Appendix Gender Differences in the Benefits of an Influential Early Childhood Program

Jorge Luis García, James J. Heckman, and Anna L. Ziff

July 20, 2018

Contents

Appendix A Background 1
A. 1 Overview 1
A. 2 Eligibility Criteria and Populations Served 1
A. 3 Randomization Protocol and Compromises 5
A.3.1 ABC 10
A.3.2 CARE 15
A. 4 Program Description and Content 17
A.4.1 Goals 17
A.4.2 Daily Schedule 17
A.4.3 Program Staff and Physical Space 18
A.4.4 Approach to Child Development 20
A.4.5 Medical Care and Nutrition 21
A.4.6 School-age Treatment 23
A. 5 Control Group Substitution 24
A.5.1 Regulation 28
A.5.2 Costs 30
A. 6 Data 31
A.6.1 Summary of Data Collection 43
Appendix B Identification and Estimation of Life-Cycle Treatment Effects 44
B. 1 Complete Data 45
B. 2 Partially Complete Data 46
B. 3 Inference 51
B.3.1 Treatment Effects 52
B.3.2 Combining Functions 53
Appendix C Gender Differences 53
C. 1 Survey of Gender Differences Literature 53
Appendix D Procedures for Selecting Background Variables, Estimated Treatment Ef- fects, and Estimated Combining Functions 55
D. 1 Background Variables 55
D.1.1 Matching Variables 58
D.1.2 Sensitivity Analysis 58
D. 2 Outcomes of Interest 63
D. 3 Estimates 68
D. 4 Non-parametric Tests 72
D. 5 Combining Functions - \% of Positive Treatment Effects, Aggregated 78
D. 6 Combining Functions - \% of Positive Treatment Effects, by Category 80
D. 7 Treatment Effects for Pooled Sample 83
D. 8 Treatment Effects for Male Sample 89
D. 9 Treatment Effects for Female Sample 96
D. 10 Treatment Effects for Pooled Sample, Step Down 102
D. 11 Treatment Effects for Male Sample, Step Down 109
D. 12 Treatment Effects for Female Sample, Step Down 115
D. 13 Alternative Definitions of Control Substitution and Two-Sided Statistical Tests 122
D.13.1 Alternative Definitions of Control Substitution 122
D.13.2 Two-Sided Statistical Tests 126
Appendix E Alternative Evaluation Methodologies 128
E. 1 Instrumental Variables 129
E.1.1 Model and Conditions 129
E.1.2 Instrumental Variables in Practice 130
E.1.3 Sets of Instruments 131
E.1.4 Specifications for the Instruments 131
E.1.5 Functional Forms of Enrollment in Alternative Preschool 132
E. 2 Results 132
E.2.1 Main Specification 132
E.2.2 Varying the Sets of Instruments 134
E.2.3 Varying the Specification of the Instruments 136
E.2.4 Varying the Parameterization of Alternative Preschool Take-up 140
E. 3 Control Functions 144
E.3.1 Setup 144
E.3.2 Identification 146
E. 4 Estimates 147
List of Figures
A. 1 High-risk Index Distribution, ABC 4
A. 2 High-risk Index Distribution, CARE 5
A. 3 Randomization Protocol and Treatment Compliance, ABC 7
A. 4 Randomization Protocol and Treatment Compliance, CARE 8
A. 5 Average Number of Months in Alternative Preschool, ABC Control Group 25
A. 6 Average Number of Months in Alternative Preschool, CARE Control and Family Education Groups 26
A. 7 Control Substitution Characteristics, ABC/CARE Control Group 29
D. 1 Sensitiviy to Choice of Control Set, Treatment vs. Next Best 60
D. 2 Sensitiviy to Choice of Control Set, Treatment vs. Stay at Home 61
D. 3 Sensitivity to Choice of Control Set, Treatment vs. Alternative Preschool 62
E. 1 Effect of Center-based Childcare on IQ Scores, Accounting for Endogenous Take-up of Al- ternative Preschool Using Instrumental Variables 133
E. 2 Effect of Center-based Childcare on Labor Market Outcomes, Accounting for Endogenous Take-up of Alternative Preschool Using Instrumental Variables 134
E. 3 Effect of Center-based Childcare on IQ Scores, Accounting for Endogenous Take-up of Al- ternative Preschool Using Various Instrumental Variables 135
E. 4 Effect of Center-based Childcare on Labor Market Outcomes, Accounting for Endogenous Take-up of Alternative Preschool Using Various Instrumental Variables 136
E. 5 Effect of Center-based Childcare on IQ Scores, Accounting for Endogenous Take-up of Al- ternative Preschool Using Various Instrumental Variables Specifications 137
E. 6 Effect of Center-based Childcare on Labor Market Outcomes, Accounting for Endogenous Take-up of Alternative Preschool Using Various Instrumental Variables Specifications 138
E. 7 Effect of Center-based Childcare on IQ Scores, Accounting for Endogenous Take-up of Al- ternative Preschool Using Various Instrumental Variables Specifications 139
E. 8 Effect of Center-based Childcare on Labor Market Outcomes, Accounting for Endogenous Take-up of Alternative Preschool Using Various Instrumental Variables Specifications 140
E. 9 Effect of Center-based Childcare on IQ Scores, Accounting for an Endogenous Indicator of Take-up of Alternative Preschool 141
E. 10 Effect of Center-based Childcare on Labor Market Outcomes, Accounting for an Endogenous Indicator of Take-up of Alternative Preschool 142
E. 11 Effect of Center-based Childcare on IQ Scores, Accounting for Endogenous (log) Months of Take-up of Alternative Preschool 143
E. 12 Effect of Center-based Childcare on Labor Market Outcomes, Accounting for Endogenous (log) Months of Take-up of Alternative Preschool 144
E. 13 Effect of Center-based Childcare on IQ Scores, Accounting for Endogenous (log) Months of Take-up of Alternative Preschool 148
E. 14 Effect of Center-based Childcare on Labor Market Outcomes, Accounting for Endogenous (log) Months of Take-up of Alternative Preschool 149
List of Tables
A. 1 High-risk Index for ABC 2
A. 2 Randomization Compromises, ABC 12
A. 3 Randomization Compromises, CARE 16
A. 4 Baseline Characteristics and Control Substitution 27
A. 5 Child-Staff Ratios for North Carolina, FIDCR, and Actual ABC and CARE Ratios 30
A. 6 Early Childhood Data (Part I) 33
A. 7 Early Childhood Data (Part II) 34
A. 8 Childhood and Adolescence Data (Part I) 35
A. 9 Childhood and Adolescence Data (Part II) 36
A. 10 Adult Data (Part I) 37
A. 11 Adult Data (Part II) 38
A. 12 First-phase Treatment vs. Control Groups, ABC 40
A. 13 Second-phase Treatment vs. Control Groups, ABC 40
A. 14 Observed vs. Attritted Children, ABC 41
A. 15 First-phase Treatment vs. Control Groups, Dropping Attrited Children, ABC 42
A. 16 First-phase Treatment vs. Control Groups, Subjects Completing the Health Follow-up, ABC 43
A. 17 ABC and CARE Data Collection 44
B. 1 Variables Estimated without IPW Adjustment 46
B. 2 Variables Used to Create IPW Scheme 48
C. 1 Literature Review on Early Gender Differences 54
D. 1 Background Variables 56
D. 2 Testing Matched Samples 59
D. 3 Main Outcome Variables 63
D. 4 Treatment Effects on Latent Outcomes 71
D. 5 Age Summary of Treatment-Control Comparisons by Gender, Full Set of Outcomes 72
D. 6 Category Summary of Treatment-Control Comparisons by Gender, Full Set of Outcomes 73
D. 7 Age Summary of Treatment-Control (Stay at Home) Comparisons by Gender, Full Set of Outcomes 74
D. 8 Category Summary of Treatment-Control (Stay at Home) Comparisons by Gender, Full Set of Outcomes 75
D. 9 Age Summary of Treatment-Control (Alternative Care) Comparisons by Gender, Full Set of Outcomes 76
D. 10 Category Summary of Treatment-Control (Alternative Care) Comparisons by Gender, Full Set of Outcomes 77
D. 11 Combining Functions, Pooled Sample 78
D. 12 Combining Functions, Male Sample 78
D. 13 Combining Functions, Female Sample 78
D. 14 Combining Functions by Category, Pooled Sample 80
D. 15 Combining Functions by Category | 10% Significance, Pooled Sample 80
D. 16 Combining Functions by Category, Male Sample 81
D. 17 Combining Functions by Category | 10% Significance, Male Sample 81
D. 18 Combining Functions by Category, Female Sample 82
D. 19 Combining Functions by Category | 10\% Significance, Female Sample 82
D. 20 Treatment Effects on IQ Scores, Pooled Sample 83
D. 21 Treatment Effects on Achievement Scores, Pooled Sample 83
D. 22 Treatment Effects on HOME Scores, Pooled Sample 84
D. 23 Treatment Effects on Parental Income, Pooled Sample 84
D. 24 Treatment Effects on Mother's Employment, Pooled Sample 85
D. 25 Treatment Effects on Father at Home, Pooled Sample 85
D. 26 Treatment Effects on Education, Pooled Sample 85
D. 27 Treatment Effects on Subject Employment and Income, Pooled Sample 86
D. 28 Treatment Effects on Marriage, Pooled Sample 86
D. 29 Treatment Effects on Crime, Pooled Sample 86
D. 30 Treatment Effects on Tobacco, Drugs, Alcohol, Pooled Sample 87
D. 31 Treatment Effects on Hypertension, Pooled Sample 87
D. 32 Treatment Effects on Cholesterol, Pooled Sample 87
D. 33 Treatment Effects on Diabetes, Pooled Sample 88
D. 34 Treatment Effects on Obesity, Pooled Sample 88
D. 35 Treatment Effects on Mental Health t-Score, Pooled Sample 88
D. 36 Treatment Effects on IQ Scores, Male Sample 89
D. 37 Treatment Effects on Achievement Scores, Male Sample 90
D. 38 Treatment Effects on HOME Scores, Male Sample 90
D. 39 Treatment Effects on Parental Income, Male Sample 91
D. 40 Treatment Effects on Mother's Employment, Male Sample 91
D. 41 Treatment Effects on Father at Home, Male Sample 91
D. 42 Treatment Effects on Education, Male Sample 92
D. 43 Treatment Effects on Subject Employment and Income, Male Sample 92
D. 44 Treatment Effects on Marriage, Male Sample 92
D. 45 Treatment Effects on Crime, Male Sample 93
D. 46 Treatment Effects on Tobacco, Drugs, Alcohol, Male Sample 93
D. 47 Treatment Effects on Hypertension, Male Sample 93
D. 48 Treatment Effects on Cholesterol, Male Sample 94
D. 49 Treatment Effects on Diabetes, Male Sample 94
D. 50 Treatment Effects on Obesity, Male Sample 94
D. 51 Treatment Effects on Mental Health t-Score, Male Sample 95
D. 52 Treatment Effects on IQ Scores, Female Sample 96
D. 53 Treatment Effects on Achievement Scores, Female Sample 96
D. 54 Treatment Effects on HOME Scores, Female Sample 97
D. 55 Treatment Effects on Parental Income, Female Sample 97
D. 56 Treatment Effects on Mother's Employment, Female Sample 98
D. 57 Treatment Effects on Father at Home, Female Sample 98
D. 58 Treatment Effects on Education, Female Sample 98
D. 59 Treatment Effects on Subject Employment and Income, Female Sample 99
D. 60 Treatment Effects on Marriage, Female Sample 99
D. 61 Treatment Effects on Crime, Female Sample 99
D. 62 Treatment Effects on Tobacco, Drugs, Alcohol, Female Sample 100
D. 63 Treatment Effects on Hypertension, Female Sample 100
D. 64 Treatment Effects on Cholesterol, Female Sample 100
D. 65 Treatment Effects on Diabetes, Female Sample 101
D. 66 Treatment Effects on Obesity, Female Sample 101
D. 67 Treatment Effects on Mental Health t-Score, Female Sample 101
D. 68 Treatment Effects on IQ Scores, Pooled Sample, Step Down 102
D. 69 Treatment Effects on Achievement Scores, Pooled Sample, Step Down 103
D. 70 Treatment Effects on HOME Scores, Pooled Sample, Step Down 103
D. 71 Treatment Effects on Parental Income, Pooled Sample, Step Down 104
D. 72 Treatment Effects on Mother's Employment, Pooled Sample, Step Down 104
D. 73 Treatment Effects on Father at Home, Pooled Sample, Step Down 104
D. 74 Treatment Effects on Education, Pooled Sample, Step Down 105
D. 75 Treatment Effects on Subject Employment and Income, Pooled Sample, Step Down 105
D. 76 Treatment Effects on Marriage, Pooled Sample, Step Down 105
D. 77 Treatment Effects on Crime, Pooled Sample, Step Down 106
D. 78 Treatment Effects on Tobacco, Drugs, Alcohol, Pooled Sample, Step Down 106
D. 79 Treatment Effects on Hypertension, Pooled Sample, Step Down 106
D. 80 Treatment Effects on Cholesterol, Pooled Sample, Step Down 107
D. 81 Treatment Effects on Diabetes, Pooled Sample, Step Down 107
D. 82 Treatment Effects on Obesity, Pooled Sample, Step Down 107
D. 83 Treatment Effects on Mental Health t-Score, Pooled Sample, Step Down 108
D. 84 Treatment Effects on IQ Scores, Male Sample, Step Down 109
D. 85 Treatment Effects on Achievement Scores, Male Sample, Step Down 109
D. 86 Treatment Effects on HOME Scores, Male Sample, Step Down 110
D. 87 Treatment Effects on Parental Income, Male Sample, Step Down 110
D. 88 Treatment Effects on Mother's Employment, Male Sample, Step Down 111
D. 89 Treatment Effects on Father at Home, Male Sample, Step Down 111
D. 90 Treatment Effects on Education, Male Sample, Step Down 111
D. 91 Treatment Effects on Subject Employment and Income, Male Sample, Step Down 112
D. 92 Treatment Effects on Marriage, Male Sample, Step Down 112
D. 93 Treatment Effects on Crime, Male Sample, Step Down 112
D. 94 Treatment Effects on Tobacco, Drugs, Alcohol, Male Sample, Step Down 113
D. 95 Treatment Effects on Hypertension, Male Sample, Step Down 113
D. 96 Treatment Effects on Cholesterol, Male Sample, Step Down 113
D. 97 Treatment Effects on Diabetes, Male Sample, Step Down 114
D. 98 Treatment Effects on Obesity, Male Sample, Step Down 114
D. 99 Treatment Effects on Mental Health t-Score, Male Sample, Step Down 114
D. 100 Treatment Effects on IQ Scores, Female Sample, Step Down 115
D. 101 Treatment Effects on Achievement Scores, Female Sample, Step Down 116
D. 102 Treatment Effects on HOME Scores, Female Sample, Step Down 116
D. 103 Treatment Effects on Parental Income, Female Sample, Step Down 117
D. 104 Treatment Effects on Mother's Employment, Female Sample, Step Down 117
D. 105 Treatment Effects on Father at Home, Female Sample, Step Down 117
D. 106 Treatment Effects on Education, Female Sample, Step Down 118
D. 107 Treatment Effects on Subject Employment and Income, Female Sample, Step Down 118
D. 108 Treatment Effects on Marriage, Female Sample, Step Down 118
D. 109 Treatment Effects on Crime, Female Sample, Step Down 119
D. 110 Treatment Effects on Tobacco, Drugs, Alcohol, Female Sample, Step Down 119
D. 111 Treatment Effects on Hypertension, Female Sample, Step Down 119
D. 112 Treatment Effects on Cholesterol, Female Sample, Step Down 120
D. 113 Treatment Effects on Diabetes, Female Sample, Step Down 120
D. 114 Treatment Effects on Obesity, Female Sample, Step Down 120
D. 115 Treatment Effects on Mental Health t-Score, Female Sample, Step Down 121
D. 116 Treatment Effects on Selected Outcomes, Control Substitution if Attended Treatment Al- ternatives $2 / 5$ of Time between Ages 0 to 5 123
D. 117 Treatment Effects on Selected Outcomes, Control Substitution if Attended Treatment Al- ternatives $3 / 5$ of Time between Ages 0 to 5 124
D. 118 Treatment Effects on Selected Outcomes, Control Substitution if Attended Treatment Al- ternatives $4 / 5$ of Time between Ages 0 to 5 125
D. 119 Treatment Effects on Selected Outcomes, Two-Sided Inference 127

A Background ${ }^{1}$

A. 1 Overview

The Carolina Abecedarian Project (ABC) and the Carolina Approach to Responsive Education (CARE) were high-quality early childhood education programs each with two phases of randomized controlled design. They were both implemented at the Frank Porter Graham Center (FPGC) of the University of North Carolina in Chapel Hill. ABC served four cohorts of children born between 1972 and 1977, and CARE served two cohorts of children born between 1977 and 1980. In this section of the appendix, we expand on important details of the eligibility requirements, the randomization protocol, and the programmatic contents of both programs.

A. 2 Eligibility Criteria and Populations Served

The mothers of the ABC and CARE subjects were generally recruited during the last trimester of pregnancy. Potential families were referred by local social service agencies and hospitals. Eligibility was determined by a score of 11 or more on a weighted 13 -factor Highrisk Index (HRI). Table A. 1 details the items of the HRI for ABC.

[^0]Table A.1: High-risk Index for ABC

	Item	Response	Weight
1	Maternal education (years of education)	6	8
		7	7
		8	6
		9	3
		10	2
		11	1
		12	0
2	Paternal education (years of education)	same as maternal ed	ation
3	Year family income (2014 USD)	\$5,663.54 or less	8
		\$5,663.54-\$11,327.08	7
		\$11,327.08-\$16,990.62	6
		\$16,990.62-\$22,654.16	5
		\$22,654.16-\$28,317.70	4
		\$28,317.70-\$33,981.24	0
4	Father's absence from the household for reason other than health or death	Yes	3
5	Lack of maternal relatives in the area	Yes	3
6	Siblings in school age one or more grades behind age-appropriate level or low scores on school-administered achievement tests	Yes	3
7	Received payments from welfare agencies within the past 3 years	Yes	3
8	Father's work unstable or unskilled and semi-skilled labor	Yes	3
9	Maternal or paternal IQ 90 or below	Yes	3
10	Sibling with an IQ score 90 or below	Yes	3
11	Relevant social agencies indicate that family is in need of assistance	Yes	3
12	One or more family members has sought professional help in the past 3 years	Yes	1
13	Special circumstances not included in any of the above that are likely contributors to cultural or social disadvantage	Yes	1

Note: This table shows the High-risk Index (HRI) for ABC. A score of 11 or more determined eligibility (Ramey and Smith, 1977; Ramey and Campbell, 1984, 1991; Ramey et al., 2000). The weighting scale aimed to establish the relative importance of each item in the index (Ramey and Smith, 1977). Race was not considered for eligibility; however, 98% of the families who agreed to participate were African American (Ramey and Smith, 1977; Ramey and Campbell, 1979).

The HRI for CARE was similar to that of ABC-it also contained 13 weighted variables and a score of 11 or above was required to be considered eligible. The items for maternal and paternal education levels have the same categories and weights as the ABC HRI. The other identical items are having an absent father, school-age siblings performing lower than the norm based on grade-level or achievement tests, a record of father's unstable job history or unskilled labor, social agencies indicating a high level of need, and other circumstances related to cultural or social disadvantage.

The specification of the following items were changed between the ABC and CARE HRI. The weight associated with household income depended on the number of individuals in the
family for CARE and the income categories range from less than $\$ 11,327.08$ to $\$ 76,457.80$ (2014 USD) or more. In the CARE HRI, it is asked if payments were received from welfare agencies in the past 5 years instead of the past 3 years. Similarly, it asks if any family member has sought counseling in the past 5 years instead of the past 3 years. The threshold for maternal or paternal IQ is 85 in the CARE HRI instead of 90 as in the ABC HRI. It does not have an item related to the absence of maternal relatives in the area, but replaces that item with asking if any member of the mother or father's immediate family has received services for the mentally disabled (the weight for this item is 3). ${ }^{2}$

All subjects were substantially disadvantaged (see Figure A. 1 and Figure A.2). Maternal age when the subject was born was, on average, 19.9 years in ABC and 21.1 years in CARE. Approximately half of the mothers of both treatment-group and control-group subjects in ABC were 19 years or younger and one third were 17 years or younger. In CARE, approximately half of the mothers of both treatment-group and control-group subjects were 20 years or younger and one third were 17.2 years or younger. Mean maternal IQ score in ABC was approximately 85 , one standard deviation below the national mean. In CARE, the mean maternal IQ score was approximately 87 . Only 25% of the ABC subjects lived with both biological parents, and more than 50% lived with extended families in multi-generational households (61% of treatment-group subjects and 56% of control-group subjects). ${ }^{3}$ About 79% of subjects did not have a father in the home in both ABC and CARE.

[^1]Figure A.1: High-risk Index Distribution, ABC

Note: This plot shows the distribution of the High-risk Index (HRI) for ABC, which determined eligibility. Subjects were eligible if they had a score of 11 or more.

Figure A.2: High-risk Index Distribution, CARE

Note: This plot shows the distribution of the High-risk Index (HRI) for CARE, which determined eligibility. Subjects were eligible if they had a score of 11 or more.

A. 3 Randomization Protocol and Compromises

Randomization compromises throughout ABC's and CARE's implementations pose a challenge when evaluating the programs' effects. We discuss each case of compromise in detail. Figure A. 3 and Figure A. 4 are flow charts that depict the sample from the first-phase randomization through the last data follow-up accounting for all cases of attrition and noncompliance.

Although most randomization compromises occurred at early stages, this methodology also accounts for the fact that a few subjects were not in the sample either for the second-phase randomization or for the adult follow-ups. In Appendix A.6, we describe the sample reductions that attrition at different stages of the study generates and test potential differences between the subjects who completed data follow-ups and the subjects who did not.

Figure A.3: Randomization Protocol and Treatment Compliance, ABC

Figure A.4: Randomization Protocol and Treatment Compliance, CARE

Details on Figure A.3: Sources: Ramey et al. (1976); Ramey and Smith (1977); Ramey and Campbell $(1979,1984)$, internal documentation of the program, and own calculations. Note: The variable R represents randomization into treatment, [$R=1$], or control, [$R=0$], groups. After the original randomization, some subjects died or withdrew from the program early in life and were replaced. R also includes those replacements. Arrows pointing outside of the diagram indicate subjects who left the study permanently. The variable D represents participation in the preschool-age program. The variable $S R$ represents randomization into the school-age program, $[S R=1]$, or out of it, $[S R=0]$. Some subjects were not randomized at school age, $[S R=N o]$. We use the term "temporarily attrited" for subjects who did not participate in the study at school age, but were later interviewed in the age- 21 followup.

Details on Figure A.4: Sources: Wasik et al. (1990), internal documentation of the program, and own calculations. Note: The variable R represents randomization into centerbased childcare and family education, $[R=2$], family education, $[R=1$, or control, $[R=0]$. Arrows pointing outside of the diagram indicate subjects who left the study permanently. The variable D represents participation in the corresponding group of the preschool-age program. The variable $S R$ represents those who participated in the school-age program, [$S R=1$], or did not, $[S R=0]$. Unlike in ABC, there was no second-phase randomization in CARE. Rather, those in the center-based childcare and family education group and those in the family education group were automatically assigned to receive the school-age treatment. We use the term "temporarily attrited" for subjects who did not participate in the study at school age, but were later interviewed in the age-21 followup.

Abstract

A.3.1 ABC

Both the first and second phases of randomization were conducted at the family level, so pairs of siblings and twins were jointly randomized into either treatment or control groups. ${ }^{4}$ Although we know that pairing was based on HRI, maternal IQ, maternal education, maternal age, and gender of the subject, we do not know the original pairs. The study collected an initial sample of 120 families. Twenty-two subjects did not complete the first-phase of treatment as initially assigned by the randomization (see Table A.2). ${ }^{5}$

Of these cases, there were four subjects assigned to treatment who left the study before any data on them was collected. In our main methodology, we assume that they are missing at random.

Second, four subjects died before age 5-two of them initially assigned to treatment and two of them initially assigned to control. For all of them, we observe baseline characteristics and any other data collected before their death. For methodological purposes, they represent cases of program attrition when we do not observe their outcomes.

Third, three subjects in the treatment group did not comply to treatment status. They are different from the four subjects who left the study before any data collection because we observe data collected for them from birth to age 8. Afterward, the program staff chose not to follow them anymore. ${ }^{6}$ Therefore, these subjects remain in treatment sample until age 8 or before. After, they represent cases of program attrition, given that we do not observe

[^2]them anymore.
Table A.2: Randomization Compromises, ABC

Case	Initial Assignment	Compromise Description	Age at Departure	Data Availability	Methodology Assumption
1	Treatment	Left the study	0	None	Missing at random
2	Treatment	Left the study	0	None	Missing at random
3	Treatment	Left the study	0	None	Missing at random
4	Treatment	Left the study	0	None	Missing at random
5	Control	Death (age 0), heart disease	0	Baseline; before dead	Attrition after death
6	Control	Death (age 0), heart disease	0	Baseline; before dead	Attrition after death
7	Treatment	Death (age 0), SIDS	0	Baseline; before dead	Attrition after death
8	Treatment	Death (age 4), pedestrian accident	4	Baseline; before dead	Attrition after death
9	Treatment	Non-compliance	Do not depart	Baseline; before age 8	Attrition after age 8
10	Treatment	Non-compliance	Do not depart	Baseline; before age 8	Attrition after age 8
11	Treatment	Non-compliance	Do not depart	Baseline; before age 8	Attrition after age 8
12	Control	Crossover from control to treatment	Do not depart	Baseline; before age 8	Attrition after age 8
13	Treatment	3 months of treatment	3 months	Baseline; after age 2	Same as treatment group
14	Treatment	10 months of treatment	10 months	Baseline; after age 2	Same as treatment group
15	Treatment	6 months of treatment	6 months	Baseline; after age 2	Same as treatment group
16	Treatment	9 months of treatment	9 months	Baseline; after age 2	Same as treatment group
17	Control	Left study at 54 months	54 months	Baseline; before 54 months	Attrition after 54 months
18	Treatment	Developmentally delayed at 6 months	6 months	No data after diagnosis	Dropped (non-eligible)
19	Treatment	Developmentally delayed at 3 years	3	No data after diagnosis	Dropped (non-eligible)
20	Control	Crossover from control to treatment	Do not depart	Baseline, before age 8	Attrition after age 8
21	Control	Crossover from control to treatment	Do not depart	Baseline, before age 8	Attrition after age 8

Note: This table describes the various randomization compromises in ABC. For each subject, we display: the nature of the compromise, the available data, and the methodological assumption when accounting for non-compliance and program attrition. The case numbers do not have anything to do with individual identifiers of program participants.

Fourth, one subject initially assigned to control was enrolled into treatment. The mother wanted to work and the program staff decided to admit her child into center-based care. ${ }^{7}$ Both in terms of data collection and in terms of methodological purposes, this subject is analogous to the subjects in the third case. ${ }^{8}$

Fifth, four subjects in the treatment group did not complete treatment in its entirety. They were treated for at most 10 months. Except for follow-ups during childhood, which our main results do not use, we observe most of the data for these subjects. We avoid taking a stance on how beneficial the program was at each age, because we do not have a way to document this. Therefore, we assume that they were treated as other subjects in the treatment group. ${ }^{9}$

Sixth, the family of one subject in the control group moved at age 54 months. We observe data before the family moved, so we consider the subject as part of the control group in any estimation before this event. Afterwards, we do not observe any data on the subject, so we consider her a case of program attrition.

Seventh, two subjects initially assigned to treatment status were diagnosed as developmentally delayed after 6 and 36 months of treatment. No data for them are available after the diagnosis. We drop them from the sample because they were not eligible to be part of the program.

Finally, two subjects initially assigned to the control group were admitted into treatment. Local authorities requested this because the children were considered highly at risk. Data on

[^3]them are available from birth to age 8. Although they crossed over from the control group to the treatment group, we consider them to be members of the control group who attrited after age 8 .

Analysis of each of these cases leads to the following conclusions. For four subjects, we do not have data to assess them as cases of program attrition, though sensitivity analyses suggest that the treatment effects of the program persist after assigning them the same outcome as the subjects who did the worst in the treatment group. For the subjects who did not comply to treatment, adjusting our estimates for non-compliance when data are available makes little difference. The remaining 14 subjects who did not complete treatment as initially assigned represent various cases of program attrition, for which we propose a correction methodology in Appendix B.2.

To increase the number of subjects in the sample, the program officers recruited additional subjects who were added to the program before the subjects were 6 months old. Our calculations indicate that there were eight replacements. We cannot distinguish in the data the subjects who were initially randomized from the replacement children and there is no documentation on how these subjects were recruited. ${ }^{10}$ After the various compromises, the sample consisted of 114 subjects: 58 in the treatment group and 56 in the control group. The observed characteristics for each subjects indicate that they were eligible for the program; all subjects in the sample have an HRI of 11 or above.

Prior to the second phase of randomization, 3 subjects in the first-phase control group and 3

[^4]subjects in the first-phase treatment group could not be located for follow-up. One subject in the control group and eight subjects in the treatment group of the first phase did not participate in the second phase but later agreed to participate in the data collections during adulthood. This yielded a sample of 96 subjects in the second phase: 49 in treatment and 47 in control. After the second-phase randomization, three subjects in the treatment group chose not to participate in the program, while all subjects in the control group adhered to their randomization status.

A.3.2 CARE

The randomization protocol in CARE had no major compromises. ${ }^{11}$ Of the 65 initial families, 23 were randomized to a control group, 25 to the family education treatment group (we do not consider this group in our combined ABC/CARE sample), and 17 to the family education and center-based childcare treatment group. Two families in the family education treatment group had twins who were jointly randomized, as in ABC. We document four cases of program attrition (see Table A.3). ${ }^{12}$ For methodological purposes, we consider these subjects analogous to their corresponding cases in ABC. We do not present exercises to evaluate the sensitivity to non-compliance because there was none in CARE. Figure A. 4 illustrates CARE's randomization protocol and the presence of subjects throughout the data follow-ups.

[^5]Table A.3: Randomization Compromises, CARE

Case	Initial Assignment	Compromise Description	Age at Departure	Data Availability	Methodology Assumption
1	Family education	Death (age 0), unknown causes	0	Baseline	Attrition after dead
2	Center-based Childcare	Left study at age 5	5	Baseline; before age 5	Attrition after age 5
3	Control	Move at 11 months old	11 months	Baseline; before 11 months	Attrition after 11 months
4	Center-based Childcare	Move at 5 months	5 months	Baseline; before 5 months	Attrition after 5 months
5	Center-based Childcare	Move at age 5	5	Baseline; before age 5	Attrition after 5

Note: This table describes the various randomization compromises in CARE. For each subjects, we display: the nature of the compromise, the available data, and the methodological assumption when accounting for non-compliance and program attrition. The case numbers do not have anything to do with individual identifiers of program participants.

A. 4 Program Description and Content

A.4.1 Goals

The original goals of treatment were to prevent mental retardation by enhancing overall development from birth, in turn fostering school-readiness for an at-risk population. ${ }^{13}$ Additional curriculum goals were to (i) support language, motor, and cognitive development; (ii) minimize high-risk behaviors; and (iii) develop socio-emotional competencies considered crucial for school success including task-orientation, communicative competence, independence, and prosocial behavior. ${ }^{14}$ Implementation of ABC's and CARE's educational treatments evolved each successive year as program staff evaluated ongoing outcome data. ${ }^{15}$

A.4.2 Daily Schedule

For both ABC and CARE, FPGC was open to families from 7:45 a.m. to 5:30 p.m., 5 days per week and 50 weeks per year. ${ }^{16}$ Subjects were offered free transportation to and from the center. A driver and second adult staffed each vehicle (one van and two station wagons) equipped with child safety seats. ${ }^{17}$ Approximately 65% of treated ABC families utilized the free transportation. ${ }^{18}$ Vehicles typically arrived by 9:00 a.m. to the center and departed around 3:45 p.m. ${ }^{19}$ At FPGC, ABC and CARE treatment-group subjects received breakfast, lunch, and a snack planned by a nutritionist. ${ }^{20}$ Meals were catered by off-site

[^6]kitchens. Infants received iron-fortified formula until doctors advised adding solid food. The control-group subjects also received an unlimited amount of iron-fortified formula until approximately 15 months of age. ${ }^{21}$

A.4.3 Program Staff and Physical Space

To promote trust in FPGC within the subjects' families, staff were recruited from the local community. ${ }^{22}$ Infant and toddler caregivers and preschool teachers demonstrated varied educational backgrounds ranging from high school graduation to master's degrees. Their average professional working experience with young children was 7 years. ${ }^{23}$ All classroom staff participated in extensive training and were closely observed by FPGC's academic staff, as part of a broad variety of ongoing clinical and social research related to early childhood education, psychology, and health. In ABC, child-caregiver ratios varied by age: 3:1 for infants up to 13 to 15 months of age; 4:1 for toddlers up to 36 months; and 5:1 or $6: 1$ for children aged 3 to 5 years, depending on cohort size. ${ }^{24}$ Child-caregiver ratios were similar in CARE. ${ }^{25}$

The ABC and CARE staff included a program director, a secretary, 12 to 14 teachers and assistant teachers, 3 administrative staff members, and a transportation supervisor. ${ }^{26}$ Lead caregivers and teachers had bachelor's or master's degrees. Teacher aides, recruited from the local community, held high school diplomas (at minimum) and were comparatively wellcompensated in the childcare field. They remained a stable treatment component throughout the study. After 1980, following revisions to FIDCR regarding minimum requirements for early childhood education staff, several teacher aides pursued and received undergraduate

[^7]degrees and became lead teachers. All classroom staff were supervised daily, received weekly mentoring, and professional development from outside consultants.. ${ }^{27}$

Infant nurseries, toddler rooms, and preschool classrooms were housed on different floors of FPGC. Early reports indicate that FPGC allocated two floors to ABC, but later reports indicate the use of three floors. ${ }^{28}$ Two infant nurseries were staffed by five adults in a suite of four adjoining rooms: two sleeping rooms contained seven cribs each, while the other two rooms were designated for activities. ${ }^{29}$ The four rooms opened into a large, shared space with feeding tables, an area for food preparation, and a couch. ${ }^{30}$ Offices for the medical staff, along with two examining rooms and facilities for laboratory tests were located around the corner from the infant nurseries. ${ }^{31}$ Two multi-age toddler rooms were located one floor below the infant nurseries. One room served children who were 1 to 2 years old and the other served children 2 to 3 years old. ${ }^{32} 3$-year-olds were housed in a closed classroom near the toddler rooms. On the lowest floor, 4-year-olds shared an open classroom with a public kindergarten program; the two classes were separated by a long, low bookcase. In CARE, two floors of FPGC were allocated to nurseries and classrooms. A mixed-age classroom design was implemented combining children ages 1 and 3, and children ages 2 and 4 . Teacher-child ratios for these ages remained 1:5. FPGC offered two outdoor play areas for both ABC and CARE: one for children up to age 3, and the other for older children. ${ }^{33}$

[^8]
A.4.4 Approach to Child Development

Curriculum delivery enabled a highly customized learning experience for treated subjects in both ABC and CARE. Infant caregivers recorded child observations on progress charts and collaborated with FPGC's curriculum developers and academic researchers to rotate learning activities every 2 to 3 weeks for each treated subject. ${ }^{34}$ Preschool rooms featured intentionally organized environments to promote pre-literacy and access to a rich set of learning tools. The full-day curriculum emphasized active learning experiences, dramatic play, and pre-academics. Frequent $1: 1$ or $2: 1$ child-adult interactions prioritized language development for social competence. For ages 3 through 5, as the cohorts approached public school entry, classroom experiences were increasingly structured towards the development of pre-academic skills and "socio-linguistic and communicative competence." ${ }^{35}$ FPGC offered a summer program before the start of kindergarten designed to target specific skills to ensure success in a kindergarten classroom (e.g., lining up when exiting the classroom). This program was available to subjects in both the center-based childcare and family education group and the family education group. ${ }^{36}$

ABC's and CARE's learning programs were influenced by key developmental theorists. ${ }^{37}$ All four ABC cohorts and two CARE cohorts participated in curriculum developers Sparling and Lewis' "LearningGames for the First Three Years." ${ }^{38}$ The "LearningGames" were implemented daily by infant and toddler caregivers in 1:1 child-adult interactions. Each "LearningGames" activity stated a developmentally-appropriate objective, the necessary materials, directions for teacher behavior, and expected child outcome. The activities were designed

[^9]for use both indoors and outdoors, while dressing, eating, bathing, or during play. ${ }^{39}$

Supplemental curricula for preschool rooms varied throughout the study, and included "Cook and Learn," "Peabody Early Experiences Kit," "GOAL Math Program," and "My Friends and Me." ${ }^{40}$

CARE subjects randomized into the center-based childcare and family education group or the family education group also received home visits designed to transmit information on child development and skills involved with parenting including strategies for parent-child interactions based on "LearningGames" activities and problem-solving techniques. ${ }^{41}$ Home visitors were trained to ensure they were able to form a strong relationship with the parent and successfully implement the curriculum. ${ }^{42}$ The visits lasted about an hour, and occurred weekly until the child was 3 years old. After age 3, the home visits were less frequent and depended on the preferences of the parents. They were usually about once a month after age $3 .{ }^{43}$

A.4.5 Medical Care and Nutrition

ABC and CARE provided comprehensive on-site medical care because it was conducted in conjunction with a longitudinal medical research study on infectious respiratory diseases in group environments. ${ }^{44}$ Treatment group children were monitored daily for signs of illness. All treated children received medical care while attending center-based childcare; the first ABC cohort of control-group children also received medical care during the program's first

[^10]year of implementation. ${ }^{45,46}$

In ABC , primary pediatric care was provided by a family nurse practitioner and a licensed practical nurse, both under the supervision of one pediatrician who was on continuous duty at the center. ${ }^{47}$ In CARE, the medical staff included two pediatricians, a family nurse practitioner, and a licensed practical nurse. ${ }^{48}$ The medical staff provided regularly scheduled check-ups, immunizations, parental counseling, and initial assessment of illnesses. ${ }^{49}$ The treatment group received standard check-ups when they were $2,4,6,9,12,18$, and 24 months old and annually thereafter. While in treatment, they also received the standard immunizations. ${ }^{50}$ In ABC , a licensed practical nurse visited classrooms for up to two hours on a daily basis to monitor the subjects' health status. ${ }^{51}$ Although this medical care was offered to the treatment-group families free of charge, it was the policy of the medical staff to refer families to a community hospital for serious treatment. While ABC and CARE provided aspirin, immunizations, and basic medicines, families were responsible for purchasing any prescription medication subjects required. There are no data currently available on treatment received for serious conditions or use of prescription medication.

Infants were supplied with iron-fortified formula. Children older than 15 months of age were provided breakfast, lunch, and an afternoon snack all planned by a nutritionist. ${ }^{52}$ Control families received diapers for up to three years and unlimited iron-fortified bottled formula

[^11]through 15 months. ${ }^{53}$

A.4.6 School-age Treatment

The ABC subjects were randomization into a second-phase, school-age treatment (95 subjects continued to this stage of treatment). The CARE subjects in the center-based childcare and family education group and the family education group received the school-age treatment without randomization. The school-age treatment lasted for the first three years of elementary school and consisted of home visits conducted by a Home/School Resource Teacher. ${ }^{54}$ These visits were structured to increase exposure to reading and mathematics and promote parental involvement in the academic process.

The curriculum was delivered through sets of activities that developed skills such as handwriting, phonics, and math facts. ${ }^{55}$ Teachers worked to encourage parental involvement in the subjects' academics and provided incentives to families to comply with the treatment, such as giving gift certificates to restaurants and books for the subjects upon the completion of activity packets.

Teachers had graduate-level education, training in special education, or were qualified to act as consultants for in-school teachers to address any problems that arose. ${ }^{56}$ They met with parents at home and with teachers in the schools to deliver new activities for the parents to complete with their children and discuss the child's level of success with the previous set of activities. In addition, they helped parents with issues such as adult literacy, housing, and medical care. Thus, the teacher had a dual role as a parent educator and an advocate for

[^12]the subject in their educational institution.

A. 5 Control Group Substitution

In ABC, the families of 75% of the control-group subjects enrolled their children in alternative center-based childcare. In CARE, 74% of families in the control group and 62% of families in the family education group enrolled their children in alternative center-based childcare. We refer to this phenomenon as control substitution; accounting for it is fundamental when evaluating the program. ${ }^{57}$ In this Appendix, we thoroughly describe the characteristics and costs of the childcare centers providing alternative treatment, in order to create a comparison with the treatments offered by ABC and CARE.

Most of the families in the ABC and CARE control groups enrolled their children in alternative preschool that received federal subsidies and, therefore, were regulated. Figure A. 5 and Figure A. 6 show the amount of enrollment into subsidized and non-subsidized care for ABC and CARE, respectively. Subsidized centers were required to have trained staff who were able to implement curricula designed to enhance cognitive, social, and linguistic competence in disadvantaged children..58 Thus, we consider these centers to offer low-quality center-based childcare.

[^13]Figure A.5: Average Number of Months in Alternative Preschool, ABC Control Group

Note: This figure describes the take-up of alternative preschool by families in the ABC control group. The vertical axis represents the average number of months per year the subjects of the control group spent in alternative preschool. Subsidized centers were highly regulated and, therefore, relatively high-quality. Nonsubsidized childcare services were center-based but not regulated. Other sources of childcare could have included care by parents, relatives, or non-relatives.

Figure A.6: Average Number of Months in Alternative Preschool, CARE Control and Family Education Groups

Note: This figure describes the take-up of alternative preschool by families in the CARE family education and control groups. The vertical axis represents the average number of months per year the subjects of the control group spent in alternative preschool. Subsidized centers were highly regulated and, therefore, relatively high-quality. Non-subsidized childcare services were center-based but not regulated. Other sources of childcare could have included care by parents, relatives, or non-relatives.

Table A. 4 shows baseline characteristics between the control-group subjects who were enrolled in alternative preschool and those who stayed at home. The control-group children who attended alternative preschool were marginally more advantaged, with the most stark difference being maternal employment. This is seen across genders, but is only significant for the female and pooled samples. The males who are enrolled in alternative preschool have mothers with higher IQ scores, but lower parental income indicating lack of spousal support, which is evident by the fewer number of fathers present in that same group. Those who were enrolled in alternative preschools also had more siblings.
Table A.4: Baseline Characteristics and Control Substitution

Characteristic	Females			Males			Pooled		
	Control S No $N=10$	bstitution Yes $N=27$	$p \text {-value }$	Control S No $N=9$	bstitution Yes $N=28$	$p \text {-value }$	Control S No $N=19$	bstitution Yes $N=55$	p-value
Mother's Yrs. of Edu.	$\begin{gathered} 9.70 \\ (0.63) \end{gathered}$	$\begin{aligned} & 10.19 \\ & (0.42) \end{aligned}$	0.53	$\begin{gathered} 9.78 \\ (0.62) \end{gathered}$	$\begin{aligned} & 10.50 \\ & (0.31) \end{aligned}$	0.32	$\begin{gathered} 9.74 \\ (0.43) \end{gathered}$	$\begin{aligned} & 10.35 \\ & (0.26) \end{aligned}$	0.23
Mother Works	$\begin{array}{r} 0.00 \\ (0.00) \end{array}$	$\begin{array}{r} 0.23 \\ (0.09) \end{array}$	0.02	$\begin{gathered} 0.14 \\ (0.14) \end{gathered}$	$\begin{gathered} 0.29 \\ (0.11) \end{gathered}$	0.42	$\begin{array}{r} 0.08 \\ (0.08) \end{array}$	$\begin{gathered} 0.26 \\ (0.07) \end{gathered}$	0.09
Mother's Age	$\begin{aligned} & 19.40 \\ & (1.66) \end{aligned}$	$\begin{aligned} & 19.89 \\ & (0.91) \end{aligned}$	0.80	$\begin{aligned} & 23.67 \\ & (3.25) \end{aligned}$	$\begin{aligned} & 20.64 \\ & (0.89) \end{aligned}$	0.39	$\begin{aligned} & 21.42 \\ & (1.79) \end{aligned}$	$\begin{aligned} & 20.27 \\ & (0.63) \end{aligned}$	0.55
Mother's IQ	$\begin{aligned} & 81.70 \\ & (3.15) \end{aligned}$	$\begin{aligned} & 84.04 \\ & (1.96) \end{aligned}$	0.54	$\begin{aligned} & 82.33 \\ & (3.62) \end{aligned}$	$\begin{aligned} & 87.11 \\ & (1.80) \end{aligned}$	0.26	$\begin{aligned} & 82.00 \\ & (2.32) \end{aligned}$	$\begin{gathered} 85.60 \\ (1.33) \end{gathered}$	0.19
Father Present	$\begin{gathered} 0.30 \\ (0.15) \end{gathered}$	$\begin{gathered} 0.26 \\ (0.09) \end{gathered}$	0.82	$\begin{gathered} 0.44 \\ (0.18) \end{gathered}$	$\begin{gathered} 0.25 \\ (0.08) \end{gathered}$	0.34	$\begin{gathered} 0.37 \\ (0.11) \end{gathered}$	$\begin{gathered} 0.25 \\ (0.06) \end{gathered}$	0.38
Parental Income	$\begin{gathered} 2,566.67 \\ (2,566.67) \end{gathered}$	$\begin{gathered} 3,499.55 \\ (1,264.46) \end{gathered}$	0.75	$\begin{gathered} 11,291.43 \\ (4,750.08) \end{gathered}$	$\begin{gathered} 8,694.41 \\ (2,220.99) \end{gathered}$	0.63	$\begin{gathered} 7,264.62 \\ (2,986.31) \end{gathered}$	$\begin{gathered} 5,763.97 \\ (1,256.34) \end{gathered}$	0.65
HRI Score	$\begin{aligned} & 21.90 \\ & (1.73) \end{aligned}$	$\begin{aligned} & 22.93 \\ & (1.25) \end{aligned}$	0.64	$\begin{aligned} & 19.89 \\ & (2.46) \end{aligned}$	$\begin{aligned} & 20.32 \\ & (1.00) \end{aligned}$	0.87	$\begin{aligned} & 20.95 \\ & (1.46) \end{aligned}$	$\begin{aligned} & 21.60 \\ & (0.81) \end{aligned}$	0.70
Number of Siblings	$\begin{gathered} 0.50 \\ (0.31) \end{gathered}$	$\begin{gathered} 0.70 \\ (0.22) \end{gathered}$	0.60	$\begin{gathered} 1.56 \\ (0.71) \end{gathered}$	$\begin{gathered} 0.54 \\ (0.14) \end{gathered}$	0.19	$\begin{gathered} 1.00 \\ (0.38) \end{gathered}$	$\begin{gathered} 0.62 \\ (0.13) \end{gathered}$	0.35
Male							$\begin{gathered} 0.47 \\ (0.12) \end{gathered}$	$\begin{gathered} 0.51 \\ (0.07) \end{gathered}$	0.80
Birth Year	$\begin{gathered} 1975.50 \\ (0.99) \end{gathered}$	$\begin{gathered} 1975.37 \\ (0.42) \end{gathered}$	0.91	$\begin{gathered} 1975.67 \\ (0.97) \end{gathered}$	$\begin{gathered} 1976.07 \\ (0.48) \end{gathered}$	0.71	$\begin{gathered} 1975.58 \\ (0.68) \end{gathered}$	$\begin{gathered} 1975.73 \\ (0.32) \end{gathered}$	0.84
Apgar Score, 1 min.	$\begin{gathered} 7.30 \\ (0.73) \end{gathered}$	$\begin{gathered} 7.46 \\ (0.33) \end{gathered}$	0.84	$\begin{gathered} 7.67 \\ (0.44) \end{gathered}$	$\begin{gathered} 7.78 \\ (0.27) \end{gathered}$	0.83	$\begin{gathered} 7.47 \\ (0.43) \end{gathered}$	$\begin{gathered} 7.62 \\ (0.21) \end{gathered}$	0.76
Apgar Score, 5 min.	$\begin{gathered} 8.40 \\ (0.45) \end{gathered}$	$\begin{gathered} 9.04 \\ (0.17) \end{gathered}$	0.21	$\begin{gathered} 8.89 \\ (0.20) \end{gathered}$	$\begin{gathered} 8.92 \\ (0.21) \end{gathered}$	0.91	$\begin{gathered} 8.63 \\ (0.26) \end{gathered}$	$\begin{gathered} 8.98 \\ (0.14) \end{gathered}$	0.24

[^14]Figure A.7a shows enrollment by age and the average months of enrollment by age for the control-group children who enrolled in program alternatives. Enrollment increases with the age of children. Figure A.7b shows the fraction of children enrolled in preschool by age. As control children age, they are more likely to enter childcare.

A.5.1 Regulation

During the period when both ABC and CARE were active, North Carolina had an active, high-quality system of public childcare for vulnerable families funded by several public programs. Examples include Title IV-A of the Social Service Administration (SSA), Aid to Families with Dependent Children (AFDC), and Title IV-B of Child Welfare Services. These funding efforts were amplified in 1975 by Title XX of the SSA, Social Services Block Grant, which was the main federal source of childcare financing in the U.S. when ABC and CARE were active. ${ }^{59}$

Federally funded childcare services were regulated according to FIDCR standards, which defined stringent regulation for center-based programs for children between the ages of 3 and $6 .{ }^{60}$ These requirements were enforced. ${ }^{61}$ Additionally, North Carolina had a mandatory licensing law for childcare facilities. While FIDCR applied to centers for older children (between the ages of 3 and 6), the North Carolina regulation only applied to centers serving children below the age of 3 . The relative weakness of this regulation is not very relevant for our study because treatment substitution occurred mostly after age 3 (see Figure A. 5 and Figure A.6). ${ }^{62}$ Table A. 5 compares a widely-used quality standard, the child-staff ratio, between the North Carolina and FIDCR standards and the actual ABC and CARE numbers.

[^15]
Note: Panel (a) displays the fraction of the ABC/CARE control group enrolled in alternatives by age on the left axis and average number of months in alternative preschool by age in the right axis. Panel (b) displays the fraction of children in the ABC/CARE control groups enrolled in alternatives $20 \%, 40 \%, 60 \%, 80 \%$, and 100% of the time, from ages 0 to 5 .

Table A.5: Child-Staff Ratios for North Carolina, FIDCR, and Actual ABC and CARE Ratios

Age	NC Standards Level I	FIDCR Standards	ABC and CARE Ratios
$0-1$	$6: 1^{*}$		$3: 1$
$1-2$	$8: 1^{*}$		$4-5: 1$
$2-3$	$12: 1^{*}$		$4-5: 1$
$3-4$	$15: 1$	$5: 1^{*}$	$4-5: 1$
$4-5$	$20: 1$	$7: 1^{*}$	$5-6: 1$
$5-6$	$25: 1$	$7: 1^{*}$	$5-6: 1$

Sources: Department of Health, Education, and Welfare (1968); North Carolina General Assembly (1971); Ramey et al. (1977); Ramey and Campbell (1979); Ramey et al. (1982); Burchinal et al. (1997).

Note: The starred ratios represent the ones we believe were the most relevant for the ABC control-group subjects and the CARE control-group and family-education-group subjects.

