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A Proofs of Lemmas and Theorems

A.1 Proof of Theorem T-1:

Proof of T-1:

Proof. It suffices to prove that a general solution for x in the system of linear equations

represented by b = Bx ⇒ x is given by:

b = Bx ⇒ x = B+b+ (I −B+B)λ (A.1)

where λ is an arbitrary real-valued |b|-dimension vector, I is an identity matrix of the same

dimension and B+ is the Moore—Penrose Pseudoinverse of matrix B.1

In this proof we use the definition of the Moore—Penrose Pseudoinverse B+ and the

fact that the matrix B+ is unique for a real-valued matrix B. Matrix B+ has the following

properties: (1) BB+B = B; (2) B+BB+ = B+; (3) B+B = (B+B)′; and (4) BB+ =

(BB+)′. Properties (2)–(3) imply that Q = B+B is an orthogonal projection operator, so

Q2 = Q and Q′ = Q :

Q2 = B+BB+B = B+B = Q due to property (2)

Q′ = (B+B)′ = B+B = Q due to property (3).

Any vector x can be decomposed by a orthogonal Q projection as: x = Qx+ (I −Q)x. In

our case, we have that x = B+Bx + (I −B+B)x. If vector x is a solution to the system

1We refer to Magnus and Neudecker (1999) for a general discussion of linear systems.
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b = Bx, then it must be that:

Bx = b ⇒ x = B+b+ (I −B+B)x

Moreover b = Bx ⇒ b = B
(
B+b+B(I −B+B)x

)
But: B(I −B+B) = 0 due to property (4) of B+

Thus : B(I −B+B)λ = 0 for any real valued λ

⇒ b = B
(
B+b+ (I −B+B)λ

)
∴ x̃ = B+b+ (I −B+B)λ is also a solution as b = Bx̃ holds.

Thus x̃ = B+b+Kλ such that K = (I −B+B) is a general solution.

A.2 Proof of Corollary C-1:

We use Theorem T-1 to prove Corollary C-1.

Proof of C-1:

Proof. We apply the general solution for the matrix form of a system of linear equations to

Equation (38) in the text. This generates PS = B+
T PZ +KTλ. By hypothesis ξ′KT = 0,

and thus ξ′PS = ξ′B+
T PZ , which makes ξ′PS identified. By the same reasoning, QS(t) =

B+
T QZ(t) +Ktλ. Thus ζ

′Kt = 0 implies that ζ ′QS(t) = ζ ′B+
T QZ(t) is identified.

A.3 Proof of Corollary C-2:

Proof. According to C-1, Vector PS is point-identified if and only if ξ′KT = 0 for any ξ′.

Thus it must be the case that KT = 0. Since KT = (INS
−B+

T BT ), KT = 0 if and only

if INS
= B+

T BT which holds if and only if rank(BT ) = NS, that is, BT has full column-

rank. From Theorem C-1, PS is identified from B+
T PZ if and only if rank(BT ) = NS. The

second equation follows from the same rationale. Kt = 0 if and only if rank(Bt) = NS.

According to Theorem C-1, if Kt = 0, then QS(t) = B+
t QZ(t), and thereby E(κ(Y (t)))
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can be expressed as:

E(κ(Y (t))) =

NS∑
n=1

E(κ(Y (t)) | S = sn)P (S = sn)

= ι′NS
QS(t),

= ι′NS
B+

t QZ(t),

where ιNS
is a NS-dimensional vector of 1s.

A.4 Bounds for Response-Type Probabilities and Counterfactual

Outcomes

Lemma L-1 below uses linear Equations (39)–(38) and Theorem T-1 to generate simple

bounds for response-type probabilities and counterfactual outcomes:

Lemma L-1. For the IV model (4)–(5), bounds for response-type probabilities PS given a
response matrix R are given by:

PS ∈

[
max

(
0NS

,B+
T PZ + min

λ∈RNS

(
KTλ

))
,min

(
ιNS

,B+
T PZ + max

λ∈RNS

(
KTλ

))]
, (A.2a)

where λ is an arbitrary real-valued vector of dimension NS. Bounds on λ come from the fact
that PS is a vector with probabilities defined on the unit simplex. Bounds for the expectation
of outcomes by strata are given by:(

B+
t QZ(t) + min

ξ∈RNS

(
Ktξ

))
≤ QS(t) ≤

(
B+

t QZ(t) + max
ξ∈RNS

(
Ktξ

))
.2 (A.2b)

where ξ is an arbitrary real-valued vector of dimension NS.

