplasts
$m_{j}=$ student j 's ideal \# of mitochondria
$\max (p(\operatorname{win} \mid s, a=p l a y))=p\left(\operatorname{win} \mid s=\left\{c_{j}, m_{j}\right\}, a=\right.$ play $)$

Estimating Beliefs/Understanding

MDP-MM in Action

SimCityEDU Pollution Challenge

Application: SimCityEDU

$N=224$

GlassLab

SimCity EDU

SimCity EDU

SimCity Assessment

- Designed to assess Systems Thinking
- Students must optimize two variables simultaneously

SimCity MDP

Action set is huge

- Follow Sim named Joe Smith
- View Apartment Building Status
- Upgrade Garbage Dump
- Build Large Solar Power Plant
- Build Small Solar Power Plant
- Dezone Commercial $(23,45)$
- Zone as Residential $(302,82)$
- Bulldoze the Smith's House
- Turn off Coal Plant
- Expand School
- Build Statue at City Hall ...

State space is huge

Game State includes

- Location and status of
- Every Sim
- Every Building
- Time of day
- City funds (\$\$)
- Severity and location of Pollution
- Wind direction and speed

Need to trim down to important subset!

SimCity Actions

Build			
Turn On			
Turn Off			
Upgrade			
Bulldoze			

$+$
 Wait
 = 17 actions
 End Mission

SimCity State Space

	Min	Max	\# Values
\# Coal Generators On	0	3	4
\# Coal Generators Off	0	3	4
\# Wind Turbines	0	10	11
\# Solar Panels	0	2	3
Power Balance	-8	7	16
Pollution	0	3	4
Cash	0	30	31

Total \# of States: $2,856,960$
But only 25,420 reachable states

SimCity Rewards

MISSION OBJECTIVE

AQI below 100 and no blackout

BONUS OBJECTIVES

AQI below 50

Power was never dangerously low

The air quality index (AQI) in the city was 59. The power capacity was 26.9 MW. The power needed was 23.3 MW.

Good effort! Swap your coal plants to lower air pollution even more. Just be careful not to cause a power failure!

YOU EARNED A BRONZE MEDAL!
YOU EARNED A BRONZE MEDAL!

SimCity Rewards

MISSION OBJECTIVE

AQI below 100 and no blackout

BONUS OBJECTIVES

AQI below 50

Power was never dangerously low

The air quality index (AQI) in the city was 83. The power capacity was 41.3 MW. The power needed was 23.3 MW.

The air could be cleaner. The good news is that you didn't have a temporary power failure. Have you opened the pollution map?

YOU EARNED A SILVER MEDAL!

SimCity Rewards

MISSION OBJECTIVE

AQI below 100 and no blackout

BONUS OBJECTIVES

AQI below 50

Power was never dangerously low

The air quality index (AQI) in the city was 43 . The power capacity was 32.8 MW . The power needed was 23.3 MW .

Wow, you're a great mayor! You kept the power optimal and reduced air pollution. Can you teach your friends how to be such an awesome mayor?

YOU EARNED A GOLD MEDAL!

What's Next?

NEXT MISSION

SimCity Rewards

	Bronze Medal	Pollution Silver	Power Silver	Gold Medal
Medals	+5	+5	+5	+10
Just Win	+10	0	0	0
Pollution	+5	+5	0	0
Power	+5	0	+5	0

Estimating Goals

	Log-likelihood	Num Students Classified
Medals	-17565.1	38
Just Win	-17974.5	28
Pollution	-17974.6	38
Power	-17915.0	24

Estimating Goals

	Log-likelihood	Num Students Classified
Medals	-17565.1	38
Just Win	-17974.5	28
Pollution	-17974.6	38
Power	-17915.0	24

53 Students who fit none - Posteriors were flat

Overall Sufficiency of SC MDP

Strong implication that our model is over simplified for many of the students.

Within Category Ability Estimates

Consider expanding model:

- Zoning actions?
- Sim Happiness as a goal?

Conclusions

Markov Decision Process Measurement Model

- Potential as a flexible framework for assessment
- Estimate general ability from task process data
- Separate student motivation, system understanding and strategic ability
- Sensitive to specification of cognitive processes

Conclusions

- Early work; much yet to do
- Improve algorithms \& estimation
- Gather more validity evidence
- Partially Observable MDP (POMDP)

Just one example of Cognitive Process Models for assessment

Center for Research on Computational Psychometrics

Other work:

- Multi-modal analytics: evidence from stream data
- Emotion detection
- Gestures, posture, and actions
- Voice tone and fluency
- Assessing Collaboration
- Collaborative Assessment Frame
- Collaborative Dialog Analysis
- Social Network Models
- Hawkes Process Models

This work was made possible by ...

Colleagues
Anna Rafferty
Tom Griffiths
Sophia Rabe-Hesketh
Mark Wilson
Matt Silverglitt
Malcolm Bauer
Alina von Davier Bob Mislevy

Data Provided By

GlassLab

Using Markov Decision Processes to Understand Student Thinking in Performance Tasks

Michelle M. LaMar Educational Testing Service mlamar@ets.org

October 1st, 2015

References

Baker, C. L., Saxe, R., \& Tenenbaum, J. B. (2009). Action understanding as inverse planning. Cognition, 113(3), 329-349.

Bellman, Richard 1957. Dynamic Programming. Princeton University Press.
Rafferty, A., Brunskill, E., Griffiths, T., \& Shafto, P. (2011). Faster teaching by POMDP planning. Artificial Intelligence in Education (pp. 280-287).

Rafferty, A., LaMar, M., \& Griffiths, T. (2015). Inferring learners' knowledge from their actions. Cognitive Science, 39 (3), 584-618.