A.5.2 Costs

Previous papers have used childcare cost rates that are not specific to North Carolina and do not account for the contemporaneous structure of the subsidies. We use the local subsidy rates that were in place when the ABC subjects were in preschool to impute different costs of the alternative preschools. These costs depend on the specific preschool attended and the eligibility of the families to receive the subsidies.

When ABC and CARE were in operation, center-based childcare was subsidized by several federal programs (the Department of Social Services categorized these programs as Child Welfare, AFDC, and Work Incentive Programs). ${ }^{63}$ However, our calculations of the cost of alternative preschool are simplified by the fact that the subsidies were centralized and regulated by the County Department of Social Services. Those departments used a uniform

[^16]subsidy rate, regardless of the origin of the funds. ${ }^{64}$ We collected information about the subsidy rate at the time, which approximates the price of the centers, as centers pegged their fees and services to the maximum subsidy rate. Moreover, we know which centers each ABC control subject attended. We interviewed North Carolina childcare staff and academics that study childcare to document which of those centers were subsidized and regulated at the time. ${ }^{65}$ For subsidized centers, we impute the maximum Department of Social Services fee established at the time: $\$ 633 /$ month in 2014 USD. ${ }^{66}$ For non-subsidized centers, we impute the mean of costs for Level-1 centers (minimum accepted quality level) according to a 1982 North Carolina study of the cost of childcare: \$298/month in 2014 USD. ${ }^{67}$ Although the information in this survey is not ideal for assessing the cost of subsidized preschools for CARE, as the subsidies greatly changed after the end of FIDCR (1981), it provides an approximation for assessing the cost of the non-subsidized centers.

Finally, we determine if the families paid the costs themselves or if they were subsidized, in which case we also add deadweight costs. We consider if a subject was eligible for subsidies if the family lived in poverty according to the federal guidelines and all parents living at home worked. If a family is deemed eligible, then we assume the child's preschool was fully subsidized using the rates described above without additional subsidies.

A. 6 Data

In Table A. 6 through Table A.11, we summarize the data availability for both ABC and CARE. The data collection processes in both programs were analogous by design. For both

[^17]programs, the treatment and control groups were followed into adulthood with relatively low attrition. For ABC, subjects were followed annually through elementary school and at ages $12,15,21$, and 30 . Health and administrative crime data were collected when the subjects reached their mid-30s. For CARE, the exact same follow-ups are available with the exception of the age 15 follow-up.
Table A.6: Early Childhood Data (Part I)

Category	Sub-Category	Description	ABC Age (months)	CARE Age (months)	Measure
Demographics	Gender	Gender of subject	Birth, 18, 30, 42, 54	Birth, 18, 30, 42, 54	Demographic Interview
	Race	Race/Cultural identity of subject	Birth, 18, $30,42,54$	Birth, 18, $30,42,54$	Demographic Interview
	Birth Date	Date of birth of subject	Birth, 18 , 30, 42, 54	Birth, 18, 30, 42, 54	Demographic Interview
Cognitive Assessments	Language Ability	Auditory association, Verbal expression, etc.	36, 42, 48, 54	30, 42, 54	$\mathrm{ITPA}^{A B C}, \mathrm{GPB}^{A B C}, \mathrm{PLP}^{A B C}, \mathrm{MSCD}$
	Intelligence Levels	$\begin{gathered} \text { SBIS } \\ \text { WPPSI } \end{gathered}$	$\begin{gathered} 24,36,48,60 \\ 60 \end{gathered}$	$\begin{gathered} 24,36,48,60 \\ 60 \end{gathered}$	$\begin{gathered} \text { SBIS } \\ \text { WPPSI } \end{gathered}$
		BSID	$\begin{gathered} 3,6,9,12 \\ 18,24 \end{gathered}$	$6,12,18,24$	BSID
		$\begin{aligned} & \text { UOSPD } \\ & \text { RPMM } \end{aligned}$ RPM	$\begin{aligned} & 15 \\ & 60 \end{aligned}$	-	$\begin{gathered} \text { UOSPD }^{A B C} \\ \text { RPM }^{A B C} \end{gathered}$
	Quantitative	BSID	$\begin{gathered} 3,6,9,12 \\ 18,24 \end{gathered}$	6, 12, 18, 24	BSID
		MSCD	30, 42, 54	30, 42, 54	MSCD
	Memory	BSID	$\begin{gathered} 3,6,9,12 \\ 18,24 \end{gathered}$	6, 12, 18, 24	BSID
		MSCD	30, 42, 54	30, 42, 54	MSCD
	Motor Development	BSID	$\begin{gathered} 3,6,9,12 \\ 18,24 \end{gathered}$	6, 12, 18, 24	BSID
		MSCD	30, 42, 54	30, 42, 54	MSCD
	Critical Thinking	Curiosity	$\begin{gathered} 30,36,42, \\ 48,54,60 \\ 66,72 \end{gathered}$	-	Infant Behavior Inventory ${ }^{\text {ABC }}$
Non-Cognitive Assessments	Social Skills	Positive social response Creativity	$\begin{gathered} 30,36,42, \\ 48,54,60 \\ 66,72 \\ 30,36,42, \\ 48,54,60, \\ 66,72 \end{gathered}$	$6,12,18,24$	Infant Behavior Inventory ${ }^{A B C}$, Bayley Infant Inventory ${ }^{C A R E}$ Infant Behavior Inventory ${ }^{A B C}$
	Self-Control	Locus of control ${ }_{\text {Distractibility, Attentiveness }}^{\text {a }}$	$\begin{gathered} 3,18 \\ 30,36,42, \\ 48,54,60, \\ 66,72 \end{gathered}$	6,18 $6,12,18,24$	$\begin{gathered} \text { RIES } \\ \text { Infant Behavior Inventory } A B C \text {, Bayley Infant } \\ \text { Inventory } C A R E \end{gathered}$
	Emotional Health	KRT	24, 36, 48, 60	$\begin{gathered} 24,30,36, \\ 42,48,60 \end{gathered}$	KRT
	Self-Consciousness	Self-consciousness	$\begin{gathered} 30,36,42, \\ 48,54,60, \\ 66,72 \end{gathered}$	-	Infant Behavior Inventory ${ }^{\text {ABC }}$

Sources: Authors description. This is not an exhaustive list of variables, nor does it include variables from auxiliary data. Instruments or questionnaires available for only one of the studies are indicated with the superscript $A B C$ or $C A R E$. Abbreviations are as follows. ITPA: Illinois Test of Psycholinguistic Ability. GPB: Gordon Psycholinguistic Battery.
 Uzgiris-Hunt Ordinal Scales of Psychological Development. RPM: Raven's Progressive Matrices. RIES: Rotter's Internality-Externality Scale. KRT: Kohn and Rosman Test Behavior Inventory.
Table A.7: Early Childhood Data (Part II)

Category	Sub-Category	Description	ABC Age (months)	CARE Age (months)	Measure
Family Environment	Family Members	Number of primary caretakers	Birth, 18, 30, 42, 54	$\begin{gathered} 18,30,42, \\ 54,60 \end{gathered}$	Demographic Interview
	Family Economic Environment	Relationship with family members, including father, mother, siblings, etc.	Birth, 18, 30, 42, 54	$\begin{gathered} 18,30,42, \\ 54,60 \end{gathered}$	Demographic Interview
		Number of siblings	Birth, 18, 30, 42, 54	$\begin{gathered} \text { Birth, } 18 \\ 30,42,54,60 \end{gathered}$	Demographic Interview
		Marital status of parents	Birth, 18, $30,42,54$	$\begin{gathered} \text { Birth, } 18 \text {, } \\ 30,42,54,60 \end{gathered}$	Demographic Interview
		Marital conflicts between parents	6, 18	$\begin{aligned} & \text { Birth, } 6,18 \text {, } \\ & 36 \end{aligned}$	Demographic Interview $C A R E$, Parental Attitudes Research Inventory
		Father at home	18, 30, 42, 54	$\begin{gathered} 18,30,42, \\ 54,60 \end{gathered}$	Demographic Interview
		Parents' occupation	Birth, 18, $30,42,54$	$\begin{gathered} \text { Birth, } 18, \\ 30,42,54,60 \end{gathered}$	Demographic Interview
		Mother works	18, 30, 42, 54	$\begin{gathered} 18,30,42 \\ 54,60 \end{gathered}$	Demographic Interview
		Source of child support	Birth, 18, 30, 42, 54	$\begin{gathered} 18,30,42, \\ 54,60 \end{gathered}$	Demographic Interview
		Family income	Birth, 18, 30, 42, 54	$\begin{gathered} \text { Birth, 18, } \\ 30,42,54,60 \end{gathered}$	Demographic Interview
	Parents and Home Environment	Parents' authority, warmth, family conflict, etc.	$\underset{54}{6,18,30,42,}$	$\begin{gathered} 6,12,18,30 \\ 42,54 \end{gathered}$	Parent Interview
	Family Social Status	Parents' education background	Birth, 18, 30, 42, 54	$\begin{gathered} \text { Birth, } 18 \\ 30,42,54,60 \end{gathered}$	Demographic Interview
		Risk taking of family members	Birth		Parent Interview ${ }^{\text {ABC }}$
	Family Members' Physical Health	Health issues of parents	Birth	Birth	Parent Interview
		Pregnancy history	Birth	Birth	Parent Interview
Childcare	Day-care Experience	Time and location of childcare, Age when begin	Birth, 18, 30, 42, 54	18, 30, 42, 54	Demographic Interview
		Home visits	-	$\begin{gathered} 6,18,30,42, \\ 54,60 \end{gathered}$	Home Visit Data ${ }^{\text {CARE }}$
	Parental Care	Maternal warmth, Maternal involvement with child	$\underset{54}{6,18,30,42,}$	$\begin{gathered} 6,12,18,30 \\ 42,54 \end{gathered}$	Home Stimulation
		Provision of appropriate play materials	$6,18,30,42,$	$\begin{gathered} 6,12,18,30 \\ 42,54 \end{gathered}$	Home Stimulation
		Avoidance of restriction and punishment	$6,18,30,42,$	$6,12,18,30$	Home Stimulation
		Authoritarian control	$6,18,30,42 \text {, }$	$\begin{gathered} 6,12,18,30 \\ 36,42,102 \end{gathered}$	Home Stimulation, Parental Attitudes Research Inventory
		Democratic attitudes	6, 18	6, 18, 36	Parental Attitudes Research Inventory
		Hostility and rejection	6, 18	6, 18, 36	Parental Attitudes Research Inventory
		Parents' knowledge of childcare	Birth	6, 18 ,	Parent Interview ${ }^{\text {ABC }}$
Physical Health	Growth Data	Height, Weight, Head circumference, etc.	$\begin{gathered} 3,6,9,12, \\ 18,24,36, \\ 48,60 \end{gathered}$	$\begin{aligned} & \text { Birth, } 6,12, \\ & 18,24,36, \\ & 48,60 \end{aligned}$	Growth Measures

Note: This table describes the main categories of variables that were measured for ABC and CARE subjects up to age 6. ABC and CARE ages are measured in months. This is not an exhaustive list of variables, nor does it include variables from auxiliary data. Instruments or questionnaires available for only one of the studies are indicated with the superscript $A B C$ or CARE .
Table A.8: Childhood and Adolescence Data (Part I)

Category	Sub-Category	Description	$\underset{(\text { years) }}{\text { ABC Age }}$	$\underset{\text { (years) }}{\text { CARE Age }}$	Measure
Cognitive Assessment	Language Ability	Adaptive Language Inventory	6, 7, 8	6, 7, 8	Adaptive Language Inventory
		Language Questionnaire	12	,	Language Questionnaire ${ }^{\text {ABC }}$
		MSCD	7	-	MSCD ${ }^{\text {ABC }}$
	Intelligence Tests	SBIS	$\stackrel{6}{6,7,8,12,}$	7	SBIS
		wis		6, 8	wis
		Kaufman ${ }^{\text {CARE }}$		6	Kaufman ${ }^{\text {CARE }}$
	Quantitative Skills	MSCD ${ }^{\text {ABC }}$	7	-	MSCD ${ }^{\text {ABC }}$
	Memory	MSCD ${ }^{\text {ABC }}$	7	-	MSCD ${ }^{\text {ABC }}$
	Motor Skills	MSCD ${ }^{\text {ABC }}$	7	-	MSCD ${ }^{\text {ABC }}$
Non-Cognitive Assessment	Interpersonal Skills	Gets along with people Relationship with the other sex	$6,8,12,15$ 15	8, 12	PEI, CAS, PMI ${ }^{A B C}$, SAI $^{A B C}$, Subject Interview ${ }^{A B C}$, Quality Rank ${ }^{C A R E}$ SAI $^{A B C}$, Subject What I Am Like (Harter) ${ }^{A B C}$
	Critical Thinking	Thinks for self, questions things Concept Attainment Kit	$\begin{gathered} 6,8 \\ 6,7,8 \end{gathered}$	$8,12$	PEI, Harter Child $C A R E$, CBI Concept Attainment Kit ${ }^{\text {ABC }}$
	Self-Control	Distracted in class Locus of control	$\begin{gathered} 6,7,8,12, \\ 15 \\ 15 \end{gathered}$	12	$\begin{aligned} & \text { SCAN }^{A B C}, \mathrm{CBI}, \mathrm{WPB}^{A B C}, \text { PMI }^{A B C}, \text { SAI }^{A B C}, \\ & \text { Self-Evaluation Inventory } \\ & \text { Nowicki-Strickland Data, Pearlin Mastery Scale }{ }^{A B C} \end{aligned}$
	Work Ethic	Task Orientation	$6,7,8,12,$	6, 7, 8, 9, 12	SCAN ${ }^{\text {ABC }}$, CBI, PMI ${ }^{\text {ABC }}$
	Emotional Health	Harms self, suicidal thoughts Depression, anxiety, fear, etc.	$\begin{gathered} 8,12,15 \\ 6,7,8,12, \\ 15 \end{gathered}$	$\begin{gathered} 8,12 \\ 7,8,9,12 \end{gathered}$	Achenbach Parent, Subject Risk Taking Survey ${ }^{A B C}$ KRT, CAS, ETS, Achenbach Parent
	Social Activities	Athletic activities	8, 12, 15	8,12	Achenbach Parent, SAI ${ }^{A B C}$, Subject What I Am Like (Harter) $A B C, \mathrm{PEI}^{C A R E}$
		Participant of organizations, e.g. religions Reading list TV/music	$\begin{gathered} 8,12,15 \\ 12,15 \\ 12,15 \end{gathered}$	$\begin{aligned} & 8,12 \\ & 12 \\ & 12 \end{aligned}$	
	Self-Consciousness	Self-conscious emotions	8, 12, 15	8,12	Achenbach Parent, Subject What I Am Like (Harter)

[^18]Table A.9: Childhood and Adolescence Data (Part II)

Category	Sub-Category	Description	$\begin{gathered} \text { ABC Age } \\ (\text { years }) \end{gathered}$	CARE Age (years)	Measure
Family Environment	Family Members	Number of adults in house	$6,8,12,15$	8, 12	PEI, Parent Interview, Subject Person In Household ${ }^{A B C}$
		Relationship with family members, including father, mother, siblings, etc.	6, 8, 12, 15	8, 12	PEI, FES, SAI, Subject Interview ${ }^{A B C}$, Adult Self Report ${ }^{A B C}$, Parent Interview, Achenbach Parent
		Number of siblings	$6,8,12,15$	7, 8, 12	PEI ${ }^{A B C}$, Parent Interview
		Marital status of parents	$6,8,12,15$	$7,8,12$	PEI ${ }^{A B C}$, Parent Interview
		Father at home	18, 30, 42, 54	$\begin{gathered} 18,30,42, \\ 54,60 \end{gathered}$	Demographic Interview
	Parents' Education Style	Role of parents in education Parents' education beliefs \& methods Parents' aspiration \& attitudes towards child	6, 8	8, 12	PEI, Parent Interveiw ${ }^{\text {CARE }}$
			6, 8	8, 12	PEI, Parent Interview ${ }^{\text {CARE }}$
			$6,8,12,15$	8, 12	PEI, Parent Interview
	Family Economic Environment	Parents' occupation Mother works Source of child support Family income	$6,8, \underset{9}{12,15}$	$\begin{gathered} 7,8,12 \\ 5,7,8 \end{gathered}$	PEI ${ }^{A B C}$, Parent Interview Demographic Interview
			$6,8,12,15$	7, 8, 12	PEI ${ }^{\text {ABC }}$, Parent Interview
			$6,8,12,15$	7, 8, 12	PEI ${ }^{\text {ABC }}$, Parent Interview
	Parents and Home Environment	Parents' authority, warmth, family conflict, etc.	8	8	Parent Interview
	Family Social Status	Parents' education background Criminal history and risk taking of family members	$\begin{gathered} 6,8,12,15 \\ 8,12,15 \end{gathered}$	7, 8, 12	PEI ${ }^{A B C}$, Parent Interview Subject Taylor Life Events ${ }^{A B C}$, Parent Interview ${ }^{A B C}$
	Family Members' Physical Health	Health issues of adults in house	8, 12, 15	12	Parent Interview, Subject Taylor Life Events ${ }^{\text {A }}$ BC
Academic Achievements	Standardized Tests	Reading, mathematics, and language abilities	6, 7, 8, 12	6, 8, 9,12	CAT ${ }^{A B C}, \operatorname{PIAT}^{A B C}, \mathrm{WJCA}$
	Performance in Schoolwork	Drop in grades	12, 15	12	CAS
		Lack of interest in school	12, 15	12	CAS
		Total years in special education	17	11	Retention and Special Services Data
		Total years retained in school	17	11	Retention and Special Services Data
Physical Health	Health Issues	Health issues of subject	8, 12, 15	8, 12	Achenbach Parent, Subject Interview ${ }^{A B C}$, Adult Self Report ${ }^{A B C}$, $\mathrm{PEI}^{C A R E}$, Parent Interview ${ }^{C A R E}$
	Growth	Vision, weight, height	8	8	Growth Data
	Teenage Pregnancy	Teenage Pregnancy	15	-	Subject Interview ${ }^{\text {ABC }}$
Social Conduct	Law Breaking	Felony, Time spent incarcerated	15	-	MARS ${ }^{\text {ABC }}$, Subject Interview ${ }^{\text {ABC }}$

 Peabody Individual Achievement Test. CAT: California Achievement Test. MARS: Mid-Adolescence Rating Scale Data.
Table A.10: Adult Data (Part I)

Category	Sub-Category	Description	ABC Age (years)	CARE Age (years)	Measure
Cognitive Assessments	Intelligence Tests	WIS	21	-	WIS
Non-Cognitive Assessment	Interpersonal Skills	Gets along with people	21, 30	-	Subject Interview
	Self-Control	Locus of control Proud of working, interest in working	21,30 21,30	- ${ }^{-}$	Nowicki-Strickland Data ${ }^{A B C}$, Pearlin Mastery Scale $A B C$ Job Satisfaction Survey ${ }^{A B C}$, Subject Interview
	Emotional Health	Harms self, suicidal thoughts, depression, anxiety, fear, etc.	$\begin{gathered} 21 \\ 21,30 \end{gathered}$	$\begin{gathered} 21 \\ 21,30 \end{gathered}$	Achenbach, Subject Risk Taking Survey KRT, Achenbach Parent, CAS, Brief Symptom Inventory, ETS
	Social Activities	Athletic activities Participant of organizations, e.g. religions	$\begin{gathered} 21 \\ 21,30 \end{gathered}$	$21,30$	Achenbach, Achenbach, Subject Interview
Family Environment	Family Members	Number of adults in house Relationship with family members, including father, mother, siblings, etc. Number of siblings Marital status of parents Number of children, childcare basics	$\begin{gathered} 21 \\ 21,30 \\ 21,30 \\ 21 \\ 21,30 \end{gathered}$	$\begin{gathered} - \\ 30 \\ 30 \\ - \\ 30 \end{gathered}$	Parent Interview ${ }^{A B C}$, Subject Interview Parent Interview, Achenbach ${ }^{A B C}$, Subject Interview, Adult Self Report Parent Interview $A B C$, Subject Interview Parent Interview ${ }^{A B C}$, Subject Interview Subject Interview, Childcare Questionnaire
	Family Economic Environment	Parents' occupation Source of child support Family income	$\begin{aligned} & 21 \\ & 21 \\ & 21 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	Parent Interview ${ }^{A B C}$, Subject Interview Parent Interview ${ }^{A B C}$, Subject Interview Parent Interview ${ }^{A B C}$, Subject Interview
	Family Members and Children	Relationship quality, family health issues, attitude toward child learning	30	30	Parent Interview, Taylor Life Events ${ }^{A B C}$, Child Health Questionnaire, PEI
	Marital Status	Marital status, spouse income Spouse details, marriage history Relationship with spouse	$\begin{aligned} & 21,30 \\ & 21,30 \\ & 21,30 \end{aligned}$	$\begin{gathered} 21,30 \\ 30 \\ 30 \end{gathered}$	Subject Interview Subject Interview Subject Interview, Adult Self Report
Achievement	Education Level	Years in school, plans for future education	21, 30	21, 30	Subject Interview, Adult Self Report
	Achievement Test	College type, certificate earned WJCA	$\begin{aligned} & 21,30 \\ & 21,30 \end{aligned}$	$21,30$	Subject Interview, Adult Self Report WJCA

nor $A B C$ and CARE subjects at 21 and 30. ABC and CARE are measured in years This is not

 Temperament Survey. WIS: Wechsler Adult Intelligence Scale. WJCA: Woodcock-Johnson Test of Cognitive Abilities. PEI: Parents as Educator Interview.
Table A.11: Adult Data (Part II)

Category	Sub-Category	Description	$\begin{aligned} & \text { ABC Age } \\ & \text { (years) } \end{aligned}$	CARE Age (years)	Measure
Physical Health	Health Insurance	Covered by health insurance	21, 30	21, 30	Subject Interview
	Health Issues	Health conditions, diseases, regular checkups and tests, mental health	$\begin{aligned} & 21,30 \\ & \text { mid-30's } \end{aligned}$	$\begin{aligned} & 21,30 \\ & \text { mid-30's } \end{aligned}$	Brief Symptom Inventory, Subject Interview, Adult Self Report, Biomedical Survey
Social Conduct	Risk Taking	Smoking, drinking, carry gun, fight, drug use	21, 30	21, 30	Subject Risk Taking Survey, Tobacco, Alcohol, and Drug Survey, Adult Self Report
	Law Breaking	Felony, Time spent incarcerated	21	21, 30	Subject Interview
Economic Status	Living Circumstances	Number of rooms Own or rent apartment Number living in same domicile	$\begin{aligned} & 21,30 \\ & 21,30 \\ & 21,30 \end{aligned}$	$\begin{gathered} 21,30 \\ 21 \\ 21 \end{gathered}$	Subject Interview Subject Interview Subject Interview
	Working Condition	Currently employed Job title Job category Hours Satisfied with current job	$\begin{aligned} & 21,30 \\ & 21,30 \\ & 21,30 \\ & 21,30 \\ & 21,30 \end{aligned}$	$\begin{aligned} & 21,30 \\ & 21,30 \\ & 21,30 \\ & 21,30 \\ & 21,30 \end{aligned}$	Subject Interview Subject Interview, Adult Self Report Subject Interview, Adult Self Report Subject Interview, Adult Self Report Subject Interview, Subject What I Am Like (Harter), Adult Self Report
	Transportation	Own reliable transportation Public transportation	$\begin{aligned} & 21,30 \\ & 21,30 \end{aligned}$	$\begin{aligned} & 21 \\ & 21 \end{aligned}$	Subject Interview, Adult Self Report Subject Interview, Adult Self Report
	Income	Income from job Income from welfare programs Income from investment	$\begin{aligned} & 21,30 \\ & 21,30 \\ & 21,30 \end{aligned}$	$\begin{gathered} 21,30 \\ 30 \end{gathered}$	Subject Interview, Adult Self Report Subject Interview, Adult Self Report Subject Interview, Adult Self Report

 with the superscript $A B C$ or CARE

Attrition was low in ABC. Information is available on 100 subjects in the age 30 follow-up, which we call the adult follow-up. In addition, 80 subjects- 40 from the control group and 40 from the treatment group - consented to the release of their criminal records. Further, 70 participants consented to the release of information regarding a full-range biomedical panel-31 from the control group and 39 from the treatment group.

Attrition was also low for CARE subjects. Information is available on 58 subjects (more than 85% of the initial sample) in the age- 30 follow-up. Additionally, 40 participants (11 from the control group, 18 from the family education group, and 11 from the center-based childcare and family education group) released information on the full-range biomedical sweep. Administrative crime data are not available for CARE. We do not evaluate the second-phase of treatment in CARE because it was not randomized. Rather, those in the center-based childcare and family education group and the family education group were offered school-age treatment, and those in the control group were not.

In the following set of tables (Table A. 12 through Table A.16), we compare the observed, baseline characteristics between the first-phase control and treatment groups in ABC , which are the main groups we analyze, at different stages of the data collection follow-ups. For each observed characteristic, we present the bootstrapped p-value associated with the standard t-test. We also present the bootstrapped, step-down p-value on jointly testing the difference in observed characteristics across the two blocks of variables separated by the horizontal line. ${ }^{68}$

First, we compare the first-phase treatment and control groups on baseline characteristics.

[^19]Table A.12: First-phase Treatment vs. Control Groups, ABC

Variable		Control	Treated	Control	Treated	p-value	
	Obs.	Obs.	Mean	Mean	Single H_{0}	Multiple H_{0}	
Male	0	57	59	0.438	0.489	(0.580)	(0.700)
Birth Weight	0	56	58	7.191	6.829	(0.130)	(0.205)
No. Siblings in Household	0	57	59	0.750	0.516	(0.245)	(0.425)
Birth Year	0	57	59	1974	1974	(0.785)	(0.865)
Mother's Education	0	57	59	9.864	10.505	(0.050)	(0.105)
Mother's Age	0	57	59	20.103	19.564	(0.555)	(0.695)
Mother Employed	0	57	59	0.216	0.317	(0.190)	(0.370)
Parental Income	0	57	58	6,211	7,019	(0.645)	(0.755)
Mother's IQ	0	57	59	83.419	85.393	(0.360)	(0.555)
Father at Home	0	57	59	0.346	0.223	(0.135)	(0.310)

Note: This table shows the balance in observed characteristics between the treatment and control groups in ABC at baseline. For each characteristic, we present the p-value from a single hypothesis test. We also present the p-values from multiple hypothesis testing, where we collectively test the baseline characteristics within the blocks separated by the horizontal line. Both p-values are two-sided and non-parametric. We construct them based on 200 re-draws of the full sample.

Second, we compare the second-phase treatment and control groups on baseline characteristics.

Table A.13: Second-phase Treatment vs. Control Groups, ABC

Variable		Control	Treated	Control	Treated	p-value	
	Age	Obs.	Obs.	Mean	Mean	Single H_{0}	Multiple H_{0}
Male	0	47	48	0.551	0.460	(0.420)	(0.552)
Birth Weight	0	47	48	7.084	6.929	(0.610)	(0.700)
No. Siblings in Household	0	47	48	0.748	0.504	(0.285)	(0.445)
Birth Year	0	47	48	1974	1974	(0.835)	(0.915)
Mother's Education	0	47	48	10.150	10.388	(0.480)	(0.725)
Mother's Age	0	47	48	21.122	18.884	$(\mathbf{0 . 0 3 5)}$	$\mathbf{(0 . 0 7 5)}$
Mother Employed	0	47	48	0.314	0.256	(0.530)	(0.725)
Parental Income	0	47	48	7,589	6,714	(0.625)	(0.825)
Mother's IQ	0	47	48	83.000	85.831	(0.185)	(0.365)
Father at Home	0	47	48	0.279	0.287	(0.920)	(0.965)

Note: This table shows the balance in observed characteristics between the school-age treatment and control groups in ABC at baseline. For each characteristic, we present the p-value from a single hypothesis test. We also present the p-values from multiple hypothesis testing, where we collectively test the baseline characteristics within the blocks separated by the horizontal line. Both p-values are two-sided and non-parametric. We construct them based on 200 re-draws of the full sample.

Third, we compare the observed, baseline characteristics of attrited and non-attrited subjects in the first-phase treatment assignment.

Table A.14: Observed vs. Attritted Children, ABC

Variable				Observed	Attritted	p-value	
	Age	Obs.	Att.	Mean	Mean	Single H_{0}	Multiple H_{0}
Male	0	103	13	0.488	0.248	$\mathbf{(0 . 0 8 5)}$	(0.140)
Birth Weight	0	103	11	7.014	6.948	(0.825)	(0.875)
No. Siblings in Household	0	103	13	0.609	0.829	(0.600)	(0.705)
Birth Year	0	103	13	1974	1973	$\mathbf{(0 . 0 4 5)}$	$\mathbf{(0 . 0 9 5)}$
Mother's Education	0	103	13	10.302	9.192	$\mathbf{(0 . 1 0 0)}$	(0.165)
Mother's Age	0	103	13	20.016	18.178	$\mathbf{(0 . 0 8 0)}$	(0.160)
Mother Employed	0	103	13	0.268	0.255	(0.925)	(0.955)
Parental Income	0	103	12	6,622	6,442	(0.950)	(0.960)
Mother's IQ	0	103	13	85.050	78.834	$\mathbf{(0 . 0 7 0)}$	(0.135)
Father at Home	0	103	13	0.278	0.329	(0.735)	(0.835)

Note: This table shows the balance in observed characteristics between ABC subjects who were followed up to at least age 21 and ABC subjects who attrited before age 21. For each characteristic, we present the p-value from a single hypothesis test. We also present the p-values from multiple hypothesis testing, where we collectively test the baseline characteristics within the blocks separated by the horizontal line. Both p-values are two-sided and non-parametric. We construct them based on 200 re-draws of the full sample.

Fourth, we compare the observed, baseline characteristics between the subjects in the treatment and the control groups, excluding those who did not comply to treatment.

Table A.15: First-phase Treatment vs. Control Groups, Dropping Attrited Children, ABC

Variable		Control	Treated	Control	Treated	p-value	
	Obs.	Obs.	Mean	Mean	Single H_{0}	Multiple H_{0}	
Male	0	51	52	0.452	0.524	(0.430)	(0.600)
Birth Weight	0	51	52	7.210	6.822	(0.115)	(0.220)
No. Siblings in Household	0	51	52	0.767	0.455	(0.150)	(0.230)
Birth Year	0	51	52	1974	1974	(0.635)	(0.785)
Mother's Education	0	51	52	10.000	10.598	$(\mathbf{0 . 0 8 5)}$	(0.185)
Mother's Age	0	51	52	20.412	19.635	(0.405)	(0.615)
Mother Employed	0	51	52	0.221	0.314	(0.245)	(0.455)
Parental Income	0	51	52	6,409	6,846	(0.765)	(0.870)
Mother's IQ	0	51	52	84.472	85.635	(0.560)	(0.755)
Father at Home	0	51	52	0.349	0.208	(0.115)	(0.255)

Note: This table shows the balance in observed characteristics between the treatment and control groups of ABC subjects who were followed up to at least age 21 . For each characteristic, we present the p-value from a single hypothesis test. We also present the p-values from multiple hypothesis testing, where we collectively test the baseline characteristics within the blocks separated by the horizontal line. Both p-values are twosided and non-parametric. We construct them based on 200 re-draws of the full sample.

Finally, we compare the observed, baseline characteristics between the children in the firstphase treatment, restricting the sample to the children for whom we have information on the age-34 medical data collection.

Table A.16: First-phase Treatment vs. Control Groups, Subjects Completing the Health Follow-up, ABC

Variable		Control	Treated	Control	Treated	p-value	
	Age	Obs.	Obs.	Mean	Mean	Single H_{0}	Multiple H_{0}
Male	0	31	39	0.293	0.533	$(\mathbf{0 . 0 5 0)}$	$\mathbf{(0 . 0 5 5)}$
Birth Weight	0	31	39	7.233	6.826	(0.190)	(0.295)
No. Siblings in Household	0	31	39	0.613	0.493	(0.580)	(0.750)
Birth Year	0	31	39	1975	1974	(0.360)	(0.510)
Mother's Education	0	31	39	10.039	10.597	(0.190)	(0.385)
Mother's Age	0	31	39	19.389	19.595	(0.825)	(0.945)
Mother Employed	0	31	39	0.195	0.349	(0.185)	(0.315)
Parental Income	0	31	39	5,509	7,520	(0.280)	(0.535)
Mother's IQ	0	31	39	83.822	84.922	(0.655)	(0.860)
Father at Home	0	31	39	0.355	0.231	(0.205)	(0.450)

Note: This table shows the balance in observed characteristics between the treatment and control groups in ABC at baseline for subjects who completed the health follow-up at age 34. For each characteristic, we present the p-value from a single hypothesis test. We also present the p-values from multiple hypothesis testing, where we collectively test the baseline characteristics within the blocks separated by the horizontal line. Both p-values are two-sided and non-parametric. We construct them based on 200 re-draws of the full sample.

Despite some exceptions, these tables indicate balance between the treatment and control groups from the first-phase randomization, which is the primary comparison we analyze in the main paper. The balance in observed characteristics holds for the different samples we consider, which differs from the initial sample due to various instances of item non-response. For the second-phase randomization, there is also balance in observed characteristics.

A.6.1 Summary of Data Collection

Data across a wide range of outcomes were collected for ABC and CARE at similar time points. Table A. 17 summarizes the data collection for both programs. A varied battery of measures of cognitive, social-emotional, and parenting skills were administered during the intervention and while the children were in school. Adult follow-ups are available at ages 21, 30 , and 34 , with administrative crime records and biomarker health data available at age 34 .

Table A.17: ABC and CARE Data Collection

Variable	Early	School-age	Adult
Family	$0,1.5,2.5,3.5,4.5$	8	
Cognitive			
IQ	$2,2.5,3,3.5,4,4.5,5$	$6^{*}, 6.5,7,8,12,15^{*}$	21*
Achievement		$5.5,6,6.5,7,7.5,8,8.5,9,12,15 *$	21
Social-emotional			
Task orientation	$3 \mathrm{~m} .^{*}, 6 \mathrm{~m} ., 9 \mathrm{~m} .^{*}, 1,1.5,2$	5.5, 6, 6.5, 7.5	
Extraversion		$5.5,6,6.5,7,7.5,8,12$	
Behavior		8, 12, 15 *	
Parenting	$6 \mathrm{~m} ., 1.5,2.5,3.5^{*}, 4.5^{*}$	8*	
Education		12, 15	21, 30
Labor			21, 30
Parental income	0, 1.5, 2.5, 3.5, 4.5	8	21
Health	0, 1.5, 2.5, 3.5, 4.5	8	21, 30, 34
Crime			21, 30, 34

Note: This table provides an abbreviated summary of the variables available in ABC and CARE. The cognitive and social-emotional categories listed are a subset of the full list of measured skills. Ages followed by m . are in months. All other ages are in years. Ages with an asterisk $\left(^{*}\right)$ are only present in ABC.

B Identification and Estimation of Life-Cycle Treatment Effects

This appendix presents our approach to identifying and estimating life-cycle treatment effects. Differences in the approach for each outcome are based on different scenarios of data availability. We proceed as follows. Appendix B. 1 focuses on outcomes that are fully observed over the course of the experiment with little attrition. Appendix B. 2 focuses on outcomes that are partially observed over the course of the experiment with a substantial rate of attrition. Finally, Appendix B. 3 provides the precise steps for constructing our statistical inferences.

B. 1 Complete Data

We classify a variable as complete data when we observe the data for at least 85% of the individuals in the sample. Table B. 1 lists the variables that are completely observed. For these outcomes, we estimate the standard errors of our estimates by resampling the ABC/CARE data. We estimate non-parametric p-values based on the bootstrap distribution. We perform inference in this same way throughout the paper.

Table B.1: Variables Estimated without IPW Adjustment

Completely Observed Outcomes	Age (years)
IQ Standard Score	$2,3,3.5,4,4.5,5,12,15,21$
PIAT Math Standard Score	7
Achievement Score	15,21
HOME Total Score	$0.5,1.5,2.5,3.5,4.5$
Mother Works	$2,3,4,5,21$
Biological Mother's Education Level	$2,3,4,5,9$
Father is Home	$2,3,4,5,8$
Graduated High School	NA
Attended Vocation/Tech/Community College	NA
Years of Education	30
Ever Had Special Education	NA
Total Number of Years in Special Education	NA
Ever Retained	NA
Total Number of Retained Grades	NA
Employed	30
Labor Income	21,30
Transfer Income	30
Total Years Incarcerated	30
Self-reported Health	30
Brief Symptom Inventory Score	21
Number of Cigarettes Smoked Per Day Last Month	30
Number of Days Drank Alcohol Last Month	30
Number of Days Binge Drank Alcohol Last Month	30
Program Costs	$0-26$
Control Contamination Costs	$0-26$
Education Costs	$0-26$
Medical Expenditure	$8-30$
Justice System Costs	$0-50$
Prison Costs	$0-50$
Victimization Costs	$0-50$

Note: The table above lists the variables for which we observe completely for the full sample. treatment effects.

B. 2 Partially Complete Data

When we do not observe data on an outcome within the experiment for more than 10% of the individuals in the sample, we consider the outcome to be partially complete. These
outcomes include: parental labor income at ages $1.5,2.5,3.5,8,12,15$, and 21 , for which we observe no more than 112 subjects at any given age; and items in the health survey at age 34, for which we observe no more than 93 subjects. Table B. 2 lists the variables that we classify as partially complete.

For partially complete outcomes, we correct for attrition using an inverse probability scheme (IPW) as in Horvitz and Thompson (1952). For each of the partially observed outcomes, we construct a IPW scheme. The scheme is based on a set of variables that we observe for the complete sample. We use this set of complete variables to estimate the propensity of an outcome to be classified as partially complete. That is, the scheme is based on a logistic regression of "being partially complete" on a set of variables that we do observe for the full sample. The control set of variables is chosen among many possible control sets, as documented in Appendix D.1. For each of the outcomes that we partially observe, we list the variables that we use to produce the IPW scheme in Table B.2.
Table B.2: Variables Used to Create IPW Scheme

Partially Observed Outcomes	Age	N	Variables Used to Produce IPW		
IQ Score	6.5	126	High Risk Index (HRI)	APGAR 1 min.	Cohort
IQ Score	7	118	High Risk Index (HRI)	APGAR 5 min .	Cohort
IQ Score	8	125	High Risk Index (HRI)	APGAR 1 min .	Cohort
Achievement Score	5.5	105	High Risk Index (HRI)	APGAR 1 min .	Cohort
Achievement Score	6	124	High Risk Index (HRI)	APGAR 1 min .	Cohort
Achievement Score	6.5	89	High Risk Index (HRI)	APGAR 1 min .	Cohort
Achievement Score	7	90	High Risk Index (HRI)	APGAR 1 min .	Cohort
Achievement Score	7.5	121	High Risk Index (HRI)	APGAR 1 min.	Cohort
Achievement Score		123	High Risk Index (HRI)	APGAR 1 min .	Cohort
Achievement Score	8.5	122	High Risk Index (HRI)	APGAR 5 min .	Cohort
Parental Labor Income	1.5	112	Mother's Age at Baseline	APGAR 1 min .	Cohort
Parental Labor Income	2.5	112	Mother's Age at Baseline	APGAR 1 min.	Cohort
Parental Labor Income	3.5	110	Mother's Age at Baseline	APGAR 1 min.	Cohort
Parental Labor Income	8	87	High Risk Index (HRI)	APGAR 1 min.	Cohort
Parental Labor Income	12	108	High Risk Index (HRI)	APGAR 1 min .	Cohort
Parental Labor Income	15	92	APGAR 5 min .	Premature at Birth	Number of Siblings, Baseline
Parental Labor Income	21	73	High Risk Index (HRI)	APGAR 1 min .	Cohort
HOME Score	8	100	High Risk Index (HRI)	APGAR 1 min.	Cohort
Father at Home	8	116	High Risk Index (HRI)	APGAR 1 min.	Cohort
Subject Public Transfer Income	21	105	High Risk Index (HRI)	APGAR 1 min .	Cohort
Total Felony Arrests	Mid-30s	115	APGAR 1 min.	APGAR 5 min .	Cohort
Total Misdemeanor Arrests	Mid-30s	115	APGAR 1 min.	APGAR 5 min .	Cohort
Self-reported Health	Mid-30s	92	APGAR 1 min .	APGAR 5 min .	Premature at Birth
Self-reported Drug User	Mid-30s	89	APGAR 1 min .	APGAR 5 min .	Premature at Birth
Systolic Blood Pressure (mm Hg)	Mid-30s	90	APGAR 1 min.	Premature at Birth	Number of Siblings, Baseline
Diastolic Blood Pressure (mm Hg)	Mid-30s	90	APGAR 1 min .	Premature at Birth	Number of Siblings, Baseline
Prehypertension, Sys. B.P. >120 or Dys. B.P. >80	Mid-30s	90	APGAR 1 min.	Premature at Birth	Number of Siblings, Baseline
Hypertension, Sys. B.P. >140 or Dys. B.P. >90	Mid-30s	90	APGAR 1 min.	Premature at Birth	Number of Siblings, Baseline
High-Density Lipoprotein (HDL) Cholesterol (mg/dL)	Mid-30s	93	APGAR 1 min.	Premature at Birth	Number of Siblings, Baseline
Dyslipidemia (HDL $<40 \mathrm{mg} / \mathrm{dL}$)	Mid-30s	93	APGAR 1 min .	Premature at Birth	Number of Siblings, Baseline
Hemoglobin Level (\%)	Mid-30s	92	APGAR 1 min .	Premature at Birth	Number of Siblings, Baseline
Prediabetes, Hemoglobin > 5.7\%	Mid-30s	92	APGAR 1 min.	Premature at Birth	Number of Siblings, Baseline
Diabetes, Hemoglobin > 6.5\%	Mid-30s	92	APGAR 1 min .	Premature at Birth	Number of Siblings, Baseline
Vitamin D Deficiency ($<20 \mathrm{ng} / \mathrm{mL}$)	Mid-30s	93	APGAR 1 min.	Premature at Birth	Number of Siblings, Baseline
Measured BMI	Mid-30s	88	APGAR 1 min.	APGAR 5 min.	Premature at Birth
Obesity ($\mathrm{BMI}>30$)	Mid-30s	90	APGAR 1 min .	APGAR 5 min .	Premature at Birth
Severe Obesity (BMI > 35)	Mid-30s	91	APGAR 1 min .	APGAR 5 min .	Premature at Birth
Waist-hip Ratio	Mid-30s	84	APGAR 1 min.	Premature at Birth	Number of Siblings, Baseline
Abdominal Obesity	Mid-30s	84	APGAR 1 min.	Premature at Birth	Number of Siblings, Baseline
Framingham Risk Score	Mid-30s	88	APGAR 1 min .	Premature at Birth	Number of Siblings, Baseline
Brief Symptom Survey (BSI) Score	Mid-30s	92	APGAR 1 min.	APGAR 5 min.	Premature at Birth

Partially observed outcomes can occur at any age $a \leq a^{*}$. We construct the IPW using both pre-treatment and post-treatment variables, within the age period $a \leq a^{*}$.

We construct the IPW using the same algorithm, independently of the age within $a \leq a^{*}$ in which an outcome is partially complete. For notational simplicity, we derive the IPW scheme without indexing the outcomes by age. We restore the notation used throughout the text in the next appendix.

We use a standard inverse probability weighting (IPW) scheme ${ }^{69}$ Formally, recall that $R=1$ if the child is randomized to treatment, and $R=0$ otherwise. ${ }^{70}$ Similarly, let $A=1$ denote the case where we observe a generic scalar outcome Y, and $A=0$ otherwise. As in the main text, \boldsymbol{B} represents background (pre-treatment) variables and \boldsymbol{X} variables that could be affected by treatment and that predict Y.

We assume A is independent of Y conditional on \boldsymbol{X} and \boldsymbol{B}. More formally, we invoke

Assumption AA-1

$$
A \Perp Y \mid \boldsymbol{X}, \boldsymbol{B}, R .
$$

Let Y^{r} represent outcome Y when R is fixed to take the value r. Based on Assumption AA-1, we use IPW to identify $\mathbb{E}\left[Y^{r}\right]$ as follows:
${ }^{69}$ Horvitz and Thompson (1952).
${ }^{70}$ We are able to use R (randomization into treatment) and D (participation in treatment) exchangeably.

$$
\begin{align*}
\mathbb{E}\left[Y^{r}\right] & =\iint y f_{Y_{r} \mid \boldsymbol{B}}(y) f_{\boldsymbol{B}}(b) d y d b \tag{1}\\
& =\iint y f_{Y \mid \boldsymbol{B}, R=r}(y) f_{\boldsymbol{B}}(b) d y d b \\
& =\iiint y f_{Y \mid R=r, \boldsymbol{X}, \boldsymbol{B}}(y) f_{\boldsymbol{X} \mid R=r}(x) f_{\boldsymbol{B}}(b) d y d x d b \\
& =\iiint y f_{Y \mid R=r, \boldsymbol{X}, \boldsymbol{B}, A=1}(y) f_{\boldsymbol{X} \mid R=r, \boldsymbol{B}}(x) f_{\boldsymbol{B}}(b) d y d x d b
\end{align*}
$$

where each component of the last expression in (1) is straightforward to recover from the data. Using Bayes' Theorem, we can write an equivalent expression to make the IPW scheme explicit. That is, we apply Bayes' Theorem to $f_{\boldsymbol{X} \mid R=r, \boldsymbol{B}}(x)$ and $f_{\boldsymbol{B}}(b)$ to obtain

$$
f_{\boldsymbol{X} \mid R=r, \boldsymbol{B}}(x)=\frac{f_{\boldsymbol{X} \mid R=r, \boldsymbol{B}, A=1}(x) P(A=1 \mid R=r, \boldsymbol{B})}{P(A=1 \mid R=r, \boldsymbol{X}, \boldsymbol{B})}
$$

and

$$
f_{\boldsymbol{B}}(b)=\frac{f_{\boldsymbol{B} \mid R=r, A=1}(x) P(R=r, A=1)}{P(R=r, A=1 \mid \boldsymbol{B})} .
$$

Substituting these expressions into (1), we obtain

$$
\begin{aligned}
\mathbb{E}\left[Y_{r}\right] & =\iiint y f_{Y, \boldsymbol{X}, \boldsymbol{B} \mid R=r, A=1}(y, x, b) \frac{P(R=r, A=1) P(A=1 \mid R=r, \boldsymbol{B})}{P(R=r, A=1 \mid \boldsymbol{B}) P(A=1 \mid R=r, \boldsymbol{X}, \boldsymbol{B})} d y d x d b \\
& =\iiint y f_{Y, \boldsymbol{X}, \boldsymbol{B} \mid R=r, A=1}(y, x, b) \frac{P(R=r, A=1)}{P(R=r \mid \boldsymbol{B}) P(A=1 \mid R=r, \boldsymbol{X}, \boldsymbol{B})} d y d x d b
\end{aligned}
$$

Assumption AA-1 generalizes the matching assumption of Campbell et al. (2014). It conditions not only on pre-program variables but on fully observed post-treatment variables, \boldsymbol{X}, that predict Y. The corresponding sample estimator for $\mathbb{E}\left[Y^{r}\right]$ is

$$
\sum_{i \in \mathcal{I}} y \alpha_{i} \beta_{i, r} \mathbf{1}\left(r_{i}=r\right)
$$

where \mathcal{I} indexes the individuals in the sample, α_{i} indicates whether we observe Y for individual i, and

$$
\beta_{i, r}=\frac{1}{\pi_{r}\left(x_{i}\right) \alpha\left(r_{i}, x_{i}, b_{i}\right)} \frac{1}{\sum_{k} \frac{\mathbf{1}\left(r_{i}=r\right) \mathbf{1}\left(\alpha_{i}=1\right)}{\pi_{r}\left(x_{k}\right) \alpha\left(r_{k}, x_{k}, b_{k}\right)}},
$$

with $\pi_{r}(x):=P(R=r \mid \boldsymbol{B}=b)$ and $\alpha(r, x, b):=P(A=1 \mid R=r, \boldsymbol{X}=x, \boldsymbol{B}=b)$. The weight π_{r} corrects for selection into treatment based on pre-program variables \boldsymbol{B}. The weight α_{i} corrects for item non-response based on $R, \boldsymbol{X}, \boldsymbol{B}$.

For each of the estimates presented in this paper, we allow the reader to assess the sensitivity of the estimate to adjusting by the IPW. We present estimates for the first counterfactual of interest ("Treatment vs. Next Best") without adjusting by IPW in column (1). In column (2), we present estimates accounting for IPW. The rest of the columns report similar exercises for the other counterfactuals considered. ${ }^{71}$

B. 3 Inference

This section provides the precise steps for constructing the bootstrap distribution and for computing the standard errors for three of the main estimates in our paper.

[^20]
B.3.1 Treatment Effects

1. Resample the experimental sample with replacement at the individual level. This gives us a new (re-sampled) panel dataset. Full information about each individual is obtained in each re-sample.
2. For a partially complete outcome Y_{j}, run K regressions of Y_{j} on the set of explanatory variables $k=1, \ldots, K .{ }^{72} K$ is determined by the number of possible control sets we can construct with 1, 2 and, 3 baseline variables. We document this procedure and describe the possible control sets in Appendix D.1.
3. Choose the control set that best predicts Y_{j}, as we describe in Appendix D.1. Call this control set k_{j}^{*}. There is one control set per each of the partially complete outcomes Y_{j}.
4. Construct the IPW using the inverse of the prediction of a logistic regression of an indicator of "observed or not" on control set k_{j}^{*}.
5. If we estimate our parameter of interest using matching (treatment vs. stay at home or treatment vs. alternative preschool - see Section 3), we weight the treatment group as to make it comparable in observed characteristics to the control group individuals who either stay at home or attend alternative preschools. We use the procedure in 3 . to choose the variables used to weight.
6. Repeat this procedure 1,000 times to obtain the empirical bootstrap distribution. Compute the standard error as the sample standard deviation of these resamples. Compute the p-value's as the proportion of times that we reject the null hypothesis, after centering the empirical bootstrap distribution according to the null hypothesis.
[^21]
B.3.2 Combining Functions

1. Use the same procedure as before to re-sample the experimental data.
2. Calculate treatment effects as described in Appendix B.3.1.
3. If counting the number of positive effects, compute this number and generate standard errors and p-value's as before.
4. If counting the number of positive and at significant treatment effects, compute the number of positive and significant treatment effects (at the desired significance level). Re-sample the non-experimental sample a second time. The second re-sample creates an empirical bootstrap distribution for this count. Generate standard errors and p value's as before.

C Gender Differences

C. 1 Survey of Gender Differences Literature

We summarize (Table C.1) work that examines early-life differences between boys and girls. It is generally found that boys are more fragile than girls early in life. While some of these papers consider the family environment, there is a dearth of work studying (1) the effect of low-quality preschool on children ${ }^{73}$ and (2) the interaction of this with family environments. We find that while low-quality programs can deteriorate the parent-child interaction, especially for boys, high-quality programs can enhance it.