Proof. Equations (A.2a) and (A.2b) follow directly from the application of the general lin-

ear solution in Theorem T-1 of the system of linear equations of Equations (38) and (39)

respectively. The admissible ranges of λ in Equation (A.2a) comes from using the fact that

PS are probabilities.

2These bounds are not sharp because we do not use the full distribution of the data generating process
in constructing them.
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A.5 Proof of Theorem T-2

Proof. The identification of counterfactual outcomes stems from the identification crite-

ria (43) and (44). Namely, ξ′QS(t) is identified if and only if there exists a 9 × 1 vector ξ

such that ξ′Kt = 0′, where Kt ≡ I9 −B+
t Bt; t ∈ {t1, t2, t3} and Bt = 1[R = t]. Matrix Kt

is symmetric, thus we can adopt the equivalence criteria Ktξ = 0 instead of ξ′Kt = 0′. Note

that Kt is a NS×NS matrix and if the s-column in Kt has only zeros, Then E(Y (t) | S = s)

is identified. Equation (A.3) investigates the counterfactual outcomes for t1:

Bt1 =

s1 s2 s3 s4 s5 s6 s7 s8 s9


1 1 1 0 0 0 0 0 0

1 1 1 0 0 0 1 0 0

1 1 1 1 0 0 0 0 0

1 0 0 0 0 0 0 0 0

⇒ Kt1 =
1

2

s1 s2 s3 s4 s5 s6 s7 s8 s9



0 0 0 0 0 0 0 0 0

0 1 −1 0 0 0 0 0 0

0 −1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 2 0 0 0 0

0 0 0 0 0 2 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 2 0

0 0 0 0 0 0 0 0 2

(A.3)

Columns s1, s4, and s7 in K1 are zero vectors. Thus E(Y (t1) | S = s1), E(Y (t1) | S = s4),

and E(Y (t1) | S = s7) are identified. Moreover Ktξ = 0 for ξ = [0, 1, 1, 0, 0, 0, 0, 0, 0]′.

That is to say that ξ[s] = 1; s ∈ {s2, s3} and ξ[s] = 0 otherwise. Thus, according to the

identification criteria (43) and (44), E(Y (t1) | S = s2)P (S = s2)+E(Y (t1) | S = s3)P (S =

s3) is identified. Moreover, P (S = s2) + P (S = s3) is also identified (by setting Y to one).

Thus,

E(Y (t1) | S = s2)P (S = s2) + E(Y (t1) | S = s3)P (S = s3)

P (S = s2) + P (S = s3)
= E(Y (t1) | S ∈ {s2, s3})
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is identified. Equation (A.4) investigates the counterfactual outcomes for t2:

Bt2 =

s1 s2 s3 s4 s5 s6 s7 s8 s9


0 0 0 1 1 1 0 0 0

0 0 0 1 1 1 0 1 0

0 0 0 0 1 0 0 0 0

0 1 0 1 1 1 0 0 0

⇒ Kt2 =
1

2

s1 s2 s3 s4 s5 s6 s7 s8 s9



2 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 2 0 0 0 0 0 0

0 0 0 1 0 −1 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 −1 0 1 0 0 0

0 0 0 0 0 0 2 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 2

(A.4)

Columns s2, s5, and s8 in K2 are zero vectors. Thus E(Y (t2) | S = s2), E(Y (t2) | S = s5),

and E(Y (t2) | S = s8) are identified. Moreover Ktξ = 0 for ξ = [0, 0, 0, 1, 0, 1, 0, 0, 0]′.

