Career and Family Decisions: Cohorts Born 1935-1975

Zvi Eckstein, Michael Keane, Osnat Lifshitz *Econometrica*, Vol. 87, No. 1 (January, 2019), 217–253

James J. Heckman

Econ 350, Winter 2021

1. Introduction

Eckstein et al.

2. Key Patterns in the Data

Eckstein et al.

2.1. Employment Rates by Marital Status

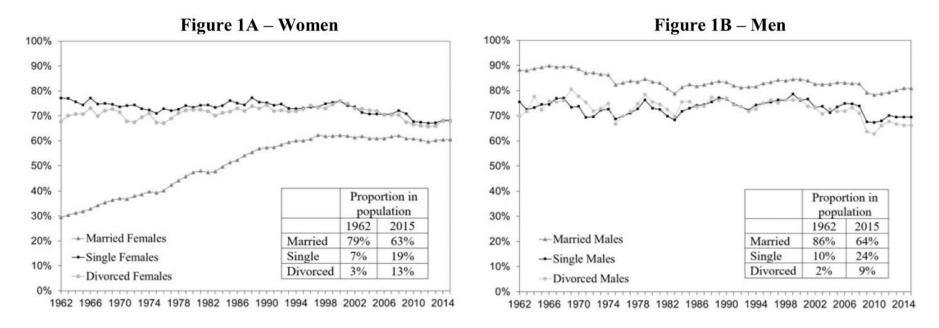


FIGURE 1.—Employment rate by marital status: 1962–2015. *Note*: Fraction employed of the Caucasian population aged 22–65. We define employed as working at least 10 hours a week.

Eckstein et al.

2.2 Wages by Marital Status

Eckstein et al.

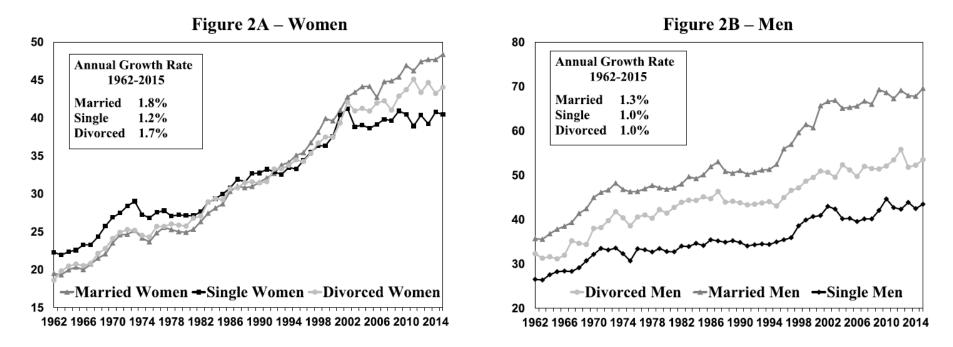


FIGURE 2.—Annual wages by marital status: 1962—2015. *Note*: Real annual wages (in thousands of dollars) of full-time full-year Caucasian workers aged 22–65 (2012 prices). For details, see Appendix A.

Eckstein et al.

2.3. Women's Education and the "Marriage Wage Gap"

Eckstein et al.

3. A Life-cycle Model of Education, Labor Supply, Marriage/Divorce, and Fertility

3.1. The Decisions of a Married Couple

Married couples have total gross income GY_t^M given by the equation

$$GY_t^M = \left(w_t^m h_t^m + w_t^f h_t^f\right) + b_m I \left[h_t^m = 0\right] + b_f I \left[h_t^f = 0\right].$$
(1)

Here w_t^j and h_t^j for j = f, *m* are annual full-time wage rates and the b_j are unemployment benefits plus values of home production. We will use the *M* superscript throughout to indicate values for married individuals. Net income is Y_t^M given by the equation

$$Y_{t}^{M} = GY_{t}^{M} - \tau_{t}^{M} \left(\left(w_{t}^{m} h_{t}^{m} + w_{t}^{f} h_{t}^{f} \right), N_{t} \right),$$
(2)

where $\tau_t^M(\cdot, \cdot)$ is the tax function for married couples based on the time t tax rules.