[^22]Table C.1: Literature Review on Early Gender Differences

Paper	Program(s)	Main Gender-Difference Finding	Outcomes	Quality of Childcare Setting?	Quality of Home Setting?
Lundberg (2005)	Literature survey	-females: divorce is likely if all children are girls less likely to live with fathers (US), spends more time with mothers -males: increase marital stability, increase likelihood of subsequent child	-fertility and divorce	No	No
Anderson (2008)	ABC Perry Preschool Program Early Training Program (ETP)	-modest results for males -females especially affected in academic outcomes -accounting for multiple hypotheses	-child, adolescent, adult (up to age 21 for ABC) -social, educational, employment -test scores reduces effects substantially especially for males	No	No
Ou and Reynolds (2010)	Chicago Child-Parent Center - 1334 youths (682 females, 652 males) - center-based, served $3 / 4$ year olds - RCT	Differences in treatment effects consequence of difference in mediators -male mediators: preschool participation -female mediators: family support, abuse/neglect	-educational attainment -HS or GED (jointly coded)	No	Yes
Bertrand and Pan (2013)	ECLS-K (ATUS as complementary) -observational study up to 5th grade	Stark gender differences - females: better on all socio-emotional measures (gaps widen when children get older) - males: worst at reading but better than math at 1st grade	$\begin{gathered} \text {-socio-emotional measures } \\ \text {-grade suspension } \\ \text { - tests scores (math and reading) } \end{gathered}$	No	Yes
Cornwell et al. (2013)	ECLS-K -observational study up to 5th grade	Gender differences in tests and grades -males: better in science and math; worst grades overall females: better reading tests (gap wider than gap with respect to science and math) - some but bot all of the gaps disappears when accounting for socio-emotional measures	-reading, science, math tests scores -grades -socio-emotional measures	No	No
Golsteyn and Schils (2014)	Observational study in the Netherlands - elementary school children, age 11/12	Gender differences across skills and tests - males: higher assertiveness and math -females: higher social skills and language	-cognition -socio-emotional measures -math and language tests	N/A	No
Kottelenberg and Lehrer (2014)	NLSCY	-females: better parent-child relationship and interactions across diverse measures - no precise difference in cognition	-cognition - socio-emotional outcomes -parental child relationship and quality of interactions -maternal labor supply	No	Yes
Baker and Milligan (2013)	Observational studies in three countries -Canada: NLSCY (ages 1 to 5) -UK: Millennium Cohort Study (ages 1 to 7) -US: ECLS-B (ages 1 to 4)	Gender differences in parental investment -no difference in mother's time at home -females: more investment in teaching activities -males: more father's investment at older ages	-parental investment across different ages	No	Yes
Magnuson et al. (2016)	23 programs (meta-analysis) - at least 10 controls - from 1960 to 2013 - < 50% attrition - RCTs	No gender differences, in general - males/females: cognitive benefits - no effect on behavior or mental health	-all programs: cognition -some programs: achievement, behavior, adult outcomes	No	No
Schore (2017)	Literature survey	Sex differences in brain maturation -males: less time spent with mothers, more sensitive to early infections and endotoxins; respond poorly to daycare settings; amplify stress more sensitive to single mother environment -females: more rapid brain maturation	- brain maturation (right brain development) - daycare behavior - maternal interaction	N/A	Yes

 quality.

D Procedures for Selecting Background Variables, Estimated Treatment Effects, and Estimated Combining Functions

In this appendix we first explain our method for selecting the background variables that we control for when estimating treatment effects. ${ }^{74}$ Then, we present the treatment effects of the center-based treatment in ABC/CARE estimates for the 95 main outcomes we consider. For each set of estimates, we first present a summary of the effect of the program using a combining function counting the number of socially positive treatment effects. We then present tables of treatment effect estimates for each outcome. Finally, we test for statistically significant treatment effects using the step-down procedure to test multiple hypotheses.

D. 1 Background Variables

We select three out of fourteen potential variables that best predict the relevant outcomes of interest, i.e. the outcomes we test treatment effects for. We list the fourteen variables in Table D. 1 and bold the three we choose. In addition to these three variables, we account for a male indicator when computing estimates pooling males and females and a $\mathrm{ABC} / \mathrm{CARE}$ indicator, to account for any difference in the programs - although we extensively document throughout the paper the similarities between them.

[^23]Table D.1: Background Variables

Maternal IQ	Maternal education	Mother's age at birth
High Risk Index	Parent income	Premature birth
$\mathbf{1}$ minute Apgar score	$\mathbf{5}$ minute Apgar score	Mother married
Teen pregnancy	Father at home	Number of siblings
Cohort	Mother is employed	

Note: This table lists the variables we permute over when selecting the background variables we control for in our estimations. We bold the variables we choose based on the procedure explained in this section.

We briefly formalize the choice of the control sets based on most predictive models in the next lines.

Let \mathcal{M} be the set of all the models we consider. In our application, \mathcal{M} consists of all linear regressions of an outcome of interest on the different combinations of background variables. $m \in \mathcal{M}$ is one of such models. We choose the model minimizing the Bayesian Information Criterion (BIC) by ranking them according to their likelihood. That is, according to their posterior probability given the data. The data, in this case, are the dependent variable being predicted together with the background variables in each combination. We denote this by $\operatorname{Pr}(m \mid$ Data $)$.

Using Bayes Rule and the law of total probability,

$$
\begin{align*}
\operatorname{Pr}(m \mid \text { Data }) & =\frac{\operatorname{Pr}(\text { Data } \mid m) \times \operatorname{Pr}(m)}{\operatorname{Pr}(\text { Data })} \tag{2}\\
& =\frac{\operatorname{Pr}(\text { Data } \mid m) \times \operatorname{Pr}(m)}{\sum_{m^{\prime} \in M} \operatorname{Pr}\left(\text { Data } \mid m^{\prime}\right) \operatorname{Pr}\left(m^{\prime}\right)} \\
& \propto \operatorname{Pr}(\text { Data } \mid m) \times \operatorname{Pr}(m),
\end{align*}
$$

where $\operatorname{Pr}(m)$ is the prior probability of model m and $\operatorname{Pr}($ Data $\mid m)$ is the probability of observing Data under model m.

There are various approaches to rank the the likelihood of each model. Examples include rankings based on Bayesian Information Criterion (Schwarz), the Hannan-Quinn Information Criterion (HWIC), and the Akaike Information Criterion (AIC). We use the first approach because it has appealing consistency properties (Diebold, 2007). This criterion minimizes the following loss function: $2 \log [\operatorname{Pr}($ Data $\mid m)]$. We follow an specific approximation developed by Claeskens and Hjort (2008), which assumes uniform priors and simplifies the computation of the loss function.

This procedure allows us to choose one control set per outcomes of interest. To gain consistency across all specifications, we sum the BIC across all outcomes and choose the background variables with lower average across models. These background variables form our control set across all estimations and appear bold in Table D.1.

D.1.1 Matching Variables

We use matching estimators for different versions of the "treatment vs. stay at home" and "treatment vs. alternative preschools" parameters. For treatment vs. stay at home, we construct the Mahalanobis distance between the individuals in the treatment group and the control group who stay at home and use an Epanechnikov metric to construct an individuallevel weight - giving a relatively high weight to individuals in the treatment group who would have been likely to stay at home if randomized to the control group. We proceed analogously when estimating the treatment vs. alternative preschool parameters. We use the same variables to "match" and to "control".

Table D. 2 displays the results of a test comparing the matched samples. The first three columns compare the children in the control group who attended alternative center-based care to those in the treatment group who would have attended alternative care if they were in the control group. The last three columns perform the analogous comparison for children who stayed at home. The \% Bias is the standardized mean difference between the matched samples. The corresponding t-scores and p-values are also reported, however none of the comparisons are significantly different.

Other forms of matching estimates such as propensity score matching and nearest neighbor(s) give very similar results and are available upon request. We analyze sensitivity to the choice of controls and matching variables next.

D.1.2 Sensitivity Analysis

An immediate route of inquiry has to do with the sensitivity of our estimates to the choice of background variables. Especially in the context of our small sample, in which estimates

Table D.2: Testing Matched Samples

| | Alternative Center-Based Care | | | | Stay at Home | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Baseline Characteristic | $\%$ Bias | t-score | p-value | | $\%$ Bias | t-score | p-value |
| Mother's Yrs. of Edu. | -10.8 | -0.57 | 0.573 | | -41.9 | -1.30 | 0.202 |
| Mother Works | -16.6 | -0.75 | 0.456 | | -62.0 | -1.61 | 0.119 |
| Mother's Age | 8.9 | 0.45 | 0.654 | | 27.0 | 0.83 | 0.413 |
| Mother's IQ | 12.5 | 0.68 | 0.498 | | -22.7 | -0.72 | 0.474 |
| Father Present | -15.4 | -0.78 | 0.438 | | 20.3 | 0.62 | 0.541 |
| Parental Income | -25.6 | -1.14 | 0.256 | | -4.2 | -0.11 | 0.911 |
| HRI Score | 37.2 | 1.96 | 0.053 | | 19.8 | 0.62 | 0.538 |
| Number of Siblings | 10.9 | 0.55 | 0.585 | | 38.8 | 1.19 | 0.244 |
| Male | 3.4 | 0.17 | 0.864 | | -0.7 | -0.02 | 0.983 |
| Apgar Score, 1 min. | -17.9 | -1.04 | 0.302 | | -19.6 | -0.65 | 0.522 |
| Apgar Score, 5 min. | -6.3 | -0.43 | 0.669 | | -29.6 | -1.14 | 0.260 |
| ABC | -28.4 | -1.47 | 0.145 | | -35.7 | -1.11 | 0.273 |

Note: This table tests the difference between the matched samples for both sets of matches that are done: treatment to alternative childcare and treatment to staying at home. The \% Bias is the standardized mean difference between the matched samples. The corresponding t-scores and p-values are also reported.
can vary to different model specifications. To investigate this, we estimate treatment effects for the three counterfactuals we consider using all possible control sets for the three variables we can form with the background variables in Table D.1. We also consider all possible control sets of one and two variables in Table D.1. For brevity, we present this exercise for two outcomes, employment and education. Similar exercises for the 95 main outcomes we consider are available upon request.

Figure D. 1 to Figure D. 3 display the results from this exercise. In any case, the support of the distributions are very compressed leading us to conclude that there is little sensitivity to the choice of controls sets. This is especially true for the comparisons of treatment vs. staying at home and vs. alternative preschool.

Note: Panel (a) displays the distribution of the treatment effect estimate of the treatment compared to next best counterfactual for males years
 addition to these three variables, we account for a male indicator when computing estimates pooling males and females and a ABC/CARE indicator, to account for any difference in the programs-although we extensively document throughout the paper the similarities between them. The horizontal line marks the baseline estimate we use. The reminder panels present analogous distributions for the outcomes and genders indicated in the title.
Figure D.2: Sensitiviy to Choice of Control Set, Treatment vs. Stay at Home
(b) Employment, Males

\ldots	One Control	-----	Two Controls
Three Controls	$\cdots \cdots \cdots$	Baseline Point Estimate	

(c) Years of Education, Females

Note: Panel (a) displays the distribution of the treatment effect estimate of the treatment compared to stay at home counterfactual for males years , and three background variables listed in Table addition to these three variables, we account for a male indicator when computing estimates pooling males and females and a ABC/CARE indicator, to account for any difference in the programs - although we extensively document throughout the paper the similarities between them. We "match" and "control" using the same set of variables. The horizontal line marks the baseline estimate we use. The reminder panels present analogous distributions for the outcomes and genders indicated in the title.
Figure D.3: Sensitivity to Choice of Control Set, Treatment vs. Alternative Preschool

Note: Panel (a) displays the distribution of the treatment effect estimate of the treatment compared to alternative preschool counterfactual for males years of education. The distribution is obtained by using all possible combinations of one, two, and three background variables listed in Table D.1. In addition to these three variables, we account for a male indicator when computing estimates pooling males and females and a ABC/CARE indicator, to account for any difference in the programs - although we extensively document throughout the paper the similarities between them. We "match" and "control" using the same set of variables. The horizontal line marks the baseline estimate we use. The reminder panels present analogous distributions for the outcomes and genders indicated in the title.

D. 2 Outcomes of Interest

Table D. 3 lists the 95 outcomes that we test in our main analysis. We reverse the outcomes for which we consider a negative treatment effect socially positive.

Table D.3: Main Outcome Variables

Category	Variable	Age	ABC	CARE	Reversed
IQ Scores	Std. IQ Test	2	\checkmark	\checkmark	
		2.5		\checkmark	
		3	\checkmark	\checkmark	
		3.5	\checkmark	\checkmark	
		4	\checkmark	\checkmark	
		4.5	\checkmark	\checkmark	
		5	\checkmark	\checkmark	
		6.6	\checkmark	\checkmark	
		7	\checkmark	\checkmark	
		8	\checkmark	\checkmark	
		12	\checkmark	\checkmark	
		15	\checkmark		
		21	\checkmark		
	IQ Factor	$\begin{gathered} 2 \text { to } \\ 5 \end{gathered}$	\checkmark	\checkmark	
		$\begin{gathered} 6 \text { to } \\ 12 \end{gathered}$	\checkmark	\checkmark	
		$\begin{gathered} 15 \text { to } \\ 21 \end{gathered}$	\checkmark		
Achievement Scores	Std. Achv. Test	5.5	\checkmark	\checkmark	
		6	\checkmark	\checkmark	
		6.5	\checkmark		
		7	\checkmark		
		7.5	\checkmark	\checkmark	
		8	\checkmark	\checkmark	
		8.5	\checkmark	\checkmark	
		12		\checkmark	
		15	\checkmark		
		21	\checkmark		

Category	Variable	Age	ABC	CARE	Reversed
HOME Scores	PIAT Math Std. Score	7	\checkmark	\checkmark	
	Achievement Factor	$\begin{gathered} 5.5 \\ \text { to } 12 \end{gathered}$	\checkmark	\checkmark	
		$\begin{gathered} 15 \text { to } \\ 21 \end{gathered}$	\checkmark		
	HOME Score	0.5	\checkmark	\checkmark	
		1.5	\checkmark	\checkmark	
		2.5	\checkmark	\checkmark	
		3.5	\checkmark	\checkmark	
		4.5	\checkmark	\checkmark	
		8	\checkmark	\checkmark	
	HOME Factor	$\begin{gathered} 0.5 \\ \text { to } 8 \end{gathered}$	\checkmark	\checkmark	
Parent Income	Parental income	1.5	\checkmark	\checkmark	
		2.5	\checkmark	\checkmark	
		3.5	\checkmark	\checkmark	
		4.5	\checkmark	\checkmark	
		8	\checkmark		
		12	\checkmark		
		15	\checkmark		
	Parental Income Factor	$\begin{aligned} & 1.5 \\ & \text { to } 15 \end{aligned}$	\checkmark	\checkmark	
Mother's Employment	Mother Works	2	\checkmark	\checkmark	
		3	\checkmark	\checkmark	
		4	\checkmark	\checkmark	
		5	\checkmark	\checkmark	
		21	\checkmark		
	Mother Works Factor	$\begin{gathered} 2 \text { to } \\ 21 \end{gathered}$	\checkmark	\checkmark	
Mother's Education	Mother's Years of Edu.	2			
		3	\checkmark		
		4	\checkmark		
		5	\checkmark		
		9	\checkmark		
	Mother's Edu. Factor	$\begin{gathered} 2 \text { to } \\ 9 \end{gathered}$	\checkmark		

Category	Variable	Age	ABC	CARE	Reversed
Father at Home	Father at Home	2	\checkmark	\checkmark	
		3	\checkmark	\checkmark	
		4	\checkmark	\checkmark	
		5	\checkmark	\checkmark	
		8	\checkmark	\checkmark	
	Father at Home Factor	$\begin{gathered} 2 \text { to } \\ 8 \end{gathered}$	\checkmark	\checkmark	
Adoption	Ever Adopted		\checkmark		
Education		30	\checkmark	\checkmark	
	Attended Voc./Tech./Com. College	30	\checkmark	\checkmark	
	Graduated 4-year College	30	\checkmark	\checkmark	
	Years of Edu.	30	\checkmark	\checkmark	
	Education Factor	30	\checkmark	\checkmark	
Employment and Income	Employed	30	\checkmark	\checkmark	
	Labor Income	21	\checkmark	\checkmark	
		30	\checkmark	\checkmark	
	Public-Transfer Income	21	\checkmark	\checkmark	\checkmark
		30	\checkmark	\checkmark	\checkmark
	Employment Factor	$\begin{gathered} 21 \text { to } \\ 30 \end{gathered}$	\checkmark	\checkmark	
Crime	Total Felony Arrests	Mid- 30s	\checkmark	\checkmark	\checkmark
	Total Misdemeanor Arrests	Mid30s	\checkmark	\checkmark	\checkmark
	Total Years Incarcerated	30	\checkmark	\checkmark	\checkmark
	Crime Factor	30 to Mid- 30s	\checkmark	\checkmark	\checkmark
Tobacco, Drugs, Alcohol	Cig. Smoked per day last month	30	\checkmark	\checkmark	\checkmark
	Days drank alcohol last month	30	\checkmark	\checkmark	\checkmark
	Days binge drank alcohol last month	30	\checkmark	\checkmark	\checkmark

Category	Variable	Age	ABC	CARE	Reversed
Self-Reported Health	Self-reported drug user	Mid- 30s	\checkmark	\checkmark	\checkmark
	Substance Use Factor	30 to Mid30s	\checkmark	\checkmark	\checkmark
	Self-reported Health	30	\checkmark	\checkmark	\checkmark
		$\begin{gathered} \text { Mid- } \\ 30 \mathrm{~s} \end{gathered}$	\checkmark	\checkmark	\checkmark
	Self-reported Health Factor	30 to Mid30s	\checkmark	\checkmark	\checkmark
Hypertension	Systolic Blood Pressure (mm Hg)	Mid- 30s	\checkmark	\checkmark	\checkmark
	Diastolic Blood Pressure (mm Hg)	Mid- 30s	\checkmark	\checkmark	\checkmark
	Prehypertension	$\begin{gathered} \text { Mid- } \\ 30 \mathrm{~s} \end{gathered}$	\checkmark	\checkmark	\checkmark
	Hypertension	Mid- 30s	\checkmark	\checkmark	\checkmark
	Hypertension Factor	Mid- 30s	\checkmark	\checkmark	\checkmark
Cholesterol	High-Density Lipoprotein Chol. (mg/dL)	Mid- $30 \mathrm{~s}$	\checkmark	\checkmark	
	Dyslipidemia	$\begin{gathered} \text { Mid- } \\ 30 \mathrm{~s} \end{gathered}$	\checkmark	\checkmark	\checkmark
	Cholesterol Factor	Mid- 30s	\checkmark	\checkmark	\checkmark
Diabetes	Hemoglobin Level (\%)	Mid- $30 \mathrm{~s}$	\checkmark	\checkmark	\checkmark
	Prediabetes	$\begin{gathered} \text { Mid- } \\ 30 \mathrm{~s} \end{gathered}$	\checkmark	\checkmark	\checkmark
	Diabetes	Mid- 30s	\checkmark	\checkmark	\checkmark
	Diabetes Factor	$\begin{gathered} \text { Mid- } \\ 30 \mathrm{~s} \end{gathered}$	\checkmark	\checkmark	\checkmark
Vitamin D Deficiency	Vitamin D Deficiency	Mid- 30s	\checkmark	\checkmark	\checkmark

Category	Variable	Age	ABC	CARE	Reversed
Obesity	Measured BMI	Mid- 30s	\checkmark	\checkmark	\checkmark
	Obesity	Mid- 30s	\checkmark	\checkmark	\checkmark
	Severe Obesity	Mid- 30s	\checkmark	\checkmark	\checkmark
	Waist-hip Ratio	Mid30s	\checkmark	\checkmark	\checkmark
	Abdominal Obesity	Mid30s	\checkmark	\checkmark	\checkmark
	Framingham Risk Score	Mid- 30s	\checkmark	\checkmark	\checkmark
	Obesity Factor	Mid- 30s	\checkmark	\checkmark	\checkmark
Mental Health (BSI)	Somatization	21	\checkmark		
		34	\checkmark	\checkmark	\checkmark
	Depression	21	\checkmark	\checkmark	\checkmark
		34	\checkmark	\checkmark	\checkmark
	Anxiety	21	\checkmark	\checkmark	\checkmark
		34	\checkmark	\checkmark	\checkmark
	Hostility	21	\checkmark	\checkmark	\checkmark
		34	\checkmark	\checkmark	\checkmark
	Global Severity Index	21	\checkmark	\checkmark	\checkmark
		34	\checkmark	\checkmark	\checkmark
		21			
	Mental Health Factor	and 34	\checkmark	\checkmark	\checkmark
Child Behavior (CAS)	Participates in Activity	12	\checkmark		
	Time Spent Reading	12	\checkmark		
	Good Description of Self	12	\checkmark		
	Views Self as Dumb	12	\checkmark		\checkmark
	Views Self as Clumsy	12	\checkmark		\checkmark
	Views Self as Not Liked	12	\checkmark		\checkmark
	Proud About Self	12	\checkmark		
	Family Proud of You	12	\checkmark		
	Feels Inadequate, Inferior	12	\checkmark		\checkmark
	Withdraws Excessively	12	\checkmark		\checkmark
	Ignores Situation	12	\checkmark		\checkmark

Category	Variable	Age	ABC	CARE	Re- versed
	Not Cope with Prob.	12	\checkmark		\checkmark
	Often Mad of Angry	12	\checkmark	\checkmark	
	Impulsivity	12	\checkmark	\checkmark	
	Significant Fears	12	\checkmark	\checkmark	
	Denies Any Worries	12	\checkmark	\checkmark	

Note: This table lists the main outcomes that we test treatment effects for. We reverse the outcomes for which we consider a negative treatment effect socially positive.

D. 3 Estimates

Table D. 11 shows that across all methods of estimation, pooling males and females, over 70% of the treatment effect estimates are beneficial. When using a 10% statistical significance level, almost 40% of all estimates are beneficial. These statistics allow us to reject the hypothesis that there are no treatment effects.

For both males and females, we find positive effects in IQ test scores, achievement test scores, as well as educational attainment. Males also enjoy additional benefits in the areas of employment, labor earnings, and hypertension.

In each of the tables for combining functions and treatment effect estimates, we present 8 different estimates. Column (1) corresponds to the mean difference between the groups randomly assigned to receive center-based childcare and the groups randomly assigned not to. Column (2) adjusts the estimates in (1) for attrition and controls for a set of covariates. Column (3) corresponds to the mean difference between the groups randomly assigned to receive center-based childcare and the groups randomly assigned not to, restricting the latter
to subjects who did not receive preschool alternatives. Column (4) adjusts the estimates in (3) for attrition and controls for a set of covariates. Column (5) corresponds to the mean difference between the groups randomly assigned to receive center-based childcare and the groups randomly assigned not to, placing a relatively high weight on the subjects who are likely not to be enrolled in alternative preschools. Column (6) corresponds to the mean difference between the groups randomly assigned to receive center-based childcare and the groups randomly assigned not to, restricting the latter to subjects who received preschool alternatives. Column (7) adjusts the estimates in (6) for attrition and controls for a set of covariates. Column (8) corresponds to the mean difference between the groups randomly assigned to receive center-based childcare and the groups randomly assigned not to, placing a relatively high weight on the children who are likely to be enrolled in alternative preschools. The results in bold are statistically significant at the 10% level in a single-sided, non-parametric, bootstrapped test. ${ }^{75}$ Columns (5) and (8) are standard kernel matching estimates.

Beginning with Table D.20, we display treatment effects by outcome. We divide the tables by different blocks of related outcomes. Table D. 4 summarizes treatment effects on the set of selected "latent" outcomes that we estimate. We display the full set of estimates beginning with Table D.20, together with the corresponding outcomes underlying the latents that we estimate.

Table D. 4 displays the results. Column (1) is the parameter in Equation (2), which is identified by random assignment to treatment. Column (2) displays the same parameter controlling for baseline variables and accounting for attrition. The procedures to select the

[^24]control variables and to account for attrition are in Appendices B and D. Column (3) displays estimates for the parameters in Equation (3). Column (4) does so as well but controlling for baseline variables and accounting for attrition. Column (5) is analogous to Column (3), but estimating the parameters compared to those who attended alternative care. Column (6) controls for baseline variables and accounts for attrition. Columns (3) to (6) are relevant when explaining gender differences so we delay discussing them to Section 5.

The results in Columns (1) and (2) of Table D. 4 reflect that ABC/CARE has substantial market and non-market benefits across the life-cycle. Recall that this inference is valid for all individuals in the population for whom $\boldsymbol{B} \in \mathcal{B}_{0}$ (i.e., are at considerable socio-economic disadvantage). The latents for each category have an in-sample mean of 0 and standard deviation of 1 .

The latent capturing measures of education increases by almost $1 / 2$ of a standard deviation for females even after accounting for baseline characteristics and attrition. For males, employment and hypertension are the latents that show the strongest improvement as a result of treatment.
Table D.4: Treatment Effects on Latent Outcomes

Category	Age	(1)	(2)	(3)	(4)	(5)	(6)
Females							
Parental Income Latent	1.5 to 21	0.260	0.176	0.189	0.580	0.289	0.089
		(0.261)	(0.284)	(0.398)	(0.091)	(0.265)	(0.398)
Education Latent	21 to 30	0.556	0.424	0.806	0.728	0.422	0.341
		(0.022)	(0.069)	(0.019)	(0.074)	(0.075)	(0.112)
Employment Latent	21 to 30	0.130	0.042	0.548	0.611	-0.017	-0.180
		(0.324)	(0.447)	(0.119)	(0.119)	(0.527)	(0.747)
Crime Latent	30 to Mid-30s	0.404	0.266	1.379	1.242	0.172	-0.043
		(0.005)	(0.109)	(0.026)	(0.085)	(0.179)	(0.567)
Hypertension Latent	Mid-30s	0.038	0.092	-0.225	-0.128	0.109	0.178
		(0.482)	(0.383)	(0.722)	(0.607)	(0.380)	(0.304)
Parental Income Latent	1.5 to 21	Males					
		0.032	-0.050	-0.064	-0.208	-0.010	-0.041
		(0.443)	(0.596)	(0.561)	(0.725)	(0.494)	(0.552)
Education Latent	21 to 30	0.374	0.283	0.246	0.341	0.419	0.359
		(0.084)	(0.134)	(0.283)	(0.208)	(0.075)	(0.079)
Employment Latent	21 to 30	0.289	0.476	0.024	0.326	0.403	0.578
		(0.135)	(0.023)	(0.478)	(0.198)	(0.090)	(0.021)
Crime Latent	30 to Mid-30s	-0.171	-0.331	-0.459	-0.576	-0.115	-0.344
		(0.717)	(0.894)	(0.993)	(0.973)	(0.626)	(0.810)
Hypertension Latent	Mid-30s	0.638	0.727	-0.131	0.436	1.041	0.965
		(0.017)	(0.000)	(0.635)	(0.129)	(0.002)	(0.000)

 A

 We highlight p-values significant at the 10% level.

D. 4 Non-parametric Tests

In the paper, we present non-parametric tests with a more refined set of outcomes to remove extraneous outcomes and those that are not observed in CARE. Here, we display the same results with the full set of outcomes.

Table D.5: Age Summary of Treatment-Control Comparisons by Gender, Full Set of Outcomes

	Average Effect Size	$\%>0$ Treatment Effect	$\%>0$, Significant Treatment Effect	Rosenbaum (2005) p-value
Childhood				
Females	$\mathbf{0 . 2 3 3}$	$\mathbf{8 5 . 3 6 6}$	$\mathbf{4 1 . 4 6 3}$.602
Males	$\mathbf{0 . 2 2 2}$	$\mathbf{7 5 . 6 1 0}$	$\mathbf{3 4 . 1 4 6}$.469
School Age				
Females	$\mathbf{0 . 4 1 3}$	$\mathbf{8 8 . 8 8 9}$	$\mathbf{5 5 . 5 5 6}$.004
Males	$\mathbf{0 . 2 3 6}$	$\mathbf{1 0 0 . 0 0 0}$	$\mathbf{1 8 . 5 1 9}$.343
Adulthood				
Females	$\mathbf{0 . 2 2 2}$	$\mathbf{8 0 . 0 0 0}$	$\mathbf{4 2 . 5 0 0}$.004
Males	$\mathbf{0 . 1 2 4}$	$\mathbf{6 1 . 5 3 8}$	$\mathbf{2 0 . 5 1 3}$.343
All				
Females	$\mathbf{0 . 2 7 4}$	$\mathbf{8 4 . 2 5 9}$	$\mathbf{4 5 . 3 7 0}$.235
Males	$\mathbf{0 . 1 9 0}$	$\mathbf{7 6 . 6 3 6}$	$\mathbf{2 5 . 2 3 4}$.343

Note: This table displays summaries of treatment effects by age and gender for the full set of outcomes. Each of the panels contains statistics calculated using outcomes measured at the indicated ages. Early childhood includes outcomes measured before age 6 , school age includes outcomes measured between age 6 and 18, and adult includes outcomes measured between 21 and 35 . All (panel d) is a combination of all the outcomes in panels (a) to (c). The average effect size is calculated by averaging over the effect sizes of the outcomes in the age category. The effect sizes of the individual outcomes are calculated by dividing the treatment-control mean difference by the standard deviation of the control group. We present bootstrapped p-values. For the proportion of outcomes that are positive and significant, we do a "double bootstrap" procedure. The null hypothesis for the average effect sizes is that they are 0 . The null hypothesis for the proportion of outcomes that are (significantly) positive is that they are (10%) 50%. Bolded statistics are significant at the 10% level. The Rosenbaum (2005) p-value originates from a test where the null is a common joint distribution across treatment status of the variables in each category. A p-value less than 0.10 from a test where the null is a common joint distribution across treatment status of the variables in each category. A p-value less than 0.10
(bolded) indicates that the distributions are significantly different at the 10% level. More details on our inference procedure are in Section 3 .

Table D.6: Category Summary of Treatment-Control Comparisons by Gender, Full Set of Outcomes

	Average Effect Size	$\%>0$ Treatment Effect	$\%>0$, Significant Treatment Effect	Rosenbaum (2005) p-value
IQ				
Females	0.674	100.000	75.000	. 046
Males	0.421	100.000	58.333	. 235
Achievement				
Females	0.804	100.000	100.000	. 01
Males	0.217	100.000	40.000	. 812
Social-emotional				
Females	0.176	75.000	37.500	. 01
Males	0.053	65.625	12.500	. 812
Parental Income				
Females	0.402	92.308	30.769	. 349
Males	0.326	92.308	46.154	. 812
Parenting				
Females	0.318	100.000	33.333	. 046
Males	0.237	83.333	0.000	. 812
Education				
Females	0.261	75.000	25.000	. 046
Males	0.075	87.500	0.000	. 812
Employment				
Females	0.170	100.000	33.333	. 046
Males	0.206	66.667	33.333	. 812
Crime				
Females	0.356	100.000	100.000	. 715
Males	0.004	33.333	0.000	. 812
Risky Behavior				
Females	0.067	100.000	0.000	. 469
Males	0.232	25.000	25.000	. 086
Health				
Females	-0.010	64.706	17.647	. 046
Males	-0.249	68.750	25.000	0

[^25]Table D.7: Age Summary of Treatment-Control (Stay at Home) Comparisons by Gender, Full Set of Outcomes

	Average Effect Size	$\%>0$ Treatment Effect	$\%>0$, Significant Treatment Effect	Rosenbaum (2005) p-value
Childhood				
Females	$\mathbf{0 . 1 9 2}$	$\mathbf{7 3 . 1 7 1}$	$\mathbf{5 1 . 2 2 0}$.061
Males	$\mathbf{0 . 3 2 0}$	$\mathbf{8 0 . 4 8 8}$	$\mathbf{4 6 . 3 4 1}$.394
School Age				
Females	$\mathbf{0 . 3 6 6}$	$\mathbf{9 6 . 2 9 6}$	$\mathbf{6 6 . 6 6 7}$.061
Males	$\mathbf{0 . 3 1 5}$	$\mathbf{1 0 0 . 0 0 0}$	$\mathbf{5 9 . 2 5 9}$.287
Adulthood				
Females	0.093	$\mathbf{6 7 . 5 0 0}$	$\mathbf{4 0 . 0 0 0}$	0
Males	$\mathbf{0 . 2 0 6}$	$\mathbf{7 6 . 9 2 3}$	$\mathbf{3 8 . 4 6 2}$.053
All				
Females	$\mathbf{0 . 1 9 9}$	$\mathbf{7 6 . 8 5 2}$	$\mathbf{5 0 . 9 2 6}$.061
Males	$\mathbf{0 . 2 7 7}$	$\mathbf{8 4 . 1 1 2}$	$\mathbf{4 6 . 7 2 9}$.394

Note: This table displays summaries of treatment effects by age and gender for the full set of outcomes and compared to those who stayed at home. Each of the panels contains statistics calculated using outcomes measured at the indicated ages. Early childhood includes outcomes measured before age 6, school age includes outcomes measured between age 6 and 18, and adult includes outcomes measured between 21 and 35. All (panel d) is a combination of all the outcomes in panels (a) to (c). The average effect size is calculated by averaging over the effect sizes of the outcomes in the age category. The effect sizes of the individual outcomes are calculated by dividing the treatment-control mean difference by the standard deviation of the control group. We present bootstrapped p-values. For the proportion of outcomes that are positive and significant, we do a "double bootstrap" procedure. The null hypothesis for the average effect sizes is that they are 0 . The null hypothesis for the proportion of outcomes that are (significantly) positive is that they are (10%) 50%. Bolded statistics are significant at the 10% level. The Rosenbaum (2005) p-value originates from a test where the null is a common joint distribution across treatment status of the variables in each category. A p-value less than 0.10 (bolded) indicates that the distributions are significantly different at the 10% level. More details on our inference procedure are in Section 3

Table D.8: Category Summary of Treatment-Control (Stay at Home) Comparisons by Gender, Full Set of Outcomes

	Average Effect Size	$\%>0$ Treatment Effect	$\%>0$, Significant Treatment Effect	Rosenbaum (2005) p-value
IQ				
Females	0.518	100.000	83.333	. 83
Males	0.661	100.000	91.667	. 859
Achievement				
Females	0.437	100.000	100.000	. 061
Males	0.401	100.000	80.000	. 394
Social-emotional				
Females	0.083	65.625	28.125	. 061
Males	0.224	78.125	31.250	. 394
Parental Income				
Females	0.291	92.308	76.923	. 305
Males	0.280	92.308	61.538	. 394
Parenting				
Females	0.242	100.000	16.667	. 83
Males	0.371	100.000	66.667	. 394
Education				
Females	0.400	75.000	62.500	. 83
Males	0.340	87.500	12.500	. 394
Employment				
Females	0.330	100.000	33.333	. 83
Males	0.257	66.667	33.333	. 394
Crime				
Females	-0.144	33.333	0.000	. 024
Males	0.281	66.667	33.333	. 394
Risky Behavior				
Females	0.049	50.000	25.000	. 414
Males	0.076	50.000	25.000	. 002
Health				
Females	0.096	58.824	11.765	. 305
Males	0.098	75.000	37.500	0

[^26]Table D.9: Age Summary of Treatment-Control (Alternative Care) Comparisons by Gender, Full Set of Outcomes

	Average Effect Size	$\%>0$ Treatment Effect	$\%>0$, Significant Treatment Effect	Rosenbaum (2005) p-value
Childhood				
Females	$\mathbf{0 . 3 0 0}$	$\mathbf{8 5 . 3 6 6}$	$\mathbf{4 3 . 9 0 2}$.708
Males	0.111	$\mathbf{6 3 . 4 1 5}$	$\mathbf{2 9 . 2 6 8}$.718
School Age				
Females	$\mathbf{0 . 4 6 6}$	$\mathbf{9 2 . 5 9 3}$	$\mathbf{7 0 . 3 7 0}$.025
Males	$\mathbf{0 . 2 8 5}$	$\mathbf{9 6 . 2 9 6}$	$\mathbf{4 4 . 4 4 4}$.448
Adulthood				
Females	$\mathbf{0 . 1 9 7}$	$\mathbf{7 7 . 5 0 0}$	$\mathbf{4 5 . 0 0 0}$.183
Males	0.100	$\mathbf{6 2 . 5 0 0}$	$\mathbf{3 2 . 5 0 0}$.448
All				
Females	$\mathbf{0 . 3 0 4}$	$\mathbf{8 4 . 2 5 9}$	$\mathbf{5 0 . 9 2 6}$.429
Males	$\mathbf{0 . 1 5 0}$	$\mathbf{7 1 . 2 9 6}$	$\mathbf{3 4 . 2 5 9}$.448

Note: This table displays summaries of treatment effects by age and gender for the full set of outcomes and compared to those who attended alternative care. Each of the panels contains statistics calculated using outcomes measured at the indicated ages. Early childhood includes outcomes measured before age 6 , school age includes outcomes measured between age 6 and 18 , and adult includes outcomes measured between 21 and 35. All (panel d) is a combination of all the outcomes in panels (a) to (c). The average effect size is calculated by averaging over the effect sizes of the outcomes in the age category. The effect sizes of the individual outcomes are calculated by dividing the treatment-control mean difference by the standard deviation of the control group. We present bootstrapped p-values. For the proportion of outcomes that are positive and significant, we do a "double bootstrap" procedure. The null hypothesis for the average effect sizes is that they are 0 . The null hypothesis for the proportion of outcomes that are (significantly) positive is that they are (10%) 50%. Bolded statistics are significant at the 10% level. The Rosenbaum (2005) p-value originates from a test where the null is a common joint distribution across treatment status of the variables in each category. A p-value less than 0.10 (bolded) indicates that the distributions are significantly different at the 10% level. More details on our inference procedure are in Section 3.

Table D.10: Category Summary of Treatment-Control (Alternative Care) Comparisons by Gender, Full Set of Outcomes

	Average Effect Size	$\%>0$ Treatment Effect	$\%>0$, Significant Treatment Effect	Rosenbaum (2005) p-value
IQ				
Females	0.737	100.000	91.667	. 183
Males	0.440	100.000	83.333	. 448
Achievement				
Females	0.638	100.000	80.000	. 311
Males	0.345	100.000	40.000	. 718
Social-emotional				
Females	0.220	75.000	46.875	. 025
Males	0.146	59.375	15.625	. 718
Parental Income				
Females	0.182	92.308	30.769	. 708
Males	0.376	92.308	38.462	. 718
Parenting				
Females	0.179	100.000	16.667	. 052
Males	-0.086	66.667	16.667	. 718
Education				
Females	0.345	87.500	62.500	. 052
Males	0.111	75.000	25.000	. 718
Employment				
Females	0.033	66.667	0.000	. 052
Males	0.423	100.000	33.333	. 718
Crime				
Females	0.450	100.000	100.000	. 898
Males	-0.546	33.333	0.000	. 448
Risky Behavior				
Females	0.208	100.000	25.000	. 708
Males	-0.019	25.000	25.000	. 448
Health				
Females	0.025	64.706	35.294	. 11
Males	0.240	52.941	23.529	. 002

[^27]
D. 5 Combining Functions - \% of Positive Treatment Effects, Ag-

 gregatedTable D.11: Combining Functions, Pooled Sample

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
\% Pos. TE	77	77	77	75	74	80	72	79
\% Pos. TE \\| 10\% Significance	$\mathbf{(0 . 0 0 0)}$							
	$\mathbf{(0 . 0 0 0)}$	$\mathbf{(0 . 0 0 0})$	$\mathbf{(0 . 0 0 0})$					

Note: This table presents estimates of the counts (combining functions) of (i) beneficial treatment effects and (ii) beneficial and significant (at the 10% level) treatment effects. Counts for the different estimates described in Appendix D. 3 are presented in each column. For each count we present a p-value underneath. For the counts of beneficial treatment effects, the null hypothesis is that the count is 50% (half of the treatment effects are positive). For the counts of significant at the 10% level treatment effects, the null hypotheses is that 10% of the treatment effects are positive and significant at the 10% level.

Table D.12: Combining Functions, Male Sample

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
\% Pos. TE	72	69	53	61	49	75	72	76	
\% Pos. TE \\| 10\% Significance	$\mathbf{(0 . 0 0 1)}$	$\mathbf{(0 . 0 0 2)}$	(0.353)	$\mathbf{(0 . 0 5 3)}$	(0.574)	$\mathbf{(0 . 0 0 0)}$	$\mathbf{(0 . 0 0 0)}$	$\mathbf{(0 . 0 0 0)}$	
	$\mathbf{(0 . 0 0 7)}$	$\mathbf{(0 . 0 0 2)}$	(0.111)	(0.159)	(0.160)	$\mathbf{(0 . 0 0 3)}$	$\mathbf{(0 . 0 0 3)}$	$\mathbf{(0 . 0 1 1)}$	

Note: This table presents estimates of the counts (combining functions) of (i) beneficial treatment effects and (ii) beneficial and significant (at the 10% level) treatment effects. Counts for the different estimates described in Appendix D. 3 are presented in each column. For each count we present a p-value underneath. For the counts of beneficial treatment effects, the null hypothesis is that the count is 50% (half of the treatment effects are positive). For the counts of significant at the 10% level treatment effects, the null hypotheses is that 10% of the treatment effects are positive and significant at the 10% level.

Table D.13: Combining Functions, Female Sample

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
\% Pos. TE	83	73	78	78	79	82	69	79
\% Pos. TE \| 10\% Significance	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.003)	(0.000)
	${ }^{50}$	${ }_{31}$	${ }^{50}$	(0.000)	${ }^{5} 53$	${ }_{39}$	19	${ }^{29}$
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.066)	(0.004)

Note: This table presents estimates of the counts (combining functions) of (i) beneficial treatment effects and (ii) beneficial and significant (at the 10% level) treatment effects. Counts for the different estimates described in Appendix D. 3 are presented in each column. For each count we present a p-value underneath. For the
counts of beneficial treatment effects, the null hypothesis is that the count is 50% (half of the treatment effects are positive). For the counts of significant at the 10% level treatment effects, the null hypotheses is that 10% of the treatment effects are positive and significant at the 10% level.

D. 6 Combining Functions - \% of Positive Treatment Effects, by Category

Table D.14: Combining Functions by Category, Pooled Sample

Category	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	N
Cognitive Skills	$\begin{gathered} 92 \\ \mathbf{(0 . 0 0 0)} \end{gathered}$	$\begin{gathered} 92 \\ \mathbf{(0 . 0 0 0)} \end{gathered}$	$\begin{gathered} 92 \\ \mathbf{(0 . 0 0 0)} \end{gathered}$	$\begin{gathered} 92 \\ \mathbf{(0 . 0 0 0)} \end{gathered}$	$\begin{gathered} 92 \\ \mathbf{(0 . 0 0 0)} \end{gathered}$	$\begin{gathered} 92 \\ \mathbf{(0 . 0 0 0)} \end{gathered}$	$\begin{gathered} 92 \\ \mathbf{(0 . 0 0 0)} \end{gathered}$	$\begin{gathered} 92 \\ \mathbf{(0 . 0 0 0)} \end{gathered}$	26
Childhood Household Environment	$\begin{gathered} 62 \\ (0.194) \end{gathered}$	$\begin{gathered} 62 \\ (0.237) \end{gathered}$	$\begin{gathered} 54 \\ (0.194) \end{gathered}$	$\begin{gathered} 54 \\ (0.113) \end{gathered}$	$\begin{gathered} 54 \\ (0.155) \end{gathered}$	$\begin{gathered} 85 \\ \mathbf{(0 . 0 7 6)} \end{gathered}$	$\begin{gathered} 46 \\ (0.604) \end{gathered}$	$\begin{gathered} 92 \\ \mathbf{(0 . 0 0 0)} \end{gathered}$	13
Mother's Employment, Education, and Income	$\begin{gathered} 87 \\ (0.000) \end{gathered}$	$\begin{gathered} 87 \\ (0.000) \end{gathered}$	$\begin{gathered} 87 \\ \mathbf{(0 . 0 0 0)} \end{gathered}$	$\begin{gathered} 87 \\ \mathbf{(0 . 0 0 0)} \end{gathered}$	$\begin{gathered} 93 \\ \mathbf{(0 . 0 0 0)} \end{gathered}$	$\begin{gathered} 87 \\ \mathbf{(0 . 0 0 0)} \end{gathered}$	$\begin{gathered} 73 \\ \mathbf{(0 . 0 8 5)} \end{gathered}$	$\begin{gathered} 87 \\ \mathbf{(0 . 0 0 0)} \end{gathered}$	15
Education, Employment, Income	$\begin{gathered} 87 \\ (\mathbf{0 . 0 0 0}) \end{gathered}$	$\begin{gathered} 80 \\ (\mathbf{0 . 0 0 0}) \end{gathered}$	$\begin{gathered} 87 \\ \mathbf{(0 . 0 0 0)} \end{gathered}$	$\begin{gathered} 80 \\ (\mathbf{0 . 0 0 0}) \end{gathered}$	$\begin{gathered} 80 \\ \mathbf{(0 . 0 0 0)} \end{gathered}$	$\begin{gathered} 87 \\ \mathbf{(0 . 0 0 0)} \end{gathered}$	$\begin{gathered} 87 \\ (0.000) \end{gathered}$	$\begin{gathered} 87 \\ \mathbf{(0 . 0 0 0)} \end{gathered}$	15
Crime	$\begin{gathered} 25 \\ (0.971) \end{gathered}$	$\begin{gathered} 25 \\ (0.893) \end{gathered}$	$\begin{gathered} 75 \\ (\mathbf{0 . 0 0 0}) \end{gathered}$	$\begin{gathered} 50 \\ (0.521) \end{gathered}$	$\begin{gathered} 25 \\ (0.890) \end{gathered}$	$\begin{gathered} 25 \\ (0.940) \end{gathered}$	$\begin{gathered} 25 \\ (0.811) \end{gathered}$	$\begin{gathered} 25 \\ (0.886) \end{gathered}$	4
Drugs and Alcohol	$\begin{gathered} 20 \\ (0.986) \end{gathered}$	$\begin{gathered} 40 \\ (0.661) \end{gathered}$	$\begin{gathered} 80 \\ \mathbf{(0 . 0 9 0)} \end{gathered}$	$\begin{gathered} 80 \\ (\mathbf{0 . 0 7 3}) \end{gathered}$	$\begin{gathered} 60 \\ (0.307) \end{gathered}$	$\begin{gathered} 20 \\ (0.938) \end{gathered}$	$\begin{gathered} 20 \\ (0.909) \end{gathered}$	$\begin{gathered} 20 \\ (0.942) \end{gathered}$	5
Adult Health	$\begin{gathered} 63 \\ (0.193) \end{gathered}$	$\begin{gathered} 63 \\ (0.175) \end{gathered}$	$\begin{gathered} 47 \\ (0.611) \end{gathered}$	$\begin{gathered} 47 \\ (0.636) \end{gathered}$	$\begin{gathered} 47 \\ (0.585) \end{gathered}$	$\begin{gathered} 63 \\ (0.197) \end{gathered}$	$\begin{gathered} 53 \\ (0.412) \end{gathered}$	$\begin{gathered} 53 \\ (0.488) \end{gathered}$	19
Mental Health	$\begin{gathered} 100 \\ \mathbf{(0 . 0 0 0)} \end{gathered}$	$\begin{gathered} 100 \\ \mathbf{(0 . 0 0 0)} \end{gathered}$	$\begin{gathered} 91 \\ (\mathbf{0 . 0 0 0}) \end{gathered}$	$\begin{gathered} 90 \\ (0.000) \end{gathered}$	$\begin{gathered} 91 \\ (\mathbf{0 . 0 0 0}) \end{gathered}$	$\begin{gathered} 100 \\ (0.000) \end{gathered}$	$\begin{gathered} 100 \\ (\mathbf{0 . 0 0 0}) \end{gathered}$	$\begin{gathered} 100 \\ (\mathbf{0 . 0 0 0}) \end{gathered}$	11

Note: This table presents estimates of the counts (combining functions) of beneficial treatment effects by the categories of outcomes in each row. The last column presents the number of outcomes per category. Counts for the different estimates described in Appendix D. 3 are presented in each column. For each count we present a p-value underneath. The null hypothesis is that the count is 50% (half of the treatment effects are positive).

Table D.15: Combining Functions by Category \| 10% Significance, Pooled Sample

Category	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	N
Cognitive Skills	$\begin{gathered} 88 \\ \mathbf{(0 . 0 0 0)} \end{gathered}$	$\begin{gathered} 85 \\ (0.000) \end{gathered}$	$\begin{gathered} 58 \\ \mathbf{(0 . 0 0 0)} \end{gathered}$	$\begin{gathered} 69 \\ \mathbf{(0 . 0 0 0)} \end{gathered}$	$\begin{gathered} 65 \\ \mathbf{(0 . 0 0 0)} \end{gathered}$	$\begin{gathered} 88 \\ \mathbf{(0 . 0 0 0)} \end{gathered}$	$\begin{gathered} 81 \\ (0.000) \end{gathered}$	$\begin{gathered} 88 \\ \mathbf{(0 . 0 0 0)} \end{gathered}$	26
Childhood Household Environment	$\begin{gathered} 23 \\ (0.235) \end{gathered}$	$\begin{gathered} 0 \\ (1.000) \end{gathered}$	$\begin{gathered} 38 \\ \mathbf{(0 . 0 0 0)} \end{gathered}$	$\begin{gathered} 38 \\ \mathbf{(0 . 0 0 0)} \end{gathered}$	$\begin{gathered} 46 \\ \mathbf{(0 . 0 0 0)} \end{gathered}$	$\begin{gathered} 8 \\ (0.318) \end{gathered}$	$\begin{gathered} 0 \\ (1.000) \end{gathered}$	$\begin{gathered} 15 \\ (0.303) \end{gathered}$	13
Mother's Employment, Education, and Income	$\begin{gathered} 53 \\ \mathbf{(0 . 0 0 5)} \end{gathered}$	$\begin{gathered} 40 \\ \mathbf{(0 . 0 2 1)} \end{gathered}$	$\begin{gathered} 53 \\ \mathbf{(0 . 0 0 1)} \end{gathered}$	$\begin{gathered} 53 \\ \mathbf{(0 . 0 0 2)} \end{gathered}$	$\begin{gathered} 53 \\ \mathbf{(0 . 0 0 3)} \end{gathered}$	$\begin{gathered} 27 \\ (0.145) \end{gathered}$	$\begin{gathered} 20 \\ (0.175) \end{gathered}$	$\begin{gathered} 40 \\ \mathbf{(0 . 0 5 7)} \end{gathered}$	15
Education, Employment, Income	$\begin{gathered} 67 \\ \mathbf{(0 . 0 0 0)} \end{gathered}$	$\begin{gathered} 47 \\ (0.002) \end{gathered}$	$\begin{gathered} 40 \\ \mathbf{(0 . 0 1 8)} \end{gathered}$	$\begin{gathered} 47 \\ \mathbf{(0 . 0 0 2)} \end{gathered}$	$\begin{gathered} 53 \\ \mathbf{(0 . 0 0 1)} \end{gathered}$	$\begin{gathered} 60 \\ \mathbf{(0 . 0 0 0)} \end{gathered}$	$\begin{gathered} 40 \\ \mathbf{(0 . 0 4 5)} \end{gathered}$	$\begin{gathered} 60 \\ \mathbf{(0 . 0 0 0)} \end{gathered}$	15
Crime	$\begin{gathered} 25 \\ \mathbf{(0 . 0 0 0)} \end{gathered}$	$\begin{gathered} 0 \\ (1.000) \end{gathered}$	$\begin{gathered} 25 \\ (0.356) \end{gathered}$	$\begin{gathered} 0 \\ (1.000) \end{gathered}$	$\begin{gathered} 0 \\ (1.000) \end{gathered}$	4			
Drugs and Alcohol	$\begin{gathered} 20 \\ (0.453) \end{gathered}$	$\begin{gathered} 20 \\ (\mathbf{0 . 0 1 9}) \end{gathered}$	$\begin{gathered} 20 \\ (\mathbf{0 . 0 6 9}) \end{gathered}$	$\begin{gathered} 20 \\ (\mathbf{0 . 0 9 9}) \end{gathered}$	$\begin{gathered} 20 \\ (0.452) \end{gathered}$	$\begin{gathered} 0 \\ (1.000) \end{gathered}$	$\begin{gathered} 0 \\ (1.000) \end{gathered}$	$\begin{gathered} 0 \\ (1.000) \end{gathered}$	5
Adult Health	$\begin{gathered} 21 \\ (0.175) \end{gathered}$	$\begin{gathered} 26 \\ (\mathbf{0 . 0 4 8}) \end{gathered}$	$\begin{gathered} 16 \\ (0.272) \end{gathered}$	$\begin{gathered} 11 \\ (0.434) \end{gathered}$	$\begin{gathered} 11 \\ (0.426) \end{gathered}$	$\begin{gathered} 26 \\ \mathbf{(0 . 0 3 2)} \end{gathered}$	$\begin{gathered} 26 \\ \mathbf{(0 . 0 1 0)} \end{gathered}$	$\begin{gathered} 21 \\ \mathbf{(0 . 0 4 4)} \end{gathered}$	19
Mental Health	$\begin{gathered} 64 \\ (\mathbf{0 . 0 0 7}) \end{gathered}$	$\begin{gathered} 55 \\ (\mathbf{0 . 0 4 4}) \end{gathered}$	$\begin{gathered} 27 \\ (0.133) \end{gathered}$	$\begin{gathered} 40 \\ (\mathbf{0 . 0 4 7}) \end{gathered}$	$\begin{gathered} 36 \\ (\mathbf{0 . 0 8 0}) \end{gathered}$	$\begin{gathered} 55 \\ (\mathbf{0 . 0 5 4}) \end{gathered}$	$\begin{gathered} 36 \\ (0.144) \end{gathered}$	$\begin{gathered} 64 \\ (\mathbf{0 . 0 0 2}) \end{gathered}$	11

Note: This table presents estimates of the counts (combining functions) of beneficial and significant (at the 10% level) treatment effects by the categories of outcomes in each row. The last column presents the number of outcomes per category. Counts for the different estimates described in Appendix D. 3 are presented in each column. For each count we present a p-value underneath. The null hypothesis is that 10% of the treatment effects are positive and significant at the 10% level.

