Measuring, Modeling, and Shaping Skill Development

Andrew Caplin: HCEO Conference on Measuring and Assessing Skills

Chicago, October 2 2015
Introduction

- Will pose five basic (abstract) questions
- Question 1: How well does standard multiple choice test with standard grading measure skill?
 - 1A: How is standard test answered?
 - 1B: What therefore can be inferred from scores?
- Question 2: Data engineer’s question: how might enriched measurement and grading improve skill measurement?
 - 2A: Elicit information about confidence in answer and use in grading algorithm
 - 2B: Elicit information about (or restrict) allocation of time and use in grading algorithm
- Question 3: How would changes in measurement and scoring impact learning?
Introduction

- Brief answers to Q1-Q3:
 - Question 1: How well does standard multiple choice test with standard grading measure skill?
 - Use simple e.g.s to illustrate reasons to worry
 - In simplest reasonable model, mapping from beliefs about answers to answer depends on scoring rule and utility function
 - In simplest reasonable model, optimal allocation of time problem essentially insoluble
 - In richer model, role for psychological variables (e.g. anxiety)
Question 2: How might enriched measurement and grading improve skill measurement?

Use simple e.g.s to illustrate reasons for optimism

- In simplest reasonable model allowing elimination and eliciting beliefs revealing
- In simplest reasonable model much learned from allocation of time revealing
- Measuring both even richer
- Improves adaptive testing in vertical learning environments
Question 3: How would changes in measurement and scoring impact learning?

- In given exam, test taker (TT) with fixed actual skill (cognitive capacity) must map from prior learning to distribution of possible scores and corresponding utilities.
- Extremely complex since scores based on posterior beliefs which depend on time allocation.
- Best possible posterior depends on grading scheme and external value.
- TT has beliefs about distribution of possible tests.
- This allows computation of EU of any given level of skill.
Introduction

- Balance utility of capacity against costs
 - TT has utility costs (time, effort, and angst) of skill development
 - Based on some view of the personal production function for cog. capacity chooses optimal level of such development!
 - Not at all easy to specify
 - Hints from theory of rational inattention (Sims [1998, 2003], Woodford [2012], Matejka and McKay [2015], Caplin and Dean [2015]).
Question 4: What research methods would liberate further understanding?

- I propose a class of laboratory experiments before field tests
- Simple idea is to fix skill by fiat and explore how well measured in different protocols.
- Can enforce different time divisions to get sense of feasible set of posteriors
- Can add ex ante purchase to get to the investment phase

Note no attempt to introduce theory of optimal design at this point

- A bridge too far
1A: How is standard test answered?
First part is how does examinee knowledge at point of completion impact answers?

Standard MC test M has three parameters:

- T time (minutes) available to answer all questions
- N no. of distinct questions drawn from $q(n) \in Q$ background question set;
- $K \geq 2$ real answer options per question
Action set for each question is Y:

$$Y = \{1, \ldots, K, \emptyset\};$$

with \emptyset denoting no answer.

Actual answer (in words) associated with option k for question n is $a(k, n)$ from universal answer set A.

Unique correct action for each question $y^*(n) \in \{1, \ldots, K\}$.

Typically uniform probability independent across questions in the design that each is correct.
A standard answer is an element of \(\bar{y} = (y(n))_{n=1}^N \in \mathcal{Y}^N \).

A standard scoring rule is a piece-wise linear function \(\sigma : \mathcal{Y}^N \to [0, N] \) depending only on the number of correct and incorrect answers

\[
C(\bar{y}) = \sum_{n=1}^{N} 1\{y(n)=y^*(n)\};
\]
\[
I(\bar{y}) = N - C(\bar{y}) - \sum_{n=1}^{N} 1\{y(n) = \emptyset\};
\]
\[
\sigma(\bar{y}) = \max\{C(\bar{y}) - \rho I(\bar{y}), 0\};
\]

with \(\rho \geq 0 \) the error penalty.
Test given to individuals $i \in I$; with $\tilde{y}^i \in Y^N$ the answer of i and $\sigma(\tilde{y}^i)$ the corresponding score.

What examiner learns about $i \in I$ depends on what determines these answers.

Here we enter realm of theory.
Simplest reasonable model a Bayesian maximizing expected utility of the final score,

\[U : [0, N] \rightarrow \mathbb{R}. \]

To formalize define posterior beliefs at point of choosing all answers that \(\tilde{y} \in [Y/\emptyset]^N \) is correct vector of answers: must sum to 1.

Correlations can be induced by common aspects of answer algorithm.

Optimal answer problem non-trivial

This treats it as all answered at once at end: equivalent if can go back and change in light of noted correlations

- Else even more complex
- Standard batch vs. sequential issue in search theory
Simplest is independent case (sequential and batch answer strategies the same)

Define $\gamma^i(k, n)$ as i’s posterior at point of answer that $1 \leq k \leq K$ is correct answer to question $1 \leq n \leq N$.

In independent case, if answer, surely pick some most likely element $\hat{k}(n)$ (for simplicity unique)

$$y^i(n) \in \underset{1 \leq k \leq K}{\arg \max} \gamma^i(k, n) \cup \emptyset.$$
When best to not answer?

Simple(st?) theory would be a threshold rule based on posterior beliefs over the correct answers to each question.