$$C_t^M = \left(1 - \kappa(N_t)\right) Y_t^M. \tag{3}$$

Here $\kappa(N_t)$ is the fraction of Y_t^M spent on children, based on a square root equivalence scale.¹

The period utility of a married person of age t and gender j in state Ω_{jt} is given by

$$U_{t}^{jM}(\Omega_{jt}) = \frac{1}{\alpha} (\psi C_{t}^{M})^{\alpha} + L_{jt}(l_{t}^{j}) + \theta_{t}^{M} + \pi_{t}^{M} p_{t}$$

$$+ A_{j}^{M} Q(l_{t}^{f}, l_{t}^{m}, Y_{t}^{M}, N_{t}), \quad j = m, f,$$

$$L_{jt}(l_{t}^{j}) = \frac{\beta_{jt}}{\gamma} (l_{t}^{j})^{\gamma} + \mu_{jt} l_{t}^{j}, \quad \gamma < 1, \alpha < 1.$$
(4a)
(4b)

Eckstein et al.

This is denoted by $\mu_{jt}l_t^j$, where μ_{jt} is a random variable. Our specification of the stochastic process for μ_{jt} is an important and novel aspect of our model. Specifically, we assume that

$$\ln(\mu_{jt}) = \tau_{0j} + \tau_{1j} \ln(\mu_{j,t-1}) + \tau_{2j} p_{t-1} + \varepsilon_{jt}^{l} \quad \text{where } \varepsilon_{jt}^{l} \sim \text{iidN}(0, \sigma_{\varepsilon}^{l}), \tag{5}$$
$$0 < \tau_{1j} < 1.$$

where

$$\theta_t^M = d_1 + d_2 \cdot I[E^m - E^f > 0] + d_3 \cdot I[E^f - E^m > 0] + d_4 (H_t^m - H_t^f)^2 + \varepsilon_t^M, \quad (6)$$

where $\varepsilon_t^M \sim \text{iidN}(0, \sigma_\varepsilon^M)$ and E^j denotes education, rank ordered as high school dropout (HSD), high school (HSG), some college (SC), college (CG), and post-college (PC), and $H_t^j \in \{1, 2, 3\}$ denotes health (i.e., good, fair, or poor).

Next, consider the utility from pregnancy, π_t . We specify that

$$\pi_{t} = \pi_{1}M_{t} + \pi_{2}H_{ft} + \pi_{3}N_{t} + \pi_{4}p_{t-1} + \varepsilon_{t}^{p} + \exp(\varepsilon_{t}^{up}),$$
(7)

where $\varepsilon_t^p \sim \text{iidN}(0, \sigma_\varepsilon^p)$ and $\varepsilon_t^{up} \sim \text{iidN}(pr, 1)$.

Finally, consider the function $Q(\cdot)$ that determines the utility a couple receives from the quality and quantity of children. We assume it is a CES function of the inputs, as follows:

$$Q(l_t^f, l_t^m, Y_t^M, N_t) = (a_f(l_t^f)^{\rho} + a_m(l_t^m)^{\rho} + a_g(\kappa(N_t)Y_t^M)^{\rho} + (1 - a_f - a_m - a_g)N_t^{\rho})^{1/\rho}.$$
 (8)

We are now able to write the choice-specific value functions for married *individuals*. These depend on both a person's own state and that of their partner:

$$V_{t}^{jM}(l_{t}^{m}, l_{t}^{f}, p_{t} | \Omega_{mt}, \Omega_{ft}) = \frac{1}{\alpha} (\psi C_{t}^{M})^{\alpha} + L(l_{t}^{j}) + \theta_{t}^{M} + \pi_{t} p_{t} + A_{j}^{M} Q(l_{t}^{f}, l_{t}^{f}, Y_{t}^{M}, N_{t}) + \delta E_{\text{MAX}} (M_{t+1} V_{t+1}^{jM}(\Omega_{m,t+1}, \Omega_{f,t+1}) + (1 - M_{t+1}) V_{t+1}^{j}(\Omega_{j,t+1})), \quad j = f, m.$$
(9)