Table D.16: Combining Functions by Category, Male Sample

Category	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	N
Cognitive Skills	$\begin{gathered} 92 \\ (\mathbf{0 . 0 0 0}) \end{gathered}$	$\begin{gathered} \hline 80 \\ \mathbf{(0 . 0 0 0)} \end{gathered}$	$\begin{gathered} 69 \\ (0.128) \end{gathered}$	$\begin{gathered} 85 \\ (0.000) \end{gathered}$	$\begin{gathered} 62 \\ (0.318) \end{gathered}$	$\begin{gathered} 92 \\ (\mathbf{0 . 0 0 0}) \end{gathered}$	$\begin{gathered} \hline 85 \\ (0.000) \end{gathered}$	$\begin{gathered} \hline 81 \\ (0.000) \end{gathered}$	26
Childhood Household Environment	$\begin{gathered} 54 \\ (0.385) \end{gathered}$	$\begin{gathered} 69 \\ (0.189) \end{gathered}$	$\begin{gathered} 46 \\ (0.669) \end{gathered}$	$\begin{gathered} 54 \\ (0.386) \end{gathered}$	$\begin{gathered} 46 \\ (0.613) \end{gathered}$	$\begin{gathered} 75 \\ (0.153) \end{gathered}$	$\begin{gathered} 69 \\ (0.120) \end{gathered}$	$\begin{gathered} 85 \\ (0.000) \end{gathered}$	13
Mother's Employment, Education, and Income	$\begin{gathered} 80 \\ (0.000) \end{gathered}$	$\begin{gathered} 73 \\ (\mathbf{0 . 0 2 4}) \end{gathered}$	$\begin{gathered} 73 \\ (0.026) \end{gathered}$	$\begin{gathered} 73 \\ (0.101) \end{gathered}$	$\begin{gathered} 67 \\ (0.209) \end{gathered}$	$\begin{gathered} 60 \\ (0.395) \end{gathered}$	$\begin{gathered} 60 \\ (0.356) \end{gathered}$	$\begin{gathered} 73 \\ (0.111) \end{gathered}$	15
Education, Employment, Income	$\begin{gathered} 80 \\ (0.000) \end{gathered}$	$\begin{gathered} 80 \\ (0.002) \end{gathered}$	$\begin{gathered} 53 \\ (0.429) \end{gathered}$	$\begin{gathered} 73 \\ (0.068) \end{gathered}$	$\begin{gathered} 60 \\ (0.356) \end{gathered}$	$\begin{gathered} 87 \\ (0.000) \end{gathered}$	$\begin{gathered} 87 \\ (0.000) \end{gathered}$	$\begin{gathered} 80 \\ (0.004) \end{gathered}$	15
Crime	$\begin{gathered} 25 \\ (0.879) \end{gathered}$	$\begin{gathered} 25 \\ (0.731) \end{gathered}$	$\begin{gathered} 25 \\ (1.000) \end{gathered}$	$\begin{gathered} 25 \\ (1.000) \end{gathered}$	$\begin{gathered} 25 \\ (1.000) \end{gathered}$	$\begin{gathered} 25 \\ (0.908) \end{gathered}$	$\begin{gathered} 25 \\ (0.722) \end{gathered}$	$\begin{gathered} 25 \\ (0.881) \end{gathered}$	4
Drugs and Alcohol	$\begin{gathered} 20 \\ (0.986) \end{gathered}$	$\begin{gathered} 20 \\ (0.995) \end{gathered}$	$\begin{gathered} 40 \\ (0.694) \end{gathered}$	$\begin{gathered} 40 \\ (0.479) \end{gathered}$	$\begin{gathered} 20 \\ (0.934) \end{gathered}$	$\begin{gathered} 20 \\ (0.953) \end{gathered}$	$\begin{gathered} 20 \\ (0.987) \end{gathered}$	$\begin{gathered} 20 \\ (0.981) \end{gathered}$	5
Adult Health	$\begin{gathered} 58 \\ (0.319) \end{gathered}$	$\begin{gathered} 63 \\ (0.175) \end{gathered}$	$\begin{gathered} 37 \\ (0.692) \end{gathered}$	$\begin{gathered} 42 \\ (0.635) \end{gathered}$	$\begin{gathered} 32 \\ (0.824) \end{gathered}$	$\begin{gathered} 68 \\ (\mathbf{0 . 0 8 2}) \end{gathered}$	$\begin{gathered} 74 \\ (0.010) \end{gathered}$	$\begin{gathered} 74 \\ (0.017) \end{gathered}$	19
Mental Health	$\begin{gathered} 82 \\ (0.138) \end{gathered}$	$\begin{gathered} 82 \\ (0.095) \end{gathered}$	$\begin{gathered} 36 \\ (0.725) \end{gathered}$	$\begin{gathered} 27 \\ (0.829) \end{gathered}$	$\begin{gathered} 36 \\ (0.698) \end{gathered}$	$\begin{gathered} 91 \\ (0.000) \end{gathered}$	$\begin{gathered} 91 \\ (0.000) \end{gathered}$	$\begin{aligned} & 100 \\ & (0.000) \end{aligned}$	11

Note: This table presents estimates of the counts (combining functions) of beneficial treatment effects by the categories of outcomes in each row. The last column presents the number of outcomes per category. Counts for the different estimates described in Appendix D. 3 are presented in each column. For each count we present a p-value underneath. The null hypothesis is that the count is 50% (half of the treatment effects are positive).

Table D.17: Combining Functions by Category \| 10% Significance, Male Sample

Category	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	N
Cognitive Skills	$\begin{gathered} 58 \\ (\mathbf{0 . 0 0 1}) \end{gathered}$	$\begin{gathered} 56 \\ (\mathbf{0 . 0 0 0}) \end{gathered}$	$\begin{gathered} 23 \\ (0.219) \end{gathered}$	$\begin{gathered} 31 \\ (0.129) \end{gathered}$	$\begin{gathered} 27 \\ (0.127) \end{gathered}$	$\begin{gathered} 62 \\ \mathbf{(0 . 0 0 0)} \end{gathered}$	$\begin{gathered} 54 \\ \mathbf{(0 . 0 0 0)} \end{gathered}$	$\begin{gathered} 58 \\ (0.000) \end{gathered}$	26
Childhood Household Environment	$\begin{gathered} 0 \\ (1.000) \end{gathered}$	$\begin{gathered} 0 \\ (1.000) \end{gathered}$	$\begin{gathered} 0 \\ (0.680) \end{gathered}$	$\begin{gathered} 8 \\ (0.463) \end{gathered}$	$\begin{gathered} 0 \\ (1.000) \end{gathered}$	$\begin{gathered} 8 \\ (0.357) \end{gathered}$	$\begin{gathered} 8 \\ (0.500) \end{gathered}$	$\begin{gathered} 8 \\ (0.404) \end{gathered}$	13
Mother's Employment, Education, and Income	$\begin{gathered} 33 \\ (\mathbf{0 . 0 6 1}) \end{gathered}$	$\begin{gathered} 27 \\ (0.092) \end{gathered}$	$\begin{gathered} 47 \\ (\mathbf{0 . 0 0 7}) \end{gathered}$	$\begin{gathered} 20 \\ (0.181) \end{gathered}$	$\begin{gathered} 33 \\ (\mathbf{0 . 0 6 3}) \end{gathered}$	$\begin{gathered} 20 \\ (0.152) \end{gathered}$	$\begin{gathered} 20 \\ (0.141) \end{gathered}$	$\begin{gathered} 13 \\ (0.249) \end{gathered}$	15
Education, Employment, Income	$\begin{gathered} 27 \\ (0.144) \end{gathered}$	$\begin{gathered} 33 \\ (\mathbf{0 . 0 6 1}) \end{gathered}$	$\begin{gathered} 7 \\ (0.497) \end{gathered}$	$\begin{gathered} 13 \\ (0.390) \end{gathered}$	$\begin{gathered} 7 \\ (0.502) \end{gathered}$	$\begin{gathered} 33 \\ (0.102) \end{gathered}$	$\begin{gathered} 27 \\ (0.100) \end{gathered}$	$\begin{gathered} 33 \\ \mathbf{(0 . 0 9 8)} \end{gathered}$	15
Crime	$\begin{gathered} 0 \\ (1.000) \end{gathered}$	4							
Drugs and Alcohol	$\begin{gathered} 20 \\ (0.006) \end{gathered}$	$\begin{gathered} 20 \\ (0.005) \end{gathered}$	$\begin{gathered} 0 \\ (0.592) \end{gathered}$	$\begin{gathered} 20 \\ (0.309) \end{gathered}$	$\begin{gathered} 20 \\ (\mathbf{0 . 0 0 0}) \end{gathered}$	$\begin{gathered} 0 \\ (1.000) \end{gathered}$	$\begin{gathered} 20 \\ \mathbf{(0 . 0 3 1)} \end{gathered}$	$\begin{gathered} 20 \\ (0.000) \end{gathered}$	5
Adult Health	$\begin{gathered} 32 \\ \mathbf{(0 . 0 4 9)} \end{gathered}$	$\begin{gathered} 26 \\ (0.073) \end{gathered}$	$\begin{gathered} 21 \\ (0.194) \end{gathered}$	$\begin{gathered} 11 \\ (0.395) \end{gathered}$	$\begin{gathered} 11 \\ (0.298) \end{gathered}$	$\begin{gathered} 32 \\ \mathbf{(0 . 0 4 8)} \end{gathered}$	$\begin{gathered} 32 \\ \mathbf{(0 . 0 3 4)} \end{gathered}$	$\begin{gathered} 32 \\ \mathbf{(0 . 0 3 3)} \end{gathered}$	19
Mental Health	$\begin{gathered} 9 \\ (0.316) \end{gathered}$	$\begin{gathered} 9 \\ (0.312) \end{gathered}$	$\begin{gathered} 18 \\ (0.298) \end{gathered}$	$\begin{gathered} 9 \\ (0.408) \end{gathered}$	$\begin{gathered} 9 \\ (0.440) \end{gathered}$	$\begin{gathered} 9 \\ (0.392) \end{gathered}$	$\begin{gathered} 0 \\ (1.000) \end{gathered}$	$\begin{gathered} 9 \\ (0.341) \end{gathered}$	11

Note: This table presents estimates of the counts (combining functions) of beneficial and significant (at the 10% level) treatment effects by the categories of outcomes in each row. The last column presents the number of outcomes per category. Counts for the different estimates described in Appendix D. 3 are presented in each column. For each count we present a p-value underneath. The null hypothesis is that 10% of the treatment effects are positive and significant at the 10% level.

Table D.18: Combining Functions by Category, Female Sample

Category	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	N
Cognitive Skills	$\begin{gathered} 92 \\ (\mathbf{0 . 0 0 0}) \end{gathered}$	$\begin{gathered} 92 \\ (\mathbf{0 . 0 0 0}) \end{gathered}$	$\begin{gathered} 92 \\ (\mathbf{0 . 0 0 0}) \end{gathered}$	$\begin{gathered} 92 \\ (\mathbf{0 . 0 0 0}) \end{gathered}$	$\begin{gathered} 92 \\ (\mathbf{0 . 0 0 0}) \end{gathered}$	$\begin{gathered} 92 \\ (\mathbf{0 . 0 0 0}) \end{gathered}$	$\begin{gathered} 92 \\ (\mathbf{0 . 0 0 0}) \end{gathered}$	$\begin{gathered} 92 \\ (0.000) \end{gathered}$	26
Childhood Household Environment	$\begin{gathered} 62 \\ (0.215) \end{gathered}$	$\begin{gathered} 54 \\ (0.489) \end{gathered}$	$\begin{gathered} 54 \\ (0.146) \end{gathered}$	$\begin{gathered} 54 \\ (0.370) \end{gathered}$	$\begin{gathered} 54 \\ (0.401) \end{gathered}$	$\begin{gathered} 62 \\ (0.374) \end{gathered}$	$\begin{gathered} 38 \\ (0.650) \end{gathered}$	$\begin{gathered} 77 \\ (0.180) \end{gathered}$	13
Mother's Employment, Education, and Income	$\begin{gathered} 87 \\ (0.000) \end{gathered}$	$\begin{gathered} 87 \\ (0.000) \end{gathered}$	$\begin{gathered} 87 \\ (0.000) \end{gathered}$	$\begin{gathered} 93 \\ (0.000) \end{gathered}$	$\begin{gathered} 93 \\ (0.000) \end{gathered}$	$\begin{gathered} 80 \\ (0.000) \end{gathered}$	$\begin{gathered} 80 \\ (0.004) \end{gathered}$	$\begin{gathered} 80 \\ (0.000) \end{gathered}$	15
Education, Employment, Income	$\begin{gathered} 87 \\ (0.000) \end{gathered}$	$\begin{gathered} 80 \\ (0.002) \end{gathered}$	$\begin{gathered} 80 \\ (0.000) \end{gathered}$	$\begin{gathered} 79 \\ (\mathbf{0 . 0 0 0}) \end{gathered}$	$\begin{gathered} 80 \\ (0.000) \end{gathered}$	$\begin{gathered} 80 \\ (0.000) \end{gathered}$	$\begin{gathered} 60 \\ (0.386) \end{gathered}$	$\begin{gathered} 80 \\ (\mathbf{0 . 0 0 0}) \end{gathered}$	15
Crime	$\begin{gathered} 100 \\ (0.000) \end{gathered}$	$\begin{gathered} 75 \\ (0.402) \end{gathered}$	4						
Drugs and Alcohol	$\begin{gathered} 80 \\ (0.204) \end{gathered}$	$\begin{gathered} 20 \\ (0.799) \end{gathered}$	$\begin{gathered} 80 \\ (0.060) \end{gathered}$	$\begin{gathered} 60 \\ (0.309) \end{gathered}$	$\begin{gathered} 80 \\ (0.045) \end{gathered}$	$\begin{gathered} 100 \\ (0.000) \end{gathered}$	$\begin{gathered} 0 \\ (1.000) \end{gathered}$	$\begin{gathered} 60 \\ (0.329) \end{gathered}$	5
Adult Health	$\begin{gathered} 74 \\ (0.053) \end{gathered}$	$\begin{gathered} 53 \\ (0.408) \end{gathered}$	$\begin{gathered} 50 \\ (0.490) \end{gathered}$	$\begin{gathered} 50 \\ (0.456) \end{gathered}$	$\begin{gathered} 56 \\ (0.372) \end{gathered}$	$\begin{gathered} 74 \\ \mathbf{(0 . 0 4 3)} \end{gathered}$	$\begin{gathered} 58 \\ (0.311) \end{gathered}$	$\begin{gathered} 63 \\ (0.196) \end{gathered}$	19
Mental Health	$\begin{gathered} 82 \\ (0.000) \end{gathered}$	$\begin{gathered} 73 \\ (\mathbf{0 . 0 6 9}) \end{gathered}$	$\begin{gathered} 91 \\ (0.000) \\ \hline \end{gathered}$	$\begin{gathered} 100 \\ (0.000) \\ \hline \end{gathered}$	$\begin{gathered} 82 \\ \mathbf{(0 . 0 0 0}) \\ \hline \end{gathered}$	$\begin{array}{r} 82 \\ \mathbf{(0 . 0 0 0)} \\ \hline \end{array}$	$\begin{gathered} 82 \\ \mathbf{(0 . 0 0 0}) \\ \hline \end{gathered}$	$\begin{array}{r} 82 \\ (\mathbf{0 . 0 0 0}) \\ \hline \end{array}$	11

Note: This table presents estimates of the counts (combining functions) of beneficial treatment effects by the categories of outcomes in each row. The last column presents the number of outcomes per category. Counts for the different estimates described in Appendix D. 3 are presented in each column. For each count we present a p-value underneath. The null hypothesis is that the count is 50% (half of the treatment effects are positive).

Table D.19: Combining Functions by Category \| 10% Significance, Female Sample

Category	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	N
Cognitive Skills	$\begin{gathered} 92 \\ (\mathbf{0 . 0 0 0}) \end{gathered}$	$\begin{gathered} 72 \\ (\mathbf{0 . 0 0 0}) \end{gathered}$	$\begin{gathered} 81 \\ (0.000) \end{gathered}$	$\begin{gathered} 80 \\ (\mathbf{0 . 0 0 0}) \end{gathered}$	$\begin{gathered} 81 \\ (\mathbf{0 . 0 0 0}) \end{gathered}$	$\begin{gathered} 81 \\ (\mathbf{0 . 0 0 0}) \end{gathered}$	$\begin{gathered} 40 \\ (\mathbf{0 . 0 4 8}) \end{gathered}$	$\begin{gathered} 65 \\ (\mathbf{0 . 0 0 0}) \end{gathered}$	26
Childhood Household Environment	$\begin{gathered} 15 \\ (0.341) \end{gathered}$	$\begin{gathered} 8 \\ (0.455) \end{gathered}$	$\begin{gathered} 46 \\ (0.000) \end{gathered}$	$\begin{gathered} 46 \\ (0.001) \end{gathered}$	$\begin{gathered} 46 \\ (0.001) \end{gathered}$	$\begin{gathered} 0 \\ (1.000) \end{gathered}$	$\begin{gathered} 0 \\ (1.000) \end{gathered}$	$\begin{gathered} 0 \\ (0.582) \end{gathered}$	13
Mother's Employment, Education, and Income	$\begin{gathered} 40 \\ (0.036) \end{gathered}$	$\begin{gathered} 20 \\ (0.274) \end{gathered}$	$\begin{gathered} 47 \\ (0.018) \end{gathered}$	$\begin{gathered} 47 \\ (0.010) \end{gathered}$	$\begin{gathered} 67 \\ (0.000) \end{gathered}$	$\begin{gathered} 33 \\ (0.080) \end{gathered}$	$\begin{gathered} 20 \\ (0.134) \end{gathered}$	$\begin{gathered} 27 \\ (0.119) \end{gathered}$	15
Education, Employment, Income	$\begin{gathered} 60 \\ (\mathbf{0 . 0 0 0}) \end{gathered}$	$\begin{gathered} 20 \\ (0.277) \end{gathered}$	$\begin{gathered} 67 \\ (0.000) \end{gathered}$	$\begin{gathered} 64 \\ (0.000) \end{gathered}$	$\begin{gathered} 67 \\ (0.000) \end{gathered}$	$\begin{gathered} 33 \\ (\mathbf{0 . 0 4 0}) \end{gathered}$	$\begin{gathered} 13 \\ (0.290) \end{gathered}$	$\begin{gathered} 13 \\ (0.350) \end{gathered}$	15
Crime	$\begin{gathered} 100 \\ (0.000) \end{gathered}$	$\begin{gathered} 50 \\ (0.093) \end{gathered}$	$\begin{gathered} 100 \\ (0.000) \end{gathered}$	$\begin{gathered} 33 \\ (0.199) \end{gathered}$	$\begin{gathered} 67 \\ (0.064) \end{gathered}$	$\begin{gathered} 75 \\ (0.028) \end{gathered}$	$\begin{gathered} 0 \\ (1.000) \end{gathered}$	$\begin{gathered} 25 \\ (0.065) \end{gathered}$	4
Drugs and Alcohol	$\begin{gathered} 0 \\ (1.000) \end{gathered}$	$\begin{gathered} 0 \\ (1.000) \end{gathered}$	$\begin{gathered} 0 \\ (0.500) \end{gathered}$	$\begin{gathered} 0 \\ 0 \\ (0.356) \end{gathered}$	$\begin{gathered} 0 \\ (1.000) \end{gathered}$	5			
Adult Health	$\begin{gathered} 21 \\ (0.117) \end{gathered}$	$\begin{gathered} 16 \\ (0.166) \end{gathered}$	$\begin{gathered} 17 \\ (0.196) \end{gathered}$	$\begin{gathered} 17 \\ (0.233) \end{gathered}$	$\begin{gathered} 22 \\ (0.074) \end{gathered}$	$\begin{gathered} 11 \\ (0.453) \end{gathered}$	$\begin{gathered} 11 \\ (0.489) \end{gathered}$	$\begin{gathered} 11 \\ (0.410) \end{gathered}$	19
Mental Health	$\begin{gathered} 55 \\ (0.000) \end{gathered}$	$\begin{gathered} 36 \\ (0.092) \end{gathered}$	$\begin{gathered} 36 \\ (0.080) \end{gathered}$	$\begin{gathered} 36 \\ (0.038) \end{gathered}$	$\begin{gathered} 36 \\ (0.052) \end{gathered}$	$\begin{gathered} 55 \\ (0.025) \end{gathered}$	$\begin{gathered} 36 \\ \mathbf{(0 . 0 8 9)} \end{gathered}$	$\begin{gathered} 55 \\ (0.016) \end{gathered}$	11

Note: This table presents estimates of the counts (combining functions) of beneficial and significant (at the 10% level) treatment effects by the categories of outcomes in each row. The last column presents the number of outcomes per category. Counts for the different estimates described in Appendix D. 3 are presented in each column. For each count we present a p-value underneath. The null hypothesis is that 10% of the treatment effects are positive and significant at the 10% level.

D. 7 Treatment Effects for Pooled Sample

Table D.20: Treatment Effects on IQ Scores, Pooled Sample

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Std. IQ Test	2	10.116	10.121	10.609	10.826	11.810	9.863	9.937	10.216
		(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
	3	13.450	13.557	19.242	19.794	21.539	11.314	11.507	11.778
		(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
	3.5	8.387	7.881	11.255	11.234	12.349	7.276	6.727	7.006
		(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.001)	(0.000)
	4	9.166	8.897	11.985	12.068	13.778	8.149	7.921	8.528
		(0.000)	(0.000)	(0.000)	(0.002)	(0.000)	(0.000)	(0.000)	(0.001)
	4.5	8.380	7.911	13.287	13.110	14.416	6.717	6.130	6.825
		(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.001)	(0.001)
	5	6.362	5.425	8.310	8.297	9.486	5.760	4.575	5.592
		(0.000)	(0.002)	(0.008)	(0.008)	(0.007)	(0.002)	(0.009)	(0.006)
	6.6	5.956	5.610	4.088	5.295	5.103	5.850	5.333	6.053
		(0.003)	(0.006)	(0.150)	(0.066)	(0.084)	(0.009)	(0.014)	(0.003)
	7	5.373	5.248	6.575	6.343	5.188	5.066	5.005	5.531
		(0.007)	(0.006)	(0.037)	(0.035)	(0.079)	(0.016)	(0.010)	(0.011)
	8	4.932	4.444	2.570	4.824	4.682	4.948	3.920	4.822
		(0.008)	(0.023)	(0.280)	(0.119)	(0.126)	(0.011)	(0.034)	(0.022)
	12	4.524	2.691	3.251	2.785	2.752	4.766	2.792	3.574
		(0.007)	(0.080)	(0.162)	(0.197)	(0.215)	(0.010)	(0.075)	(0.046)
	15	5.771	3.294	1.497	0.577	0.553	6.522	4.021	5.118
		(0.006)	(0.078)	(0.340)	(0.446)	(0.441)	(0.009)	(0.064)	(0.022)
	21	4.425	1.670	4.549	2.747	3.129	4.353	1.682	2.340
		(0.011)	(0.171)	(0.006)	(0.071)	(0.041)	(0.020)	(0.210)	(0.119)
IQ Factor	2 to 5	0.785	0.752	1.056	1.061	1.177	0.705	0.660	0.714
		(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
	6 to 12	0.446	0.368	0.432	0.492	0.460	0.449	0.336	0.447
		(0.009)	(0.043)	(0.118)	(0.099)	(0.102)	(0.016)	(0.066)	(0.016)
	15 to 21	-0.489	-0.233	-0.312	-0.174	-0.194	${ }_{(0.517}^{-0.017}$	-0.264	${ }^{-0.347}$
		(0.000)	(0.097)	(0.106)	(0.254)	(0.194)	(0.003)	(0.107)	(0.037)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.21: Treatment Effects on Achievement Scores, Pooled Sample

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Std. Achv. Test	5.5	8.029	7.480	14.284	15.582	14.192	6.223	4.844	5.818
		(0.000)	(0.001)	(0.000)	(0.000)	(0.000)	(0.007)	(0.050)	(0.017)
	6	4.543	4.670	6.178	6.638	6.639	4.075	4.035	4.412
		(0.001)	(0.000)	(0.011)	(0.004)	(0.006)	(0.003)	(0.000)	(0.001)
	6.5	2.767	2.706	2.049	1.922	2.103	2.931	2.962	3.606
		(0.029)	(0.054)	(0.001)	(0.243)	(0.221)	(0.034)	(0.044)	(0.022)
	7	3.435	3.349	5.227	5.591	5.812	3.025	2.705	3.589
		(0.027)	(0.036)	(0.001)	(0.036)	(0.035)	(0.060)	(0.091)	(0.046)
	7.5	1.937	2.741	0.667	2.883	3.019	2.308	2.643	3.408
		(0.146)	(0.029)	(0.443)	(0.160)	(0.157)	(0.120)	(0.042)	(0.021)
	8	4.207	5.004	1.630	4.835	4.227	4.959	5.059	5.890
		(0.011)	(0.002)	(0.339)	(0.052)	(0.091)	(0.007)	(0.003)	(0.003)
	8.5	5.938	7.288	5.046	5.780	4.914	5.507	7.217	7.470
		(0.000)	(0.000)	(0.125)	(0.081)	(0.131)	(0.001)	(0.000)	(0.000)
	15	5.163	3.314	5.177	3.892	4.132	5.424	3.156	4.137
		(0.001)	(0.056)	(0.064)	(0.118)	(0.115)	(0.006)	(0.087)	(0.042)
	21	5.217	2.166	4.504	2.099	2.804	5.521	2.184	3.478
		(0.016)	(0.175)	(0.116)	(0.268)	(0.209)	(0.018)	(0.190)	(0.103)
Achievement Factor	5.5 to 12	0.512	0.526	0.634	0.734	0.688	0.474	0.467	0.516
		(0.001)	(0.000)	(0.052)	(0.029)	(0.051)	(0.004)	(0.007)	(0.009)
	15 to 21	-0.460	-0.246	-0.431	-0.271	-0.311	-0.485	-0.239	-0.340
		(0.002)	(0.101)	(0.085)	(0.179)	(0.157)	(0.005)	(0.138)	(0.057)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.22: Treatment Effects on HOME Scores, Pooled Sample

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
HOME Score	0.5	1.005	0.100	1.332	0.537	0.889	0.566	-0.148	0.194
		(0.129)	(0.464)	(0.150)	(0.338)	(0.244)	(0.286)	(0.453)	(0.433)
	1.5	1.126	0.434	2.706	1.984	2.964	0.368	-0.090	0.436
		(0.134)	(0.341)	(0.065)	(0.115)	(0.048)	(0.372)	(0.466)	(0.340)
	2.5	0.441	0.348	3.089	3.046	3.731	-0.588	-0.628	-0.048
		(0.316)	(0.363)	(0.022)	(0.004)	(0.004)	(0.300)	(0.266)	(0.484)
	3.5	2.112	1.211	8.288	7.537	8.850	0.306	-0.636	0.325
		(0.108)	(0.238)	(0.005)	(0.005)	(0.000)	(0.424)	(0.350)	(0.417)
	4.5	1.927	0.758	8.156	6.735	8.375	0.146	-0.784	0.337
		(0.119)	(0.329)	(0.009)	(0.010)	(0.003)	(0.475)	(0.326)	(0.429)
	8	1.004	0.590	3.102	4.081	3.646	0.492	-0.480	0.196
		(0.260)	(0.328)	(0.143)	(0.047)	(0.089)	(0.395)	(0.380)	(0.439)
HOME Factor	0.5 to 8	0.276	0.145	0.751	0.712	0.753	0.158	-0.018	0.199
		(0.083)	(0.260)	(0.007)	(0.009)	(0.012)	(0.222)	(0.452)	(0.167)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.23: Treatment Effects on Parental Income, Pooled Sample

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Parental Labor Income	1.5	2,248	2,848	2,860	3,839	5,032	2,177	2,446	3,714
		(0.148)	(0.101)	(0.230)	(0.168)	(0.084)	(0.175)	(0.147)	(0.050)
	2.5	516	7.922	-2,177	-1,292	78.136	1,266	139	1,553
		(0.412)	(0.475)	(0.290)	(0.359)	(0.509)	(0.297)	(0.452)	(0.249)
	3.5	1,821	1,508	4,270	4,129	5,269	1,247	632	2,106
		(0.225)	(0.261)	(0.105)	(0.136)	(0.069)	(0.313)	(0.384)	(0.200)
	4.5	2,336	2,646	4,473	4,762	5,269	1,747	1,655	3,270
		(0.165)	(0.152)	(0.085)	(0.063)	(0.053)	(0.256)	(0.259)	(0.109)
	8	7,044	8,115	8,515	8,032	7,237	6,708	8,496	8,200
		(0.043)	(0.040)	(0.001)	(0.099)	(0.108)	(0.051)	(0.039)	(0.034)
	12	10,100	13,739	18,585	21,785	18,761	7,929	10,958	11,324
		(0.015)	(0.000)	(0.003)	(0.003)	(0.003)	(0.063)	(0.019)	(0.010)
	15	9,596	5,808	5,132	4,723	7,169	10,155	5,272	8,833
		(0.004)	(0.088)	(0.328)	(0.312)	(0.211)	(0.005)	(0.118)	(0.037)
	21	9,008	7,627	10,316	12,687	7,952	9,461	7,326	6,880
		(0.009)	(0.044)	(0.994)	(0.130)	(0.177)	(0.009)	(0.049)	(0.059)
Parental Income Factor	1.5 to 21	0.074	0.005	0.450	0.602	0.473	0.013	-0.094	0.038
		(0.379)	(0.494)	(0.003)	(0.992)	(0.154)	(0.481)	(0.358)	(0.441)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.24: Treatment Effects on Mother's Employment, Pooled Sample

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Mother Works	2	0.114	0.084	0.296	0.277	0.289	0.048	0.027	0.039
		(0.041)	(0.100)	(0.010)	(0.019)	(0.015)	(0.219)	(0.327)	(0.293)
	3	0.119	0.095	0.219	0.195	0.210	0.092	0.063	0.087
		(0.040)	(0.106)	(0.052)	(0.075)	(0.060)	(0.100)	(0.210)	(0.144)
	4	0.127	0.106	0.306	0.288	0.303	0.076	0.053	0.071
		(0.025)	(0.053)	(0.007)	(0.012)	(0.008)	(0.118)	(0.209)	(0.151)
	5	0.089	0.070	0.342	0.317	0.358	0.005	-0.024	0.017
		(0.092)	(0.170)	(0.008)	(0.015)	(0.007)	(0.456)	(0.357)	(0.401)
	21	-0.040	-0.062	0.180	0.148	0.154	-0.075	-0.096	-0.089
		(0.317)	(0.245)	(0.161)	(0.194)	(0.188)	(0.193)	(0.159)	(0.188)
Mother Works Factor	2 to 21	-0.275	-0.197	-0.793	-0.749	-0.796	-0.129	-0.020	-0.128
		(0.085)	(0.156)	(0.053)	(0.056)	(0.046)	(0.232)	(0.455)	(0.254)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.25: Treatment Effects on Father at Home, Pooled Sample

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Father at Home	2	-0.010	0.019	-0.187	-0.186	-0.173	0.047	0.102	0.130
		(0.460)	(0.397)	$\mathbf{(0 . 0 8 0})$	$\mathbf{(0 . 0 6 6})$	(0.118)	(0.282)	(0.104)	$(\mathbf{0 . 0 5 2}$
	3	-0.076	-0.056	-0.291	-0.291	-0.285	0.002	0.040	0.079
		(0.162)	(0.224)	$\mathbf{(0 . 0 1 1)}$	$\mathbf{(0 . 0 0 7)}$	$\mathbf{(0 . 0 1 6)}$	(0.489)	(0.299)	(0.160)
	4	-0.071	-0.050	-0.331	-0.327	-0.320	0.021	0.054	0.101
		(0.184)	(0.273)	$\mathbf{(0 . 0 0 6)}$	$\mathbf{(0 . 0 0 9)}$	$\mathbf{(0 . 0 0 7)}$	(0.390)	(0.227)	(0.110)
	5	-0.093	-0.071	-0.369	-0.379	-0.367	-0.006	0.029	0.062
		(0.122)	(0.185)	$\mathbf{(0 . 0 0 4})$	$\mathbf{(0 . 0 0 5})$	$\mathbf{(0 . 0 0 4)}$	(0.467)	(0.356)	(0.200)
Father at Home Factor	2 to 8	-0.139	-0.129	-0.776	-0.801	-0.781	0.069	0.114	0.241
		(0.238)	(0.260)	$\mathbf{(0 . 0 0 4)}$	$\mathbf{(0 . 0 0 5)}$	$\mathbf{(0 . 0 0 1)}$	(0.369)	(0.272)	(0.109)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.26: Treatment Effects on Education, Pooled Sample

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Graduated High School	30	0.164	0.094	0.390	0.335	0.351	0.103	0.029	0.059
		(0.030)	(0.142)	(0.001)	(0.003)	(0.004)	(0.120)	(0.385)	(0.267)
Attended Voc./Tech./Com. College	30	-0.091	-0.138	0.000	-0.016	-0.044	-0.100	-0.177	-0.152
		(0.149)	(0.066)	(0.501)	(0.460)	(0.385)	(0.146)	(0.025)	(0.041)
Graduated 4-year College	30	0.161	$0.124)$	0.188	0.148	0.175	0.148	0.114	0.120
		(0.011)	(0.058)	(0.014)	(0.063)	(0.020)	(0.022)	(0.095)	(0.068)
Years of Edu.	30	1.367	1.156	2.513	2.380	2.424	0.986	0.785	0.886
		(0.000)	(0.002)	(0.000)	(0.001)	(0.000)	(0.011)	(0.050)	(0.020)
Ever Had Special Education by Grade 5	21	0.001	0.024	0.153	0.118	0.127	-0.030	-0.005	-0.040
		(0.496)	(0.406)	(0.144)	(0.211)	(0.176)	(0.350)	(0.467)	(0.322)
Total Number of Special Education by Grade 5	21	-0.547	-0.070	0.977	0.911	0.975	-0.844	-0.341	-0.849
		(0.202)	(0.464)	(0.100)	(0.141)	(0.105)	(0.146)	(0.331)	(0.157)
Ever Retained by Grade 5	21	-0.170	-0.172	-0.175	-0.175	-0.176	-0.170	-0.173	-0.184
		(0.016)	(0.026)	(0.109)	(0.121)	(0.105)	(0.034)	(0.028)	(0.030)
Total Number of Retention by Grade 5	21	-0.152	-0.097	-0.086	-0.062	-0.069	-0.156	-0.107	-0.156
		(0.089)	(0.206)	(0.291)	(0.349)	(0.341)	(0.109)	(0.199)	(0.121)
Education Factor	21 to 30	0.449	0.337	0.557	0.505	0.504	0.380	0.279	0.331
		(0.014)	(0.050)	(0.024)	(0.041)	(0.034)	(0.040)	(0.108)	(0.082)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.27: Treatment Effects on Subject Employment and Income, Pooled Sample

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Employed	30	0.125	0.131	0.164	0.193	0.204	0.111	0.128	0.162
		(0.032)	(0.030)	(0.111)	(0.063)	(0.073)	(0.078)	(0.056)	(0.018)
Labor Income	21	167	-1,173	1,577	1,296	1,250	-429	-2,210	-1,406
		(0.453)	(0.310)	(0.339)	(0.359)	(0.369)	(0.418)	(0.188)	(0.272)
	30	12,377	10,821	17,677	16,943	18,512	10,847	8,383	11,000
		(0.069)	(0.119)	(0.031)	(0.068)	(0.039)	(0.104)	(0.165)	(0.107)
Public-Transfer Income	21	-728	-982	-247	-1,018	-1,615	-1,054	-948	-820
		(0.183)	(0.153)	(0.400)	(0.252)	(0.122)	(0.134)	(0.189)	(0.198)
	30	$-1,832$	-927	-1,613	-1,344	-1,451	-1,483	-534	-1,125
		(0.018)	(0.126)	(0.108)	(0.147)	(0.125)	(0.076)	(0.265)	(0.142)
Employment Factor	21 to 30	0.513	0.416	0.568	0.596	0.612	0.464	0.344	0.468
		(0.023)	(0.064)	(0.105)	(0.094)	(0.098)	(0.058)	(0.127)	(0.053)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.28: Treatment Effects on Marriage, Pooled Sample

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Married	30	0.060	0.033	0.036	0.036	0.019	0.089	0.046	0.060
		(0.234)	(0.347)	(0.405)	(0.412)	(0.446)	(0.152)	(0.309)	(0.266)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.29: Treatment Effects on Crime, Pooled Sample

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Total Felony Arrests	Mid-30s	0.045	0.239	-0.132	0.231	0.210	0.112	0.228	0.187
		(0.437)	(0.285)	(0.391)	(0.343)	(0.349)	(0.393)	(0.303)	(0.328)
Total Misdemeanor Arrests	Mid-30s	-0.689	-0.425	-1.445	-1.164	-1.270	-0.546	-0.249	-0.308
		(0.052)	(0.149)	(0.106)	(0.150)	(0.129)	(0.088)	(0.254)	(0.181)
Total Years Incarcerated	30	0.167	0.231	0.284	0.320	0.369	0.157	0.227	0.216
		(0.101)	(0.083)	(0.013)	(0.026)	(0.009)	(0.142)	(0.103)	(0.092)
Crime Factor	30 to Mid-30s	0.035	0.100	-0.048	-0.001	0.001	0.068	0.136	0.153
		(0.453)	(0.359)	(0.412)	(0.465)	(0.540)	(0.396)	(0.342)	(0.287)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.30: Treatment Effects on Tobacco, Drugs, Alcohol, Pooled Sample

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Cig. Smoked per day last month	30	0.033	-0.054	-0.826	-0.966	-0.794	0.434	0.494	0.435
		(0.477)	(0.468)	(0.296)	(0.270)	(0.311)	(0.361)	(0.342)	(0.386)
Days drank alcohol last month	30	0.244	0.406	-0.156	-0.052	0.127	0.208	0.390	0.627
		(0.408)	(0.373)	(0.443)	(0.460)	(0.500)	(0.431)	(0.397)	(0.338)
Days binge drank alcohol last month	30	0.085	0.404	-0.267	-0.140	-0.116	0.151	0.606	0.393
		(0.431)	(0.220)	(0.356)	(0.414)	(0.418)	(0.374)	(0.128)	(0.220)
Self-reported drug user	Mid-30s	-0.142	-0.154	-0.253	-0.269	-0.275	-0.090	-0.082	-0.115
		(0.061)	(0.046)	(0.087)	(0.066)	(0.074)	(0.188)	(0.176)	(0.116)
Substance Use Factor	30 to Mid-30s	0.169	0.249	0.339	0.299	0.375	0.141	0.278	0.202
		(0.249)	(0.187)	(0.157)	(0.230)	(0.162)	(0.290)	(0.165)	(0.245)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.31: Treatment Effects on Hypertension, Pooled Sample

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Systolic Blood Pressure (mm Hg)	Mid-30s	-5.625	-7.664	5.375	4.815	3.749	-9.437	-12.818	-11.155
		(0.100)	(0.064)	(0.147)	(0.205)	(0.249)	(0.032)	(0.020)	(0.016)
Diastolic Blood Pressure (mm Hg)	Mid-30s	-5.312	-5.556	-1.424	-0.497	-2.191	-7.219	-7.821	-8.195
		(0.059)	(0.069)	(0.343)	(0.423)	(0.281)	(0.040)	(0.051)	(0.025)
Prehypertension	Mid-30s	-0.176	-0.182	-0.049	-0.068	-0.063	-0.240	-0.271	-0.252
		(0.008)	(0.018)	(0.396)	(0.341)	(0.359)	(0.000)	(0.001)	(0.002)
Hypertension	Mid-30s	-0.036	-0.092	0.083	0.065	0.021	-0.083	-0.141	-0.136
		(0.359)	(0.218)	(0.343)	(0.369)	(0.454)	(0.225)	(0.138)	(0.118)
Hypertension Factor	Mid-30s	-0.332	-0.382	0.077	0.103	0.017	-0.501	-0.604	-0.586
		(0.053)	(0.052)	(0.424)	(0.393)	(0.480)	(0.009)	(0.008)	(0.002)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.32: Treatment Effects on Cholesterol, Pooled Sample

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
High-Density Lipoprotein Chol. $(\mathrm{mg} / \mathrm{dL})$	Mid-30s	3.872	5.756	5.806	7.595	5.785	2.964	5.156	3.302
		$\mathbf{(0 . 0 8 8})$	$\mathbf{(0 . 0 3 2)}$	$\mathbf{(0 . 0 5 1)}$	$\mathbf{(0 . 0 3 2)}$	$\mathbf{(0 . 0 6 3)}$	(0.162)	$\mathbf{(0 . 0 5 7)}$	(0.152)
Dyslipidemia	Mid-30s	0.013	$\mathbf{0 . 0 4 7}$	0.035	-0.031	-0.013	0.032	-0.020	0.007
		(0.436)	(0.287)	(0.440)	(0.425)	(0.441)	(0.333)	(0.412)	(0.478)
Cholesterol Factor		Mid-30s	0.139	0.197	0.183	0.205	0.162	0.070	0.130
		(0.233)	(0.184)	(0.252)	(0.256)	(0.284)	(0.362)	(0.292)	(0.387)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.33: Treatment Effects on Diabetes, Pooled Sample

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Hemoglobin Level (\%)	Mid-30s	0.003	0.128	0.032	0.051	0.120	-0.029	0.103	0.046
		(0.514)	(0.299)	(0.418)	(0.383)	(0.294)	(0.413)	(0.355)	(0.461)
Prediabetes	Mid-30s	0.004	0.002	-0.040	-0.023	-0.034	0.004	0.001	0.008
		(0.485)	(0.488)	(0.409)	(0.444)	(0.410)	(0.482)	(0.487)	(0.463)
Diabetes	Mid-30s	-0.002	0.021	0.043	0.033	0.051	-0.015	0.014	-0.003
		(0.461)	(0.313)	$(\mathbf{0 . 0 5 9})$	(0.140)	$(\mathbf{0 . 0 4 5})$	(0.363)	(0.384)	(0.459)
Diabetes Factor	Mid-30s	-0.000	0.081	0.079	0.044	0.096	-0.040	0.062	-0.013
		(0.478)	(0.374)	(0.352)	(0.425)	(0.333)	(0.425)	(0.414)	(0.464)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.34: Treatment Effects on Obesity, Pooled Sample

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Measured BMI	Mid-30s	0.999	2.819	-0.202	1.149	0.721	1.072	3.121	1.83
		(0.310)	(0.084)	(0.469)	(0.348)	(0.405)	(0.315)	(0.071)	(0.199)
Obesity	Mid-30s	-0.050	0.056	-0.256	-0.119	-0.143	-0.013	0.085	0.011
		(0.310)	(0.315)	(0.010)	(0.224)	(0.219)	(0.471)	(0.233)	(0.476)
Severe Obesity	Mid-30s	-0.126	-0.048	-0.093	-0.052	-0.065	-0.147	-0.058	-0.107
		(0.083)	(0.316)	(0.275)	(0.357)	(0.339)	(0.074)	(0.316)	(0.184)
Waist-hip Ratio	Mid-30s	-0.006	-0.001	-0.037	-0.041	-0.039	0.003	0.009	0.012
		(0.392)	(0.483)	(0.180)	(0.205)	(0.218)	(0.440)	(0.333)	(0.309)
Abdominal Obesity	Mid-30s	-0.091	-0.034	-0.230	${ }^{-0.167}$	-0.191	-0.041	0.028	0.002
		(0.179)	(0.376)	(0.023)	(0.087)	(0.053)	(0.358)	(0.391)	(0.488)
Framingham Risk Score	Mid-30s	0.348	-0.323	0.948	0.350	0.905	0.351	-0.505	0.087
		(0.281)	(0.302)	(0.086)	(0.298)	(0.095)	(0.311)	(0.272)	(0.478)
Obesity Factor	Mid-30s	0.068	-0.090	0.360	0.251	0.337	0.002	-0.195	${ }^{-0.061}$
		(0.381)	(0.359)	(0.244)	(0.303)	(0.250)	(0.485)	(0.261)	(0.406)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.35: Treatment Effects on Mental Health t-Score, Pooled Sample

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Somatization t-Score	21	-2.709	-2.978	-4.304	-4.393	-4.629	-2.258	-2.460	-3.004
		(0.050)	(0.046)	(0.067)	(0.058)	(0.063)	(0.104)	(0.115)	(0.052)
	Mid-30s	-1.057	-0.159	-2.144	-1.831	-2.072	-0.950	-0.055	-0.679
		(0.320)	(0.437)	(0.286)	(0.294)	(0.281)	(0.356)	(0.449)	(0.376)
Depression t-Score	21	-4.213	-3.221	-4.297	-3.969	-4.334	-4.058	-3.061	-3.668
		(0.014)	(0.057)	(0.086)	(0.103)	(0.103)	(0.016)	(0.075)	(0.029)
	Mid-30s	-1.904	-1.789	1.064	0.448	0.468	-2.974	-3.163	-3.154
		(0.201)	(0.186)	(0.431)	(0.462)	(0.488)	(0.131)	(0.081)	(0.116)
Anxiety t-Score	21	-2.749	-2.319	-2.996	-2.804	-2.941	-2.638	-2.092	-2.740
		(0.069)	(0.126)	(0.179)	(0.202)	(0.178)	(0.102)	(0.173)	(0.099)
	Mid-30s	-3.399	-3.378	-1.502	-2.337	-2.102	-4.155	-4.473	-4.712
		(0.083)	(0.057)	(0.341)	(0.272)	(0.280)	(0.069)	(0.029)	(0.036)
Hostility t-Score	21	-3.256	-2.543	-4.552	-4.015	-4.629	-2.894	-1.852	-2.549
		(0.028)	(0.071)	(0.087)	(0.103)	(0.084)	(0.051)	(0.167)	(0.088)
	Mid-30s	-1.091	-0.375	-2.076		-2.428	-1.082	-0.461	-0.834
		(0.315)	(0.397)	(0.299)		(0.248)	(0.334)	(0.396)	(0.360)
Global Severity Index t-Score	21	-3.146	-2.736	-4.917	-4.235	-5.096	-2.564	-1.870	-2.851
		(0.042)	(0.067)	(0.035)	(0.049)	(0.040)	(0.085)	(0.200)	(0.093)
Global Severity Index t-Score (BSI 18)	Mid-30s	-2.516	-1.571	-0.151	-0.306	-0.532	-3.477	-2.696	-3.436
		(0.165)	(0.246)	(0.443)	(0.428)	(0.398)	(0.115)	(0.149)	(0.124)
BSI Factor	21 to Mid-30s	-0.507	-0.323	-0.527	-0.458	-0.478	-0.500	-0.353	-0.468
		(0.006)	(0.076)	(0.102)	(0.145)	(0.134)	(0.021)	(0.086)	(0.032)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

D. 8 Treatment Effects for Male Sample

Table D.36: Treatment Effects on IQ Scores, Male Sample

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Std. IQ Test	2	9.528	10.360	6.875	8.336	7.950	10.286	10.890	11.078
		(0.000)	(0.000)	(0.999)	(0.001)	(0.024)	(0.000)	(0.000)	(0.000)
	3	13.410	14.748	13.896	16.532	15.487	13.271	14.145	14.301
		(0.000)	(0.000)	(0.999)	(0.001)	(0.000)	(0.000)	(0.000)	(0.000)
	3.5	8.756	8.415	6.354	6.916	6.812	9.443	8.821	9.040
		(0.002)	(0.001)	(0.999)	(0.001)	(0.053)	(0.003)	(0.002)	(0.002)
	4	12.089	12.124	8.950	9.742	9.725	12.986	12.743	13.489
		(0.000)	(0.000)	(0.999)	(0.001)	(0.025)	(0.000)	(0.000)	(0.000)
	4.5	8.508	8.583	10.411	11.182	10.668	7.964	7.748	7.795
		(0.001)	(0.000)	(0.999)	(0.001)	(0.008)	(0.004)	(0.003)	(0.006)
	5	7.697	7.067	4.643	5.116	5.034	8.679	7.716	8.174
		(0.000)	(0.005)	(0.001)	(0.999)	(0.182)	(0.000)	(0.002)	(0.005)
	6.6	5.803	7.865	0.831	5.791	3.506	5.916	7.543	7.496
		(0.024)	(0.007)	(0.998)	(0.175)	(0.300)	(0.020)	(0.009)	(0.012)
	7	4.390	7.015	5.323	9.798		4.156	6.457	6.525
		(0.073)	(0.008)	(0.002)	(0.033)	(0.219)	(0.103)	(0.012)	(0.021)
	8	4.160	5.055	-2.514	2.223	-0.470	4.754	4.986	5.012
		(0.094)	(0.053)	(0.002)	(0.369)	(0.471)	(0.043)	(0.047)	(0.075)
	12	0.686	-1.041	-0.343	0.210	-0.945	0.943	-1.477	-0.802
		(0.403)	(0.344)	(0.999)	(0.002)	(0.430)	(0.359)	(0.278)	(0.395)
	15	4.447	3.635	-2.057	-1.598	-2.949	6.202	4.701	4.512
		(0.066)	(0.105)	(0.003)	(0.994)	(0.224)	(0.022)	(0.081)	(0.101)
	21	1.550	-0.561	0.471	${ }^{-0.373}$	-1.522	2.307	-0.512	-0.479
		(0.269)	(0.394)	(0.995)	(0.001)	(0.254)	(0.210)	(0.415)	(0.425)
IQ Factor	2 to 5	0.865	0.875	0.735	0.823	0.793	0.903	0.886	0.913
		(0.000)	(0.000)	(0.999)	(0.001)	(0.016)	(0.000)	(0.000)	(0.000)
	6 to 12	0.329	0.333	0.349	0.584	0.348	0.323	0.250	0.291
		(0.120)	(0.128)	(0.998)	(0.001)	(0.249)	(0.149)	(0.181)	(0.174)
	15 to 21	-0.276	-0.126	0.063	0.089	0.210	-0.392	-0.175	-0.168
		(0.141)	(0.300)	(0.003)	(0.001)	(0.227)	(0.082)	(0.278)	(0.280)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.37: Treatment Effects on Achievement Scores, Male Sample