Simplest satisficing rule is to set penalty dependent threshold probability $\tilde{\gamma}(\rho)$ and answer

$$\max_{1 \leq k \leq K} \gamma^i(k, n) \geq \tilde{\gamma}(\rho) \implies y^i(n) \in \arg \max_{1 \leq k \leq K} \gamma^i(k, n);$$

$$\max_{1 \leq k \leq K} \gamma^i(k, n) < \tilde{\gamma}(\rho) \implies y^i(n) = \emptyset.$$
Relies on linear EU over score

Inconsistent with floor of 0

A risk averter may get all “most likely correct” to probability $p > \frac{1}{K}$ correct but find it better to not answer some if this lowers the probability of catastrophic outcome

- e.g. three questions penalty $\rho > 0$ and need to get at least 2 to avoid catastrophe
- If answer 2 get 2 probability p^2: answering all 3 dominated since need to get all three right to avoid catastrophe, probability p^3.

In independent case general optimal strategy based on posterior is to look at EU if answer first m most likely and then do not answer rest.

Call this $V(m)$ and then maximize over m.
Q1A: Knowledge and Score

- With correlated answers get choice between plunging and diversification
- Two answer algorithms each 0.5 correct determine answer to 2 questions
 - Get 2 questions, no (small) error penalty and concave EU: alternate answers
 - If need both correct for EU reasons then instead plunge
- Qualitatively: may need to change prior answer to optimize given evolving information about correlations
Above gives no role to time allocation and time constraint

- Drift-diffusion model (Ratcliff[1978]) shows that more time generally raises probability correct.

Hence score depends on time allocation strategy

- Easy first beats linear order: different form of intelligence to know
- Caplin and Martin [2015] experiment shows bi-modal time to decide:
 - Quick decision guess or not:
 - If guess look like only trivial information taken in
 - If not, deliberate and to better
What best stopping time for identifying hard question and what to do with that?

Depends on what happens next: essentially impossible dynamic programming problem!

Psychological characteristics also enter:
 - How early problem impacts later performance may depend on neuroticism
What then to infer from scores?

If RE and beliefs correct on average ($p = 0.9$ is 90% correct) then if all answered with same confidence, score a good estimator as number of questions increases.

Can define more skilled type as one who is more certain about the answers to all questions.

Induces a mapping, albeit stochastic, from skill to score distribution.

Underlies simple theory that higher score likely reflects higher skill.
Q1B: Score and Skill

- But in richer and more realistic theory conflates many factors:
 - With non-linear EU may answer more if less confident and produce higher expected score.
 - Different utility functions possible so score reflects preferences and skill:
 - Character differences e.g. anxiety
 - Illusory beliefs e.g. overconfidence ($p = 0.9$ is 60% correct)
- Might find an individual who dominates another in sense of clarity per unit time yet scores lower
 - Different order of answers
 - Different cutoff strategy (too much time on a hard question)
Q2A: Posterior and Elimination

- Simple schemes can recover more details of posterior
 - If allow at least occasionally multiple options and/or elimination
- In principle may measure actual posteriors of most likely
 - BDM scheme for replacing 1 based on belief draw: use question if draw lower than stated belief and else use stated belief and urn!
 - Enables test of RE: may reveal possibly dangerous illusion of certainty!
 - Interesting question of whether or not to allow no score: maybe want this but also most likely if forced again with BDM
 - To get out information on correlations in beliefs requires conditional probabilities!
- Measuring beliefs may allow separation of "Eureka" from continuous accretion questions
With time allocation can do better skill identification
Can use an interface that enforces order and removes differences in the strategy.
 Makes it a more direct reflection of task skill
If want to know about skill in selection algorithm, design a separate test!
Exam design very different vertical in difficulty vs. horizontal (all equally difficult)

Superior measurement improves adaptive testing in vertical cases.
 - Not just errors but remaining time
 - Provides possibility for interactive hints as time extends
First fix exam protocol and grading scheme

Fixed actual skill (cognitive capacity: think Shannon capacity as example) determined by pre-exam effort (see below)

Also an EU function over scores based on value in future options/career

In given multiple choice test $M \in \mathcal{M}$, reasonable that test taker (TT) has uniform prior over correct answers

Utility function induces mapping from vector of posteriors to answers to scores
Q3: Optimal Development and Deployment of Skill

- Designing an information system in the sense of Blackwell
 - Essentially a mapping from the uniform prior to a distribution over possible posteriors.
 - Can formulate as a classical optimization problem in language of RI

- The true answers are hard to assess: the goal of the TT is to choose a clarifying information structure using fixed skill
 - Depending on time allocation will end up with different profile of posteriors and hence optimal answers and scores
 - TT might identify optimal exploration and answer strategy in non-anticipatory manner

- RI appropriate to focus on internal cognitive constraints on information processing rather than external costs of information access.
The learner’s job ex ante is to invest in earning a valuable score subject to the individual costs of building this skill.

From an ex ante view the actual learning during pre-exam period motivated not by given exam but by beliefs over the exam.

From ex ante viewpoint must judge how skill level impacts score on all possible tests.

Think of investment in capacity in relation to the larger space of all possible questions and their answers.

Requires beliefs about possible exams as set by the teacher (will not look for consistency now!)

This allows computation of EU of any given level of skill.
It is envisaged that capacity is subjectively costly to produce.

In basic RI theory, the DM faced with maximizes expected utility net of (separable) capacity costs.

- Different RI models involve differentially specifying the notion of capacity and the cost function for building it.
- Of particular importance is the Shannon cost function which specifies costs as linear Shannon capacity.

To a first approximation, goal of exam is to encourage the building of the capacity.

- Examiner’s optimization a bridge too far
Question 4: What research methods would liberate further understanding?

- Fix skill: make questions involve various operations carried out by a machine.
- Make one machine faster in all operations by a fixed proportion
- Have them complete a large set of different types of test
- See how well you can recover fixed skill
- To induce emotions make difficult tasks hard to identify
- Do a personality inventory etc. to see how other factors enter.