In our collective model, the household value function is given by

$$V_{t}^{M}(l_{t}^{m}, l_{t}^{f}, p_{t} \mid \Omega_{mt}, \Omega_{ft}) = \lambda V_{t}^{fM}(l_{t}^{m}, l_{t}^{f}, p_{t} \mid \Omega_{mt}, \Omega_{ft}) + (1 - \lambda) V_{t}^{mM}(l_{t}^{m}, l_{t}^{f}, p_{t} \mid \Omega_{mt}, \Omega_{ft}).$$

$$V_{t}^{jM}(l_{t}^{m}, l_{t}^{f}, p_{t} \mid \Omega_{mt}, \Omega_{ft}) \ge V_{t}^{j}(\Omega_{jt}) - \Delta_{jt} \quad \text{for } j = f, m,$$

$$(10)$$

where Δ_{it} is the cost of divorce.¹⁷ If $\mathcal{F} = \emptyset$, no choice vector $\{l_t^m, l_t^f, p_t\}$ satisfies (11).

Eckstein et al.

$$\{l_t^{m*}, l_t^{f*}, p_t^*\} = \begin{cases} \arg \max_{\{l_t^m, l_t^f, p_t\} \in \mathcal{F}} V_t^M (l_t^m, l_t^f, p_t \mid \Omega_{mt}, \Omega_{ft}) & \text{if } \mathcal{F} \neq \emptyset, \\ \emptyset & \text{if } \mathcal{F} = \emptyset. \end{cases}$$

The form of (10) ensures that $\{l_t^{m*}, l_t^{f*}, p_t^*\}$ is a Pareto efficient allocation. If one or more parties prefer to remain single for all possible $\{l_t^m, l_t^f, p_t\}$, then $\mathcal{F} = \emptyset$ and a divorce occurs. The maximized value function of a married *individual* in state Ω_{jt} is given by

$$V_{t}^{jM}(\Omega_{mt},\Omega_{ft}) \equiv \begin{cases} V_{t}^{jM}(l_{t}^{m*},l_{t}^{f*},p_{t}^{*} \mid \Omega_{mt},\Omega_{ft}) & \text{for } j = f, m \text{ if } \mathcal{F} \neq \emptyset, \\ -\infty & \text{for } j = f, m \text{ if } \mathcal{F} = \emptyset. \end{cases}$$
(12)

3.2. The Decisions of Single Households

$$Y_{t}^{j} = GY_{t}^{j} - \tau_{t}^{s} (w_{t}^{j} h_{t}^{j}, N_{t}), \quad j = f, m,$$
(14)

where $\tau_t^S(w_t^j h_t^j, N_t)$ is the time t tax function for single individuals calculated using the tax rules described in Appendix B. Thus, the budget constraint for a single person is simply

$$C_t^j = \left(1 - \kappa(N_t)\right) Y_t^j. \tag{15}$$

Note that both single men and women may have children ($N_t > 0$). These may be children from a previous marriage or, in the case of single women, children born outside of marriage.

$$U_{t}^{f}(\Omega_{ft}) = \left(\frac{1}{\alpha}(C_{t})^{\alpha} + L_{j}(l_{t})\right)(1 - s_{t}) + \vartheta_{ft}s_{t} + \pi_{t}p_{t} + A_{f}^{s}Q(l_{t}, 0, Y_{t}, N_{t}),$$
(16)

where s_t is a 1/0 indicator for school attendance. Provided the single woman is not in

$$\vartheta_{jt} = \vartheta_{0j} + TC \cdot I(E_t > HSG) + \vartheta_{1j}PE + \vartheta_{2j}\mu_j^W \quad \text{for } j = m, f.$$
(17)

Here ϑ_{jt} is a function of tuition cost *TC*, which is only relevant for higher education, the skill endowment μ_j^W , and parents' education, denoted *PE*.