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Std. Achv. Test	5.5	5.108	4.236	10.088	12.508	11.727	3.863	1.942	2.391
		(0.037)	(0.134)	(0.004)	(0.009)	(0.009)	(0.123)	(0.310)	(0.260)
	6	3.091	3.560	2.271	4.243	3.318	3.312	3.535	3.668
		(0.060)	(0.035)	(0.999)	(0.187)	(0.247)	(0.050)	(0.030)	(0.026)
	6.5	1.708		-0.892	-0.143	-0.680	2.521	2.599	2.326
		(0.271)		(0.994)	(0.477)	(0.447)	(0.204)	(0.189)	(0.239)
	7	0.622	1.918	0.219	3.342	1.067	0.748	1.280	0.791
		(0.433)	(0.215)	(0.997)	(0.152)	(0.416)	(0.437)	(0.331)	(0.420)
	7.5	0.019	1.586	-2.767	0.422	-1.214	0.799	2.120	2.383
		(0.505)	(0.224)	(0.002)	(0.472)	(0.353)	(0.379)	(0.145)	(0.140)
	8	2.309	4.641	-3.386	1.778	-1.475	3.903	5.691	5.656
		(0.198)	(0.025)	(0.001)	(0.353)	(0.355)	(0.066)	(0.003)	(0.018)
	8.5	3.910	6.433	-1.771	1.923	-0.993	4.199	6.804	6.512
		(0.099)	(0.010)	(0.002)	(0.364)	(0.441)	(0.058)	(0.002)	(0.019)
	15	2.231	1.428	1.379	2.254	0.551	2.532	0.859	0.909
		(0.205)	(0.291)	(0.004)	(0.993)	(0.444)	(0.204)	(0.405)	(0.404)
	21	1.181	-0.705	1.168	0.489	-0.297	1.356	-1.243	-0.894
		(0.358)	(0.404)	(0.002)	(0.993)	(0.500)	(0.347)	(0.347)	(0.403)
Achievement Factor	5.5 to 12	0.271	0.234	0.104	0.199	0.121	0.315	0.245	0.293
		(0.144)	(0.204)	(0.004)	(0.997)	(0.429)	(0.105)	(0.181)	(0.138)
	15 to 21	-0.154	-0.038	-0.114	-0.126	-0.014	-0.176	0.011	-0.006
		(0.277)	(0.442)	(0.003)	(0.993)	(0.485)	(0.273)	(0.467)	(0.500)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.38: Treatment Effects on HOME Scores, Male Sample

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
HOME Score	0.5	0.372	-0.085	0.944	0.286	0.454	0.143	-0.304	-0.087
		(0.387)	(0.468)	(0.999)	(0.001)	(0.429)	(0.457)	(0.425)	(0.484)
	1.5	-0.500	-0.942	0.431	0.153	0.258	-0.766	-1.280	-0.880
		(0.342)	(0.233)	(0.999)	(0.001)	(0.451)	(0.277)	(0.181)	(0.282)
	2.5	0.141	0.429	1.654	2.263	2.228	-0.292	-0.153	0.144
		(0.455)	(0.372)	(0.999)	(0.001)	(0.195)	(0.430)	(0.465)	(0.483)
	3.5	1.404	0.819	2.897	3.020	2.906	0.962	0.231	0.732
		(0.273)	(0.355)	(0.999)	(0.211)	(0.258)	(0.349)	(0.445)	(0.388)
	4.5	1.146	0.286	3.312	2.310	2.833	0.527	-0.301	0.217
		(0.305)	(0.428)	(0.201)	(0.181)	(0.210)	(0.408)	(0.453)	(0.474)
	8	1.548	0.400	-0.898	0.346	-1.538	2.062	0.363	0.133
		(0.248)	(0.396)	(0.008)	(0.378)	(0.386)	(0.182)	(0.393)	(0.466)
HOME Factor	0.5 to 8	0.287	0.157	0.131	0.225	0.086	0.320	0.126	0.282
		(0.124)	(0.246)	(0.986)	(0.986)	(0.422)	(0.125)	(0.298)	(0.174)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.39: Treatment Effects on Parental Income, Male Sample

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Parental Labor Income	1.5	330	274	-1,046	-2,304	-1,154	-9.244	282	860
		(0.470)	(0.446)	(0.998)	(0.375)	(0.411)	(0.491)	(0.454)	(0.400)
	2.5	673	-535	-1,167	-2,991	-1,844	478	-527	221
		(0.415)	(0.428)	(0.998)	(0.298)	(0.362)	(0.460)	(0.418)	(0.469)
	3.5	1,036	494	3,085	73.862	1,462	112	123	690
		(0.374)	(0.411)	(0.995)	(0.474)	(0.390)	(0.498)	(0.479)	(0.417)
	4.5	821	$1,213$	1,561	2,215	2,570	-81.743	-55.767	1,167
		(0.418)	(0.358)	(0.998)	(0.998)	(0.272)	(0.477)	(0.489)	(0.413)
	8	11,786	12,512	6,832	4,631	4,867	13,438	14,709	13,485
		(0.034)	(0.047)	(0.002)	(0.244)	(0.240)	(0.027)	(0.046)	(0.039)
	12	7,085	9,625	15,563	18,050	12,639	4,773	6,620	5,383
		(0.092)	(0.020)	(0.998)	(0.038)	(0.074)	(0.219)	(0.098)	(0.139)
	15	8,488	4,495	6,697	5,540	4,805	7,603	2,885	4,345
		(0.071)	(0.221)	(0.985)	(0.243)	(0.264)	(0.144)	(0.354)	(0.296)
	21	12,732	8,809	1,568	122	-933	15,124	10,784	10,283
		(0.005)	(0.098)	(0.017)	(0.448)	(0.456)	(0.003)	(0.056)	(0.041)
Parental Income Factor	1.5 to 21	-0.078	-0.108	0.368	0.807	0.363	-0.125	-0.225	-0.124
		(0.431)	(0.362)	(0.892)	(0.903)	(0.301)	(0.383)	(0.240)	(0.374)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.40: Treatment Effects on Mother's Employment, Male Sample

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Mother Works	2	0.056	0.040	0.264	0.240	0.242	-0.004	-0.024	-0.018
		(0.267)	(0.341)	(0.998)	(0.001)	(0.096)	(0.480)	(0.389)	(0.417)
	3	0.150	0.145	0.261	0.240	0.242	0.116	0.110	0.117
		(0.066)	(0.091)	(0.998)	(0.001)	(0.096)	(0.114)	(0.154)	(0.153)
	4	0.134	0.125	0.287	0.273	0.272	0.090	0.077	0.089
		(0.066)	(0.099)	(0.998)	(0.083)	(0.073)	(0.156)	(0.217)	(0.161)
	5	0.111	0.100	0.311	0.289	0.291	0.061	0.041	0.054
		(0.121)	(0.171)	(0.995)	(0.999)	(0.071)	(0.234)	(0.347)	(0.322)
	21	-0.058	-0.102	-0.086	-0.129	-0.136	-0.036	-0.082	-0.067
		(0.315)	(0.223)	(0.995)	(0.002)	(0.310)	(0.393)	(0.298)	(0.362)
Mother Works Factor	2 to 21	-0.341	-0.314	-0.932	-0.893	-0.875	-0.182	-0.115	-0.165
		(0.097)	(0.140)	(0.999)	(0.999)	(0.094)	(0.219)	(0.320)	(0.263)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.41: Treatment Effects on Father at Home, Male Sample

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Father at Home	2	-0.018	0.080	-0.282	-0.205	-0.226	0.057	0.169	0.171
		(0.444)	(0.249)	(0.998)	$\mathbf{(0 . 0 0 1)}$	(0.127)	(0.315)	$\mathbf{(0 . 0 7 9})$	$\mathbf{(0 . 0 6 8)}$
	3	-0.076	-0.007	-0.243	-0.192	-0.201	-0.029	0.049	0.071
		(0.217)	(0.464)	(0.999)	$\mathbf{(0 . 0 0 1)}$	(0.145)	(0.397)	(0.326)	(0.283)
	4	-0.075	-0.000	-0.339	-0.281	-0.290		0.082	0.104
		(0.240)	(0.500)	(0.999)	$\mathbf{(0 . 0 0 1)}$	$\mathbf{(0 . 0 7 0})$		(0.217)	(0.201)
	5	-0.057	0.021	-0.429	-0.383	-0.379	0.036	0.127	0.143
		(0.297)	(0.438)	(0.999)	$\mathbf{(0 . 0 0 1)}$	$\mathbf{(0 . 0 1 2})$	(0.381)	(0.120)	(0.111)
Father at Home Factor	2	0.037	0.012	-0.177	-0.240	-0.300	0.123	0.126	0.129
		(0.374)	(0.463)	$\mathbf{(0 . 0 0 1)}$	(0.123)	$\mathbf{(0 . 0 7 3})$	(0.175)	(0.163)	(0.141)
		-0.122	0.048	-0.750	-0.674	$\mathbf{- 0 . 6 4 7}$	0.097	0.330	0.372
		(0.325)	(0.439)	$\mathbf{(0 . 0 0 1)}$	(0.129)	$\mathbf{(0 . 0 8 3)}$	(0.381)	(0.132)	(0.109)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.42: Treatment Effects on Education, Male Sample

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Graduated High School	30	0.073	0.044	0.114	0.116	0.083	0.077	0.040	0.063
		(0.262)	(0.375)	(0.001)	(0.001)	(0.346)	(0.268)	(0.407)	(0.317)
Attended Voc./Tech./Com. College	30	-0.099	-0.169	0.086	0.050	0.020	-0.138	-0.235	-0.233
		(0.214)	(0.113)	(0.356)	(0.001)	(0.469)	(0.144)	(0.051)	(0.038)
Graduated 4-year College	30	0.170	0.138	0.124	0.149	0.099	0.179	0.135	0.143
		(0.055)	(0.128)	(0.996)	(0.216)	(0.338)	(0.053)	(0.154)	(0.130)
Years of Edu.	30	0.525	0.541	0.857	1.010	0.777	0.385	0.351	0.344
		(0.151)	(0.163)	(0.002)	(0.998)	(0.136)	(0.230)	(0.280)	(0.256)
Ever Had Special Education by Grade 5	21	-0.035	-0.062	0.158	0.050	0.128	-0.085	-0.095	-0.100
		(0.380)	(0.311)	(0.998)	(0.002)	(0.266)	(0.210)	(0.215)	(0.192)
Total Number of Special Education by Grade 5	21	-0.544	-0.342	0.019	-0.807	0.154	-0.690	-0.300	-0.458
		(0.252)	(0.343)	(0.999)	(0.998)	(0.457)	(0.215)	(0.380)	(0.325)
Ever Retained by Grade 5	21	-0.095	-0.150	-0.023	-0.134	-0.061	-0.113	-0.146	-0.154
		(0.216)	(0.117)	(0.001)	(0.998)	(0.383)	(0.185)	(0.139)	(0.139)
Total Number of Retention by Grade 5	21	-0.070	-0.114	0.031	-0.094	0.006	-0.096	-0.109	-0.128
		(0.311)	(0.214)	(0.997)	(0.998)	(0.499)	(0.275)	(0.240)	(0.221)
Education Factor	21 to 30	0.344	0.328	0.230	0.420	0.219	0.385	0.295	0.375
		(0.081)	(0.105)	(0.999)	(0.999)	(0.283)	(0.078)	(0.150)	(0.101)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.43: Treatment Effects on Subject Employment and Income, Male Sample

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Employed	30	0.119	0.196	-0.029	0.108	0.040	0.176	0.237	0.261
		(0.128)	(0.025)	(0.002)	(0.001)	(0.383)	(0.071)	(0.025)	(0.013)
Labor Income	21	-1,672	-3,084	-3,951	-5,462	-4,787	-1,527	-3,199	-3,240
		(0.306)	(0.178)	(0.001)	(0.001)	(0.205)	(0.329)	(0.200)	(0.201)
	30	19,810	24,365	17,909	25,220	20,611	20,065	23,072	21,836
		(0.091)	(0.092)	(0.002)	(0.998)	(0.122)	(0.091)	(0.107)	(0.094)
Public-Transfer Income	21	315	375	1,376	1,543	1,543	-58.901	-51.112	90.060
		(0.372)	(0.372)	(0.002)	(0.162)	(0.100)	(0.497)	(0.522)	(0.461)
	30	-530	-462	287	337	347	-279	-215	-245
		(0.183)	(0.228)	(0.001)	(0.622)	(0.069)	(0.264)	(0.346)	(0.331)
Employment Factor	21 to 30	0.501	0.635	0.053	0.251	0.102	0.644	0.724	0.693
		(0.106)	(0.083)	(0.997)	(0.004)	(0.410)	(0.077)	(0.083)	(0.069)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.44: Treatment Effects on Marriage, Male Sample

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Married	30	0.024	-0.026	0.029	0.053	-0.009	0.053	-0.023	0.003
		(0.423)	(0.420)	$\mathbf{(0 . 0 0 2)}$	(0.999)	(0.481)	(0.356)	(0.418)	(0.494)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.45: Treatment Effects on Crime, Male Sample

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Total Felony Arrests	Mid-30s	0.196	0.685	0.946	1.523	1.340	0.017	0.481	0.188
		(0.368)	(0.183)	(0.002)	(0.064)	(0.026)	(0.489)	(0.284)	(0.410)
Total Misdemeanor Arrests	Mid-30s	-0.501	-0.244	-0.251	-0.298	-0.034	-0.666	-0.246	-0.507
		(0.171)	(0.289)	(0.001)	(0.314)	(0.422)	(0.147)	(0.329)	(0.168)
Total Years Incarcerated	30	0.348	0.548	0.553	0.772	0.701	0.338	0.538	0.471
		(0.088)	(0.058)	(0.013)	(0.014)	(0.009)	(0.103)	(0.070)	(0.066)
Crime Factor	30 to Mid-30s	0.192	0.397	0.560	0.690	0.649	0.116	0.371	0.226
		(0.304)	(0.212)	(0.002)	(0.998)	(0.051)	(0.402)	(0.252)	(0.313)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.46: Treatment Effects on Tobacco, Drugs, Alcohol, Male Sample

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Cig. Smoked per day last month	30	0.826	0.395	0.757	-0.259	0.643	1.429	1.270	1.216
		(0.247)	(0.389)	(0.002)	(0.002)	(0.428)	(0.121)	(0.164)	(0.172)
Days drank alcohol last month	30	0.805	1.191	-0.186	0.650	0.087	0.944	1.210	1.337
		(0.328)	(0.278)	(0.001)	(0.001)	(0.514)	(0.310)	(0.302)	(0.276)
Days binge drank alcohol last month	30	0.500	0.657	0.543	0.458	0.695	0.491	0.729	0.702
		(0.162)	(0.141)	(0.998)	(0.999)	(0.184)	(0.178)	(0.157)	(0.131)
Self-reported drug user	Mid-30s	${ }^{-0.333}$	${ }^{-0.438}$	-0.500	${ }^{-0.673}$	-0.557	-0.233	${ }^{-0.326}$	${ }^{-0.330}$
		(0.019)	(0.002)	(0.962)	(0.000)	(0.000)	(0.104)	(0.039)	(0.023)
Substance Use Factor	30 to Mid-30s	0.261	0.237	0.055	0.011	0.074	0.389	0.367	0.414
		(0.280)	(0.323)	(0.965)	(0.015)	(0.472)	(0.155)	(0.238)	(0.174)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.47: Treatment Effects on Hypertension, Male Sample

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Systolic Blood Pressure (mm Hg)	Mid-30s	-9.791	-13.275	15.280	14.196	14.976	-19.920	-24.166	-18.559
		(0.113)	(0.049)	(0.961)	(0.013)	(0.000)	(0.028)	(0.000)	(0.011)
Diastolic Blood Pressure (mm Hg)	Mid-30s	-10.854	-14.134	-8.640	-9.709	-8.741	-14.240	-18.387	-13.987
		(0.032)	(0.004)	(0.030)	(0.049)	(0.032)	(0.028)	(0.000)	(0.007)
Prehypertension	Mid-30s	-0.137	-0.159	0.053	0.082	0.077	-0.280	-0.311	-0.283
		(0.142)	(0.153)	(0.960)	(0.363)	(0.376)	(0.001)	(0.021)	(0.003)
Hypertension	Mid-30s	-0.291	-0.377	-0.053	-0.120	-0.074	-0.420	-0.492	-0.434
		(0.042)	(0.009)	(0.964)	(0.302)	(0.353)	(0.007)	(0.006)	(0.006)
Hypertension Factor	Mid-30s	-0.643	-0.875	0.070	-0.062	-0.025	-1.044	-1.334	-1.140
		(0.026)	(0.007)	(0.963)	(0.022)	(0.474)	(0.002)	(0.000)	(0.004)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.48: Treatment Effects on Cholesterol, Male Sample

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
High-Density Lipoprotein Chol. (mg/dL)	Mid-30s	7.753	6.583	-0.267	-2.328	-3.489	9.015	7.5	
		(0.015)	(0.059)	(0.959)	(0.344)	(0.277)	(0.008)	(0.046)	(0.032)
Dyslipidemia	Mid-30s	$\begin{gathered} -0.094 \\ (0.245) \end{gathered}$	$\begin{gathered} -0.165 \\ (0.154) \end{gathered}$	$\begin{gathered} 0.200 \\ (0.956) \end{gathered}$	$\begin{gathered} 0.192 \\ (0.087) \end{gathered}$	$\begin{gathered} 0.198 \\ (\mathbf{0 . 0 1 8}) \end{gathered}$	$\begin{aligned} & -0.108 \\ & (0.241) \end{aligned}$	$\begin{gathered} -0.181 \\ (0.161) \end{gathered}$	$\begin{aligned} & -0.150 \\ & (0.172) \end{aligned}$
Cholesterol Factor	Mid-30s	0.477	0.446	-0.344	${ }_{-0.417}$	${ }_{-0.421}$	0.552	0.514	0.477
		(0.073)	(0.123)	(0.959)	(0.949)	(0.094)	(0.062)	(0.131)	(0.105)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.49: Treatment Effects on Diabetes, Male Sample

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Hemoglobin Level (\%)	Mid-30s	0.322	0.449	0.240	0.320	0.359	0.286	0.416	0.417
		(0.153)	(0.154)	(0.961)	(0.196)	(0.195)	(0.184)	(0.178)	(0.160)
Prediabetes	Mid-30s	-0.129	-0.149	-0.267	-0.358	-0.309	-0.138	-0.161	-0.143
		(0.217)	(0.196)	$\mathbf{(0 . 0 2 1)}$	(0.119)	(0.199)	(0.223)	(0.207)	(0.200)
Diabetes	Mid-30s	0.080	0.093	0.080	0.078	0.095	0.080	0.097	0.095
		$\mathbf{(0 . 0 5 0)}$	$\mathbf{(0 . 0 7 0)}$	$\mathbf{(0 . 0 2 2)}$	(0.118)	$\mathbf{(0 . 0 4 5)}$	$\mathbf{(0 . 0 5 0)}$	$\mathbf{(0 . 0 6 3)}$	$\mathbf{(0 . 0 4 8)}$
Diabetes Factor	Mid-30s	0.218	0.271	0.106	0.076	0.163	0.199	0.267	0.259
		(0.236)	(0.223)	$\mathbf{(0 . 0 1 9)}$	$\mathbf{(0 . 0 1 3)}$	(0.329)	(0.247)	(0.245)	(0.234)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.50: Treatment Effects on Obesity, Male Sample

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Measured BMI	Mid-30s	-0.125	0.427	-0.684	0.694	0.903	-0.627	-0.208	-0.481
		(0.481)	(0.419)	(0.962)	(0.420)	(0.438)	(0.407)	(0.485)	(0.438)
Obesity	Mid-30s	0.000	0.017	-0.128	-0.011	0.034	-0.017	-0.026	-0.060
		(0.491)	(0.458)	(0.960)	(0.429)	(0.463)	(0.469)	(0.462)	(0.394)
Severe Obesity	Mid-30s	-0.160	-0.106	-0.185	-0.122	-0.125	-0.185	-0.122	-0.131
		(0.142)	(0.247)	$\mathbf{(0 . 0 2 4})$	(0.300)	(0.291)	(0.154)	(0.264)	(0.217)
Waist-hip Ratio	Mid-30s	0.005	-0.002	0.018	0.031	0.022	-0.002	-0.015	-0.006
		(0.444)	(0.453)	$\mathbf{(0 . 0 2 6)}$	(0.269)	(0.332)	(0.462)	(0.321)	(0.436)
Abdominal Obesity	Mid-30s	0.003	-0.071	0.029	-0.005	0.046	0.029	-0.049	-0.021
		(0.495)	(0.346)	$\mathbf{(0 . 0 2 3)}$	(0.469)	(0.399)	(0.435)	(0.411)	(0.475)
Framingham Risk Score	Mid-30s	-0.766	-0.294	1.491	1.874	1.811	-1.202	-0.717	-0.700
		(0.235)	(0.382)	$\mathbf{(0 . 0 2 6)}$	$\mathbf{(0 . 1 0 0)}$	(0.111)	(0.177)	(0.308)	(0.305)
Obesity Factor	Mid-30s	0.054	0.087	0.064	0.014	0.087	0.122	0.170	0.143
		(0.441)	(0.423)	(0.959)	$\mathbf{(0 . 0 1 5)}$	(0.418)	(0.399)	(0.386)	(0.403)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.51: Treatment Effects on Mental Health t-Score, Male Sample

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Somatization t-Score	21	-2.804	-3.813	-3.718	-4.711	-4.358	-2.295	-3.255	-3.818
		(0.110)	(0.063)	(0.001)	(0.001)	(0.098)	(0.189)	(0.136)	(0.086)
	Mid-30s	-3.066	-2.950	-4.852	-4.501	-4.912	-3.252	-2.867	-3.046
		(0.228)	(0.191)	(0.959)	(0.165)	(0.175)	(0.239)	(0.244)	(0.233)
Depression t-Score	21	-2.515	-1.499	1.649	1.632	1.645	-3.636	-2.460	-3.121
		(0.165)	(0.280)	(0.998)	(0.999)	(0.382)	(0.087)	(0.197)	(0.138)
	Mid-30s	-1.042	-1.436	3.148	3.760	1.942	-2.985	-3.246	-2.961
		(0.400)	(0.349)	(0.026)	(0.113)	(0.261)	(0.270)	(0.243)	(0.265)
Anxiety t-Score	21	0.400	0.352	3.857	2.356	3.396	-0.333	-0.301	-1.366
		(0.446)	(0.449)	(0.999)	(0.001)	(0.222)	(0.458)	(0.466)	(0.353)
	Mid-30s	-1.847	-2.114	1.630	2.105	0.720	-3.504	-3.559	-3.390
		(0.301)	(0.269)	(0.026)	(0.188)	(0.419)	(0.236)	(0.205)	(0.227)
Hostility t-Score	21	-1.471	-0.687	2.941	1.813	2.618	-2.251	-0.950	-1.812
		(0.259)	(0.398)	(0.999)	(0.999)	(0.309)	(0.206)	(0.369)	(0.252)
	Mid-30s	-1.556	-2.073	-1.889	-1.396	-2.708	-2.156	-2.639	-2.486
		(0.324)	(0.268)	(0.959)	(0.331)	(0.273)	(0.306)	(0.271)	(0.281)
Global Severity Index t-Score	21	0.246	0.477	1.978	1.551	0.495	0.330	0.989	-0.970
		(0.454)	(0.412)	(0.002)	(0.334)	(0.435)	(0.441)	(0.358)	(0.398)
Global Severity Index t-Score (BSI 18)	Mid-30s	-1.675	-1.771	0.111	0.866	-0.584	-2.989	-2.916	-2.793
		(0.325)	(0.316)	(0.026)	(0.371)	(0.420)	(0.275)	(0.246)	(0.270)
BSI Factor	21 to Mid-30s	-0.130	-0.008	-0.025	0.107	0.005	-0.170	-0.032	-0.140
		(0.341)	(0.468)	(0.961)	(0.951)	(0.459)	(0.345)	(0.435)	(0.348)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

D. 9 Treatment Effects for Female Sample

Table D.52: Treatment Effects on IQ Scores, Female Sample

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Std. IQ Test	2	10.700	9.752	13.949	15.675	15.284	9.431	8.035	9.353
		(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.002)	(0.000)
	3	13.333	12.462	23.729	26.222	26.738	9.211	8.146	9.189
		(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.005)	(0.017)	(0.008)
	3.5	8.049	6.899	16.187	19.211	18.019	5.049	3.115	4.968
		(0.003)	(0.004)	(0.000)	(0.000)	(0.000)	(0.046)	(0.156)	(0.053)
	4	6.035	5.190	14.812	17.597	17.630	3.007	1.654	3.484
		(0.026)	(0.055)	(0.000)	(0.002)	(0.000)	(0.181)	(0.333)	(0.152)
	4.5	8.162	7.081	16.058	18.631	18.185	5.318	3.121	5.820
		(0.002)	(0.001)	(0.000)	(0.001)	(0.000)	(0.063)	(0.176)	(0.051)
	5	4.921	3.614	12.425	14.882	14.489	2.698	0.374	3.000
		(0.053)	(0.132)	(0.005)	(0.006)	(0.003)	(0.195)	(0.472)	(0.173)
	6.6	6.127		7.339	8.939	6.883	5.773	2.344	4.438
		(0.038)		(0.045)	(0.022)	(0.035)	(0.060)	(0.256)	(0.092)
	7	6.365	3.751	7.796	7.034	5.568	5.992	3.274	4.369
		(0.036)	(0.155)	(0.998)	(0.079)	(0.118)	(0.055)	(0.208)	(0.117)
	8	5.906	4.050	7.857	10.599	9.880	5.360	2.237	4.660
		(0.034)	(0.117)	(0.015)	(0.007)	(0.010)	(0.060)	(0.274)	(0.092)
	12	8.688	6.843	6.850	6.468	6.435	9.120	7.244	8.432
		(0.001)	(0.008)	(0.018)	(0.030)	(0.033)	(0.004)	(0.017)	(0.005)
	15	6.467	2.695	6.110	3.413	5.083	6.315	2.481	5.069
		(0.034)	(0.229)	(0.984)	(0.986)	(0.144)	(0.052)	(0.290)	(0.113)
	21	7.261	4.337	9.440	7.413	8.713	6.485	3.583	5.312
		(0.005)	(0.066)	(0.984)	(0.985)	(0.000)	(0.017)	(0.132)	(0.045)
IQ Factor	2 to 5	0.694	0.615	1.367	1.606	1.561	0.488	0.328	0.508
		(0.002)	(0.004)	(0.000)	(0.001)	(0.000)	(0.024)	(0.112)	(0.019)
	6 to 12	0.567	0.439	0.523	0.698	0.580	0.579	0.398	0.606
		(0.046)	(0.075)	(0.998)	(0.998)	(0.107)	(0.052)	(0.137)	(0.041)
	15 to 21	-0.673	-0.352	-0.776	-0.550	-0.692	-0.624	-0.301	-0.507
		(0.001)	(0.110)	(0.984)	(0.985)	(0.004)	(0.016)	(0.190)	(0.044)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.53: Treatment Effects on Achievement Scores, Female Sample

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Std. Achv. Test	5.5	12.314	9.870	19.650		18.482	9.869	5.326	11.035
		(0.000)	(0.007)	(0.000)		(0.000)	(0.009)	(0.132)	(0.007)
	6	6.269	6.135	10.379	10.918	9.862	5.018		5.255
		(0.005)	(0.002)	(0.002)	(0.005)	(0.003)	(0.019)		(0.009)
	6.5	3.909	3.859	6.394	6.809	6.030	3.517	3.415	4.934
		(0.028)	(0.022)	(0.026)	(0.066)	(0.018)	(0.048)	(0.042)	(0.014)
	7	6.411	6.411	12.724	12.732	12.633	5.415	5.110	6.476
		(0.002)	(0.000)	(0.025)	(0.003)	(0.000)	(0.013)	(0.011)	(0.005)
	7.5	4.133	2.960	4.300	6.192	6.927	4.082	1.933	4.625
		(0.083)	(0.126)	(0.199)	(0.075)	(0.044)	(0.108)	(0.255)	(0.078)
	8	6.619	5.012	7.125	9.324	9.541	6.465	3.291	6.190
		(0.013)	(0.046)	(0.098)	(0.025)	(0.016)	(0.028)	(0.164)	(0.037)
	8.5	8.407	8.542	12.299	12.302	11.963	7.223	7.668	8.736
		(0.000)	(0.001)	(0.005)	(0.004)	(0.007)	(0.016)	(0.006)	(0.000)
	15	8.275	5.583	9.618	7.114	8.384	8.477	5.120	7.417
		(0.008)	(0.032)	(0.984)	(0.984)	(0.003)	(0.010)	(0.068)	(0.025)
	21	9.116	4.546			6.495	9.420	4.554	7.475
		(0.006)	(0.082)	(0.984)	(0.984)	(0.032)	(0.011)	(0.103)	(0.025)
Achievement Factor	5.5 to 12	0.880	0.875	1.244	1.141	1.330	0.739	0.735	0.848
		(0.001)	(0.005)	(0.003)	(0.005)	(0.003)	(0.006)	(0.012)	(0.000)
	15 to 21	-0.769	-0.452	-0.803	-0.498	-0.665	-0.791	-0.431	-0.660
		(0.000)	(0.038)	(0.984)	(0.984)	(0.004)	(0.002)	(0.073)	(0.010)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.54: Treatment Effects on HOME Scores, Female Sample

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
HOME Score	0.5	1.581	0.380	1.684	0.946	1.264	0.980	-0.045	0.440
		(0.088)	(0.396)	(0.168)	(0.307)	(0.235)	(0.220)	(0.480)	(0.377)
	1.5	2.668	2.107	4.729	3.783	5.472	1.544	1.237	1.756
		(0.026)	(0.092)	(0.023)	(0.069)	(0.014)	(0.167)	(0.239)	(0.140)
	2.5	0.762	0.760	4.434	5.322	5.173	-0.899	-1.068	-0.252
		(0.285)	(0.300)	(0.004)	(0.007)	(0.001)	(0.277)	(0.228)	(0.435)
	3.5	2.858	2.354	13.719	14.981	14.927	-0.309	-1.804	-0.048
		(0.096)	(0.188)	(0.000)	(0.002)	(0.001)	(0.441)	(0.237)	(0.500)
	4.5	2.736	1.505	12.957	13.445	13.953	-0.273	-1.703	0.470
		(0.140)	(0.297)	(0.002)	(0.014)	(0.002)	(0.437)	(0.275)	(0.422)
	8	0.659	1.112	5.909	8.035	7.078	-0.773	-1.326	0.447
		(0.383)	(0.304)	(0.998)	(0.016)	(0.031)	(0.359)	(0.265)	(0.428)
HOME Factor	0.5 to 8	0.266	0.179	1.162	1.281	1.218	0.010	-0.169	0.142
		(0.196)	(0.312)	(0.004)	(0.021)	(0.005)	(0.478)	(0.336)	(0.313)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.55: Treatment Effects on Parental Income, Female Sample

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Parental Labor Income	1.5	4,516	6,640	5,865	8,164	9,688	5,069	6,136	7,346
		(0.068)	(0.036)	(0.999)	(0.079)	(0.014)	(0.051)	(0.055)	(0.013)
	2.5	222	591	-3,056	109	1,761	2,254	884	3,240
		(0.463)	(0.429)	(0.001)	(0.481)	(0.422)	(0.214)	(0.406)	(0.183)
	3.5	2,756	2,986	5,146	6,864	8,584	2,802	1,521	3,773
		(0.189)	(0.213)	(0.999)	(0.122)	(0.045)	(0.203)	(0.332)	(0.154)
	4.5	4,039	5,715	7,094	8,260	7,646	3,852	4,953	5,599
		(0.080)	(0.054)	(0.058)	(0.069)	(0.050)	(0.090)	(0.078)	(0.019)
	8	2,181	3,826	13,195	12,683	13,456	528	2,034	2,963
		(0.291)	(0.210)	(0.960)	(0.083)	(0.009)	(0.455)	(0.339)	(0.245)
	12	13,633	19,592	22,294	28,328	26,489	11,570	15,343	18,678
		(0.054)	(0.027)	(0.002)	(0.027)	(0.009)	(0.090)	(0.064)	(0.019)
	15	8,565	7,159	2,829	2,713	8,441	9,819	7,465	10,487
		(0.060)	(0.137)	(0.989)	(0.480)	(0.345)	(0.030)	(0.134)	(0.064)
	21	5,708	8,670	25,270	45,697	25,142	4,446	6,251	3,943
		(0.136)	(0.140)	(0.048)	(0.000)	(0.000)	(0.182)	(0.224)	(0.261)
Parental Income Factor	1.5 to 21	0.286	0.286	0.554	0.506	0.635	0.219	0.227	0.298
		(0.181)	(0.239)	(0.960)	(0.011)	(0.138)	(0.247)	(0.278)	(0.200)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.56: Treatment Effects on Mother's Employment, Female Sample

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Mother Works	2	0.168	0.112	0.323	0.297	0.333	0.101	0.066	0.097
		(0.035)	(0.137)	(0.050)	(0.084)	(0.051)	(0.158)	(0.245)	(0.174)
	3	0.087	0.027	0.177	0.139	0.179	0.066	-0.001	0.058
		(0.194)	(0.399)	(0.174)	(0.237)	(0.176)	(0.263)	(0.512)	(0.306)
	4	0.118	0.071	0.319	0.287	0.328	0.060	0.025	0.054
		(0.097)	(0.245)	(0.052)	(0.087)	(0.052)	(0.267)	(0.390)	(0.282)
	5	0.067	0.038	0.367	0.276	0.422	-0.056	-0.076	-0.024
		(0.243)	(0.350)	(0.028)	(0.082)	(0.018)	(0.232)	(0.162)	(0.382)
	21	-0.018	-0.005	0.510	0.497	0.512	-0.097	-0.107	-0.088
		(0.441)	(0.478)	(0.985)	(0.985)	(0.000)	(0.207)	(0.214)	(0.239)
Mother Works Factor	2 to 21	-0.207	-0.069	-0.662	-0.527	${ }_{(}^{-0.731}$	-0.071	0.081	-0.092
		(0.208)	(0.381)	(0.098)	(0.156)	(0.088)	(0.385)	(0.375)	(0.361)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.57: Treatment Effects on Father at Home, Female Sample

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Father at Home	2	-0.012	-0.033	-0.115	-0.118	-0.149	0.034	0.023	0.087
		(0.452)	(0.390)	(0.274)	(0.273)	(0.217)	(0.376)	(0.426)	(0.215)
	3	-0.079	-0.098	-0.337	-0.336	-0.371	0.034	0.023	0.087
		(0.226)	(0.180)	(0.036)	(0.029)	(0.022)	(0.376)	(0.426)	(0.215)
	4	-0.071	-0.100	-0.330	-0.344	-0.364	0.041	0.025	0.096
		(0.256)	(0.186)	(0.038)	(0.024)	(0.025)	(0.351)	(0.421)	(0.192)
	5	-0.139	-0.152	-0.333	-0.324	-0.385	-0.056	-0.069	-0.020
		(0.088)	(0.076)	(0.048)	(0.063)	(0.031)	(0.293)	(0.261)	(0.416)
	8	0.056	-0.007	-0.063	-0.072	-0.061	0.092	0.025	0.058
		(0.299)	(0.455)	(0.997)	(0.328)	(0.335)	(0.190)	(0.401)	(0.280)
Father at Home Factor	2 to 8	-0.184	-0.253	-0.820	-0.819	${ }_{-}^{-0.943}$	0.010	-0.042	0.097
		(0.236)	(0.171)	(0.999)	(0.999)	(0.012)	(0.479)	(0.440)	(0.382)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.58: Treatment Effects on Education, Female Sample

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Graduated High School	30	0.253	0.131	0.642	0.553	0.595	0.137	-0.026	0.066
		(0.009)	(0.152)	(0.000)	(0.003)	(0.000)	(0.129)	(0.413)	(0.320)
Attended Voc./Tech./Com. College	30	-0.057	-0.115	-0.050	-0.109	-0.071	-0.041	-0.127	-0.051
		(0.303)	(0.177)	(0.418)	(0.298)	(0.374)	(0.374)	(0.157)	(0.354)
Graduated 4-year College	30	0.134	0.131	0.217		0.219	0.106	0.100	0.093
		(0.072)	(0.112)	(0.010)		(0.012)	(0.145)	(0.230)	(0.208)
Years of Edu.	30	2.143	1.843	4.025	3.861	3.923	1.567	1.163	1.409
		(0.001)	(0.002)	(0.000)	(0.000)	(0.000)	(0.006)	(0.054)	(0.017)
Ever Had Special Education by Grade 5	21	0.022	0.141	0.133	0.172	0.115	0.018	0.117	0.015
		(0.434)	(0.154)	(0.262)	(0.211)	(0.290)	(0.458)	(0.203)	(0.478)
Total Number of Special Education by Grade 5	21	-0.622	0.382	1.725	2.012	1.585	-1.054	-0.242	-1.297
		(0.273)	(0.380)	(0.002)	(0.029)	(0.018)	(0.212)	(0.427)	(0.177)
Ever Retained by Grade 5	21	-0.256	-0.237	-0.325	-0.221	-0.279	-0.238	${ }^{-0.257}$	-0.214
		(0.016)	(0.033)	(0.059)	(0.168)	(0.089)	(0.042)	(0.038)	(0.063)
Total Number of Retention by Grade 5	21	-0.233	-0.098	-0.192	-0.019	-0.125	-0.221	-0.132	-0.180
		(0.098)	(0.303)	(0.203)	(0.458)	(0.307)	(0.134)	(0.263)	(0.204)
Education Factor	21 to 30	0.561	0.356	0.841	0.688	0.726	0.420	0.243	0.309
		(0.034)	(0.139)	(0.012)	(0.064)	(0.022)	(0.113)	(0.253)	(0.189)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.59: Treatment Effects on Subject Employment and Income, Female Sample

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Employed	30	0.131	0.081	0.333	0.381	0.340	0.056	-0.010	0.07
		(0.096)	(0.206)	(0.047)	(0.039)	(0.057)	(0.312)	(0.465)	(0.264)
Labor Income	21	1,741	315	6,932	$6,270$	7,210	496	$-1,741$	263
		(0.230)	(0.456)	(0.001)	(0.077)	(0.011)	(0.417)	(0.267)	(0.465)
	30	2,548	1,884	14,356	15,094	13,096	-425	-2,677	-2,122
		(0.335)	(0.382)	(0.028)	(0.056)	(0.022)	(0.496)	(0.330)	(0.363)
Public-Transfer Income	21	-1,424	-2,389	-1,322	-2,862	-2,875	-1,751	-1,536	-1,481
		(0.069)	(0.020)	(0.001)	(0.025)	(0.039)	(0.068)	(0.119)	(0.095)
	30	-2,672	-953	-3,053	-2,762	-2,775	-2,269	-333	-1,603
		(0.042)	(0.270)	(0.078)	(0.093)	(0.108)	(0.108)	(0.413)	(0.192)
Employment Factor	21 to 30	0.434	0.292	0.970	1.077	0.999	0.274	0.004	0.244
		(0.103)	(0.185)	(0.997)	(0.997)	(0.031)	(0.222)	(0.505)	(0.236)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.60: Treatment Effects on Marriage, Female Sample

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Married	30	0.109	0.122	0.058	0.104	0.065	0.137	0.120	0.132
		(0.183)	(0.180)	(0.391)	(0.309)	(0.410)	(0.131)	(0.194)	(0.166)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.61: Treatment Effects on Crime, Female Sample

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Total Felony Arrests	Mid-30s	-0.328	-0.351	-1.345	-0.944	-0.965	-0.077	-0.059	0.004
		(0.077)	(0.087)	(0.002)	(0.095)	(0.095)	(0.234)	(0.287)	(0.500)
Total Misdemeanor Arrests	Mid-30s	-0.973	-0.737	-2.708	-2.010	-2.451	-0.588	-0.269	-0.201
		(0.057)	(0.134)	(0.001)	(0.134)	(0.120)	(0.107)	(0.273)	(0.289)
Total Years Incarcerated	30	-0.024	-0.015				-0.037	-0.019	-0.038
		(0.067)	(0.120)				(0.074)	(0.135)	(0.066)
Crime Factor	30 to Mid-30s	-0.239	-0.226	$\stackrel{-0.735}{(0.001)}$	-0.677	-0.725	-0.124	-0.052	-0.070
		(0.078)	(0.126)	(0.001)	(0.998)	(0.129)	(0.144)	(0.271)	(0.244)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.62: Treatment Effects on Tobacco, Drugs, Alcohol, Female Sample

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Cig. Smoked per day last month	30	-0.765	-0.164	-2.338	-2.086	-2.137	-0.530	0.759	-0.296
		(0.290)	(0.449)	(0.175)	(0.196)	(0.196)	(0.360)	(0.325)	(0.391)
Days drank alcohol last month	30	-0.742	0.135	-0.567	0.585	-0.259	-0.919	0.196	-0.464
		(0.300)	(0.468)	(0.385)	(0.402)	(0.442)	(0.275)	(0.446)	(0.380)
Days binge drank alcohol last month	30	-0.358	0.249	-1.063	-0.106	-0.913	-0.231	0.531	0.035
		(0.319)	(0.378)	(0.253)	(0.431)	(0.292)	(0.363)	(0.229)	(0.478)
Self-reported drug user	Mid-30s	-0.033	0.004	-0.116	-0.114	-0.101	-0.010	0.020	0.033
		(0.381)	(0.478)	(0.996)	(0.273)	(0.323)	(0.450)	(0.443)	(0.406)
Substance Use Factor	30 to Mid-30s	0.001	0.462	0.362	0.738	0.413	-0.098	0.422	-0.015
		(0.508)	(0.114)	(0.002)	(0.040)	(0.066)	(0.362)	(0.147)	(0.476)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.63: Treatment Effects on Hypertension, Female Sample

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Systolic Blood Pressure (mm Hg)	Mid-30s	-2.899	-5.407	1.065	-0.488	-0.822	-3.980	-6.239
		(0.307)	(0.241)	(0.997)	(0.488)	(0.457)	(0.257)	(0.249)
Diastolic Blood Pressure (mm Hg)	Mid-30s	-0.002	-0.179	4.725	4.091	4.122	-1.291	-1.347
		(0.483)	(0.438)	(0.997)	(0.245)	(0.222)	(0.386)	(0.392)
Prehypertension	Mid-30s	-0.189	-0.257	-0.094	-0.151	-0.125	-0.215	-0.289
		$\mathbf{(0 . 0 3 5)}$	$\mathbf{(0 . 0 1 7})$	$\mathbf{(0 . 0 0 2)}$	(0.256)	(0.252)	$\mathbf{(0 . 0 2 0})$	$\mathbf{(0 . 0 1 3)}$
Hypertension	Mid-30s	0.172	0.085	0.232	0.077	0.162	0.156	0.102
		(0.111)	(0.293)	(0.997)	(0.331)	(0.245)	(0.155)	(0.299)
Hypertension Factor	Mid-30s	-0.061	-0.172	0.195	0.069	0.177	-0.131	-0.238
		(0.416)	(0.322)	(0.997)	(0.409)	(0.327)	(0.331)	(0.283)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.64: Treatment Effects on Cholesterol, Female Sample

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
High-Density Lipoprotein Chol. (mg/dL)	Mid-30s	2.884	6.218	10.514	12.253	13.513	0.802	3.996	3.235
		(0.200)	(0.073)	(0.002)	(0.026)	(0.003)	(0.415)	(0.172)	(0.250)
Dyslipidemia	Mid-30s	0.051	0.023	-0.080	-0.167	-0.146	0.087	0.105	0.089
		(0.222)	(0.404)	(0.949)	(0.241)	(0.230)	(0.077)	(0.073)	(0.055)
Cholesterol Factor	Mid-30s	0.034	0.104	0.568	0.611	0.599	-0.111	-0.090	-0.078
		(0.443)	(0.348)	(0.002)	(0.112)	(0.090)	(0.291)	(0.356)	(0.376)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.65: Treatment Effects on Diabetes, Female Sample

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Hemoglobin Level (\%)	Mid-30s	-0.277	-0.063	-0.176	-0.063	-0.143	-0.305	-0.074	-0.313
		(0.159)	(0.329)	(0.997)	(0.294)	(0.165)	(0.183)	(0.331)	(0.210)
Prediabetes	Mid-30s	0.088	0.222	0.076	0.207	0.088	0.091	0.217	0.109
		(0.264)	$\mathbf{(0 . 0 4 4)}$	$\mathbf{(0 . 0 0 1)}$	(0.111)	(0.361)	(0.261)	$\mathbf{(0 . 0 7 3)}$	(0.233)
Diabetes	Mid-30s	-0.071	-0.047				-0.091	-0.064	-0.092
Diabetes Factor		$\mathbf{(0 . 0 7 2)}$	$\mathbf{(0 . 0 9 6)}$				$\mathbf{(0 . 0 7 8}$	$\mathbf{(0 . 0 9 4)}$	$\mathbf{(0 . 0 6 3)}$
	Mid-30s	-0.207	-0.016	-0.024	0.058	-0.048	-0.257	-0.065	-0.269
		(0.205)	(0.453)	(0.975)	(0.386)	(0.376)	(0.186)	(0.371)	(0.195)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.66: Treatment Effects on Obesity, Female Sample

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Measured BMI	Mid-30s	3.545	5.382	1.937	3.345	1.970	3.983	6.187	4.710
		(0.111)	(0.045)	(0.997)	(0.213)	(0.271)	(0.097)	(0.040)	(0.063)
Obesity	Mid-30s	-0.011	0.099	-0.261	-0.173	-0.199	0.057	0.183	0.109
		(0.462)	(0.231)	(0.002)	(0.070)	(0.023)	(0.348)	(0.112)	(0.212)
Severe Obesity	Mid-30s	-0.045	0.017	0.014	0.062	0.019	-0.061	0.006	-0.039
		(0.373)	(0.451)	(0.997)	(0.398)	(0.481)	(0.337)	(0.460)	(0.402)
Waist-hip Ratio	Mid-30s	-0.022	0.008	-0.076	-0.077	-0.072	-0.007	0.040	0.015
		(0.255)	(0.427)	(0.001)	(0.181)	(0.147)	(0.410)	(0.146)	(0.323)
Abdominal Obesity	Mid-30s	-0.159	0.015	-0.381	-0.261	-0.285	-0.095	0.106	0.022
		(0.119)	(0.444)	(0.001)	(0.049)	(0.009)	(0.260)	(0.260)	(0.446)
Framingham Risk Score	Mid-30s	-0.259	-0.233	-0.488	-0.596	-0.525	-0.197	-0.155	-0.220
		(0.121)	(0.151)	(0.001)	(0.080)	(0.115)	(0.199)	(0.239)	(0.179)
Obesity Factor	Mid-30s	-0.006	-0.272	0.433	0.299	0.365	-0.132	-0.480	-0.256
		(0.484)	(0.262)	(0.997)	(0.002)	(0.218)	(0.336)	(0.230)	(0.256)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.67: Treatment Effects on Mental Health t-Score, Female Sample

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Somatization t-Score	21	-2.671	-1.944	-4.893	-3.896	-4.836	-2.258	-1.475	-2.169
		(0.143)	(0.254)	(0.169)	(0.229)	(0.159)	(0.181)	(0.330)	(0.222)
	Mid-30s	0.724	2.858	-0.014	-0.715	0.571	0.925	2.425	1.715
		(0.402)	(0.134)	(0.002)	(0.385)	(0.495)	(0.385)	(0.173)	(0.319)
Depression t-Score	21	-5.649	-5.129	-9.358	-8.953	-9.421	-4.406	-3.599	-4.090
		(0.007)	(0.033)	(0.005)	(0.018)	(0.006)	(0.050)	(0.129)	(0.080)
	Mid-30s	-2.466	-1.186	-0.109	-1.014	-0.058	-3.109	-2.385	-3.032
		(0.202)	(0.339)	(0.002)	(0.354)	(0.462)	(0.146)	(0.194)	(0.169)
Anxiety t-Score	21	-6.163	-5.724	-9.552	-8.196	-8.964	-5.244	-4.317	-4.381
		(0.009)	(0.023)	(0.012)	(0.056)	(0.021)	(0.024)	(0.096)	(0.068)
	Mid-30s	-4.564	-3.287	-3.457	-4.824	-3.764	-4.866	-4.313	-5.627
		(0.056)	(0.125)	(0.996)	(0.205)	(0.250)	(0.052)	(0.074)	(0.045)
Hostility t-Score	21	-4.721	-5.636	-10.732	-9.838	-10.536	-3.299	-3.851	-2.934
		(0.008)	(0.001)	(0.000)	(0.000)	(0.000)	(0.061)	(0.061)	(0.097)
	Mid-30s	0.512	1.341	-0.797	-2.840	-0.701	0.870	1.276	1.561
		(0.435)	(0.331)	(0.002)	(0.310)	(0.433)	(0.409)	(0.349)	(0.318)
Global Severity Index t-Score	21	-6.436	${ }^{-5.741}$	-11.241	-8.981	-10.878	-5.472	-4.092	-4.605
		(0.006)	(0.017)	(0.000)	(0.010)	(0.001)	(0.017)	(0.099)	(0.051)
Global Severity Index t-Score (BSI 18)	Mid-30s	-2.365	0.006	0.290	-0.886	0.330	-3.089	-1.529	-3.112
		(0.272)	(0.479)	(0.998)	(0.386)	(0.515)	(0.206)	(0.310)	(0.202)
BSI Factor	21 to Mid-30s	-0.624	-0.289	-0.747	-0.669	-0.677	-0.589	-0.283	-0.552
		(0.007)	(0.197)	(0.001)	(0.997)	(0.145)	(0.023)	(0.216)	(0.035)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

D. 10 Treatment Effects for Pooled Sample, Step Down

In the tables with step down, we follow Romano and Wolf (2005) to account for multiple hypotheses. This method allows us to confirm that we are not falsely rejecting hypotheses by virtue of the number of hypotheses alone.

