Decisionmaking Quality: Experimental Measures and their Correlates

Dan Silverman ASU

HCEO Conference, University of Chicago

October 2015

Background

- Standard econ analysis attributes differences in choices to heterogeneity in:
 - Constraints
 - Preferences
 - Information
 - Beliefs

Background: Decision-making Ability

- More recent (empirical) studies consider another source
- Decision-making ability
- Examples:
 - Ameriks, Caplin, and Leahy (2003)
 - Bernheim and Garrett (2003)
 - Fang, Keane, and Silverman (2008)
 - Agarwal, Driscoll, Gabaix, and Laibson (2009)
 - EJ special issue (2010)
 - Abaluck and Gruber (2011)
 - Choi, Kariv, Müller, and Silverman (2014)
 - Ambuehl, Bernheim, and Lusardi (2014)

DMA & DMQ

- Certain skills and knowledge seem to facilitate "better" decisions.
- Thus, actual choices may not match true objectives.
- Those with less decision-making abilty (DMA) may make choices of lower decision-making quality (DMQ).

Conceptual and Practical Problems

- Makes sense that some decisions are better than others (DMQ)
- ullet Makes sense that some people are better decision-makers than others (DMA)
- But what is "better?"
- How can we tell if someone tends to lower-quality decisions?

Measurement and Identification Problems

An identification problem

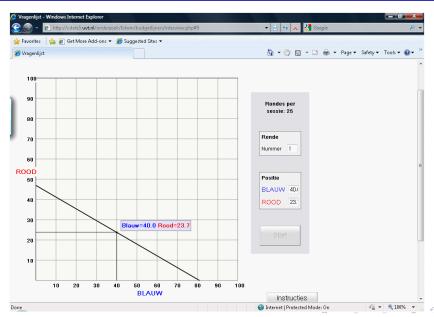
• Distinguish differences in *DMA* from unobserved differences in preferences, constraints, information, or beliefs

A measurement problem

 Define and implement a measure of DMQ that applies across domains and has an economic interpretation

Our Approach

- Measure DMQ by the consistency of choices with rationality (GARP)
 - If no utility function can rationalize a set of choices, then they are not purposeful, or high DMQ
- Present individuals with a choice experiment in which we can measure DMQ with precision.
 - Measure has economic interpretation and is portable across domains (measurement problem)
- Experiment holds information and beliefs constant within subject, and controls the relevant constraints.
 - Define DMA as capacity to make high DMQ choices
 - Experiment then addresses identification problem, in the lab


Our Approach (contd.)

- Interest in *DMQ* in the lab due mostly to the possibility that it reflects *DMA* important outside the lab.
- Implement experiment with a large and diverse samples of subjects
 - Panel data from two surveys in the Netherlands and two surveys in the US
 - Study relationship between DMQ in experiments and observable characteristics.
 - Evaluate in risk, time, and social preference domains
 - Do some characterstics predict choices because of they proxy DMA?
- Can DMQ in the experiment independently explain important economic outcomes?

Basic Structure of the Experiments

- Each subject faces 25-50 independent decision problems.
- Each problem is to choose a bundle of two contingent commodities X and Y from a budget line.
- In a risk experiment, allocation (x, y) pays either x or y, with equal probability.
- Budget lines vary randomly—crossing often.
- Payoffs calculated in terms of tokens (stakes usually low)
- One decision problem randomly selected, at the end, for payment.
- Experiment conducted via the web. Subjects point and click and are paid electronically.

Experiment: The Interface

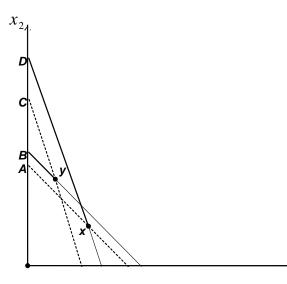
Example: The CentERpanel

- Internet panel of 2,000 households (5,000 individuals)
- Representative of the Dutch-speaking population in the Netherlands.
- Panel data on demographic and economic variables.
 - Comprehensive household survey dates to 1993.
- Experiment conducted in 2009 with randomly selected subset
 - Approximately 700 households and 1,200 individuals completed the experiment

Measuring Quality: Preliminaries

Generalized Axiom of Revealed Preference (GARP)

If x' is indirectly revealed preferred to x, then x is not strictly and directly revealed preferred to x'.