That is to say that ξ[s] = 1; s ∈ {s4, s6} and ξ[s] = 0 otherwise. Thus, according to the

identification criteria (43) and (44), E(Y (t2) | S ∈ {s4, s6}) is identified. Equation (A.5)

investigates the counterfactual outcomes for t3:

Bt3 =

s1 s2 s3 s4 s5 s6 s7 s8 s9


0 0 0 1 1 1 0 0 0

0 0 0 1 1 1 0 1 0

0 0 0 0 1 0 0 0 0

0 1 0 1 1 1 0 0 0

⇒ Kt3 =
1

2

s1 s2 s3 s4 s5 s6 s7 s8 s9



2 0 0 0 0 0 0 0 0

0 2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 2 0 0 0 0 0

0 0 0 0 2 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 −1 0

0 0 0 0 0 0 −1 1 0

0 0 0 0 0 0 0 0 0

(A.5)

Columns s3, s6, and s9 in K3 are zero vectors. Thus E(Y (t2) | S = s3), E(Y (t2) | S = s6),

and E(Y (t2) | S = s9) are identified. Moreover Ktξ = 0 for ξ = [0, 0, 0, 1, 0, 2, 0, 0, 0]′.

That is to say that ξ[s] = 1; s ∈ {s4, s6} and ξ[s] = 0 otherwise. Thus, according to the

identification criteria (43) and (44), E(Y (t2) | S ∈ {s4, s6}) is identified.

We can investigate the identification of response-type probabilities by setting the outcome

to one. The identification results regarding matrix Kt1 assures the identification of three

response-type probabilities: P (S = s1), P (S = s4), and P (S = s7). Matrix Kt2 identifies
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three additional response-type probabilities: P (S = s2), P (S = s5), and P (S = s8).

Matrix Kt2 identifies the remaining response-type probabilities: P (S = s3), P (S = s6), and

P (S = s9).

B Application to Latin Squares

Different incentive designs generate choice model with distinct properties. It is possible to

tailor the incentives to generate choice models with desirable properties. It is often the case

that well-known design generate non-trivial model properties. We examine the Latin square

design of the incentive matrix (B.1) to illustrate this fact.

A Latin square is a matrix whose elements occurs exactly once in each row and column.

The matrix is necessarily square and the number of unique elements is also the matrix

dimension. Incentive matrix (B.1) is an example of Latin square of dimension three:

Latin Square Incentive Matrix L =

t1 t2 t3[ ]3 1 2
2 3 1
1 2 3

z1
z2
z3

(B.1)

We can represent the Latin square as an orthogonal array by expressing each of its entries

as a triple (r, c, e), where r is the row, c is the column, and e is the entry value. Matrix (B.2)

displays the orthogonal representation of the incentive matrix (B.1). The representation

constitutes an orthogonal array of the type OA(9, 3, 3, 2).
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r c e



1 1 3
1 2 1
1 3 2
2 1 2
2 2 3
2 3 1
3 1 1
3 2 2
3 3 3

(B.2)

Each column of incentive matrix (B.1) presents a ranking of the incentives induced by

IV-values towards a treatment choice. The first column implies that z1 offers the highest

value towards t1 follows by z2 and the z3. The ranking for t2 is that z2 offers the highest

incentive followed by z3 and z1. We can apply choice rule (46) to incentive matrix (B.1) in

the same fashion we examined the incentive matrix (45). The incentive matrix generates

nine choice restrictions listed in Table B.1.

Table B.1: Choice Restrictions generated by Incentive Matrix (B.1)

1 Tω(z1) = t1 ⇒ Tω(z2) ̸= t3
2 Tω(z2) = t1 ⇒ Tω(z1) /∈ {t2, t3} and Tω(z3) ̸= t2
3 Tω(z3) = t1 ⇒ Tω(z1) /∈ {t2, t3} and Tω(z2) /∈ {t2, t3}

4 Tω(z1) = t2 ⇒ Tω(z2) /∈ {t1, t3} and Tω(z3) /∈ {t1, t3}
5 Tω(z2) = t2 ⇒ Tω(z3) ̸= t1
6 Tω(z3) = t2 ⇒ Tω(z1) ̸= t3 and Tω(z2) /∈ {t1, t3}

7 Tω(z1) = t3 ⇒ Tω(z2) ̸= t1 and Tω(z3) /∈ {t1, t2}
8 Tω(z2) = t3 ⇒ Tω(z1) /∈ {t1, t2} and Tω(z3) /∈ {t1, t2}
9 Tω(z3) = t3 ⇒ Tω(z1) ̸= t2

This table presents all the choice restrictions generated by applying the choice rule (46) to each of the combination of choices
(t, t′) ∈ {t1, t2, t3} and instrumental values (z, z′) ∈ {z1, z2, z3} of the incentive matrix (B.1).
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There are seven response-types that survive the choice restrictions in Tale B.1. The
surviving response-types are stacked in the response matrix (B.3).