Table D.68: Treatment Effects on IQ Scores, Pooled Sample, Step Down

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Std. IQ Test	2	10.116	10.121	10.609	10.826	11.810	9.863	9.937	10.216
		(0.001)	(0.001)	(0.001)	(0.001)	(0.002)	(0.001)	(0.001)	(0.001)
	3	13.450	13.557	19.242	19.794	21.539	11.314	11.507	11.778
		(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)
	3.5	8.387	7.881	11.255	11.234	12.349	7.276	6.727	7.006
		(0.001)	(0.001)	(0.001)	(0.001)	(0.002)	(0.003)	(0.010)	(0.008)
	4	9.166	8.897	11.985	12.068	13.778	8.149	7.921	8.528
		(0.001)	(0.001)	(0.004)	(0.005)	(0.002)	(0.002)	(0.008)	(0.004)
	4.5	8.380	7.911	13.287	13.110	14.416	6.717	6.130	6.825
		(0.001)	(0.001)	(0.001)	(0.001)	(0.002)	(0.006)	(0.013)	(0.014)
	5	6.362	5.425	8.310	8.297	9.486	5.760	4.575	5.592
		(0.004)	(0.019)	(0.040)	(0.047)	(0.030)	(0.016)	(0.077)	(0.024)
	6.6	5.956	5.610	4.088	5.295	5.103	5.850	5.333	6.053
		(0.013)	(0.031)	(0.371)	(0.247)	(0.284)	(0.024)	(0.055)	(0.023)
	7	5.373	5.248	6.575	6.343	5.188	5.066	5.005	5.531
		(0.028)	(0.038)	(0.131)	(0.137)	(0.284)	(0.038)	(0.077)	(0.047)
	8	4.932	4.444	2.570	4.824	4.682	4.948	3.920	4.822
		(0.028)	(0.071)	(0.490)	(0.324)	(0.323)	(0.038)	(0.120)	(0.059)
	12	4.524	2.691	3.251	2.785	2.752	4.766	2.792	3.574
		(0.028)	(0.196)	(0.371)	(0.389)	(0.392)	(0.038)	(0.174)	(0.094)
	15	5.771	3.294	1.497	0.577	0.553	6.522	4.021	5.118
		(0.026)	(0.196)	(0.490)	(0.446)	(0.441)	(0.035)	(0.164)	(0.068)
	21	4.425	1.670	4.549	2.747	3.129	4.353	1.682	2.340
		(0.028)	(0.196)	(0.048)	(0.254)	(0.176)	(0.038)	(0.211)	(0.120)
IQ Factor	2 to 5	0.785	0.752	1.056	1.061	1.177	0.705	0.660	0.714
		(0.001)	(0.001)	(0.003)	(0.005)	(0.006)	(0.002)	(0.003)	(0.005)
	6 to 12	0.446	0.368	0.432	0.492	0.460	0.449	0.336	0.447
		(0.028)	(0.196)	(0.371)	(0.324)	(0.320)	(0.038)	(0.193)	(0.096)
	15 to 21	-0.489	-0.233	-0.312	-0.174	-0.194	-0.517	-0.264	-0.347
		(0.013)	(0.196)	(0.305)	(0.389)	(0.392)	(0.028)	(0.193)	(0.094)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.69: Treatment Effects on Achievement Scores, Pooled Sample, Step Down

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Std. Achv. Test	5.5	8.029	7.480	14.284	15.582	14.192	6.223	4.844	5.818
		(0.005)	(0.020)	(0.002)	(0.001)	(0.002)	(0.037)	(0.193)	(0.094)
	6	4.543	4.670	6.178	6.638	6.639	4.075	4.035	4.412
		(0.008)	(0.002)	(0.067)	(0.045)	(0.040)	(0.021)	(0.003)	(0.005)
	6.5	2.767	2.706	2.049	1.922	2.103	2.931	2.962	3.606
		(0.068)	(0.132)	(0.444)	(0.363)	(0.358)	(0.100)	(0.193)	(0.094)
	7	3.435	3.349	5.227	5.591	5.812	3.025	2.705	3.589
		(0.068)	(0.132)	(0.444)	(0.145)	(0.159)	(0.119)	(0.193)	(0.099)
	7.5	1.937	2.741	0.667	2.883	3.019	2.308	2.643	3.408
		(0.147)	(0.132)	(0.444)	(0.362)	(0.358)	(0.121)	(0.193)	(0.094)
	8	4.207	5.004	1.630	4.835	4.227	4.959	5.059	5.890
		(0.050)	(0.020)	(0.402)	(0.204)	(0.303)	(0.037)	(0.025)	(0.018)
	8.5	5.938	7.288	5.046	5.780	4.914	5.507	7.217	7.470
		(0.010)	(0.002)	(0.269)	(0.239)	(0.353)	(0.025)	(0.001)	(0.004)
	15	5.163	3.314	5.177	3.892	4.132	5.424	3.156	4.137
		(0.028)	(0.132)	(0.180)	(0.320)	(0.303)	(0.037)	(0.193)	(0.094)
	21	5.217	2.166	4.504	2.099	2.804	5.521	2.184	3.478
		(0.050)	(0.176)	(0.269)	(0.363)	(0.358)	(0.057)	(0.193)	(0.104)
Achievement Factor	5.5 to 12	0.512	0.526	0.634	0.734	0.688	0.474	0.467	0.516
		(0.050)	(0.053)	(0.180)	(0.158)	(0.198)	(0.057)	(0.098)	(0.088)
	15 to 21	-0.460	-0.246	-0.431	-0.271	-0.311	-0.485	-0.239	-0.340
		(0.028)	(0.132)	(0.218)	(0.362)	(0.353)	(0.037)	(0.193)	(0.099)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.70: Treatment Effects on HOME Scores, Pooled Sample, Step Down

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
HOME Score	0.5	1.005	0.100	1.332	0.537	0.889	0.566	-0.148	0.194
		(0.363)	(0.708)	(0.254)	(0.338)	(0.245)	(0.830)	(0.746)	(0.949)
	1.5	1.126	0.434	2.706	1.984	2.964	0.368	-0.090	0.436
		(0.363)	(0.708)	(0.161)	(0.179)	(0.138)	(0.830)	(0.746)	(0.908)
	2.5	0.441	0.348	3.089	3.046	3.731	-0.588	-0.628	-0.048
		(0.403)	(0.708)	(0.063)	(0.030)	(0.020)	(0.830)	(0.693)	(0.949)
	3.5	2.112	1.211	8.288	7.537	8.850	0.306	-0.636	0.325
		(0.363)	(0.638)	(0.019)	(0.024)	(0.004)	(0.830)	(0.746)	(0.949)
	4.5	1.927	0.758	8.156	6.735	8.375	0.146	-0.784	0.337
		(0.363)	(0.708)	(0.024)	(0.024)	(0.016)	(0.830)	(0.746)	(0.949)
	8	1.004	0.590	3.102	4.081	3.646	0.492	-0.480	0.196
		(0.403)	(0.708)	(0.254)	(0.119)	(0.192)	(0.830)	(0.746)	(0.949)
HOME Factor	0.5 to 8	0.276	0.145	0.751	0.712	0.753	0.158	-0.018	0.199
		(0.323)	(0.638)	(0.060)	(0.048)	(0.057)	(0.745)	(0.746)	(0.644)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.71: Treatment Effects on Parental Income, Pooled Sample, Step Down

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Parental Labor Income	1.5	2,248	2,848	2,860	3,839	5,032	2,177	2,446	3,71
		(0.336)	(0.293)	(0.559)	(0.438)	(0.348)	(0.364)	(0.463)	(0.171)
	2.5	516	7.922	-2,177	-1,292	78.136	1,266	139	1,553
		(0.490)	(0.639)	(0.559)	(0.494)	(0.510)	(0.449)	(0.738)	(0.370)
	3.5	1,821	1,508	4,270	4,129	5,269	1,247	632	2,106
		(0.356)	(0.424)	(0.325)	(0.434)	(0.305)	(0.449)	(0.738)	(0.340)
	4.5	2,336	2,646	4,473	4,762	5,269	1,747	1,655	3,270
		(0.336)	(0.338)	(0.285)	(0.311)	(0.256)	(0.449)	(0.728)	(0.250)
	8	7,044	8,115	8,515	8,032	7,237	6,708	8,496	8,200
		(0.116)	(0.182)	(0.995)	(0.425)	(0.378)	(0.181)	(0.206)	(0.154)
	12	10,100	13,739	18,585	21,785	18,761	7,929	10,958	11,324
		(0.092)	(0.028)	(0.015)	(0.024)	(0.020)	(0.188)	(0.128)	(0.072)
	15	(9,596	5,808	5,132	4,723	7,169	10,155	5,272	8,833
		(0.058)	(0.293)	(0.559)	(0.494)	(0.473)	(0.044)	(0.458)	(0.171)
	21	9,008	7,627	10,316	12,687	7,952	9,461	7,326	6,880
		(0.066)	(0.211)	(0.995)	(0.434)	(0.473)	(0.059)	(0.254)	(0.193)
Parental Income Factor	1.5 to 21	0.074	0.005	0.450	0.602	0.473	0.013	-0.094	0.038
		(0.490)	(0.639)	(0.995)	(0.992)	(0.473)	(0.481)	(0.738)	(0.441)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.72: Treatment Effects on Mother's Employment, Pooled Sample, Step Down

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Mother Works	2	0.114	0.084	0.296	0.277	0.289	0.048	0.027	0.039
		(0.175)	(0.381)	(0.077)	(0.098)	(0.074)	(0.626)	(0.740)	(0.632)
	3	0.119	0.095	0.219	0.195	0.210	0.092	0.063	0.087
		(0.177)	(0.381)	(0.143)	(0.171)	(0.134)	(0.376)	(0.598)	(0.522)
	4	0.127	0.106	0.306	0.288	0.303	0.076	0.053	0.071
		(0.127)	(0.251)	(0.070)	(0.098)	(0.061)	(0.413)	(0.598)	(0.543)
	5	0.089	0.070	0.342	0.317	0.358	0.005	-0.024	0.017
		(0.245)	(0.418)	(0.060)	(0.098)	(0.049)	(0.626)	(0.740)	(0.632)
	21	-0.040	-0.062	0.180	0.148	0.154	-0.075	-0.096	-0.089
		(0.317)	(0.418)	(0.162)	(0.195)	(0.189)	(0.626)	(0.573)	(0.610)
Mother Works Factor	2 to 21	-0.275	-0.197	-0.793	-0.749	-0.796	-0.129	-0.020	-0.128
		(0.245)	(0.418)	(0.143)	(0.171)	(0.134)	(0.626)	(0.740)	(0.632)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.73: Treatment Effects on Father at Home, Pooled Sample, Step Down

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Father at Home	2	-0.010	0.019	-0.187	-0.186	-0.173	0.047	0.102	0.130
		(0.523)	(0.714)	(0.144)	(0.126)	(0.207)	(0.667)	(0.233)	(0.135)
	3	-0.076	-0.056	-0.291	-0.291	-0.285	0.002	0.040	0.079
		(0.377)	(0.618)	(0.035)	(0.034)	(0.052)	(0.855)	(0.394)	(0.226)
	4	-0.071	-0.050	-0.331	-0.327	-0.320	0.021	0.054	0.101
		(0.427)	(0.662)	(0.025)	(0.034)	(0.025)	(0.801)	(0.363)	(0.218)
	5	-0.093	-0.071	-0.369	-0.379	-0.367	-0.006	0.029	0.062
		(0.321)	(0.520)	(0.019)	(0.019)	(0.013)	(0.855)	(0.394)	(0.226)
	8	0.052	-0.009	-0.124	-0.183	-0.181	0.113	0.070	0.096
		(0.523)	(0.714)	(0.200)	(0.126)	(0.207)	(0.244)	(0.354)	(0.218)
Father at Home Factor	2 to 8	-0.139	-0.129	-0.776	-0.801	-0.781	0.069	0.114	0.241
		(0.523)	(0.662)	(0.031)	(0.034)	(0.023)	(0.794)	(0.394)	(0.218)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.74: Treatment Effects on Education, Pooled Sample, Step Down

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Graduated High School	30	0.164	0.094	0.390	0.335	0.351	0.103	0.029	0.059
		(0.111)	(0.479)	(0.011)	(0.034)	(0.029)	(0.382)	(0.634)	(0.443)
Attended Voc./Tech./Com. College	30	-0.091	-0.138	0.000	-0.016	-0.044	-0.100	-0.177	-0.152
		(0.402)	(0.298)	(0.525)	(0.549)	(0.526)	(0.382)	(0.175)	(0.246)
Graduated 4-year College	30	0.161	0.124	0.188	0.148	0.175	0.148	0.114	0.120
		(0.073)	(0.298)	(0.118)	(0.272)	(0.132)	(0.157)	(0.363)	(0.263)
Years of Edu.	30	1.367	1.156	2.513	2.380	2.424	0.986	0.785	0.886
		(0.004)	(0.021)	(0.002)	(0.002)	(0.001)	(0.058)	(0.205)	(0.113)
Ever Had Special Education by Grade 5	21	0.001	0.024	0.153	0.118	0.127	-0.030	-0.005	-0.040
		(0.496)	(0.715)	(0.384)	(0.509)	(0.446)	(0.382)	(0.634)	(0.443)
Total Number of Special Education by Grade 5	21	-0.547	-0.070	0.977	0.911	0.975	-0.844	-0.341	-0.849
		(0.402)	(0.715)	(0.362)	(0.416)	(0.357)	(0.382)	(0.634)	(0.352)
Ever Retained by Grade 5	21	-0.170	-0.172	-0.175	-0.175	-0.176	-0.170	-0.173	-0.184
		(0.111)	(0.148)	(0.362)	(0.370)	(0.357)	(0.157)	(0.175)	(0.175)
Total Number of Retention by Grade 5	21	-0.152	-0.097	-0.086	-0.062	-0.069	-0.156	-0.107	-0.156
		(0.307)	(0.501)	(0.525)	(0.549)	(0.526)	(0.370)	(0.493)	(0.336)
Education Factor	21 to 30	0.449	0.337	0.557	0.505	0.504	0.380	0.279	0.331
		(0.124)	(0.298)	(0.166)	(0.214)	(0.214)	(0.251)	(0.363)	(0.270)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.75: Treatment Effects on Subject Employment and Income, Pooled Sample, Step Down

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Employed	30	0.125	0.131	0.164	0.193	0.204	0.111	0.128	0.162
		(0.142)	(0.136)	(0.321)	(0.215)	(0.236)	(0.296)	(0.254)	(0.104)
Labor Income	21	167	-1,173	1,577	1,296	1,250	-429	-2,210	-1,406
		(0.453)	(0.379)	(0.536)	(0.420)	(0.369)	(0.418)	(0.543)	(0.395)
	30	12,377	10,821	17,677	16,943	18,512	10,847	8,383	11,000
		(0.181)	(0.379)	(0.133)	(0.215)	(0.155)	(0.296)	(0.543)	(0.395)
Public-Transfer Income	21	-728	-982	-247	-1,018	-1,615	-1,054	-948	-820
		(0.333)	(0.379)	(0.536)	(0.420)	(0.346)	(0.296)	(0.543)	(0.395)
	30	-1,832	-927	-1,613	-1,344	-1,451	-1,483	-534	-1,125
		(0.083)	(0.379)	(0.321)	(0.376)	(0.346)	(0.296)	(0.543)	(0.395)
Employment Factor	21 to 30	0.513	0.416	0.568	0.596	0.612	0.464	0.344	0.468
		(0.223)	(0.379)	(0.321)	(0.376)	(0.346)	(0.296)	(0.532)	(0.395)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.76: Treatment Effects on Marriage, Pooled Sample, Step Down

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Married	30	0.060	0.033	0.036	0.036	0.019	0.089	0.046	0.060
		(0.235)	(0.347)	(0.405)	(0.412)	(0.446)	(0.153)	(0.309)	(0.266)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.77: Treatment Effects on Crime, Pooled Sample, Step Down

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Total Felony Arrests	Mid-30s	0.045	0.239	-0.132	0.231	0.210	0.112	0.228	0.187
		(0.554)	(0.417)	(0.488)	(0.624)	(0.493)	(0.501)	(0.583)	(0.449)
Total Misdemeanor Arrests	Mid-30s	-0.689	-0.425	-1.445	-1.164	-1.270	-0.546	-0.249	-0.308
		(0.149)	(0.376)	(0.203)	(0.382)	(0.333)	(0.238)	(0.583)	(0.449)
Total Years Incarcerated	30	0.167	0.231	0.284	0.320	0.369	0.157	0.227	0.216
		(0.200)	(0.251)	(0.038)	(0.077)	(0.035)	(0.263)	(0.307)	(0.279)
Crime Factor	30 to Mid-30s	0.035	0.100	-0.048	-0.001	0.001	0.068	0.136	0.153
		(0.554)	(0.417)	(0.488)	(0.624)	(0.541)	(0.501)	(0.583)	(0.449)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.78: Treatment Effects on Tobacco, Drugs, Alcohol, Pooled Sample, Step Down

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Cig. Smoked per day last month	30	0.033	-0.054	-0.826	-0.966	-0.794	0.434	0.494	0.435
		(0.726)	(0.631)	(0.532)	(0.631)	(0.703)	(0.653)	(0.549)	(0.569)
Days drank alcohol last month	30	0.244	0.406	-0.156	-0.052	0.127	0.208	0.390	0.627
		(0.726)	(0.631)	(0.544)	(0.631)	(0.749)	(0.653)	(0.549)	(0.569)
Days binge drank alcohol last month	30	0.085	0.404	-0.267	-0.140	-0.116	0.151	0.606	0.393
		(0.726)	(0.538)	(0.544)	(0.631)	(0.749)	(0.653)	(0.397)	(0.508)
Self-reported drug user	Mid-30s	-0.142	-0.154	-0.253	-0.269	-0.275	-0.090	-0.082	-0.115
		(0.231)	(0.164)	(0.305)	(0.273)	(0.248)	(0.571)	(0.503)	(0.406)
Substance Use Factor	30 to Mid-30s	0.169	0.249	0.339	0.299	0.375	0.141	0.278	0.202
		(0.527)	(0.538)	(0.478)	(0.631)	(0.528)	(0.594)	(0.503)	(0.508)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.79: Treatment Effects on Hypertension, Pooled Sample, Step Down

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Systolic Blood Pressure (mm Hg)	Mid-30s	-5.625	-7.664	5.375	4.815	3.749	-9.437	-12.818	-11.155
		(0.173)	(0.139)	(0.501)	(0.621)	(0.708)	(0.064)	(0.039)	(0.035)
Diastolic Blood Pressure (mm Hg)	Mid-30s	-5.312	-5.556	-1.424	-0.497	-2.191	-7.219	-7.821	-8.195
		(0.117)	(0.139)	(0.842)	(0.831)	(0.740)	(0.064)	(0.081)	(0.040)
Prehypertension	Mid-30s	-0.176	-0.182	-0.049	-0.068	-0.063	-0.240	-0.271	-0.252
		(0.039)	(0.062)	(0.842)	(0.831)	(0.740)	(0.004)	(0.007)	(0.004)
Hypertension	Mid-30s	-0.036	-0.092	0.083	0.065	0.021	-0.083	-0.141	-0.136
		(0.359)	(0.219)	(0.832)	(0.831)	(0.740)	(0.226)	(0.139)	(0.119)
Hypertension Factor	Mid-30s	-0.332	-0.382	0.077	0.103	0.017	-0.501	-0.604	-0.586
		(0.117)	(0.139)	(0.842)	(0.831)	(0.740)	(0.051)	(0.043)	(0.040)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.80: Treatment Effects on Cholesterol, Pooled Sample, Step Down

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
High-Density Lipoprotein Chol. (mg/dL)	Mid-30s	3.872	5.756	5.806	7.595	5.785	2.964	5.156	3.302
		(0.188)	(0.062)	(0.114)	(0.077)	(0.132)	(0.358)	(0.109)	(0.367)
Dyslipidemia	Mid-30s	0.013	-0.047	0.035	-0.031	-0.013	0.032	-0.020	0.007
		(0.468)	(0.287)	(0.559)	(0.425)	(0.441)	(0.647)	(0.412)	(0.750)
Cholesterol Factor	Mid-30s	0.139	0.197	0.183	0.205	0.162	0.070	0.130	0.064
		(0.468)	(0.245)	(0.559)	(0.326)	(0.359)	(0.647)	(0.376)	(0.750)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.81: Treatment Effects on Diabetes, Pooled Sample, Step Down

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Hemoglobin Level (\%)	Mid-30s	0.003	0.128	0.032	0.051	0.120	-0.029	0.103	0.046
		(0.971)	(0.574)	(0.728)	(0.791)	(0.659)	(0.788)	(0.635)	(0.939)
Prediabetes	Mid-30s	0.004	0.002	-0.040	-0.023	-0.034	0.004	0.001	0.008
		(0.971)	(0.574)	(0.728)	(0.791)	(0.659)	(0.788)	(0.635)	(0.939)
Diabetes	Mid-30s	-0.002	0.021	0.043	0.033	0.051	-0.015	0.014	-0.003
		(0.971)	(0.574)	(0.130)	(0.423)	(0.127)	(0.746)	(0.635)	(0.939)
Diabetes Factor	Mid-30s	-0.000	0.081	0.079	0.044	0.096	-0.040	0.062	-0.013
		(0.971)	(0.574)	(0.724)	(0.791)	(0.659)	(0.788)	(0.635)	(0.939)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.82: Treatment Effects on Obesity, Pooled Sample, Step Down

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Measured BMI	Mid-30s	0.999	2.819	-0.202	1.149	0.721	1.072	3.121	1.832
		(0.834)	(0.378)	(0.469)	(0.797)	(0.695)	(0.892)	(0.331)	(0.699)
Obesity	Mid-30s	-0.050	0.056	-0.256	-0.119	-0.143	-0.013	0.085	0.011
		(0.834)	(0.871)	(0.129)	(0.759)	(0.676)	(0.892)	(0.764)	(0.899)
Severe Obesity	Mid-30s	-0.126	-0.048	-0.093	-0.052	-0.065	-0.147	-0.058	-0.107
		(0.406)	(0.871)	(0.451)	(0.797)	(0.695)	(0.375)	(0.764)	(0.699)
Waist-hip Ratio	Mid-30s	-0.006	-0.001	-0.037	-0.041	-0.039	0.003	0.009	0.012
		(0.834)	(0.871)	(0.451)	(0.759)	(0.676)	(0.892)	(0.764)	(0.801)
Abdominal Obesity	Mid-30s	-0.091	-0.034	-0.230	-0.167	-0.191	-0.041	0.028	0.002
		(0.663)	(0.871)	(0.176)	(0.478)	(0.361)	(0.892)	(0.764)	(0.899)
Framingham Risk Score	Mid-30s	0.348	-0.323	0.948	0.350	0.905	0.351	-0.505	0.087
		(0.834)	(0.871)	(0.345)	(0.797)	(0.492)	(0.892)	(0.764)	(0.899)
Obesity Factor	Mid-30s	0.068	-0.090	0.360	0.251	0.337	0.002	-0.195	-0.061
		(0.834)	(0.871)	(0.451)	(0.797)	(0.676)	(0.892)	(0.764)	(0.899)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.83: Treatment Effects on Mental Health t-Score, Pooled Sample, Step Down

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Somatization t-Score	21	-2.709	-2.978	-4.304	-4.393	-4.629	-2.258	-2.460	-3.00
		(0.181)	(0.250)	(0.324)	(0.281)	(0.277)	(0.303)	(0.389)	(0.247)
	Mid-30s	-1.057	-0.159	-2.144	-1.831	-2.072	-0.950	-0.055	-0.679
		(0.418)	(0.535)	(0.727)	(0.734)	(0.676)	(0.441)	(0.508)	(0.454)
Depression t-Score	21	-4.213	-3.221	-4.297	-3.969	-4.334	-4.058	-3.061	-3.668
		(0.061)	(0.250)	(0.352)	(0.415)	(0.323)	(0.100)	(0.330)	(0.172)
	Mid-30s	-1.904	-1.789	1.064	0.448	0.468	-2.974	-3.163	-3.154
		(0.329)	(0.333)	(0.738)	(0.734)	(0.676)	(0.303)	(0.335)	(0.307)
Anxiety t-Score	21	-2.749	-2.319	-2.996	-2.804	-2.941	-2.638	-2.092	-2.740
		(0.217)	(0.326)	(0.534)	(0.559)	(0.529)	(0.303)	(0.445)	(0.307)
	Mid-30s	-3.399	-3.378	-1.502	-2.337	-2.102	-4.155	-4.473	-4.712
		(0.217)	(0.250)	(0.738)	(0.734)	(0.676)	(0.230)	(0.156)	(0.168)
Hostility t-Score	21	-3.256	-2.543	-4.552	-4.015	-4.629	-2.894	-1.852	-2.549
		(0.114)	(0.264)	(0.352)	(0.415)	(0.323)	(0.230)	(0.445)	(0.307)
	Mid-30s	-1.091	-0.375	-2.076		-2.428	-1.082		-0.834
		(0.418)	(0.535)	(0.727)		(0.624)	(0.441)	(0.508)	(0.454)
Global Severity Index t-Score	21	-3.146	-2.736	-4.917	-4.235	-5.096	-2.564	-1.870	-2.851
		(0.157)	(0.264)	(0.203)	(0.276)	(0.192)	(0.303)	(0.445)	(0.307)
Global Severity Index t-Score (BSI 18)	Mid-30s	-2.516	-1.571	-0.151	-0.306	-0.532	-3.477	-2.696	-3.436
		(0.166)	(0.247)	(0.443)	(0.428)	(0.398)	(0.116)	(0.150)	(0.125)
BSI Factor	21 to Mid-30s	-0.507	-0.323	-0.527	-0.458	-0.478	-0.500	-0.353	-0.468
		(0.028)	(0.120)	(0.136)	(0.185)	(0.165)	(0.054)	(0.134)	(0.070)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

D. 11 Treatment Effects for Male Sample, Step Down

Table D.84: Treatment Effects on IQ Scores, Male Sample, Step Down

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Std. IQ Test	2	9.528	10.360	6.875	8.336	7.950	10.286	10.890	11.078
		(0.003)	(0.003)	(1.000)	(1.000)	(0.183)	(0.004)	(0.002)	(0.002)
	3	13.410	14.748	13.896	16.532	15.487	13.271	14.145	14.301
		(0.001)	(0.001)	(1.000)	(1.000)	(0.027)	(0.001)	(0.001)	(0.001)
	3.5	8.756	8.415	6.354	6.916	6.812	9.443	8.821	9.040
		(0.004)	(0.011)	(1.000)	(1.000)	(0.267)	(0.012)	(0.023)	(0.010)
	4	12.089	12.124	8.950	9.742	9.725	12.986	12.743	13.489
		(0.001)	(0.001)	(1.000)	(1.000)	(0.195)	(0.001)	(0.001)	(0.001)
	4.5	8.508	8.583	10.411	11.182	10.668	7.964	7.748	7.795
		(0.004)	(0.007)	(1.000)	(1.000)	(0.111)	(0.018)	(0.029)	(0.041)
	5	7.697	7.067	4.643	5.116	5.034	8.679	7.716	8.174
		(0.007)	(0.045)	(1.000)	(1.000)	(0.686)	(0.010)	(0.029)	(0.024)
	6.6	5.803	7.865	0.831	5.791	3.506	5.916	7.543	7.496
		(0.131)	(0.038)	(1.000)	(0.237)	(0.747)	(0.097)	(0.048)	(0.061)
	7	4.390	7.015	5.323	9.798	4.834	4.156	6.457	6.525
		(0.250)	(0.045)	(1.000)	(0.067)	(0.686)	(0.274)	(0.101)	(0.139)
	8	4.160	5.055	-2.514	2.223	-0.470	4.754	4.986	5.012
		(0.305)	(0.244)	(1.000)	(0.372)	(0.747)	(0.163)	(0.192)	(0.297)
	12	0.686	-1.041	-0.343	0.210	-0.945	0.943	-1.477	-0.802
		(0.466)	(0.708)	(1.000)	(1.000)	(0.747)	(0.378)	(0.662)	(0.678)
	15	4.447	3.635	-2.057	-1.598	-2.949	6.202	4.701	4.512
		(0.232)	(0.400)	(1.000)	(1.000)	(0.711)	(0.111)	(0.323)	(0.371)
	21	1.550	-0.561	0.471	-0.373	-1.522	2.307	-0.512	-0.479
		(0.466)	(0.708)	(1.000)	(1.000)	(0.747)	(0.378)	(0.662)	(0.678)
IQ Factor	2 to 5	0.865	0.875	0.735	0.823	0.793	0.903	0.886	0.913
		(0.001)	(0.004)	(1.000)	(1.000)	(0.191)	(0.002)	(0.002)	(0.004)
	6 to 12	0.329	0.333	0.349	0.584	0.348	0.323	0.250	0.291
		(0.332)	(0.506)	(1.000)	(1.000)	(0.747)	(0.352)	(0.635)	(0.594)
	15 to 21	-0.276	-0.126	0.063	0.089	0.210	-0.392	-0.175	-0.168
		(0.321)	(0.708)	(1.000)	(1.000)	(0.712)	(0.247)	(0.662)	(0.678)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.85: Treatment Effects on Achievement Scores, Male Sample, Step Down

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Std. Achv. Test	5.5	5.108	4.236	10.088	12.508	11.727	3.863	1.942	2.391
		(0.241)	(0.623)	(1.000)	(0.080)	(0.128)	(0.398)	(0.834)	(0.726)
	6	3.091	3.560	2.271	4.243	3.318	3.312	3.535	3.668
		(0.280)	(0.242)	(1.000)	(0.492)	(0.860)	(0.228)	(0.202)	(0.141)
	6.5	1.708		-0.892	-0.143	-0.680	2.521	2.599	2.326
		(0.604)		(1.000)	(0.994)	(0.994)	(0.501)	(0.678)	(0.699)
	7	0.622	1.918	0.219	3.342	1.067	0.748	1.280	0.791
		(0.682)	(0.727)	(1.000)	(0.632)	(0.994)	(0.679)	(0.834)	(0.875)
	7.5	0.019	1.586	-2.767	0.422	-1.214	0.799	2.120	2.383
		(0.682)	(0.727)	(1.000)	(0.700)	(0.993)	(0.679)	(0.649)	(0.574)
	8	2.309	4.641	-3.386	1.778	-1.475	3.903	5.691	5.656
		(0.536)	(0.207)	(1.000)	(0.654)	(0.983)	(0.279)	(0.074)	(0.125)
	8.5	3.910	6.433	-1.771	1.923	-0.993	4.199	6.804	6.512
		(0.370)	(0.122)	(1.000)	(0.663)	(0.994)	(0.300)	(0.052)	(0.103)
	15	2.231	1.428	1.379	2.254	0.551	2.532	0.859	0.909
		(0.536)	(0.727)	(1.000)	(1.000)	(0.994)	(0.501)	(0.834)	(0.875)
	21	1.181	-0.705	1.168	0.489	-0.297	1.356	-1.243	-0.894
		(0.679)	(0.876)	(1.000)	(1.000)	(0.994)	(0.679)	(0.834)	(0.875)
Achievement Factor	5.5 to 12	0.271	0.234	0.104	0.199	0.121	0.315	0.245	0.293
		(0.469)	(0.720)	(1.000)	(1.000)	(0.994)	(0.398)	(0.678)	(0.574)
	15 to 21	-0.154	-0.038	-0.114	-0.126	-0.014	-0.176	0.011	-0.006
		(0.604)	(0.876)	(1.000)	(1.000)	(0.994)	(0.590)	(0.834)	(0.875)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.86: Treatment Effects on HOME Scores, Male Sample, Step Down

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
HOME Score	0.5	0.372	-0.085	0.944	0.286	0.454	0.143	-0.304	-0.087
		(0.793)	(0.864)	(0.999)	(0.987)	(0.817)	(0.832)	(0.936)	(0.920)
	1.5	-0.500	-0.942	0.431	0.153	0.258	-0.766	-1.280	-0.880
		(0.793)	(0.803)	(0.999)	(0.987)	(0.817)	(0.826)	(0.717)	(0.843)
		0.141	0.429	1.654	2.263	2.228	-0.292	-0.153	0.144
	3.5	(0.793)	(0.864)	(0.999)	(0.987)	(0.602)	(0.832)	(0.936)	(0.920)
		1.404	0.819	2.897	3.020	2.906	0.962	0.231	0.732
	4.5	1.146	$0.864)$	(0.999)	(0.350)	(0.673)	(0.832)	(0.936)	(0.886)
		(0.761)	(0.864)	$(0.312$	2.310	2.833	0.527	-0.301	0.217
	8	1.548	0.400	-0.898	(0.350)	(0.631)	(0.832)	(0.936)	(0.920)
HOME Factor	0.5 to 8	(0.756)	(0.864)	(0.999)	(0.383)	-1.538	2.062	0.363	0.133
		(0.554)	0.157	0.131	0.225	0.086	(0.682)	(0.936)	(0.920)
							0.320	0.126	0.282
					$0.999)$	(0.987)	(0.817)	(0.550)	(0.891)
(0.655)									

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.87: Treatment Effects on Parental Income, Male Sample, Step Down

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Parental Labor Income	1.5	330	274	-1,046	-2,304	-1,154	-9.244	282	860
		(0.915)	(0.927)	(1.000)	(0.830)	(0.857)	(0.959)	(0.955)	(0.891)
	2.5	673	-535	-1,167	$-2,991$	-1,844	478	-527	221
		(0.915)	(0.927)	(1.000)	(0.805)	(0.855)	(0.959)	(0.955)	(0.891)
	3.5	1,036	494	3,085	73.862	1,462	112	123	690
		(0.892)	(0.927)	(1.000)	(1.000)	(0.857)	(0.959)	(0.955)	(0.891)
	4.5	821	1,213	1,561	2,215	2,570	-81.743	-55.767	1,167
		(0.915)	(0.927)	(1.000)	(1.000)	(0.855)	(0.959)	(0.955)	(0.891)
	8	11,786	12,512	6,832	4,631	4,867	13,438	14,709	13,485
		(0.135)	(0.226)	(1.000)	(0.765)	(0.855)	(0.093)	(0.218)	(0.189)
	12	7,085	9,625	15,563	18,050	12,639	4,773	6,620	5,383
		(0.318)	(0.192)	(1.000)	(0.206)	(0.425)	(0.670)	(0.472)	(0.564)
	15	8,488	4,495	6,697	5,540	4,805	7,603	2,885	4,345
		(0.288)	(0.778)	(1.000)	(0.825)	(0.855)	(0.537)	(0.911)	(0.839)
	21	12,732	8,809	1,568	122	-933	15,124	10,784	10,283
		(0.068)	(0.456)	(1.000)	(1.000)	(0.857)	(0.032)	(0.367)	(0.240)
Parental Income Factor	1.5 to 21	-0.078	-0.108	0.368	0.807	0.363	-0.125	-0.225	-0.124
		(0.915)	(0.927)	(1.000)	(1.000)	(0.855)	(0.901)	(0.763)	(0.891)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.88: Treatment Effects on Mother's Employment, Male Sample, Step Down

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Mother Works	2	0.056	0.040	0.264	0.240	0.242	-0.004	-0.024	-0.018
		(0.445)	(0.483)	(1.000)	(1.000)	(0.236)	(0.653)	(0.700)	(0.699)
	3	0.150	0.145	0.261	0.240	0.242	0.116	0.110	0.117
		(0.263)	(0.366)	(1.000)	(1.000)	(0.236)	(0.482)	(0.617)	(0.567)
	4	0.134	0.125	0.287	0.273	0.272	0.090	0.077	0.089
		(0.263)	(0.366)	(1.000)	$(\mathbf{0 . 0 8 7})$	(0.203)	(0.523)	(0.676)	(0.578)
	5	0.111	0.100	0.311	0.289	0.291	0.061	0.041	0.054
		(0.368)	(0.483)	(1.000)	(1.000)	(0.231)	(0.592)	(0.700)	(0.699)
Mother Works Factor	21	-0.058	-0.102	-0.086	-0.129	-0.136	-0.036	-0.082	-0.067
		(0.445)	(0.483)	(1.000)	(1.000)	(0.310)	(0.653)	(0.700)	(0.699)
		-0.341	-0.314	-0.932	-0.893	-0.875	-0.182	-0.115	-0.165
		(0.368)	(0.483)	(1.000)	(1.000)	(0.236)	(0.592)	(0.700)	(0.676)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.89: Treatment Effects on Father at Home, Male Sample, Step Down

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Father at Home	2	-0.018	0.080	-0.282	-0.205	-0.226	0.057	0.169	0.171
		(0.705)	(0.723)	(1.000)	(0.171)	(0.184)	(0.751)	(0.206)	(0.197)
	3	-0.076	-0.007	-0.243	-0.192	-0.201	-0.029	0.049	0.071
		(0.595)	(0.937)	(1.000)	(0.171)	(0.184)	(0.832)	(0.326)	(0.283)
	4	-0.075	-0.000	-0.339	-0.281	-0.290		0.082	0.104
		(0.595)	(0.937)	(1.000)	(0.171)	(0.171)		(0.282)	(0.273)
	5	-0.057	0.021	-0.429	-0.383	-0.379	0.036	0.127	0.143
Father at Home Factor	2 to 8	$-0.678)$	(0.937)	(1.000)	(0.171)	(0.072)	(0.832)	(0.259)	(0.252)
		(0.688)	(0.937)	(1.000)	(0.171)	(0.175)	(0.832)	(0.263)	(0.252)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.90: Treatment Effects on Education, Male Sample, Step Down

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Graduated High School	30	0.073	0.044	0.114	0.116	0.083	0.077	0.040	0.063
		(0.653)	(0.582)	(1.000)	(1.000)	(0.908)	(0.591)	(0.597)	(0.565)
Attended Voc./Tech./Com. College	30	-0.099	-0.169	0.086	0.050	0.020	-0.138	-0.235	-0.233
		(0.653)	(0.505)	(1.000)	(1.000)	(0.909)	(0.591)	(0.278)	(0.215)
Graduated 4-year College	30	0.170	0.138	0.124	0.149	0.099	0.179	0.135	0.143
		(0.280)	(0.505)	(1.000)	(0.219)	(0.896)	(0.292)	(0.538)	(0.473)
Years of Edu.	30	0.525	0.541	0.857	1.010	0.777	0.385	0.351	0.344
		(0.564)	(0.505)	(1.000)	(1.000)	(0.638)	(0.591)	(0.597)	(0.565)
Ever Had Special Education by Grade 5	21	-0.035	-0.062	0.158	0.050	0.128	-0.085	-0.095	-0.100
		(0.653)	(0.582)	(1.000)	(1.000)	(0.883)	(0.591)	(0.597)	(0.565)
Total Number of Special Education by Grade 5	21	-0.544	-0.342	0.019	-0.807	0.154	-0.690	-0.300	-0.458
		(0.653)	(0.582)	(1.000)	(1.000)	(0.909)	(0.591)	(0.597)	(0.565)
Ever Retained by Grade 5	21	-0.095	-0.150	-0.023	-0.134	-0.061	-0.113	-0.146	-0.154
		(0.653)	(0.505)	(1.000)	(1.000)	(0.909)	(0.591)	(0.504)	(0.473)
Total Number of Retention by Grade 5	21	-0.070	-0.114	0.031	-0.094	0.006	-0.096	-0.109	-0.128
		(0.653)	(0.541)	(1.000)	(1.000)	(0.909)	(0.591)	(0.597)	(0.565)
Education Factor	21 to 30	0.344	0.328	0.230	0.420	0.219	0.385	0.295	0.375
		(0.437)	(0.505)	(1.000)	(1.000)	(0.896)	(0.431)	(0.538)	(0.437)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.91: Treatment Effects on Subject Employment and Income, Male Sample, Step Down

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Employed	30	0.119	0.196	-0.029	0.108	0.040	0.176	0.237	0.261
		(0.456)	(0.136)	(0.999)	(1.000)	(0.567)	(0.320)	(0.113)	(0.080)
Labor Income	21	-1,672	-3,084	-3,951	-5,462	-4,787	-1,527	-3,199	$-3,240$
		(0.501)	(0.449)	(0.999)	(1.000)	(0.475)	(0.661)	(0.491)	(0.461)
	30	19,810	24,365	17,909	25,220	20,611	20,065	23,072	21,836
		(0.357)	(0.293)	(0.999)	(1.000)	(0.390)	(0.324)	(0.339)	(0.321)
Public-Transfer Income	21	315	375	1,376	1,543	1,543	-58.901	-51.112	90.060
		(0.501)	(0.449)	(0.999)	(0.168)	(0.390)	(0.661)	(0.636)	(0.546)
	30	-530	-462	287	337	347	-279	-215	-245
		(0.456)	(0.449)	(0.999)	(1.000)	(0.390)	(0.661)	(0.636)	(0.546)
Employment Factor	21 to 30	0.501	0.635	0.053	0.251	0.102	0.644	0.724	0.693
		(0.456)	(0.408)	(0.999)	(1.000)	(0.567)	(0.408)	(0.414)	(0.365)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.92: Treatment Effects on Marriage, Male Sample, Step Down

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Married	30	0.024	-0.026	0.029	0.053	-0.009	0.053	-0.023	0.003
		(0.423)	(0.420)	$\mathbf{(0 . 0 0 3)}$	(0.999)	(0.481)	(0.356)	(0.418)	(0.494)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.93: Treatment Effects on Crime, Male Sample, Step Down

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Total Felony Arrests	Mid-30s	0.196	0.685	0.946	1.523	1.340	0.017	0.481	0.188
		(0.396)	(0.429)	(0.016)	(0.120)	(0.081)	(0.514)	(0.562)	(0.434)
Total Misdemeanor Arrests	Mid-30s	-0.501	-0.244	-0.251	-0.298	-0.034	-0.666	-0.246	-0.507
		(0.395)	(0.429)	(0.016)	(0.314)	(0.422)	(0.337)	(0.562)	(0.411)
Total Years Incarcerated	30	0.348	0.548	0.553	0.772	0.701	0.338	0.538	0.471
		(0.261)	(0.144)	(0.016)	(0.052)	(0.030)	(0.310)	(0.194)	(0.213)
Crime Factor	30 to Mid-30s	0.192	0.397	0.560	0.690	0.649	0.116	0.371	0.226
		(0.396)	(0.429)	(0.016)	(0.998)	(0.183)	(0.514)	(0.562)	(0.434)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.94: Treatment Effects on Tobacco, Drugs, Alcohol, Male Sample, Step Down

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Cig. Smoked per day last month	30	0.826	0.395	0.757	-0.259	0.643	1.429	1.270	1.216
		(0.520)	(0.572)	(1.000)	(1.000)	(0.695)	(0.343)	(0.361)	(0.384)
Days drank alcohol last month	30	0.805	1.191	-0.186	0.650	0.087	0.944	1.210	1.337
		(0.520)	(0.572)	(1.000)	(1.000)	(0.695)	(0.343)	(0.368)	(0.384)
Days binge drank alcohol last month	30	0.500	0.657	0.543	0.458	0.695	0.491	0.729	0.702
		(0.421)	(0.369)	(1.000)	(1.000)	(0.421)	(0.343)	(0.361)	(0.347)
Self-reported drug user	Mid-30s	-0.333	-0.438	-0.500	-0.673	-0.557	-0.233	-0.326	-0.330
		(0.092)	(0.014)	(1.000)	(0.010)	(0.067)	(0.343)	(0.102)	(0.112)
Substance Use Factor	30 to Mid-30s	0.261	0.237	0.055	0.011	0.074	0.389	0.367	0.414
		(0.520)	(0.572)	(1.000)	(1.000)	(0.695)	(0.343)	(0.368)	(0.384)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.95: Treatment Effects on Hypertension, Male Sample, Step Down

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Systolic Blood Pressure (mm Hg)	Mid-30s	-9.791	-13.275	15.280	14.196	14.976	-19.920	-24.166	-18.559
		(0.196)	(0.086)	(0.990)	(0.116)	(0.001)	(0.035)	(0.010)	(0.014)
Diastolic Blood Pressure (mm Hg)	Mid-30s	-10.854	-14.134	-8.640	-9.709	-8.741	-14.240	-18.387	-13.987
		(0.089)	(0.012)	(0.990)	(0.200)	(0.168)	(0.035)	(0.011)	(0.014)
Prehypertension	Mid-30s	-0.137	-0.159	0.053	0.082	0.077	-0.280	-0.311	-0.283
		(0.196)	(0.154)	(0.990)	(0.610)	(0.771)	(0.006)	(0.022)	(0.012)
Hypertension	Mid-30s	-0.291	-0.377	-0.053	-0.120	-0.074	-0.420	-0.492	-0.434
		(0.115)	(0.036)	(0.990)	(0.610)	(0.771)	(0.035)	(0.018)	(0.014)
Hypertension Factor	Mid-30s	-0.643	-0.875	0.070	-0.062	-0.025	-1.044	-1.334	-1.140
		(0.115)	(0.036)	(0.990)	(0.610)	(0.771)	(0.031)	(0.014)	(0.014)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.96: Treatment Effects on Cholesterol, Male Sample, Step Down

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
High-Density Lipoprotein Chol. (mg/dL)	Mid-30s	7.753	6.583	-0.267	-2.328	-3.489	9.015	7.542	6.795
		(0.034)	(0.104)	(0.971)	(0.353)	(0.277)	(0.018)	(0.091)	(0.060)
Dyslipidemia	Mid-30s	-0.094	-0.165	0.200	0.192	0.198	-0.108	-0.181	-0.150
		(0.246)	(0.156)	(0.971)	(0.235)	(0.035)	(0.242)	(0.163)	(0.173)
Cholesterol Factor	Mid-30s	0.477	0.446	-0.344	-0.417	-0.421	0.552	0.514	0.477
		(0.100)	(0.156)	(0.971)	(0.949)	(0.135)	(0.086)	(0.163)	(0.132)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.97: Treatment Effects on Diabetes, Male Sample, Step Down

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Hemoglobin Level (\%)	Mid-30s	0.322	0.449	0.240	0.320	0.359	0.286	0.416	0.417
		(0.366)	(0.389)	(0.980)	(0.245)	(0.445)	(0.422)	(0.456)	(0.380)
Prediabetes	Mid-30s	-0.129	-0.149	-0.267	-0.358	-0.309	-0.138	-0.161	-0.143
		(0.433)	(0.389)	(0.980)	(0.245)	(0.445)	(0.439)	(0.456)	(0.419)
Diabetes	Mid-30s	0.080	0.093	0.080	0.078	0.095	0.080	0.097	0.095
		(0.109)	(0.177)	(0.980)	(0.245)	$(\mathbf{0 . 0 7 9}$	(0.124)	(0.181)	(0.115)
Diabetes Factor	Mid-30s	0.218	0.271	0.106	0.076	0.163	0.199	0.267	0.259
		(0.433)	(0.389)	(0.980)	(0.245)	(0.445)	(0.439)	(0.456)	(0.419)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.98: Treatment Effects on Obesity, Male Sample, Step Down

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Measured BMI	Mid-30s	-0.125	0.427	-0.684	0.694	0.903	-0.627	-0.208	-0.481
		(0.952)	(0.895)	(0.996)	(0.828)	(0.778)	(0.917)	(0.791)	(0.851)
Obesity	Mid-30s	0.000	0.017	-0.128	-0.011	0.034	-0.017	-0.026	-0.060
		(0.952)	(0.895)	(0.996)	(0.828)	(0.778)	(0.917)	(0.791)	(0.851)
Severe Obesity	Mid-30s	-0.160	-0.106	-0.185	-0.122	-0.125	-0.185	-0.122	-0.131
		(0.537)	(0.772)	(0.996)	(0.824)	(0.778)	(0.519)	(0.698)	(0.673)
Waist-hip Ratio	Mid-30s	0.005	-0.002	0.018	0.031	0.022	-0.002	-0.015	-0.006
		(0.952)	(0.895)	(0.996)	(0.824)	(0.778)	(0.917)	(0.759)	(0.851)
Abdominal Obesity	Mid-30s	0.003	-0.071	0.029	-0.005	0.046	0.029	-0.049	-0.021
		(0.952)	(0.861)	(0.996)	(0.828)	(0.778)	(0.917)	(0.791)	(0.851)
Framingham Risk Score	Mid-30s	-0.766	-0.294	1.491	1.874	1.811	-1.202	-0.717	-0.700
		(0.736)	(0.895)	(0.996)	(0.395)	(0.348)	(0.569)	(0.759)	(0.812)
Obesity Factor	Mid-30s	0.054	0.087	0.064	0.014	0.087	0.122	0.170	0.143
		(0.952)	(0.895)	(0.996)	(0.828)	(0.778)	(0.917)	(0.791)	(0.851)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.99: Treatment Effects on Mental Health t-Score, Male Sample, Step Down

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Somatization t-Score	21	-2.804	-3.813	-3.718	-4.711	-4.358	-2.295	-3.255	-3.818
		(0.518)	(0.352)	(1.000)	(1.000)	(0.527)	(0.649)	(0.539)	(0.326)
	Mid-30s	-3.066	-2.950	-4.852	-4.501	-4.912	-3.252	-2.867	-3.046
		(0.706)	(0.703)	(1.000)	(0.532)	(0.585)	(0.672)	(0.752)	(0.611)
Depression t-Score	21	-2.515	-1.499	1.649	1.632	1.645	-3.636	-2.460	-3.121
		(0.620)	(0.830)	(1.000)	(1.000)	(0.703)	(0.389)	(0.692)	(0.424)
	Mid-30s	-1.042	-1.436	3.148	3.760	1.942	-2.985	-3.246	-2.961
		(0.750)	(0.836)	(1.000)	(0.485)	(0.700)	(0.677)	(0.752)	(0.611)
Anxiety t-Score	21	0.400	0.352	3.857	2.356	3.396	-0.333	-0.301	-1.366
		(0.750)	(0.836)	(1.000)	(1.000)	(0.676)	(0.784)	(0.817)	(0.611)
	Mid-30s	-1.847	-2.114	1.630	2.105	0.720	-3.504	-3.559	-3.390
		(0.750)	(0.830)	(1.000)	(0.608)	(0.703)	(0.672)	(0.719)	(0.611)
Hostility t-Score	21	-1.471	-0.687	2.941	1.813	2.618	-2.251	-0.950	-1.812
		(0.750)	(0.836)	(1.000)	(1.000)	(0.700)	(0.649)	(0.817)	(0.611)
	Mid-30s	-1.556	-2.073	-1.889	-1.396	-2.708	-2.156	-2.639	-2.486
		(0.750)	(0.830)	(1.000)	(0.608)	(0.700)	(0.739)	(0.782)	(0.611)
Global Severity Index t-Score	21	0.246	0.477	1.978	1.551	0.495	0.330	0.989	-0.970
		(0.750)	(0.836)	(1.000)	(0.608)	(0.703)	(0.784)	(0.817)	(0.611)
Global Severity Index t-Score (BSI 18)	Mid-30s	-1.675	-1.771	0.111	0.866	-0.584	-2.989	-2.916	-2.793
		(0.438)	(0.430)	(0.978)	(0.382)	(0.740)	(0.371)	(0.360)	(0.372)
BSI Factor	21 to Mid-30s	-0.130	-0.008	-0.025	0.107	0.005	-0.170	-0.032	-0.140
		(0.438)	(0.468)	(0.978)	(0.951)	(0.740)	(0.371)	(0.435)	(0.372)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