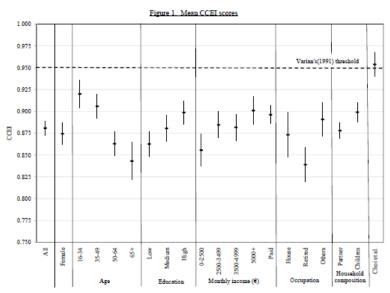

Afriat's Theorem The following conditions are equivalent:

- The data satisfy GARP.
- There exists a non-satiated utility function that rationalizes the data.
- There exists a concave, monotonic, continuous, non-satiated utility function that rationalizes the data.

Measuring Quality: The CCEI

- Quantification problem: choice data either satisfy GARP or they don't
- An answer: Afriat's critical cost efficiency index (CCEI)
 - CCEI is the amount by which budget constraints must be shifted in order to remove all violations of GARP.
 - CCEI∈ [0,1] The closer one, the smaller the perturbation required to remove all violations.

Example CCEI<1



Distribution of CCEI

			Percentiles					
	Mean	S.D.	10	25	50	75	90	N
All	0.881	0.141	0.676	0.808	0.930	0.998	1.00	1,182
Female	0.874	0.147	0.666	0.796	0.928	0.998	1.00	537
Ages $50-64$	0.863	0.142	0.666	0.784	0.901	0.985	1.00	421

- Large fractions have virtually no violations.
- Substantial heterogeneity

Who is (More) Rational?

Who is (More) Rational?

	(1)	(2)
Constant	.887***	.735***
Constant	(.022)	(.037)
Female	024***	011
геные	(.009)	(.015)
Age		
35-49	016	007
33-49	(.011)	(.020)
50-64	052***	077***
30-04	(.011)	(.020)
65+	051**	081**
65+	(.020)	(.032)
Education		
Medium	.009	.021
Medium	(.011)	(.017)
***	.026**	.060***
High	(.011)	(.018)
Income		
€2500-3499	.026**	.026
€2300-3499	(.012)	(.019)
€3500-4999	.020	.006
€300-4999	(.013)	(.020)
€000+	.033**	.017
€000+	(.014)	(.022)
Occupation		
Paid work	.028	.030
Paid Work	(.018)	(.026)
House work	.047**	.039
riouse work	(.021)	(.030)
Others	.037*	.035
Outers	(.019)	(.030)
Household composition		
Partner	026**	023
rarmer	(.011)	(.018)
# of children	.001	.001
# OI CHIMTER	(.004)	(.007)

.068

.058

Rationality and Wealth

- Blending of experiment and survey research allows us to study whether DMQ under experimental conditions captures DMA that applies across many (even real-world) domains.
- We study the correspondence between CCEI in the experiment and wealth in the real world.
- Conditional on income, wealth summarizes innumerable financial decisions involving a host of different tradeoffs (risk, time, self vs. others).
- Predicting wealth/portfolio thus offers a relatively "strong test" for the measure.
- If consistency with utility maximization in the experiment were a good proxy for financial decision-making ability it should help explain patterns of wealth.

CCEI and In(Wealth)

CCEI	1.351**	1.109**	101888.0*
CCEI	(0.566)	(0.534)	(52691.9)
Log 2009 household income	0.584***	0.606***	
Log 2008 household income	(0.132)	(0.126)	
2000 1 1.11			1.776***
2008 household income			(0.4)
Female	-0.313*	-0.356**	-32484.3*
remaie	(0.177)	(0.164)	(17523.9)
Ago	-0.303	-0.008	-19148.5
Age	(0.347)	(0.208)	(30164.4)
A 2	0.007	0.002	468.7
Age ²	(0.006)	(0.004)	(523.6)
A 3	0.000	0.000	-2.9
Age ³	(0.000)	(0.000)	(2.9)
Partnered	0.652***	0.595***	46201.9***
Partnered	(0.181)	(0.171)	(17173.7)
# of children	0.090	0.109	14078.6*
# Of Children	(0.093)	(0.086)	(8351.5)
Education Controls	yes	yes	yes
Occupation Controls	yes	yes	yes
Constant	6.292	0.469	76214.4
Constant	(6.419)	(3.598)	(559677.5)
R^2	0.179	0.217	0.188
# of obs.	517	566	568

Is the Correlation Due to Unobserved Constraints?