R =

s1 s2 s3 s4 s5 s6 s7[ ]t1 t1 t1 t1 t2 t3 t3
t1 t1 t2 t2 t2 t2 t3
t1 t3 t2 t3 t2 t3 t3

z1
z2
z3

(B.3)

Response matrix (B.3) has a useful property: it is possible to reorder rows and columns
such that the values of any of the neighborhood choices t ∈ {t1, t2, t3} lie in the lower
triangular portion of the matrix. The reordered matrices are displayed in (B.4)–(B.6).

s1 s2 s3 s4 s5 s6 s7 t1 t3 t2 t3 t2 t3 t3
t1 t1 t2 t2 t2 t2 t3
t1 t1 t1 t1 t2 t3 t3

z3
z2
z1

(B.4)

s3 s4 s5 s6 s7 s2 s1 t2 t1 t1 t3 t3 t1 t1
t2 t2 t3 t3 t3 t3 t1
t2 t2 t2 t2 t3 t1 t1

z1
z3
z2

(B.5)

s7 s6 s2 s4 s5 s1 s3 t3 t2 t1 t2 t2 t1 t2
t3 t3 t1 t1 t2 t1 t1
t3 t3 t3 t3 t2 t1 t2

z2
z1
z3

(B.6)

Heckman and Pinto (2018) show that the triangular property of the response matrix

in (B.4)–(B.6) is a necessary and sufficient criteria for “unordered monotonicity” defined

in their paper to hold. That condition is a restriction on R and states that a change in

the instrument cannot induce some agents towards a choice while inducing others against

the same choice. Formally, unordered monotonicity states that for any pair of instrumental
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values z, z′ and any choice t, we must have that:

1[Tω(z) = t] ≥ 1[Tω(z
′) = t] for all ω ∈ Ω or 1[Tω(z) = t] ≤ 1[Tω(z

′) = t] for all ω ∈ Ω.

(B.7)

The unordered monotonicity in our three-choice and three-valued instrument consists of nine

inequalities—one for each combination of t ∈ {t1, t2, t3} and (z, z′) ∈ {z1, z2, z3}. Table B.2

lists the (unique) set of inequalities capable to generate response matrix (B.3). These in-

equalities are equivalent to the nine choice restrictions of Table B.1 as both generate the

same response matrix.

Table B.2: Unordered Monotonicity Conditions that Generate Response Matrix (B.1)

Z-pairs T Unordered Monotonicity Conditions

Relation 1 (z1, z2) t1 1[Tω(z1) = t1] ≥ 1[Tω(z2) = t1]
Relation 2 (z2, z3) t1 1[Tω(z2) = t1] ≥ 1[Tω(z3) = t1]
Relation 3 (z3, z1) t1 1[Tω(z3) = t1] ≤ 1[Tω(z1) = t1]

Relation 4 (z1, z2) t2 1[Tω(z1) = t2] ≤ 1[Tω(z2) = t2]
Relation 5 (z2, z3) t2 1[Tω(z2) = t2] ≥ 1[Tω(z3) = t2]
Relation 6 (z3, z1) t2 1[Tω(z3) = t2] ≥ 1[Tω(z1) = t2]

Relation 7 (z1, z2) t3 1[Tω(z1) = t3] ≥ 1[Tω(z2) = t3]
Relation 8 (z2, z3) t3 1[Tω(z2) = t3] ≤ 1[Tω(z3) = t3]
Relation 9 (z3, z1) t3 1[Tω(z3) = t3] ≤ 1[Tω(z1) = t3]

Heckman and Pinto (2018) show that unordered monotonicity renders the identification

of several counterfactual outcomes. They also show that the condition is equivalent to

the proposition that each choice indicator can be expressed as a separable inequality of

the propensity score and a uniformity distributed random variable that depends on the

unobserved confounder V , that is, 1[Y = t] = 1[P (T = t | Z) ≥ Ut];Ut ∼ Unif [0, 1].
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