D. 12 Treatment Effects for Female Sample, Step Down

Table D.100: Treatment Effects on IQ Scores, Female Sample, Step Down

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Std. IQ Test	2	10.700	9.752	13.949	15.675	15.284	9.431	8.035	9.353
		(0.001)	(0.002)	(0.003)	(0.004)	(0.001)	(0.007)	(0.010)	(0.007)
	3	13.333	12.462	23.729	26.222	26.738	9.211	8.146	9.189
		(0.004)	(0.002)	(0.003)	(0.004)	(0.001)	(0.037)	(0.106)	(0.049)
	3.5	8.049	6.899	16.187	19.211	18.019	5.049	3.115	4.968
		(0.012)	(0.056)	(0.003)	(0.003)	(0.001)	(0.168)	(0.551)	(0.228)
	4	6.035	5.190	14.812	17.597	17.630	3.007	1.654	3.484
		(0.097)	(0.248)	(0.004)	(0.007)	(0.003)	(0.245)	(0.626)	(0.326)
	4.5	8.162	7.081	16.058	18.631	18.185	5.318	3.121	5.820
		(0.024)	(0.064)	(0.003)	(0.004)	(0.001)	(0.203)	(0.576)	(0.228)
	5	4.921	3.614	12.425	14.882	14.489	2.698	0.374	3.000
		(0.106)	(0.383)	(0.010)	(0.013)	(0.009)	(0.245)	(0.626)	(0.326)
	6.6			7.339	8.939	6.883	5.773	2.344	4.438
		(0.106)		(0.049)	(0.045)	(0.117)	(0.203)	(0.626)	(0.326)
	7	6.365	3.751	7.796	7.034	5.568	5.992	3.274	4.369
		(0.106)	(0.383)	(1.000)	(0.082)	(0.259)	(0.203)	(0.594)	(0.326)
	8	5.906	4.050	7.857	10.599	9.880	5.360	2.237	4.660
		(0.106)	(0.383)	(0.049)	(0.021)	(0.047)	(0.203)	(0.626)	(0.326)
	12	8.688	6.843	6.850	6.468	6.435	9.120	7.244	8.432
		(0.012)	(0.042)	(0.049)	(0.061)	(0.117)	(0.013)	(0.076)	(0.031)
	15	6.467	2.695	6.110	3.413	5.083	6.315	2.481	5.069
		(0.106)	(0.383)	(1.000)	(1.000)	(0.259)	(0.203)	(0.626)	(0.326)
	21	7.261	4.337	9.440	7.413	8.713	6.485	3.583	5.312
		(0.024)	(0.248)	(1.000)	(1.000)	(0.007)	(0.095)	(0.483)	(0.195)
IQ Factor	2 to 5	0.694	0.615	1.367	1.606	1.561	0.488	0.328	0.508
		(0.017)	(0.056)	(0.003)	(0.004)	(0.004)	(0.121)	(0.457)	(0.150)
	6 to 12	0.567	0.439	0.523	0.698	0.580	0.579	0.398	0.606
		(0.106)	(0.383)	(1.000)	(1.000)	(0.259)	(0.203)	(0.541)	(0.305)
	15 to 21	-0.673	-0.352	-0.776	-0.550	-0.692	-0.624	-0.301	-0.507
		(0.029)	(0.373)	(1.000)	(1.000)	(0.040)	(0.099)	(0.576)	(0.228)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.101: Treatment Effects on Achievement Scores, Female Sample, Step Down

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Std. Achv. Test	5.5	12.314	9.870	19.650		18.482	9.869	5.326	11.035
		(0.006)	(0.036)	(0.010)		(0.001)	(0.054)	(0.353)	(0.033)
	6	6.269	6.135	10.379	10.918	9.862	5.018		5.255
		(0.023)	(0.016)	(0.019)	(0.014)	(0.005)	(0.070)		(0.047)
	6.5	3.909	3.859	6.394	6.809	6.030	3.517	3.415	4.934
		(0.055)	(0.104)	(0.994)	(0.156)	(0.057)	(0.094)	(0.263)	(0.071)
	7	6.411	6.411	12.724	12.732	12.633	5.415	5.110	6.476
		(0.011)	(0.019)	(0.994)	(0.014)	(0.001)	(0.054)	(0.118)	(0.033)
	7.5	4.133	2.960	4.300	6.192	6.927	4.082	1.933	4.625
		(0.084)	(0.159)	(0.220)	(0.156)	(0.057)	(0.109)	(0.375)	(0.079)
	8	6.619	5.012	7.125	9.324	9.541	6.465	3.291	6.190
		(0.049)	(0.113)	(0.139)	(0.082)	(0.057)	(0.070)	(0.353)	(0.071)
	8.5	8.407	8.542	12.299	12.302	11.963	7.223	7.668	8.736
		(0.013)	(0.016)	(0.026)	(0.020)	(0.016)	(0.054)	(0.043)	(0.008)
	15	8.275	5.583	9.618	7.114	8.384	8.477	5.120	7.417
		(0.023)	(0.104)	(0.994)	(0.990)	(0.005)	(0.054)	(0.263)	(0.071)
	21	9.116	4.546	8.420	3.921	6.495	9.420	4.554	7.475
		(0.023)	(0.159)	(0.994)	(0.990)	(0.057)	(0.054)	(0.353)	(0.071)
Achievement Factor	5.5 to 12	0.880	0.875	1.244	1.141	1.330	0.739	0.735	0.848
		(0.027)	(0.034)	(0.034)	(0.054)	(0.016)	(0.070)	(0.118)	(0.047)
	15 to 21	-0.769	-0.452	-0.803	-0.498	-0.665	-0.791	-0.431	-0.660
		(0.011)	(0.113)	(0.994)	(0.990)	(0.016)	(0.023)	(0.272)	(0.056)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.102: Treatment Effects on HOME Scores, Female Sample, Step Down

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
HOME Score	0.5	1.581	0.380	1.684	0.946	1.264	0.980	-0.045	0.440
		(0.288)	(0.617)	(0.169)	(0.307)	(0.236)	(0.742)	(0.730)	(0.930)
	1.5	2.668	2.107	4.729	3.783	5.472	1.544	1.237	1.756
		(0.136)	(0.319)	(0.036)	(0.107)	(0.047)	(0.650)	(0.730)	(0.603)
	2.5	0.762	0.760	4.434	5.322	5.173	-0.899	-1.068	-0.252
		(0.431)	(0.617)	(0.008)	(0.026)	(0.009)	(0.756)	(0.730)	(0.930)
	3.5	2.858	2.354	13.719	14.981	14.927	-0.309	-1.804	-0.048
		(0.304)	(0.508)	(0.001)	(0.012)	(0.002)	(0.885)	(0.730)	(0.930)
	4.5	2.736	1.505	12.957	13.445	13.953	-0.273	-1.703	0.470
		(0.318)	(0.617)	(0.005)	(0.026)	(0.009)	(0.885)	(0.730)	(0.930)
	8	0.659	1.112	5.909	8.035	7.078	-0.773	-1.326	0.447
		(0.431)	(0.617)	(0.998)	(0.107)	(0.057)	(0.880)	(0.730)	(0.930)
HOME Factor	0.5 to 8	0.266	0.179	1.162	1.281	1.218	0.010	-0.169	0.142
		(0.355)	(0.617)	(0.013)	(0.045)	(0.022)	(0.885)	(0.730)	(0.890)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.103: Treatment Effects on Parental Income, Female Sample, Step Down

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Parental Labor Income	1.5	4,516	6,640	5,865	8,164	9,688	5,069	6,136	7,346
		(0.310)	(0.213)	(1.000)	(0.246)	(0.066)	(0.270)	(0.311)	(0.089)
	2.5	222	591	-3,056	109	1,761	2,254	884	3,240
		(0.505)	(0.519)	(1.000)	(0.709)	(0.547)	(0.515)	(0.624)	(0.510)
	3.5	2,756	2,986	5,146	6,864	8,584	2,802	1,521	3,773
		(0.447)	(0.519)	(1.000)	(0.249)	(0.143)	(0.515)	(0.624)	(0.496)
	4.5	4,039	5,715	7,094	8,260	7,646	3,852	4,953	5,599
		(0.310)	(0.250)	(0.103)	(0.225)	(0.143)	(0.381)	(0.358)	(0.129)
	8	2,181	3,826	13,195	12,683	13,456	528	2,034	2,963
		(0.505)	(0.519)	(1.000)	(0.246)	(0.105)	(0.515)	(0.624)	(0.510)
	12	13,633	19,592	22,294	28,328	26,489	11,570	15,343	18,678
		(0.310)	(0.179)	(1.000)	(0.124)	(0.035)	(0.381)	(0.358)	(0.128)
	15	8,565	7,159	2,829	2,713	8,441	9,819	7,465	10,487
		(0.310)	(0.519)	(1.000)	(0.709)	(0.547)	(0.186)	(0.504)	(0.262)
	21	$5,708$	$8,670$	$25,270$	$45,697$	$25,142$	$4,446$	$6,251$	$3,943$
		(0.402)	(0.519)	(1.000)	(0.009)	(0.001)	(0.515)	(0.589)	(0.510)
Parental Income Factor	1.5 to 21	0.286	0.286	0.554	0.506	0.635	0.219	0.227	0.298
		(0.447)	(0.519)	(1.000)	(0.709)	(0.302)	(0.515)	(0.615)	(0.510)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.104: Treatment Effects on Mother's Employment, Female Sample, Step Down

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Mother Works	2	0.168	0.112	0.323	0.297	0.333	0.101	0.066	0.097
		(0.163)	(0.486)	(0.117)	(0.223)	(0.119)	(0.538)	(0.619)	(0.580)
	3	0.087	0.027	0.177	0.139	0.179	0.066	-0.001	0.058
		(0.588)	(0.868)	(0.217)	(0.321)	(0.186)	(0.632)	(0.818)	(0.734)
	4	0.118	0.071	0.319	0.287	0.328	0.060	0.025	0.054
		(0.372)	(0.734)	(0.121)	(0.238)	(0.126)	(0.632)	(0.818)	(0.734)
	5	0.067	0.038	0.367	0.276	0.422	-0.056	-0.076	-0.024
Mother Works Factor	2 to 21	-0.207	-0.069	-0.662	-0.527	-0.731	-0.071	0.081	-0.092
		(0.588)	(0.868)	(0.217)	(0.321)	(0.186)	(0.632)	(0.818)	(0.734)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.105: Treatment Effects on Father at Home, Female Sample, Step Down

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Father at Home	2	-0.012	-0.033	-0.115	-0.118	-0.149	0.034	0.023	0.087
		(0.555)	(0.542)	(0.274)	(0.422)	(0.354)	(0.635)	(0.902)	(0.541)
	3	-0.079	-0.098	-0.337	-0.336	-0.371	0.034	0.023	0.087
		(0.528)	(0.336)	$\mathbf{(0 . 0 8 0})$	$\mathbf{(0 . 0 9 9)}$	$\mathbf{(0 . 0 8 6)}$	(0.635)	(0.902)	(0.541)
	4	-0.071	-0.100	-0.330	-0.344	-0.364	0.041	0.025	0.096
		(0.531)	(0.343)	$\mathbf{(0 . 0 9 4)}$	$\mathbf{(0 . 0 9 1)}$	$\mathbf{(0 . 0 8 7})$	(0.635)	(0.902)	(0.511)
	5	-0.139	-0.152	-0.333	-0.324	-0.385	-0.056	-0.069	-0.020
		(0.238)	(0.183)	$\mathbf{(0 . 0 9 4)}$	(0.159)	$\mathbf{(0 . 0 8 6)}$	(0.635)	(0.726)	(0.729)
Father at Home Factor	2	0.056	-0.007	-0.063	-0.072	-0.061	0.092	0.025	0.058
		(0.555)	(0.542)	(0.999)	(0.422)	(0.354)	(0.483)	(0.902)	(0.680)
		-0.184	-0.253	-0.820	-0.819	-0.943	0.010	-0.042	0.097
		(0.531)	(0.328)	(0.999)	(0.999)	$\mathbf{(0 . 0 7 0)}$	(0.635)	(0.902)	(0.729)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.106: Treatment Effects on Education, Female Sample, Step Down

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Graduated High School	30	0.253	0.131	0.642	0.553	0.595	0.137	-0.026	0.066
		(0.072)	(0.513)	(0.001)	(0.021)	(0.001)	(0.537)	(0.698)	(0.701)
Attended Voc./Tech./Com. College	30	-0.057	-0.115	-0.050	-0.109	-0.071	-0.041	-0.127	-0.051
		(0.699)	(0.513)	(0.503)	(0.559)	(0.647)	(0.585)	(0.681)	(0.701)
Graduated 4-year College	30	0.134	0.131	0.217		0.219	0.106	0.100	0.093
		(0.309)	(0.504)	(0.014)		(0.031)	(0.537)	(0.698)	(0.641)
Years of Edu.	30	2.143	1.843	4.025	3.861	3.923	1.567	1.163	1.409
		(0.003)	(0.033)	(0.001)	(0.010)	(0.001)	(0.040)	(0.365)	(0.111)
Ever Had Special Education by Grade 5	21	0.022	0.141	0.133	0.172	0.115	0.018	0.117	0.015
		(0.699)	(0.513)	(0.503)	(0.559)	(0.647)	(0.585)	(0.698)	(0.701)
Total Number of Special Education by Grade 5	21	-0.622	0.382	1.725	2.012	1.585	-1.054	-0.242	-1.297
		(0.699)	(0.546)	(0.014)	(0.098)	(0.046)	(0.553)	(0.698)	(0.641)
Ever Retained by Grade 5	21	-0.256	-0.237	-0.325	-0.221	-0.279	-0.238	-0.257	-0.214
		(0.094)	(0.171)	(0.153)	(0.440)	(0.248)	(0.202)	(0.231)	(0.328)
Total Number of Retention by Grade 5	21	-0.233	-0.098	-0.192	-0.019	-0.125	-0.221	-0.132	-0.180
		(0.371)	(0.546)	(0.471)	(0.617)	(0.647)	(0.537)	(0.698)	(0.641)
Education Factor	21 to 30	0.561	0.356	0.841	0.688	0.726	0.420	0.243	0.309
		(0.245)	(0.513)	(0.082)	(0.254)	(0.131)	(0.511)	(0.698)	(0.641)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.107: Treatment Effects on Subject Employment and Income, Female Sample, Step Down

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Employed	30	0.131	0.081	0.333	0.381	0.340	0.056	-0.010	0.070
		(0.261)	(0.501)	$\mathbf{(0 . 0 8 5})$	(0.108)	(0.131)	(0.703)	(0.809)	(0.660)
Labor Income	21	1,741	315	6,932	6,270	7,210	496	$-1,741$	263
		(0.407)	(0.586)	(0.997)	(0.150)	$(\mathbf{0 . 0 8 6})$	(0.703)	(0.781)	(0.660)
	30	2,548	1,884	14,356	15,094	13,096	-425	$-2,677$	$-2,122$
Public-Transfer Income		21	(0.407)	(0.586)	$\mathbf{(0 . 0 6 7)}$	(0.133)	$\mathbf{(0 . 0 8 6})$	(0.703)	(0.781)
		$-1,424$	$-2,389$	$-1,322$	$-2,862$	$-2,875$	$-1,751$	$-1,536$	$-1,481$
		(0.261)	(0.124)	(0.997)	(0.101)	(0.131)	(0.289)	(0.484)	(0.393)
	30	$-2,672$	-953	$-3,053$	$-2,762$	$-2,775$	$-2,269$	-333	$-1,603$
Employment Factor		(0.176)	(0.530)	$\mathbf{(0 . 0 8 5)}$	(0.150)	(0.131)	(0.353)	(0.809)	(0.607)
	21 to 30	0.434	0.292	0.970	1.077	0.999	0.274	0.004	0.244
		(0.309)	(0.501)	(0.997)	(0.997)	(0.131)	(0.614)	(0.809)	(0.660)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.108: Treatment Effects on Marriage, Female Sample, Step Down

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Married	30	0.109	0.122	0.058	0.104	0.065	0.137	0.120	0.132
		(0.184)	(0.181)	(0.391)	(0.309)	(0.410)	(0.132)	(0.195)	(0.167)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.109: Treatment Effects on Crime, Female Sample, Step Down

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Total Felony Arrests	Mid-30s	-0.328	-0.351	-1.345	-0.944	-0.965	-0.077	-0.059	0.004
		(0.134)	(0.215)	(0.003)	(0.167)	(0.186)	(0.235)	(0.432)	(0.610)
Total Misdemeanor Arrests	Mid-30s	-0.973	-0.737	-2.708	-2.010	-2.451	-0.588	-0.269	-0.201
		(0.134)	(0.238)	(0.003)	(0.167)	(0.186)	(0.221)	(0.432)	(0.610)
Total Years Incarcerated	30	-0.024	-0.015				-0.037	-0.019	-0.038
		(0.134)	(0.238)				(0.221)	(0.432)	(0.294)
Crime Factor	30 to Mid-30s	-0.239	-0.226	-0.735	-0.677	-0.725	-0.124	-0.052	-0.070
		(0.134)	(0.238)	(0.003)	(0.998)	(0.186)	(0.223)	(0.432)	(0.587)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.110: Treatment Effects on Tobacco, Drugs, Alcohol, Female Sample, Step Down

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Cig. Smoked per day last month	30	-0.765	-0.164	-2.338	-2.086	-2.137	-0.530	0.759	-0.296
		(0.844)	(0.857)	(0.285)	(0.558)	(0.457)	(0.695)	(0.610)	(0.943)
Days drank alcohol last month	30	-0.742	0.135	-0.567	0.585	-0.259	-0.919	0.196	-0.464
		(0.844)	(0.857)	(0.385)	(0.745)	(0.559)	(0.633)	(0.611)	(0.943)
Days binge drank alcohol last month	30	-0.358	0.249	-1.063	-0.106	-0.913	-0.231	0.531	0.035
		(0.844)	(0.828)	(0.341)	(0.745)	(0.559)	(0.695)	(0.503)	(0.943)
Self-reported drug user	Mid-30s	-0.033	0.004	-0.116	-0.114	-0.101	-0.010	0.020	0.033
		(0.844)	(0.857)	(0.998)	(0.745)	(0.559)	(0.695)	(0.611)	(0.943)
Substance Use Factor	30 to Mid-30s	0.001	0.462	0.362	0.738	0.413	-0.098	0.422	-0.015
		(0.844)	(0.383)	(0.998)	(0.273)	(0.313)	(0.695)	(0.386)	(0.943)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.111: Treatment Effects on Hypertension, Female Sample, Step Down

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Systolic Blood Pressure (mm Hg)	Mid-30s	-2.899	-5.407	1.065	-0.488	-0.822	-3.980	-6.239
		(0.418)	(0.569)	(0.999)	(0.832)	(0.664)	(0.365)	(0.578)
Diastolic Blood Pressure (mm Hg)	Mid-30s	-0.002	-0.179	4.725	4.091	4.122	-1.291	-1.347
		(0.486)	(0.643)	(0.999)	(0.679)	(0.659)	(0.386)	(0.611)
Prehypertension	Mid-30s	-0.189	-0.257	-0.094	-0.151	-0.125	-0.215	-0.289
		(0.115)	$\mathbf{(0 . 0 6 2)}$	(0.999)	(0.679)	(0.664)	$(\mathbf{0 . 0 7 0})$	$\mathbf{(0 . 0 4 4)}$
Hypertension	Mid-30s	0.172	0.085	0.232	0.077	0.162	0.156	0.102
		(0.288)	(0.643)	(0.999)	(0.800)	(0.664)	(0.365)	(0.611)
Hypertension Factor	Mid-30s	-0.061	-0.172	0.195	0.069	0.177	-0.131	-0.238
		(0.486)	(0.643)	(0.999)	(0.832)	(0.664)	(0.381)	(0.611)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.112: Treatment Effects on Cholesterol, Female Sample, Step Down

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
High-Density Lipoprotein Chol. $(\mathrm{mg} / \mathrm{dL})$	Mid-30s	2.884	6.218	10.514	12.253	13.513	0.802	3.996	3.235
		(0.474)	(0.192)	(0.951)	$\mathbf{(0 . 0 5 7})$	$\mathbf{(0 . 0 1 3}$	(0.573)	(0.373)	(0.497)
Dyslipidemia		Mid-30s	0.051	0.023	-0.080	-0.167	-0.146	0.087	0.105
		(0.474)	(0.685)	(0.951)	(0.242)	(0.231)	(0.149)	(0.170)	(0.126)
Cholesterol Factor		Mid-30s	0.034	0.104	0.568	0.611	0.599	-0.111	-0.090
		(0.474)	(0.685)	(0.951)	(0.146)	(0.127)	(0.573)	(0.373)	(0.497)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.113: Treatment Effects on Diabetes, Female Sample, Step Down

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Hemoglobin Level (\%)	Mid-30s	-0.277	-0.063	-0.176	-0.063	-0.143	-0.305	-0.074	-0.313
		(0.368)	(0.456)	(0.998)	(0.624)	(0.376)	(0.422)	(0.462)	(0.463)
Prediabetes	Mid-30s	0.088	0.222	0.076	0.207	0.088	0.091	0.217	0.109
Diabetes		(0.408)	(0.165)	(0.998)	(0.255)	(0.649)	(0.422)	(0.220)	(0.463)
Diabetes Factor	Mid-30s	-0.071	-0.047				-0.091	-0.064	-0.092
		(0.186)	(0.176)				(0.185)	(0.220)	(0.158)
	Mid-30s	-0.207	-0.016	-0.024	0.058	-0.048	-0.257	-0.065	-0.269
		(0.408)	(0.456)	(0.998)	(0.624)	(0.649)	(0.422)	(0.462)	(0.463)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.114: Treatment Effects on Obesity, Female Sample, Step Down

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Measured BMI	Mid-30s	3.545	5.382	1.937	3.345	1.970	3.983	6.187	4.710
		(0.479)	(0.197)	(0.999)	(0.376)	(0.453)	(0.461)	(0.175)	(0.341)
Obesity	Mid-30s	-0.011	0.099	-0.261	-0.173	-0.199	0.057	0.183	0.109
		(0.677)	(0.610)	(0.999)	(0.260)	(0.112)	(0.807)	(0.442)	(0.695)
Severe Obesity	Mid-30s	-0.045	0.017	0.014	0.062	0.019	-0.061	0.006	-0.039
		(0.677)	(0.721)	(0.999)	(0.400)	(0.481)	(0.807)	(0.586)	(0.701)
Waist-hip Ratio	Mid-30s	-0.022	0.008	-0.076	-0.077	-0.072	-0.007	0.040	0.015
		(0.576)	(0.721)	(0.999)	(0.376)	(0.419)	(0.807)	(0.504)	(0.701)
Abdominal Obesity	Mid-30s	-0.159	0.015	-0.381	-0.261	-0.285	-0.095	0.106	0.022
		(0.479)	(0.721)	(0.999)	(0.204)	(0.035)	(0.743)	(0.586)	(0.701)
Framingham Risk Score	Mid-30s	-0.259	-0.233	-0.488	-0.596	-0.525	-0.197	-0.155	-0.220
		(0.479)	(0.578)	(0.999)	(0.260)	(0.411)	(0.727)	(0.586)	(0.695)
Obesity Factor	Mid-30s	-0.006	-0.272	0.433	0.299	0.365	-0.132	-0.480	-0.256
		(0.677)	(0.628)	(0.999)	(0.400)	(0.453)	(0.807)	(0.586)	(0.695)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

Table D.115: Treatment Effects on Mental Health t-Score, Female Sample, Step Down

Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Somatization t-Score	21	-2.671	-1.944	-4.893	-3.896	-4.836	-2.258	-1.475	-2.169
		(0.416)	(0.605)	(0.172)	(0.442)	(0.486)	(0.459)	(0.542)	(0.537)
	Mid-30s	0.724	2.858	-0.014	-0.715	0.571	0.925	2.425	1.715
		(0.532)	(0.440)	(0.998)	(0.442)	(0.911)	(0.517)	(0.542)	(0.537)
Depression t-Score	21	-5.649	-5.129	-9.358	-8.953	-9.421	-4.406	-3.599	-4.090
		(0.056)	(0.197)	(0.021)	(0.114)	(0.065)	(0.254)	(0.479)	(0.335)
	Mid-30s	-2.466	-1.186	-0.109	-1.014	-0.058	-3.109	-2.385	-3.032
		(0.504)	(0.640)	(0.998)	(0.442)	(0.911)	(0.459)	(0.542)	(0.537)
Anxiety t-Score	21	-6.163	-5.724	-9.552	-8.196	-8.964	-5.244	-4.317	-4.381
		(0.056)	(0.145)	(0.025)	(0.224)	(0.092)	(0.159)	(0.389)	(0.332)
	Mid-30s	-4.564	-3.287	-3.457	-4.824	-3.764	-4.866	-4.313	-5.627
		(0.251)	(0.440)	(0.998)	(0.442)	(0.660)	(0.258)	(0.375)	(0.232)
Hostility t-Score	21	-4.721	-5.636	-10.732	-9.838	-10.536	-3.299	-3.851	-2.934
		(0.056)	(0.031)	(0.002)	(0.011)	(0.007)	(0.258)	(0.333)	(0.407)
	Mid-30s	0.512	1.341	-0.797	-2.840	-0.701	0.870	1.276	1.561
		(0.532)	(0.640)	(0.998)	(0.442)	(0.911)	(0.517)	(0.542)	(0.537)
Global Severity Index t-Score	21	-6.436	-5.741	-11.241	-8.981	-10.878	-5.472	-4.092	-4.605
		(0.043)	(0.138)	(0.004)	(0.072)	(0.007)	(0.112)	(0.389)	(0.290)
Global Severity Index t-Score (BSI 18)	Mid-30s	-2.365	0.006	0.290	-0.886	0.330	-3.089	-1.529	-3.112
		(0.272)	(0.479)	(0.999)	(0.386)	(0.516)	(0.207)	(0.310)	(0.203)
BSI Factor	21 to Mid-30s	${ }^{-0.624}$	-0.289	-0.747	-0.669	-0.677	-0.589	-0.283	${ }^{-0.552}$
		(0.040)	(0.369)	(0.999)	(0.997)	(0.305)	(0.059)	(0.294)	(0.083)

Note: This table presents estimates for the treatment effects described in Appendix D. 3 for each of the variables listed in the rows. One-tailed, bootstrapped p-values are in parentheses.

D. 13 Alternative Definitions of Control Substitution and TwoSided Statistical Tests

D.13.1 Alternative Definitions of Control Substitution

In the main paper, we let V be a dummy variable indicating whether or not the child attended alternative childcare arrangements. As we discuss in Section 2, this dummy variable is a summary of a more complex reality in which children attend alternatives different months between ages 0 to 5 . In this appendix, we explore three different alternative definitions of V : we let V indicate if children attend alternatives (i) $2 / 5$ of the time between ages 0 to 5 ; (ii) $3 / 5$ of the time between ages 0 to 5 ; and (iii) $4 / 5$ of the time between ages 0 to 5 . For each of these cases, we present a summary table of treatment effects.

The results are robust to different choices for modeling V. What matters is the extensive margin decision to enroll children into alternative childcare arrangements, and not the intensive margin decision of the number of months they attend between ages 0 to 5 .

Table D.116: Treatment Effects on Selected Outcomes, Control Substitution if Attended Treatment Alternatives $2 / 5$ of Time between Ages 0 to 5

Category	Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)
Females								
Parental Income	Parental Labor Income	3.5	2,756	3,277	5,464	7,165	-6,467	-1,698
			(0.198)	(0.238)	(0.050)	(0.040)	(0.683)	(0.574)
		12	13,633	19,386	25,070	25,917	2,221	6,214
			(0.040)	(0.030)	(0.010)	(0.000)	(0.386)	(0.238)
		15	(8,565	(9,322)	(9,108	8,866	3,588	14,109
			(0.069)	(0.089)	(0.099)	(0.059)	(0.297)	(0.010)
		21	(5,708	(6,944	10,481	(8,526	(3,874	(1,224
			(0.129)	(0.158)	(0.119)	(0.109)	(0.248)	(0.406)
Education	Graduated High School	30	0.253	0.110	0.144	0.220	0.038	0.095
			(0.020)	(0.218)	(0.168)	(0.030)	(0.416)	(0.297)
	Graduated 4-year College	30	$0.134)$	0.119	(0.151	0.165	-0.005	0.003
			(0.109)	(0.168)	(0.089)	(0.030)	(0.465)	(0.525)
	Years of Education	30	2.143	1.715	2.016	2.373	0.957	0.802
			(0.000)	(0.000)	(0.000)	(0.000)	(0.228)	(0.238)
Labor Income	Employed	30	0.131	0.079	0.064	0.109	0.146	0.215
			(0.129)	(0.218)	(0.218)	(0.178)	(0.277)	(0.089)
	Labor Income	30	2,548	2,412	(3,322	3,955	4,670	(1,179
		Mid-30s	(0.327)	(0.307)	(0.356)	(0.287)	(0.356)	(0.475)
Crime	Total Felony Arrests		-0.328	-0.394	-0.533	-0.415	0.048	0.124
			(0.099)	(0.079)	(0.099)	(0.089)	(0.634)	(0.871)
	Total Misdemeanor Arrests	Mid-30s	-0.973	-1.212	-1.419	-1.097	-0.220	-0.138
		Mid-30s	(0.030)	(0.119)	(0.109)	(0.139)	(0.228)	(0.317)
Health	Self-reported drug user		-0.033	-0.039	-0.047	-0.027	0.010	0.083
			(0.376)	(0.337)	(0.317)	(0.406)	(0.436)	(0.614)
	Systolic Blood Pressure (mm Hg)	Mid-30s	-2.899	-3.034		-7.800	6.792	2.494
			(0.307)	(0.317)		(0.099)	(0.594)	(0.634)
	Diastolic Blood Pressure (mm Hg)	Mid-30s	-0.002	2.341	0.634	-0.376	3.056	-0.375
			(0.455)	(0.614)	(0.525)	(0.455)	(0.515)	(0.455)
	Hypertension	Mid-30s	0.172	0.192	0.123	0.078	0.267	0.182
			(0.891)	(0.822)	(0.752)	(0.703)	(0.723)	(0.792)
Males								
Parental Income	Parental Labor Income	3.5	1,036	-1,185	142	2,393	-17,476	-14,914
			(0.366)	(0.673)	(0.475)	(0.198)	(0.921)	(0.881)
		12	7,085	10,384	12,334	9,751	-29,130	-29,347
			(0.059)	(0.040)	(0.010)	(0.020)	(0.881)	(0.822)
		15	8,488)	(7,185	(0,062	(5,829	-12,275	-15,574
			(0.059)	(0.139)	(0.149)	(0.218)	(0.446)	(0.663)
		21	12,732	12,650	12,960	(8,526	-2,048	-5,980
		30	(0.020)	(0.069)	(0.079)	(0.069)	(0.228)	(0.594)
Education	Graduated High School		0.073	0.130	0.156	0.094	-0.002	-0.093
			(0.228)	(0.139)	(0.109)	(0.238)	(0.554)	(0.584)
	Graduated 4-year College	30	0.170	0.178	0.156	0.112	0.513	0.260
			(0.079)	(0.119)	(0.149)	(0.168)	(0.119)	(0.000)
	Years of Education	30	0.525	0.785	0.710	0.425	1.749	0.595
			(0.188)	(0.079)	(0.129)	(0.198)	(0.059)	(0.178)
Labor Income	Employed	30	(0.119	0.182 (0.020)	0.197 (0.030)	0.217 (0.000)	(0.174	0.148
	Labor Income	30	19,810	(0.020)	(0.030)	(0.000)	69,187	(27,682
			(0.109)	(0.208)	(0.218)	(0.099)	(0.139)	(0.099)
Crime	Total Felony Arrests	Mid-30s	0.196	0.392	0.505	0.689	-0.034	-0.629
			(0.644)	(0.644)	(0.683)	(0.822)	(0.614)	(0.347)
	Total Misdemeanor Arrests	Mid-30s	-0.501	-0.243	-0.317	-0.356	0.357	-0.434
	Self-reported drug user	Mid-30s	(0.119)	(0.277)	(0.238)	(0.277)	(0.614)	(0.228)
Health			(0.030)	(0.020)	(0.010)	(0.010)	(0.406)	(0.554)
	Systolic Blood Pressure (mm Hg)	Mid-30s	-9.791	-19.475	-19.868	-21.234	-12.168	-18.841
			(0.129)	(0.000)	(0.000)	(0.050)	(0.099)	(0.000)
	Diastolic Blood Pressure (mm Hg)	Mid-30s	-10.854	-19.401	-20.255	-19.838		-6.102
			(0.040)	(0.000)	(0.000)	(0.000)		(0.000)
	Hypertension	Mid-30s	$\begin{gathered} -0.291 \\ (\mathbf{0 . 0 6 9}) \end{gathered}$	$\begin{gathered} -0.384 \\ (\mathbf{0 . 0 1 0}) \end{gathered}$	$\begin{gathered} -0.392 \\ (\mathbf{0 . 0 3 0}) \end{gathered}$	$\begin{gathered} -0.398 \\ (\mathbf{0 . 0 0 0}) \end{gathered}$	$\begin{gathered} -0.693 \\ (0.010) \end{gathered}$	-0.768 (0.000)
			(0.069)	(0.010)	(0.030)	(0.000)	(0.010)	(0.000)

Note: This table shows the treatment effects for categories outcomes that are important for our benefit/cost analysis. Systolic and diastolic blood pressure are measured in terms of $\mathrm{mm} H g$. Each column present estimates for the following parameters: (1) $\mathbb{E}\left[\boldsymbol{Y}^{1}-\boldsymbol{Y}^{0} \mid \boldsymbol{B} \in \mathcal{B}_{0}\right]$ (no controls); (2) $\mathbb{E}\left[\boldsymbol{Y}^{1}-\boldsymbol{Y}^{0} \mid \boldsymbol{B} \in \mathcal{B}_{0}\right]$ (controls); (3) $\mathbb{E}\left[\boldsymbol{Y}^{1} \mid R=1\right]-\mathbb{E}\left[\boldsymbol{Y}^{0} \mid R=0, V=0\right]$ (no controls); (4) $\mathbb{E}\left[\boldsymbol{Y}^{1}-\boldsymbol{Y}_{H}^{0} \mid \boldsymbol{B} \in \mathcal{B}_{0}\right]$ (controls); (5) $\mathbb{E}\left[\boldsymbol{Y}^{1} \mid R=1\right]-\mathbb{E}\left[\boldsymbol{Y}^{0} \mid R=0, V=1\right]$ (no controls); (6) $\mathbb{E}\left[\boldsymbol{Y}^{1}-\boldsymbol{Y}_{C}^{0} \mid \boldsymbol{B} \in \mathcal{B}_{0}\right]$ (controls). We account for the following background variables (\boldsymbol{B}): Apgar scores at minutes 1 and 5 and the high-risk index. We define the high-risk index in Appendix A and explain how we choose the control variables in Appendix D.1. Columns (2), (4), and (6) correct for item non-response and attrition using inverse probability weighting as we explain in Appendix B.2. Inference is based on non-parametric, one-sided p-values from the empirical bootstrap distribution. We highlight point estimates significant at the 10% level. See Appendix D. 13 for two-sided p-values.

Table D.117: Treatment Effects on Selected Outcomes, Control Substitution if Attended Treatment Alternatives $3 / 5$ of Time between Ages 0 to 5

[^28]Table D.118: Treatment Effects on Selected Outcomes, Control Substitution if Attended Treatment Alternatives $4 / 5$ of Time between Ages 0 to 5

Category	Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)
Females								
Parental Income	Parental Labor Income	3.5	2,756	3,277	8,849	9,658	-1,086	1,44
			(0.188)	(0.188)	(0.089)	(0.000)	(0.545)	(0.337)
		12	$13,633$	$19,386$	$32,972$	$28,194$	$10,992$	$17,690$
			(0.099)	(0.020)	(0.059)	(0.010)	(0.178)	(0.030)
		15	(8,565	(9,322	(3,316	(6,383	10,675	$12,104$
			$\left(\begin{array}{c}\text { (0.059) } \\ \text { (0,708 }\end{array}\right.$	(0.119) 6,944	(0.396) 26.722	(0.277) 13,060	$\left(\begin{array}{c}0.0999)\end{array}\right.$	(0.059)
		21	$\begin{gathered} 5,708 \\ (0.109) \end{gathered}$	$\begin{gathered} 6,944 \\ (0.149) \end{gathered}$	$\begin{gathered} 26,722 \\ \mathbf{(0 . 0 5 0}) \end{gathered}$	$\begin{gathered} 13,060 \\ (\mathbf{0 . 0 7 9}) \end{gathered}$	$\begin{array}{r} 3,844 \\ (0.257) \end{array}$	$\begin{gathered} 4,186 \\ (0.307) \end{gathered}$
Education	Graduated High School	30	0.253	0.110	(0.308)	0.335	0.027	0.101
			(0.020)	(0.208)	(0.119)	(0.010)	(0.396)	(0.238)
	Graduated 4-year College	30	0.134	0.119	0.166	0.219	0.065	0.060
			(0.109)	(0.188)	(0.079)	(0.020)	(0.406)	(0.366)
	Years of Education	30	2.143	1.715	2.733	3.103	1.362	$1.322)$
			(0.000)	(0.020)	(0.020)	(0.000)	(0.059)	(0.040)
Labor Income	Employed	30	0.131 (0.079)	0.079	0.221	0.224	-0.004	0.078
			(0.079)	(0.248)	(0.168)	(0.099)	(0.525)	(0.238)
	Labor Income	30	2,548	2,412	9,737	10,827	-1,336	-1,311
	Total Felony Arrests	Mid-30s	(0.347) -0.328	(0.396)	(0.218) -0.802	(0.059)	(0.604)	(0.564)
Crime			(0.079)	(0.059)	(0.079)	(0.139)	(0.208)	(0.446)
	Total Misdemeanor Arrests	Mid-30s	-0.973	-1.212	-1.562	-1.629	-0.692	-0.314
			(0.059)	(0.079)	(0.129)	(0.158)	(0.139)	(0.248)
Health	Self-reported drug user	Mid-30s	-0.033	-0.039	-0.111	-0.088	0.040	0.052
			(0.337)	(0.366)	(0.228)	(0.267)	(0.545)	(0.693)
	Systolic Blood Pressure (mm Hg)	Mid-30s	-2.899	-3.034	-1.191	-0.869	-3.818	-7.447
			(0.307)	(0.297)	(0.495)	(0.465)	(0.277)	(0.168)
	Diastolic Blood Pressure (mm Hg)	Mid-30s	-0.002	2.341	5.457	4.000	0.524	-2.820
			(0.515)	(0.653)	(0.752)	(0.762)	(0.495)	(0.317)
	Hypertension	Mid-30s	0.172	0.192	0.035	0.092	0.243	0.113
			(0.901)	(0.822)	(0.545)	(0.673)	(0.822)	(0.772)
Males								
Parental Income	Parental Labor Income	3.5	1,036	-1,185	-1,154	3,199	-1,503	352
			(0.366)	(0.644)	(0.545)	(0.238)	(0.693)	(0.475)
		12	7,085	10,384	23,037	15,288	4,785	(3,905
			(0.099)	(0.050)	(0.010)	(0.020)	(0.178)	(0.228)
		15	(8,488	7,185	17,045	10,825	939	1,799
			(0.089)	(0.178)	(0.050)	(0.089)	(0.416)	(0.416)
		21	12,732	12,650	-2,880	-1,000	17,027	10,323
			(0.010)	(0.059)	(0.495)	(0.495)	(0.030)	(0.059)
Education	Graduated High School	30	0.073	0.130	0.158	0.099	0.137	0.054
			(0.287)	(0.178)	(0.257)	(0.337)	(0.208)	(0.386)
	Graduated 4-year College	30	0.170	0.178	0.299	0.136	0.172	0.128
			(0.069)	(0.059)	(0.050)	(0.198)	(0.139)	(0.158)
	Years of Education	30	0.525	0.785	1.386	0.906	0.690	0.243
			(0.149)	(0.089)	(0.040)	(0.040)	(0.168)	(0.347)
Labor Income	Employed	30	0.119	0.182	-0.006	0.008	0.277	0.298
			(0.129)	(0.040)	(0.495)	(0.396)	(0.010)	(0.010)
	Labor Income	30	19,810	27,373	36,136	24,479	29,622	20,514
			(0.119)	(0.069)	(0.149)	(0.099)	(0.129)	(0.158)
Crime	Total Felony Arrests	Mid-30s	0.196	0.392	1.656	1.387	0.004	0.110
			(0.683)	(0.653)	(0.861)	(1.000)	(0.446)	(0.554)
	Total Misdemeanor Arrests	Mid-30s	-0.501	-0.243	0.053	0.058	-0.371	-0.574
			(0.178)	(0.277)	(0.485) -0.693	(0.485)	(0.297) -0.309	(0.139)
	Self-reported drug user	Mid-30s	$\begin{gathered} -0.333 \\ (\mathbf{0 . 0 1 0}) \end{gathered}$	$\begin{gathered} -0.398 \\ (\mathbf{0 . 0 0 0}) \end{gathered}$	$\begin{gathered} -0.693 \\ (\mathbf{0 . 0 0 0}) \end{gathered}$	$\begin{gathered} -0.557 \\ (\mathbf{0 . 0 0 0}) \end{gathered}$	$\begin{gathered} -0.309 \\ (\mathbf{0 . 0 5 0}) \end{gathered}$	$\begin{gathered} -0.330 \\ (\mathbf{0 . 0 5 0}) \end{gathered}$
Health	Systolic Blood Pressure (mm Hg)	Mid-30s	-9.791	-19.475	17.366	14.259	-29.384	-30.633
			(0.079)	(0.020)	(0.723)	(0.931)	(0.000)	(0.000)
	Diastolic Blood Pressure (mm Hg)	Mid-30s	-10.854	-19.401	-10.746	-8.117	-22.079	-21.893
			(0.020)	(0.000)	(0.079)	(0.079)	(0.000)	(0.000)
	Hypertension	Mid-30s	-0.291 (0.040)	-0.384	(0.003	-0.063	-0.488	-0.518
			(0.040)	(0.020)	(0.317)	(0.356)	(0.010)	(0.000)

Note: This table shows the treatment effects for categories outcomes that are important for our benefit/cost analysis. Systolic and diastolic blood pressure are measured in terms of mm Hg . Each column present estimates for the following parameters: (1) $\mathbb{E}\left[\boldsymbol{Y}^{1}-\boldsymbol{Y}^{0} \mid W=1\right] ;(2)$ $\mathbb{E}\left[\boldsymbol{Y}^{1}-\boldsymbol{Y}^{0} \mid \boldsymbol{B}, W=1\right] ;(3) \mathbb{E}\left[\boldsymbol{Y}^{1} \mid \boldsymbol{B}, D=1\right]-\mathbb{E}\left[\boldsymbol{Y}^{0} \mid \boldsymbol{B}, V=0, D=0\right] ;$ (4) $\mathbb{E}\left[\boldsymbol{Y}^{1}-\boldsymbol{Y}^{0} \mid \boldsymbol{B}, V=0, W=1\right] ;(5) \mathbb{E}\left[\boldsymbol{Y}^{1} \mid \boldsymbol{B}, D=1\right]-\mathbb{E}\left[\boldsymbol{Y}^{0} \mid \boldsymbol{B}, V=\right.$ $1, D=0]$; (6) $\mathbb{E}\left[\boldsymbol{Y}^{1}-\boldsymbol{Y}^{0} \mid \boldsymbol{B}, V=1, W=1\right]$. We account for the following background variables (B): Apgar scores at minutes 1 and 5 and the high-risk index. We define the high-risk index in Appendix A and explain how we choose the control variables in Appendix D. 1 . Inference is based on non-parametric, one-sided p-values from the empirical bootstrap distribution. We highlight point estimates significant at the 10% level.

D.13.2 Two-Sided Statistical Tests

In the main paper, we classify the outcomes of interest as "beneficial" (see Appendix D our classification) and perform one-sided tests. The next table presents two-sided inferences. The main treatment effects survive two-sided testing. A full replication of the results throughout the main text using two-sided statistical tests is available under request. As is evident from the standard errors, our combining functions and cost-benefit analysis results generally survive two-sided testing.

Table D.119: Treatment Effects on Selected Outcomes, Two-Sided Inference

Category	Variable	Age	(1)	(2)	(3)	(4)	(5)	(6)
Females								
Parental Income	Parental Labor Income	3.5	2,756	2,986	6,864	8,584	1,521	3,773
			(0.379)	(0.445)	(0.227)	(0.103)	(0.673)	(0.324)
		12	13,633	19,592	28,328	26,489	15,343	18,678
			(0.105)	(0.044)	(0.049)	(0.022)	(0.122)	(0.035)
		15	8,565	(0,159	2,713	(8,441	(0,465	10,487
			(0.114)	(0.268)	(0.837)	(0.582)	(0.255)	(0.103)
		21	5,708	8,670	45,697	25,142	6,251	(3,943
			(0.269)	(0.289)	(0.002)	(0.000)	(0.449)	(0.524)
Education	Graduated High School	30	0.253	0.131	0.553	0.595	-0.026	0.066
			(0.019)	(0.313)	(0.005)	(0.004)	(0.839)	(0.648)
	Graduated 4-year College	30	0.134	0.131		0.219	0.100	0.093
			(0.157)	(0.243)		(0.012)	(0.438)	(0.426)
	Years of Education	30	2.143	1.843	3.861	3.923	1.163	1.409
			(0.001)	(0.011)	(0.000)	(0.000)	(0.127)	(0.037)
Labor Income	Employed	30	0.131	0.081	0.381	0.340	-0.010	0.070
			(0.189)	(0.420)	(0.065)	(0.104)	(0.925)	(0.534)
	Labor Income	30	2,548	1,884	(15,094	13,096	-2,677	-2,122
Crime	Total Felony Arrests		(0.700)	(0.757)	(0.103)	(0.048)	(0.681)	(0.726)
		Mid-30s	-0.328	-0.351	-0.944	-0.965	-0.059	0.004
	Total Misdemeanor Arrests	Mid-30s	-0.973	-0.737	-2.010	-2.451	-0.269	-0.201
		Mid-30s	(0.071)	(0.242)	(0.275)	(0.263)	(0.611)	(0.634)
Health	Self-reported drug user		-0.033	0.004	-0.114	-0.101	0.020	0.033
			(0.780)	(0.949)	(0.616)	(0.655)	(0.871)	(0.785)
	Systolic Blood Pressure (mm Hg)	Mid-30s	-2.899	-5.407	-0.488	-0.822	-6.239	-6.784
			(0.635)	(0.477)	(0.908)	(0.903)	(0.495)	(0.348)
	Diastolic Blood Pressure (mm Hg)	Mid-30s	-0.002	-0.179	4.091	4.122	-1.347	-2.160
			(1.000)	(0.928)	(0.536)	(0.435)	(0.820)	(0.702)
	Hypertension	Mid-30s	0.172	0.085	0.077	0.162	0.102	0.107
			(0.219)	(0.599)	(0.750)	(0.494)	(0.594)	(0.517)
Males								
Parental Income	Parental Labor Income	3.5	1,036	494	73.862	1,462	123	690
			(0.736)	(0.853)	(0.961)	(0.778)	(0.960)	(0.824)
		12	7,085	9,625	18,050	12,639	6,620	5,383
			(0.199)	(0.052)	(0.081)	(0.147)	(0.199)	(0.286)
		15	8,488	(4,495	(5,540	4,805	2,885	4,345
			(0.149)	(0.464)	(0.502)	(0.541)	(0.704)	(0.588)
		21	12,732	8,809	122	-933	10,784	10,283
			(0.014)	(0.187)	(0.914)	(0.878)	(0.105)	(0.073)
Education	Graduated High School	30	0.073	0.044	0.116	0.083	0.040	0.063
			(0.533)	(0.752)	(1.000)	(0.687)	(0.807)	(0.638)
	Graduated 4-year College	30	0.170	0.138	0.149	0.099	0.135	0.143
			(0.115)	(0.249)	(0.405)	(0.600)	(0.301)	(0.256)
	Years of Education	30	0.525	0.541	1.010	0.777	0.351	0.344
			(0.284)	(0.324)	(1.000)	(0.272)	(0.557)	(0.521)
Labor Income	Employed	30	0.119	0.196	0.108	0.040	0.237	0.261
			(0.259)	(0.054)	(1.000)	(0.821)	(0.056)	(0.030)
	Labor Income	30	19,810 (0.154)	24,365 (0.157)	(1.000)	20,611 (0.243)	23,072 (0.198)	$\begin{array}{r} 21,836 \\ (0.185) \end{array}$
Crime	Total Felony Arrests	Mid-30s	0.196	0.685	1.523	1.340	0.481	0.188
			(0.755)	(0.379)	(0.096)	(0.047)	(0.571)	(0.807)
	Total Misdemeanor Arrests	Mid-30s	-0.501	-0.244	-0.298	-0.034	-0.246	-0.507
		Mid-30s	(0.355)	(0.606)	(0.734)	(0.960)	(0.643)	(0.339)
Health	Self-reported drug user		-0.333	-0.438	-0.673	-0.557	-0.326	-0.330
			(0.045)	(0.005)	(0.041)	(0.083)	(0.047)	(0.058)
	Systolic Blood Pressure (mm Hg)	Mid-30s	-9.791	-13.275	14.196	14.976	-24.166	-18.559
			(0.216)	(0.094)	(0.022)	(0.000)	(0.000)	(0.011)
	Diastolic Blood Pressure (mm Hg)	Mid-30s	-10.854	-14.134	-9.709	-8.741	-18.387	-13.987
			(0.056)	(0.012)	(0.076)	(0.077)	(0.003)	(0.012)
	Hypertension	Mid-30s	-0.291	-0.377	-0.120	-0.074	-0.492	-0.434
			(0.076)	(0.023)	(0.659)	(0.806)	(0.009)	(0.022)

[^29]
E Alternative Evaluation Methodologies

In the paper, we develop and document the results of one methodology to account for control substitution in the first phase of $\mathrm{ABC} / \mathrm{CARE}$. The objective of each method is to estimate the average treatment effect of ABC/CARE, holding fixed take-up of alternative preschool by the control groups. We want to construct a scenario in which the subjects in the control group do not attend alternative preschool. This allows us to evaluate center-based childcare relative to a counterfactual scenario in which subjects stay at home.

This section presents alternative methodologies to evaluate the first-phase treatment. Throughout the rest of this section, we refer to treatment in either ABC/CARE generically as centerbased childcare, as we discard the family education treatment group of CARE-as in the main paper, the control group consists of the control groups in both ABC and CARE. We refer to take-up of control substitution as enrollment into alternative preschool. As in our main methodology, we choose the control sets to account for background variables using the method in Appendix D.