CCEI	1.322**	1.318**	1.925***	1.888***	1.441**
CCLI	(0.570)	(0.574)	(0.672)	(0.652)	(0.578)
Log household income					
2008	19.770	1.000	0.544***	0.285*	0.616***
	(14.629)		(0.137)	(0.165)	(0.128)
2008 ²	-2.194				
	(1.533)				
2008 ³	0.082				
2008	(0.053)				
2006				0.232	
2000				(0.231)	
2004				0.215	
2004				(0.174)	
Demography Controls	yes	yes	yes	yes	yes
Education Controls	yes	yes	yes	yes	no
Occupation Controls	yes	yes	yes	yes	yes
Constant	-47.059	0.864	5.354	3.016	6.398
Colistalit	(46.275)	(6.545)	(6.93)	(7.109)	(6.484)
R^2	0.187	•	0.205	0.217	0.177
# of obs.	517	517	449	449	517

Unobserved Preferences or Beliefs?

			4 40 411		
CCEI	1.379**	1.396**	1.404**	1.214*	1.237**
	(0.568)	(0.568)	(0.569)	(0.625)	(0.623)
Risk tolerance					
Quantitative (experiment)	-0.768	-0.808	-0.766		
Quantitative (experiment)	(0.714)	(0.711)	(0.718)		
Overlitative (exerces)		0.017	0.023		
Qualitative (survey)		(0.074)	(0.076)		
Qualitativa (august) missina		-0.190	-0.162		
Qualitative (survey) missing		(0.335)	(0.482)		
Stanardized Conscientiousness			0.089		
			(0.072)		
Conscientiousness missing			-0.040		
			(0.668)		
Longevity expectations					-0.034
Longevity expectations					(0.040)
Lac 2008 household income	0.589***	0.578***	0.572***	0.443***	0.434***
Log 2008 household income	(0.132)	(0.131)	(0.133)	(0.123)	(0.123)
Demog, Educ, Occup Controls	yes	yes	yes	yes	yes
Comptant	6.840	6.883	6.496	3.777	4.411
Constant	(6.361)	(6.357)	(6.395)	(15.258)	(15.256)
R^2	0.179	0.176	0.176	0.163	0.163
# of obs.	517	517	517	414	414

Alternative Proxies for Decision-making Ability

CCEI	1.253*	1.412*	1.328*	1.177**
CCEI	(0.712)	(0.724)	(0.725)	(0.583)
CCEI (combined dataset)	0.099			
CCEI (combined dataset)	-0.38			
von Gaudecker et al. (2011)			0.682	
von Gaudeeker et al. (2011)			(0.489)	
Cognitive Reflection Test (CRT)				0.120*
Cognitive Reflection Test (CRT)				(0.071)
CRT missing				-0.203
CKI missing				(0.237)
Log 2008 household income	0.586***	0.402**	0.399**	0.577***
Log 2008 flousefloid income	(0.132)	(0.156)	(0.155)	(0.132)
Demog, Educ, Occup. Controls	yes	yes	yes	yes
Constant	6.237	8.862	7.583	6.855
	(6.424)	(7.037)	(6.992)	(6.464)
R^{2}	0.177	0.216	0.219	0.181
# of obs.	517	328	328	517

Other Examples

- CentERpanel on choice over time basic consistency is key
- LISS on risk consistency and age and health
- Understanding America Study on risk complexity and validity across elicitaiton methods
- American Life Panel on social preferences voting behaviors
- Survey of medical students specialization choice
- Survey of Yale Law Students, ALP and undergrads social preferences

Summary

- Research blends experimental methods and survey research.
- Graphical interface permits rich experimental data collection from relatively large and heterogenous population.
- Proposing that quality prationality, and measuring it in this way, addresses challenges of decision-making ability literature.
- Observed heterogeneity in rationality and its relationship with observables supports the view that quality ⇒ rationality.
- Motivates further work

24 / 24