To illustrate the alternative methodologies, we present results for a small set of outcomes. First, we consider a time series of IQ scores. Second, we present results for three long-term outcomes: years of education, employment, and labor income. Both IQ scores and the chosen long-term outcomes follow predictable patterns and are straightforward to interpret. These characteristics allow us to evaluate the sensitivity of the estimated treatment effects using the different strategies.

Let the discrete choice to enroll in alternative preschool, V, be defined as $P=\mathbf{1}[V>0]$
which is an indicator equal to 1 when the subject is enrolled. Let Q be the number of months in alternative preschool. \mathbf{X} is a vector of observed individual- or household-level characteristics. V and Q are zero for participants of the treatment group. In this section, we allow for the take-up of the program to be imperfectly given by the randomization. Let D be take-up of the ABC/CARE program. ${ }^{76}$

E. 1 Instrumental Variables

The first alternative method we present is based on a standard, linear instrumental variable framework.

E.1.1 Model and Conditions

Consider the following equation for an outcome Y :

$$
\begin{equation*}
Y=\alpha^{D} D+\alpha^{Q} Q+\mathbf{X} \boldsymbol{\beta}+\varepsilon, \tag{3}
\end{equation*}
$$

where D and Q are endogenous. Selection into treatment or alternative preschool is likely correlated with characteristics not observed when estimating the coefficients characterizing the outcome equation, i.e., $\operatorname{Cov}(D, \varepsilon) \neq 0$ and $\operatorname{Cov}(Q, \varepsilon) \neq 0$. Estimating the coefficients in (3) by OLS yields inconsistent estimates.

A standard solution is to introduce a vector of instrumental variables, \mathbf{Z}, satisfying two conditions: (i) the matrix Π of the coefficients in the population regression of D and Q on \mathbf{Z} is full rank; and (ii) \mathbf{Z} is uncorrelated with ε.

[^30]
E.1.2 Instrumental Variables in Practice

To identify the coefficients in (3) using an instrumental variable strategy we need at least two instruments. We use randomization into ABC/CARE treatment as an instrument, denoted as an indicator, R. We then consider up to three other instruments.
(i) Season of subject's birth. This variable is coded as an indicator for being born in the fall (born between June and November). If preschools accepted children primarily in the fall, then children born in the fall could enter preschool when they were younger. Although there is evidence in the economics literature that being born during specific times in the year can influence a child's outcomes, the main channel for this effect seems to be the disproportionate selection into season of birth by high-income mothers (Buckles and Hungerman, 2013). Given that the mothers were very young and disadvantaged in the $\mathrm{ABC} / \mathrm{CARE}$ sample, we assume that a negligible proportion of them selected their quarter of birth.
(ii) Presence of a grandmother in the county. We hypothesize that the grandmothers of the subjects, who in this sample are relatively young and still working, could help the study mothers take care of their children. We assume that the mothers would have less influence over the presence of a grandmother in the county as opposed to the presence of a grandmother living in the home. We also assume that the grandmothers do not affect the subjects differently than any other avenue of informal care, such as care from a neighbor. In practice, the presence of a grandmother has a positive effect on preschool attendance, which could indicate that they helped take the subject to preschool. This variable is only available for ABC .
(iii) Number of relatives living in the household apart from the mother, subject, siblings, and male partner. We assume that the relatives could take care of the subject while the mother was at work or in school, but that they do not affect the subjects differently
than any other avenue of informal care. In practice, having additional relatives living at home decreases the probability that the subject goes into preschool.

E.1.3 Sets of Instruments

We consider three combinations of the instruments. All of them include randomization into center-based treatments and birth in the fall. All of them include at least one variable representing access to informal care from relatives. The sets are the following:
(i) Randomization, Born in the Fall, Grandmother in County, Number of Relatives at Home
(ii) Randomization, Born in the Fall, Grandmother in County
(iii) Randomization, Born in the Fall, Number of Relatives at Home

E.1.4 Specifications for the Instruments

We test various specifications in which we allow for interactions of the potential instruments with the first-phase randomization indicator. In particular, we test three specifications for our instruments:
(i) Instruments measured in levels: (R, \mathbf{Z}).
(ii) Instruments measured in levels and interactions of treatment with the instruments and the controls: $(R, \mathbf{Z}, \mathbf{Z} R, \mathbf{X} R)$.
(iii) Interactions of the instruments and the controls with an indicator for being randomized into the control group: $(R, \mathbf{X}(1-R), \mathbf{Z}(1-R))$.

In practice, the specification in (iii) is the most stable across outcomes. This makes economic sense because the instruments are less likely to affect the participants of the treatment group, given that almost all the treatment families comply to the first-phase randomization protocol.

E.1.5 Functional Forms of Enrollment in Alternative Preschool

We use a different parameterization of enrollment into alternative preschool in (3):
(i) The number of months in alternative preschool, Q.
(ii) An indicator for take-up of alternative preschool, V.
(iii) The \log of months in alternative preschool, $\log Q$.

E. 2 Results

In this section, we present the results of the instrumental variable approach. We discuss the estimates of the coefficient for D in (3), while accounting for endogenous take-up of alternative preschool. The results are roughly stable for all presented outcomes: the effect considering the take-up of alternative preschool in the control group is much stronger than the intent-to-treat effect (the mean difference between the treatment and control groups). At ages 15 and 21, the effects on IQ scores are close to zero.

E.2.1 Main Specification

Our main specification uses three instruments: randomization into center-based childcare in $\mathrm{ABC} / \mathrm{CARE}$, the presence of a grandmother in the county, and being born in the fall. We interact the latter two instrument with an indicator for being randomized into the control
group $(1-R)$. The endogenous variables are D and Q.

Figure E. 1 and Figure E. 2 display the estimates of the coefficient of D. That is, the effect of attending the ABC/CARE treatment, fixing take-up of alternative preschool. The results indicate the following: (i) the effects are stronger compared to those in the paper, even compared to those in the paper that fix subjects to no preschool alternatives; (ii) the estimates are less stable across ages compared to those in the paper. For example, while the effects on IQ scores from ages 0 to 5 average around 14 points in the paper, they average 20 points using this specification of instrumental variables.

Figure E.1: Effect of Center-based Childcare on IQ Scores, Accounting for Endogenous Take-up of Alternative Preschool Using Instrumental Variables

Note: This plot presents the parameter associated with D from a regression of Y on D, Q, and \mathbf{X}, using R and $\mathbf{Z}(1-R)$ as instruments. The outcomes (Y) are IQ tests at different ages, with a national standard deviation of 15 and a mean of 100 . \mathbf{X} includes a set of controls selected from all available baseline controls to maximize explanatory power across all outcomes tested in the paper: gender of the subject, mother's IQ score, High-risk Index, and Apgar Score at 1 minute. The confidence intervals are calculated at the 10\% significance level.

Figure E.2: Effect of Center-based Childcare on Labor Market Outcomes, Accounting for Endogenous Take-up of Alternative Preschool Using Instrumental Variables

Note: This plot presents the parameter associated with D from a regression of Y on D, Q, and \mathbf{X}, using R and $\mathbf{Z}(1-R)$ as instruments. The outcomes (Y) are different adult outcomes labeled in the horizontal axis. \mathbf{X} includes a set of controls selected from all available baseline controls to maximize explanatory power across all outcomes tested in the paper: gender of the subject, mother's IQ score, High-risk Index, and Apgar Score at 1 minute. The confidence intervals are calculated at the 10% significance level.

E.2.2 Varying the Sets of Instruments

Figure E. 3 and Figure E. 4 explore the sensitivity of the estimates to different sets of instruments. The pattern of results indicates that the method is generally robust to the three sets of instrumental variables that we consider.

Figure E.3: Effect of Center-based Childcare on IQ Scores, Accounting for Endogenous Take-up of Alternative Preschool Using Various Instrumental Variables

Note: This plot presents the parameter associated with D from a regression of Y on D, Q, and \mathbf{X}, using R and $\mathbf{Z}(1-R)$ as instruments. The outcomes (Y) are IQ scores at different ages, with a national standard deviation of 15 and a mean of 100. \mathbf{X} includes a set of controls selected from all available baseline controls to maximize explanatory power across all outcomes tested in the paper: gender of the subject, mother's IQ score, High-risk Index, and Apgar Score at 1 minute. The confidence intervals are calculated at the 10\% significance level.

Figure E.4: Effect of Center-based Childcare on Labor Market Outcomes, Accounting for Endogenous Take-up of Alternative Preschool Using Various Instrumental Variables

Note: This plot presents the parameter associated with D from a regression of Y on D, Q, and \mathbf{X}, using R and $\mathbf{Z}(1-R)$ as instruments. The outcomes (Y) are different adult outcomes labeled in the horizontal axis. \mathbf{X} includes a set of controls selected from all available baseline controls to maximize explanatory power across all outcomes tested in the paper: gender of the subject, mother's IQ score, High-risk Index, and Apgar Score at 1 minute. The confidence intervals are calculated at the 10% significance level.

E.2.3 Varying the Specification of the Instruments

We now present an exercise to evaluate the sensitivity of the results to different specifications of the instrumental variables. First, Figure E. 5 and Figure E. 6 present the results using the set of instruments that are not interacted with an indicator for randomization into the control group $(1-R)$. Figure E. 7 and Figure E. 8 present results not only interacting the instruments but also interacting the observed characteristics we control for. In both exercises, we use Q as the endogenous variable, along with D.

The results follow the same patterns as before, although they change when the instruments are not interacted. This makes economic sense because the interacted instruments better represent the economic intuition we offer before: the instruments other than R are more likely to shift the decisions of the families of the control-group subjects compared to those of the treatment-group subjects.

Figure E.5: Effect of Center-based Childcare on IQ Scores, Accounting for Endogenous Take-up of Alternative Preschool Using Various Instrumental Variables Specifications

Note: This plot presents the parameter associated with D from a regression of Y on D, Q, and \mathbf{X}, using R and \mathbf{Z} as instruments. Y is different IQ tests, with a national standard deviation of 15 and a mean of 100 . \mathbf{X} includes a set of controls selected from all available baseline controls to maximize explanatory power across all outcomes tested in the paper: gender of the subject, mother's IQ, High-risk Index, and Apgar Score at 1 minute. The confidence intervals are calculated at the 10% significance level.

Figure E.6: Effect of Center-based Childcare on Labor Market Outcomes, Accounting for Endogenous Take-up of Alternative Preschool Using Various Instrumental Variables Specifications

Note: This plot presents the parameter associated with D from a regression of Y on D, Q, and \mathbf{X}, using R and \mathbf{Z} as instruments. The outcomes (Y) are different adult outcomes labeled in the horizontal axis. \mathbf{X} includes a set of controls selected from all available baseline controls to maximize explanatory power across all outcomes tested in the paper: gender of the subject, mother's IQ score, High-risk Index, and Apgar Score at 1 minute. The confidence intervals are calculated at the 10% significance level.

Figure E.7: Effect of Center-based Childcare on IQ Scores, Accounting for Endogenous Take-up of Alternative Preschool Using Various Instrumental Variables Specifications

Note: This plot presents the parameter associated with D from a regression of Y on D, Q, and \mathbf{X}, using R, $\mathbf{X}(1-R)$ and $\mathbf{Z}(1-R)$ as instruments. The outcomes (Y) are IQ scores at different ages, with a national standard deviation of 15 and a mean of 100. \mathbf{X} includes a set of controls selected from all available baseline controls to maximize explanatory power across all outcomes tested in the paper: gender of the subject, mother's IQ score, High-risk Index, and Apgar Score at 1 minute. The confidence intervals are calculated at the 10% significance level.

Figure E.8: Effect of Center-based Childcare on Labor Market Outcomes, Accounting for Endogenous Take-up of Alternative Preschool Using Various Instrumental Variables Specifications

Note: This plot presents the parameter associated with D from a regression of Y on D, Q, and \mathbf{X}, using $R, \mathbf{X}(1-R)$ and $\mathbf{Z}(1-R)$ as instruments. The outcomes (Y) are different adult outcomes labeled in the horizontal axis. \mathbf{X} includes a set of controls selected from all available baseline controls to maximize explanatory power across all outcomes tested in the paper: gender of the subject, mother's IQ score, Highrisk Index, and Apgar Score at 1 minute. The confidence intervals are calculated at the 10% significance level.

E.2.4 Varying the Parameterization of Alternative Preschool Take-up

Now, we explore the sensitivity to the specification of Q in (3). We consider two alternatives. First, we use an indicator of take-up of alternative preschool, V (Figure E. 9 and Figure E.10).

Second, we take the \log of Q (Figure E. 11 and Figure E.12).

Figure E.9: Effect of Center-based Childcare on IQ Scores, Accounting for an Endogenous Indicator of Take-up of Alternative Preschool

Note: This plot presents the parameter associated with D from a regression of Y on D, V, and \mathbf{X}, using $R, \mathbf{Z}(1-R)$ as instruments. The outcomes (Y) are IQ scores at different ages, with a national standard deviation of 15 and a mean of 100. \mathbf{X} includes a set of controls selected from all available baseline controls to maximize explanatory power across all outcomes tested in the paper: gender of the subject, mother's IQ score, High-risk Index, and Apgar Score at 1 minute. The confidence intervals are calculated at the 10\% significance level.

Figure E.10: Effect of Center-based Childcare on Labor Market Outcomes, Accounting for an Endogenous Indicator of Take-up of Alternative Preschool

Note: This plot presents the parameter associated to D from a regression of Y on D, V, and \mathbf{X}, using R, $\mathbf{Z}(1-R)$ as instruments. The outcomes (Y) are different relevant adult outcomes labeled in the horizontal axis. \mathbf{X} includes a set of controls selected from all available baseline controls to maximize explanatory power across all outcomes tested in the paper: gender of the subject, mother's IQ score, High-risk Index, and Apgar Score at 1 minute. The confidence intervals are calculated at the 10% significance level.

Figure E.11: Effect of Center-based Childcare on IQ Scores, Accounting for Endogenous (log) Months of Take-up of Alternative Preschool

Note: This plot presents the parameter associated with D from a regression of Y on $D, \log Q$, and \mathbf{X}, using $R, \mathbf{Z}(1-R)$ as instruments. The outcomes (Y) are IQ scores at different ages, with a national standard deviation of 15 and a mean of 100 . \mathbf{X} includes a set of controls selected from all available baseline controls to maximize explanatory power across all outcomes tested in the paper: gender of the subject, mother's IQ score, High-risk Index, and Apgar Score at 1 minute. The confidence intervals are calculated at the 10\% significance level.

Figure E.12: Effect of Center-based Childcare on Labor Market Outcomes, Accounting for Endogenous (log) Months of Take-up of Alternative Preschool

Note: This plot presents the parameter associated with D from a regression of Y on $D, \log Q$, and \mathbf{X}, using $R, \mathbf{Z}(1-R)$ as instruments. The outcomes (Y) are different adult outcomes labeled in the horizontal axis. \mathbf{X} includes a set of controls selected from all available baseline controls to maximize explanatory power across all outcomes tested in the paper: gender of the subject, mother's IQ score, High-risk Index, and Apgar Score at 1 minute. The confidence intervals are calculated at the 10% significance level.

E. 3 Control Functions

We now consider a control function approach. With control functions, the objective is also to simultaneously account for take-up of center-based childcare and alternative preschool.

E.3.1 Setup

The method we propose is an application of the selection correction in Heckman (1979). We model the selection into both endogenous variables of interest, center-based childcare and alternative preschool. The method involves three equations: (i) the outcome equation; (ii)
the probability of participating in center-based childcare; (iii) a linear equation describing the number of months enrolled in preschool alternatives.

Let Y^{0} be the counterfactual outcome of subject i when not participating in center-based childcare. Similarly, let Y^{1} be her potential outcome if she participates. We model the outcome as:

$$
\begin{align*}
& Y^{1}=\alpha^{1}+\mathbf{X} \boldsymbol{\beta}+\varepsilon^{1} \\
& Y^{0}=\alpha^{0}+\mathbf{X} \boldsymbol{\beta}+\alpha^{Q} Q+\varepsilon^{0} \tag{4}
\end{align*}
$$

The equation describing participation in center-based childcare is:

$$
D= \begin{cases}0 & \text { if } D^{*} \leq 0 \tag{5}\\ 1 & \text { if } D^{*}>0,\end{cases}
$$

where we interpret D^{*} as a latent continuous variable representing the household's interest in sending the subject to treatment. We write

$$
\begin{equation*}
D^{*}=\mathbf{W} \gamma^{D}+\varepsilon^{D} \tag{6}
\end{equation*}
$$

where \mathbf{W} is a vector that includes \mathbf{X} and R and can include variables that shift the decision to enroll subjects into $\mathrm{ABC} / \mathrm{CARE}$ without shifting the counterfactual outcome of interest, Y^{d}.

We model the selection into months of alternative preschool as a linear equation with fixed coefficients:

$$
\begin{equation*}
Q=\mathbf{W} \gamma^{Q}+\varepsilon^{Q}, \tag{7}
\end{equation*}
$$

In general, the unobserved variables in each of these equations are correlated. We assume that they are distributed as follows:

$$
\left[\begin{array}{l}
\varepsilon^{1} \tag{8}\\
\varepsilon^{0} \\
\varepsilon^{D}
\end{array}\right] \sim \mathcal{N}\left[\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{lll}
\sigma_{1}^{2} & \sigma_{1,0} & \sigma_{1, D} \\
\sigma_{1,0} & \sigma_{0}^{2} & \sigma_{0, D} \\
\sigma_{1, D} & \sigma_{0, D} & 1
\end{array}\right)\right]
$$

where we normalize $\operatorname{Var}\left(\varepsilon^{D}\right)=1$.

Further, we assume that

$$
\begin{equation*}
\mathbb{E}\left[\varepsilon^{0} \mid D=0, \mathbf{W}, \varepsilon^{Q}, Q=q\right]=\sigma^{0, Q} \varepsilon^{Q}+\mathbb{E}\left[\varepsilon^{0} \mid D=0, \mathbf{W}\right] . \tag{9}
\end{equation*}
$$

E.3.2 Identification

The following steps identify the parameters of interest. First, we estimate the parameters characterizing the decision to enroll the subject in center-based childcare. We exploit the assumption that $\varepsilon^{D} \sim \mathcal{N}(0,1)$ in (8) and estimate the parameters in (6) using a probit model.

Second, we approximate the unobserved term relevant to the choice of Q. We take the coefficients in (7) to obtain an estimate for ε^{Q}. By linearly conditioning on this term, we account for the correlation between the error term in the decision for Q and the error term in the outcome equation, ε^{0}.

Third, we estimate the coefficients in the outcome equation using the proxies for the unob-
served components. We rewrite (4) using conditional expectations:

$$
\begin{align*}
\mathbb{E}\left[Y^{1} \mid D=1, \mathbf{W}\right] & =\alpha^{1}+\mathbf{X} \boldsymbol{\beta}+\mathbb{E}\left[\varepsilon^{1} \mid D=1, \mathbf{W}\right] \\
\mathbb{E}\left[Y^{0} \mid D=0, \mathbf{W}, \varepsilon^{Q}, Q=q\right] & =\alpha^{0}+\mathbf{X} \boldsymbol{\beta}+\alpha^{Q} q \tag{10}\\
& +\mathbb{E}\left[\varepsilon^{0} \mid D=0, \mathbf{W}, \varepsilon^{Q}, Q=q\right]
\end{align*}
$$

Once we condition on the proxy for ε^{Q}, the error term in the outcome equations only depends on the selection into center-based childcare. The conditional error terms in (10) can be specified using control functions.

For subjects enrolled in treatment, the control function is:

$$
\begin{equation*}
\mathbb{E}\left[\varepsilon^{1} \mid D=1, \mathbf{W}\right]=\sigma_{1} \frac{\phi\left(\mathbf{W} \gamma^{D}\right)}{\Phi\left(\mathbf{W} \gamma^{D}\right)} \tag{11}
\end{equation*}
$$

For subjects not enrolled in the treatment, the control function is:

$$
\begin{equation*}
\mathbb{E}\left[\varepsilon^{0} \mid D=0, \mathbf{W}, \varepsilon^{Q}, Q=q\right]=\sigma^{0, Q} \varepsilon^{Q}-\sigma_{0} \frac{\phi\left(\mathbf{W} \gamma^{D}\right)}{\Phi\left(-\mathbf{W} \gamma^{D}\right)} . \tag{12}
\end{equation*}
$$

E. 4 Estimates

By including the control functions, we can recover consistent estimates of the parameters in (4) through a linear regression. The effect of center-based childcare is the difference of the intercepts in the two outcome equations.

The charts below present the estimates for the parameter associated with D. That is, the effect of participating in center-based childcare relative to a counterfactual of receiving no preschool alternative. As before, we present results for IQ scores at different ages and for a set of relevant adult outcomes. The results are not compelling, as they present irregularities over the life cycle that differ from the rest of results we present in the paper and throughout this appendix.

Figure E.13: Effect of Center-based Childcare on IQ Scores, Accounting for Endogenous (log) Months of Take-up of Alternative Preschool

Note: This plot presents the parameter associated with D estimated using Control Functions as described in the text. The outcomes (Y) are IQ scores at different ages with a national standard deviation of 15 and a mean of 100. $D=1$ for subjects that participate in ABC/CARE center-based childcare, and $D=0$ for subjects who do not participate in treatment. Q is the number of months attending preschool. It is coded as zero for subjects participating in ABC/CARE. X includes a set of controls selected from all available baseline controls to maximize explanatory power across all outcomes tested in the paper: gender of the subject, mother's IQ score, High-risk Index, and Apgar Score at 1 minute.

Figure E.14: Effect of Center-based Childcare on Labor Market Outcomes, Accounting for Endogenous (log) Months of Take-up of Alternative Preschool

Note: This plot presents the parameter associated with D estimated using Control Functions as described in the text. The outcomes (Y) are different adult outcomes labeled in the horizontal axis. $D=1$ for subjects that participate in ABC/CARE center-based childcare, and $D=0$ for subjects who do not participate in treatment. Q is the number of months attending preschool. It is coded as zero for subjects participating in ABC/CARE. X includes a set of controls selected from all available baseline controls to maximize explanatory power across all outcomes tested in the paper: gender of the subject, mother's IQ score, High-risk Index, and Apgar Score at 1 minute.

Appendix References

Ad Hoc Committee of Professionals in Child Care Services, North Carolina (1974, July). Letter to Governor Holshouser.

Administrative Branch, Office of Day Care Services (1982, December). Day care cost study. Technical report, Administrative Branch, Office of Day Care Services, Raleigh, NC.

Anderson, M. L. (2008, December). Multiple inference and gender differences in the effects of early intervention: A reevaluation of the Abecedarian, Perry Preschool and Early Training Projects. Journal of the American Statistical Association 103(484), 1481-1495.

Baker, M. and K. Milligan (2013, March). Boy-girl differences in parental time investments: Evidence from three countries. Working Paper 18893, National Bureau of Economic Research.

Barnett, W. S. and L. N. Masse (2002). A benefit-cost analysis of the Abecedarian Early Childhood Intervention. Technical report, National Institute for Early Education Research, New Brunswick, NJ.

Bertrand, M. and J. Pan (2013, January). The trouble with boys: Social influences and the gender gap in disruptive behavior. American Economic Journal: Applied Economics 5(1), 32-64.

Bryant, D. M., C. T. Ramey, J. J. Sparling, and B. H. Wasik (1987). The carolina approach to responsive education a model for day care. Topics in Early Childhood Special Education 7(1), 48-60.

Buckles, K. S. and D. M. Hungerman (2013). Season of birth and later outcomes: Old questions, new answers. Review of Economics and Statistics 95(3), 711-724.

Burchinal, M. R., F. A. Campbell, D. M. Bryant, B. H. Wasik, and C. T. Ramey (1997, October). Early intervention and mediating processes in cognitive performance of children of low-income African American families. Child Development 68(5), 935-954.

Burchinal, M. R., M. Lee, and C. T. Ramey (1989). Type of day-care and preschool intellectual development in disadvantaged children. Child Development 60(1), 128-137.

Campbell, F. A., G. Conti, J. J. Heckman, S. H. Moon, R. Pinto, E. P. Pungello, and Y. Pan (2014). Early childhood investments substantially boost adult health. Science 343(6178), 1478-1485.

Campbell, F. A. and C. T. Ramey (1989, April). Preschool vs. school-age intervention for disadvantaged children: Where should we put our efforts? Report, North Carolina University, Frank Porter Graham Center, Chapel Hill. Paper presented at the Biennial Meeting of the Society for Research in Child Development (Kansas City, MO, April 27-29, 1989).

Campbell, F. A. and C. T. Ramey (1994, April). Effects of early intervention on intellectual and academic achievement: A follow-up study of children from low-income families. Child Development 65(2), 684-698.

Claeskens, G. and N. L. Hjort (2008). Model Selection and Model Averaging. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge, UK: Cambridge University Press.

Community Planning Services (1973, August). Durham's share in day care: A task force study. Summary report, Community Planning Services, Durham, NC.

Cornwell, C., D. B. Mustard, and J. Van Parys (2013). Noncognitive skills and the gender disparities in test scores and teacher assessments: Evidence from primary school. The Journal of Human Resources 48(1), 236-264.

Davis, D. E. (1977). My friends and me. Circle Pines, MN: American Guidance Service.
Department of Health, Education, and Welfare (1968). Federal interagency day care requirements, pursuant to Sec. 522 (D) of the Economic Opportunity Act. Technical report, U.S. Department of Labor, Washington, DC.

Diebold, F. X. (2007). Elements of Forecasting (4 ed.). Mason, OH: Thomson South-Western.
Dunn, L. M., L. T. Chun, D. C. Crowell, L. G. Dunn, L. G. Avery, and E. R. Yachel (1976). Peabody early education kit. Circle Pines, MN: American Guidance Service.

Feagans, L. V. (1996). Children's Talk in Communities and Classrooms. Cambridge, MA: Blackwell.

Finkelstein, N. W. (1982). Aggression: Is it stimulated by day care? Young Children 37(6), 3-9.

Golsteyn, B. H. H. and T. Schils (2014). Gender gaps in primary school achievement: A decomposition into endowments and returns to IQ and non-cognitive factors. Economics of Education Review 41, 176-187.

Greenberg, P. and B. Epstein (1973). Bridges to reading. Morristown, NJ: General Learning Corporation.

Haskins, R. (1985, June). Public school aggression among children with varying day-care experience. Child Development 56(3), 689-703.

Haskins, R., A. M. Collier, C. T. Ramey, and P. O. Hirschbiel (1978). The effect of mild illness on habituation in the first year of life. Journal of Pediatric Psychology 3(3), 150-155.

Heckman, J. J. (1979, January). Sample selection bias as a specification error. Econometrica $47(1), 153-162$.

Heckman, J. J. (1992). Randomization and social policy evaluation. In C. F. Manski and I. Garfinkel (Eds.), Evaluating Welfare and Training Programs, Chapter 5, pp. 201-230. Cambridge, MA: Harvard University Press.

Heckman, J. J. (2001, November). Accounting for heterogeneity, diversity and general equilibrium in evaluating social programmes. Economic Journal 111 (475), F654-F699.

Henderson, F. W., A. M. Collier, M. A. Sanyal, J. M. Watkins, D. L. Fairclough, W. A. Clyde, Jr., and F. W. Denny (1982, June). A longitudinal study of respiratory viruses and bacteria in the etiology of acute otitis media with effusion. New England Journal of Medicine $306(23)$, 1377-1383.

Horvitz, D. G. and D. J. Thompson (1952). A generalization of sampling without replacement from a finite universe. Journal of the American Statistical Association 47(260), 663-685.

Karnes, M. B. (1973). GOAL program: Mathematical Concepts. Springfield, MA: MiltonBradley.

Klein, C. and J. Sanders (1982). Status report on programs and projects (as of January 1, 1982). Report, North Carolina University, Frank Porter Graham Center, Chapel Hill.

Kline, P. and C. Walters (2016). Evaluating public programs with close substitutes: The case of Head Start. Quarterly Journal of Economics 131(4), 1795-1848.

Kottelenberg, M. J. and S. F. Lehrer (2014, August). The gender effects of universal child care in Canada: Much ado about boys? Unpublished manuscript, Department of Economics, Queen's University.

Kuperman, S. (2014-2015). Interviews of Frances Campbell, Carrie Bynum, Phyllis Royster, Gael McGinness, Joseph Sparling, Albert Collier, Barbara Wasik, Lynne Vernon-Feagans, Tom Richey, Margaret Burchinal, Thelma Harms, and Richard Clifford. University of Chicago's Center for the Economics of Human Development, Chicago.

Kuperman, S. and A. Hojman (2015a). Interview with mary hodgers.
Kuperman, S. and A. Hojman (2015b). Interview with Richard Clifford and Sue Russell.
Lehmann, E. L. and J. P. Romano (2005). Testing Statistical Hypotheses (3 ed.). New York: Springer-Verlag.

Lundberg, S. (2005). Sons, daughters, and parental behaviour. Oxford Review of Economic Policy 21 (3), 340-356.

Magnuson, K. A., R. Kelchen, G. J. Duncan, H. S. Schindler, and H. Shager, Hilary Yoshikawa (2016). Do the effects of early childhood education programs differ by gender? a meta-analysis. Early Childhood Research Quarterly 36.

McGinness, G. D. (1982). The language of the poverty child: Implications from center-based intervention and evaluation programs. In L. Feagans and D. Farran (Eds.), The Language of Children Reared in Poverty: Implications for Evaluation and Intervention, pp. 219-240. New York: Academic Press.

McGinness, G. D. and C. T. Ramey (1981). Developing sociolinguistic competence in children. Canadian Journal of Early Childhood Education 1 (2), 22-43.

Noll, S. and J. Trent (Eds.) (2004). Mental Retardation in America: A Historical Reader (The History of Disability). New York: NYU Press.

North Carolina General Assembly (1971). Chapter 803, House bill 100. In North Carolina General Assembly 1971 Session, North Carolina. An Act to protect children through licensing of day-care facilities and other limited regulation.

North Carolina State Department of Social Services (1972). Licensed day care facilities in North Carolina as of february 1, 1971. Raleigh, NC.

O'Brien, C. and J. Sanders (1974). The Carolina Abecedarian Project. Frank Porter Graham Child Development Center.

Ou, S.-R. and A. J. Reynolds (2010). Mechanisms of effects of an early intervention program on educational attainment: a gender subgroup analysis. Children and Youth Services Review 32(8), 1064-1076.

Ramey, C. T., D. M. Bryant, J. J. Sparling, and B. H. Wasik (1985). Project CARE: A comparison of two early intervention strategies to prevent retarded development. Topics in Early Childhood Special Education 5(2), 12-25.

Ramey, C. T. and F. A. Campbell (1979, February). Compensatory education for disadvantaged children. The School Review $87(2), 171-189$.

Ramey, C. T. and F. A. Campbell (1984). Preventive education for high-risk children: Cognitive consequences of the Carolina Abecedarian Project. American Journal of Mental Deficiency 88(5), 515-523.

Ramey, C. T. and F. A. Campbell (1991). Poverty, early childhood education and academic competence: The Abecedarian experiment. In A. C. Houston (Ed.), Children in Poverty: Child Development and Public Policy, Chapter 8, pp. 190-221. New York: Cambridge University Press.

Ramey, C. T., F. A. Campbell, M. Burchinal, M. L. Skinner, D. M. Gardner, and S. L. Ramey (2000). Persistent effects of early childhood education on high-risk children and their mothers. Applied Developmental Science 4(1), 2-14.

Ramey, C. T., A. M. Collier, J. J. Sparling, F. A. Loda, F. A. Campbell, D. A. Ingram, and N. W. Finkelstein (1976). The Carolina Abecedarian Project: A longitudinal and multidisciplinary approach to the prevention of developmental retardation. In T. Tjossem (Ed.), Intervention Strategies for High-Risk Infants and Young Children, pp. 629-655. Baltimore, MD: University Park Press.

Ramey, C. T. and R. Haskins (1981). The modification of intelligence through early experience. Intelligence 5(1), 5-19.

Ramey, C. T., M. C. Holmberg, J. H. Sparling, and A. M. Collier (1977). An introduction to the Carolina Abecedarian Project. In B. M. Caldwell and D. J. Stedman (Eds.), Infant Education: A Guide for Helping Handicapped Children in the First Three Years, Chapter 7, pp. 101-121. New York: Walker and Company.

Ramey, C. T., G. D. McGinness, L. Cross, A. M. Collier, and S. Barrie-Blackley (1982). The Abecedarian approach to social competence: Cognitive and linguistic intervention for disadvantaged preschoolers. In K. M. Borman (Ed.), The Social Life of Children in a Changing Society, Chapter 7, pp. 145-174. Hillsdale, NJ: Lawrence Erlbaum Associates.

Ramey, C. T., P. Mills, F. A. Campbell, and C. O'Brien (1975, July). Infants' home environments: A comparison of high-risk families and families from the general population. American Journal of Mental Deficiency 80(1), 40-42.

Ramey, C. T. and B. J. Smith (1977, January). Assessing the intellectual consequences of early intervention with high-risk infants. American Journal of Mental Deficiency 81 (4), 318-324.

Ramey, C. T., J. J. Sparling, and S. L. Ramey (2012). Abecedarian: The Ideas, the Approach, and the Findings (1 ed.). Los Altos, CA: Sociometrics Corporation.

Robins, P. (1988). Federal support for child care: Current policies and a proposed new system. Focus 11 (2), 1-9.

Romano, J. P. and M. Wolf (2005, March). Exact and approximate stepdown methods for multiple hypothesis testing. Journal of the American Statistical Association 100 (469), 94-108.

Rosenbaum, P. R. (2005). An exact distribution-free test comparing two multivariate distributions based on adjacency. Journal of the Royal Statistical Society 67(4), 515-530.

Sanders, J. and D. B. Stokes (1979, March). Status report on programs and projects as of March 1, 1979. Report, North Carolina University, Frank Porter Graham Center, Chapel Hill.

Sanyal, M. A., F. W. Henderson, E. C. Stempel, A. M. Collier, and F. W. Denny (1980). Effect of upper respiratory tract infection on Eustachian tube ventilatory function in the preschool child. Journal of Pediatrics 97(1), 11-15.

Schore, A. N. (2017, January/February). All our sons: The developmental neurobiology and neuroendocrinology of boys at risk. Infant Mental Health Journal 38(1), 15-52.

Sparling, J. and I. Lewis (1979). LearningGames for the First Three Years: A Guide to Parent/Child Play. New York: Walker and Company.

Sparling, J. and I. Lewis (1984). LearningGames for Threes and Fours. New York: Walker and Company.

Sparling, J. J. (1974). Synthesizing educational objectives for infant curricula. Annual Meeting of the American Educational Research Association.

Wallach, M. A. and L. Wallach (1976). Teaching All Children to Read. Chicago: University of Chicago Press.

Wasik, B. H., C. Ramey, D. M. Bryant, and J. J. Sparling (1990, December). A longitudinal study of two early intervention strategies: Project CARE. Child Development 61 (6), 1682-1696.

[^0]: ${ }^{1}$ Sylvi Kuperman greatly assisted us in preparing this section of the appendix.

[^1]: ${ }^{2}$ Ramey et al. (1985).
 ${ }^{3}$ Ramey and Campbell (1991); Campbell and Ramey (1994).

[^2]: ${ }^{4}$ Sibling pairs occurred when the two siblings were close enough in age such that both of them were eligible for the program.
 ${ }^{5}$ In Appendix B, we compare the observed baseline characteristics of the subjects in Table A. 2 to the observed baseline characteristics of the subjects who complied to the initial treatment assignment. We find little evidence of differences.
 ${ }^{6}$ Informal conversations with the program's staff do not indicate a clear reason for this.

[^3]: ${ }^{7}$ Correspondence with the program officers stating this permission is available under request from the authors.
 ${ }^{8}$ The sensitivity analysis finding little evidence when adjusting for non-compliance includes this case.
 ${ }^{9}$ If anything, this downward biases the effects of the program we estimate.

[^4]: ${ }^{10}$ Three replacements are reported in Ramey and Campbell (1979). Three are documented in correspondence with the program officers, which is available from the authors upon request. The other two replacements are implied by the number of subjects who participated in the randomization protocol in each cohort.

[^5]: ${ }^{11}$ Wasik et al. (1990); Burchinal et al. (1997).
 ${ }^{12}$ In Appendix B, we compare the observed baseline characteristics of the subjects in Table A. 3 to the observed baseline characteristics of the subjects who complied to the initial treatment assignment. We find little evidence of differences.

[^6]: ${ }^{13}$ Note that the clinical understanding of mental retardation was once associated with disadvantages that hindered early-life development (Noll and Trent, 2004).
 ${ }^{14}$ Ramey et al. (1976, 1985); Sparling (1974); Wasik et al. (1990); Ramey et al. (2012).
 ${ }^{15}$ Ramey et al. (1975); Finkelstein (1982); McGinness (1982); Haskins (1985).
 ${ }^{16}$ Ramey et al. (1976, 1985).
 ${ }^{17}$ Ramey and Campbell (1979); Kuperman (2015).
 ${ }^{18}$ Barnett and Masse (2002).
 ${ }^{19}$ Ramey et al. (1977).
 ${ }^{20}$ Haskins (1985); Bryant et al. (1987); Ramey et al. (1977).

[^7]: ${ }^{21}$ Campbell et al. (2014); Kuperman (2015).
 ${ }^{22}$ Ramey et al. (1977); Bryant et al. (1987); Feagans (1996); Kuperman (2015).
 ${ }^{23}$ Ramey et al. (1982, 1985); Wasik et al. (1990).
 ${ }^{24}$ Ramey et al. (1977); Ramey and Campbell (1979); Ramey et al. (1982).
 ${ }^{25}$ Burchinal et al. (1997); Ramey et al. (1985).
 ${ }^{26}$ Ramey et al. (1977, 1982); Bryant et al. (1987).

[^8]: ${ }^{27}$ O’Brien and Sanders (1974); Ramey et al. (1985); Sanders and Stokes (1979); Klein and Sanders (1982); Kuperman (2015).
 ${ }^{28}$ Ramey and Smith (1977); Ramey and Campbell (1979); Ramey and Haskins (1981).
 ${ }^{29}$ Ramey et al. (1977).
 ${ }^{30}$ Ramey and Campbell (1979).
 ${ }^{31}$ Kuperman (2015).
 ${ }^{32}$ Ramey and Smith (1977); Ramey and Campbell (1979).
 ${ }^{33}$ Ramey and Campbell (1979); Ramey et al. (1982).

[^9]: ${ }^{34}$ Ramey et al. (1976); Campbell and Ramey (1994).
 ${ }^{35}$ Ramey et al. (1977); Haskins (1985); Ramey and Haskins (1981); Ramey and Campbell (1979); Ramey and Smith (1977); Ramey et al. (1982); Sparling and Lewis (1979, 1984).
 ${ }^{36}$ Ramey et al. (1985).
 ${ }^{37}$ These include including Bowlby, Piaget, and Vygotsky. (Sparling, 1974; McGinness and Ramey, 1981; Kuperman, 2015).
 ${ }^{38}$ Sparling and Lewis (1979).

[^10]: ${ }^{39}$ Ramey and Campbell (1979); Ramey and Haskins (1981); Sparling and Lewis (1979).
 ${ }^{40}$ Greenberg and Epstein (1973); Karnes (1973); Dunn et al. (1976); Davis (1977); Wallach and Wallach (1976).
 ${ }^{41}$ Bryant et al. (1987); Wasik et al. (1990); Burchinal et al. (1997).
 ${ }^{42}$ Bryant et al. (1987).
 ${ }^{43}$ Bryant et al. (1987); Wasik et al. (1990); Burchinal et al. (1997).
 ${ }^{44}$ Henderson et al. (1982).

[^11]: ${ }^{45}$ Ramey et al. (1976); Bryant et al. (1987); Ramey and Campbell (1991); Campbell and Ramey (1994).
 ${ }^{46}$ Subjects in both the treatment and control groups of the first cohort received free medical care provided by ABC . The control group of the first cohort only received medical care in the first year of the program; the treatment group of the first cohort received medical care for all years of the program. In the subsequent cohorts, only subjects in the treatment group received free medical care provided by ABC. Both CARE cohorts of treated subjects received medical care.
 ${ }^{47}$ Haskins et al. (1978).
 ${ }^{48}$ Bryant et al. (1987).
 ${ }^{49}$ Ramey et al. (1977); Bryant et al. (1987).
 ${ }^{50}$ Bryant et al. (1987); Campbell et al. (2014).
 ${ }^{51}$ Sanyal et al. (1980).
 ${ }^{52}$ Bryant et al. (1987); Campbell et al. (2014); Kuperman (2015).

[^12]: ${ }^{53}$ Ramey et al. (1976); Ramey and Campbell (1979); Ramey et al. (1985).
 ${ }^{54}$ Burchinal et al. (1997).
 ${ }^{55}$ There were about 60 activities per year. See Campbell and Ramey (1989) for details.
 ${ }^{56}$ Ramey and Campbell (1991).

[^13]: ${ }^{57}$ See Heckman (1992), Heckman (2001), and Kline and Walters (2016).
 ${ }^{58}$ Burchinal et al. (1989).

[^14]: Note: This table describes baseline characteristics for the children in the control group, by gender and by their enrollment in alternative childcare. The number of subjects in these groups are listed at the top of the table. Asymptotic standard errors are in parentheses. The reported p-values are from two-sided tests of difference of means. The means are bolded if the difference is significant at the 10% level. In the main text, we jointly test for baseline differences between males and females and between treatment- and control-group children, accounting for multiple hypotheses, and find that none of the p-values remain significant after this adjustment.

[^15]: ${ }^{59}$ Robins (1988).
 ${ }^{60}$ Department of Health, Education, and Welfare (1968).
 ${ }^{61}$ Kuperman and Hojman (2015b).
 ${ }^{62}$ North Carolina General Assembly (1971).

[^16]: ${ }^{63}$ North Carolina State Department of Social Services (1972).

[^17]: ${ }^{64}$ Ad Hoc Committee of Professionals in Child Care Services, North Carolina (1974).
 ${ }^{65}$ Kuperman and Hojman (2015b,a).
 ${ }^{66}$ Ad Hoc Committee of Professionals in Child Care Services, North Carolina (1974); Community Planning Services (1973).
 ${ }^{67}$ Administrative Branch, Office of Day Care Services (1982).

[^18]: Note: This table describes the main categories of variables that were measured for ABC and CARE subjects at ages 6 to 18. ABC and CARE ages are measured in years. This is not an exhaustive list of variables, nor does it include variables from auxiliary data. Instruments or questionnaires available for only one of the studies are indicated with the superscript $A B C$ or ${ }^{C A R E}$. Abbreviations are as follows. MSCD: McCarthy Scales of Children's Development. SBIS: Stanford-Binet Intelligence Scale. WIS: Wechsler Intelligence Scale for Children. KRT: Kohn and Rosman Test Behavior Inventory. WJCA: Woodcock-Johnson Test of Cognitive Abilities. PEI: Parents as Educator Interview. CAS: Child Assessment Schedule. PMI: Psychosocial Maturity Inventory. SAI: Social Adjustment Inventory for Children and Adolescents. SCAN: Schedule of Classroom Activity Norms. CBI: Classroom Peabody Individual Achievement Test. CAT: California Achievement Test. MARS: Mid-Adolescence Rating Scale Data.

[^19]: ${ }^{68}$ Lehmann and Romano (2005).

[^20]: ${ }^{71}$ We only account for IPW for the list of variables listed here, or any calculation involving them.

[^21]: ${ }^{72}$ We perform this procedure at any age, and re-sample individuals independently of their treatment status so we drop the respective indices.

[^22]: ${ }^{73}$ Although Kottelenberg and Lehrer (2014) study gender gaps, they only consider intact families.

[^23]: ${ }^{74}$ This is a separate discussion from the election of variables to forecast life-cycle profiles of labor income and other outcomes. For that discussion see Appendix B.

[^24]: ${ }^{75}$ For the tables that present categorical combining function statistics that count the number of positive treatment effects that are significant at the 10% level, two bootstrap tests are conducted. The first bootstrap test is used to determine significance at the 10% level for each treatment effect. The second bootstrap test is used to determine whether the combined function statistic is significantly different from 10% at the 10% level. See Appendix B. 3 for more details on our inference procedures.

[^25]: Note: This table displays summaries of treatment effects by outcome category and gender for the full set of outcomes. Each of the panels contains statistics calculated using outcomes measured at the indicated ages. Early childhood includes outcomes measured before age 6 , school age includes outcomes measured between age 6 and 18 , and adult includes outcomes measured between 21 and 35 . All (panel d) is a combination of all the outcomes in panels (a) to (c). The average effect size is calculated by averaging over the effect sizes of the outcomes in the age category. The effect sizes of the individual outcomes are calculated by dividing the treatment-control mean difference by the standard deviation of the control group. We present bootstrapped p-values. For the proportion of outcomes that are positive and significant, we do a "double bootstrap" procedure. The null hypothesis for the average effect sizes is that they are 0 . The null hypothesis for the proportion of outcomes that are (significantly) positive is that they are (10%) 50%. Bolded statistics are significant at the 10% level. The Rosenbaum (2005) p-value originates from a test where the null is a common joint distribution across treatment status of the variables in each category. A p-value less than 0.10 (bolded) indicates that the distributions are significantly different at the 10% level. More details on our inference procedure are in Section 3.

[^26]: Note: This table displays summaries of treatment effects by outcome category and gender for the full set of outcomes and compared to those who stayed at home. Each of the panels contains statistics calculated using outcomes measured at the indicated ages. Early childhood includes outcomes measured before age 6, school age includes outcomes measured between age 6 and 18, and adult includes outcomes measured between 21 and 35 . All (panel d) is a combination of all the outcomes in panels (a) to (c). The average effect size is calculated by averaging over the effect sizes of the outcomes in the age category. The effect sizes of the individual outcomes are calculated by dividing the treatment-control mean difference by the standard deviation of the control group. We present bootstrapped p-values. For the proportion of outcomes that are positive and significant, we do a "double bootstrap" procedure. The null hypothesis for the average effect sizes is that they are 0 . The null hypothesis for the proportion of outcomes that are (significantly) positive is that they are (10%) 50%. Bolded statistics are significant at the 10% level. The Rosenbaum (2005) p-value originates from a test where the null is a common joint distribution across treatment status of the variables in each category. A p-value less than 0.10 (bolded) indicates that the distributions are significantly different at the 10% level. More details on our inference procedure are in Section 3.

[^27]: Note: This table displays summaries of treatment effects by outcome category and gender for the full set of outcomes compared to those who attended alternative preschool. Each of the panels contains statistics calculated using outcomes measured at the indicated ages. Early childhood includes outcomes measured before age 6 , school age includes outcomes measured between age 6 and 18, and adult includes outcomes measured between 21 and 35 . All (panel d) is a combination of all the outcomes in panels (a) to (c). The average effect size is calculated by averaging over the effect sizes of the outcomes in the age category. The effect sizes of the individual outcomes are calculated by dividing the treatment-control mean difference by the standard deviation of the control group. We present bootstrapped p-values. For the proportion of outcomes that are positive and significant, we do a "double bootstrap" procedure. The null hypothesis for the average effect sizes is that they are 0 . The null hypothesis for the proportion of outcomes that are (significantly) positive is that they are (10%) 50%. Bolded statistics are significant at the 10% level. The Rosenbaum (2005) p-value originates from a test where the null is a common joint distribution across treatment status of the variables in each category. A p-value less than 0.10 (bolded) indicates that the distributions are significantly different at the 10% level. More details on our inference procedure are in Section 3.

[^28]: Note: This table shows the treatment effects for categories outcomes that are important for our benefit/cost analysis. Systolic and diastolic blood pressure are measured in terms of mm Hg . Each column present estimates for the following parameters: (1) $\mathbb{E}\left[\boldsymbol{Y}^{1}-\boldsymbol{Y}^{0} \mid \boldsymbol{B} \in \mathcal{B}_{0}\right]$ (no controls) ; (2) $\mathbb{E}\left[\boldsymbol{Y}^{1}-\boldsymbol{Y}^{0} \mid \boldsymbol{B} \in \mathcal{B}_{0}\right]$ (controls); (3) $\mathbb{E}\left[\boldsymbol{Y}^{1} \mid R=1\right]-\mathbb{E}\left[\boldsymbol{Y}^{0} \mid R=0, V=0\right]$ (no controls); (4) $\mathbb{E}\left[\boldsymbol{Y}^{1}-\boldsymbol{Y}_{H}^{0} \mid \boldsymbol{B} \in \mathcal{B}_{0}\right]$ (controls); (5) $\mathbb{E}\left[\boldsymbol{Y}^{1} \mid R=1\right]-\mathbb{E}\left[\boldsymbol{Y}^{0} \mid R=0, V=1\right]$ (no controls); (6) $\mathbb{E}\left[\boldsymbol{Y}^{1}-\boldsymbol{Y}_{C}^{0} \mid \boldsymbol{B} \in \mathcal{B}_{0}\right]$ (controls). We account for the following background variables (\boldsymbol{B}): Apgar scores at minutes 1 and 5 and the high-risk index. We define the high-risk index in Appendix A and explain how we choose the control variables in Appendix D.1. Columns (2), (4), and (6) correct for item non-response and attrition using inverse probability weighting as we explain in Appendix B.2. Inference is based on non-parametric, one-sided p-values from the empirical bootstrap distribution. We highlight point estimates significant at the 10% level. See Appendix D. 13 for two-sided p-values.

[^29]: Note: This table shows the treatment effects for categories outcomes that are important for our benefit/cost analysis. Systolic and diastolic blood pressure are measured in terms of $\mathrm{mm} H g$. Each column present estimates for the following parameters: (1) $\mathbb{E}\left[\boldsymbol{Y}^{1}-\boldsymbol{Y}^{0} \mid \boldsymbol{B} \in \mathcal{B}_{0}\right]$ (no controls) ; (2) $\mathbb{E}\left[\boldsymbol{Y}^{1}-\boldsymbol{Y}^{0} \mid \boldsymbol{B} \in \mathcal{B}_{0}\right]$ (controls); (3) $\mathbb{E}\left[\boldsymbol{Y}^{1} \mid R=1\right]-\mathbb{E}\left[\boldsymbol{Y}^{0} \mid R=0, V=0\right]$ (no controls); (4) $\mathbb{E}\left[\boldsymbol{Y}^{1}-\boldsymbol{Y}_{H}^{0} \mid \boldsymbol{B} \in \mathcal{B}_{0}\right]$ (controls); (5) $\mathbb{E}\left[\boldsymbol{Y}^{1} \mid R=1\right]-\mathbb{E}\left[\boldsymbol{Y}^{0} \mid R=0, V=1\right]$ (no controls); (6) $\mathbb{E}\left[\boldsymbol{Y}^{1}-\boldsymbol{Y}_{C}^{0} \mid \boldsymbol{B} \in \mathcal{B}_{0}\right]$ (controls). We account for the following background variables (\boldsymbol{B}): Apgar scores at minutes 1 and 5 and the high-risk index. We define the high-risk index in Appendix A and explain how we choose the control variables in Appendix D.1. Columns (2), (4), and (6) correct for item non-response and attrition using inverse probability weighting as we explain in Appendix B.2. Inference is based on non-parametric, one-sided p-values from the empirical bootstrap distribution. We highlight point estimates significant at the 10% level. See Appendix D. 13 for two-sided p-values.

[^30]: ${ }^{76}$ This is fundamentally different from the methodology in the paper given that it does not necessarily assume that $D=R$.