We can now write the choice-specific value functions for single females:

$$V_{t}^{f}(l_{t}, p_{t}, s_{t} | \Omega_{ft}) = \left(\frac{1}{\alpha}(C_{t})^{\alpha} + L_{f}(l_{t})\right)(1 - s_{t}) + \vartheta_{ft}s_{t} + \pi_{t}p_{t} + A_{f}^{s}Q(l_{t}, 0, Y_{t}, N_{t})$$

$$+ \delta E_{\text{MAX}}V(\Omega_{f, t+1}),$$
(18a)

 $E_{\text{MAX}}V(\Omega_{f,t+1}) = E_{\text{MAX}}(M_{t+1}V_{t+1}^{fM}(\Omega_{m,t+1},\Omega_{f,t+1}) + (1 - M_{t+1})V_{t+1}^{f}(\Omega_{f,t+1})),$ (18b)

where $E_{\text{MAX}}V(\Omega_{f,t+1})$ takes into account that the person may get married at t + 1. Similarly, for single males, we have the choice-specific value function:

$$V_{t}^{m}(l_{t}, s_{t} \mid \Omega_{mt}) = \left(\frac{1}{\alpha}(C_{t})^{\alpha} + L_{m}(l_{t})\right)(1 - s_{t}) + \vartheta_{mt}s_{t} + A_{m}^{s}Q(0, l_{t}, Y_{t}, N_{t}) + \delta E_{\text{MAX}}V(\Omega_{m,t+1}).$$
(19)

Eckstein et al.

To proceed, for women and men we have, respectively,

$$V_{t}^{f}(\Omega_{ft}) = \max_{\{l_{t}, p_{t}, s_{t}\} \in \mathcal{S}_{t}^{f}} V_{t}^{f}(l_{t}, p_{t}, s_{t} \mid \Omega_{ft}),$$
(20)

$$V_t^m(\Omega_{mt}) = \max_{\{l_t, s_t\} \in \mathcal{S}_t^m} V_t^f(l_t, s_t \mid \Omega_{mt}).$$
(21)

Eckstein et al.

The wage offer functions have a standard Ben-Porath (1967), Mincer (1974) form:

$$\ln w_{et}^{j} = \omega_{1e}^{j} + \omega_{2e}^{j} X_{t} - \omega_{3e}^{j} X_{t}^{2} + \varepsilon_{jt}^{W} \quad \text{for } j = f, m,$$
(22)

where X_t is work experience (years) and $e \in \{HSD, HSG, SC, CG, PC\}$ is education level.

The error term ε_{it}^{W} in equation (22) has a permanent/transitory structure:

$$\varepsilon_{jt}^{W} = \mu_{j}^{W}(PE) + \tilde{\varepsilon}_{jt}^{W} \quad \text{where } \tilde{\varepsilon}_{jt}^{W} \sim \text{iidN}(0, \sigma_{\varepsilon}^{W}).$$
(23)

$$P_{j}(k \in D_{t}) = \frac{\exp(\phi_{j0k} + \phi_{j1k}e_{t}^{r} + \phi_{j2k}X_{t} + \phi_{j3k}H_{t})}{1 + \exp(\phi_{j0k} + \phi_{j1k}e_{t}^{r} + \phi_{j2k}X_{t} + \phi_{j3k}H_{t})} \quad \text{for } k = 1, 2,$$
(24)

where k = 1, 2 denote full- and part-time, respectively, and j = f, m. Here $e_t^r = 1, ..., 5$ corresponds to the five education levels in ascending order, X_t is work experience, and H_t is health.

3.4. Health Status

3.5. *The Marriage Market*

Eckstein et al.

Putting this all together, the marriage offer for a single female consists of the vector

$$\mathcal{M}_{ft} = \left(E^m, H^m, X^m, N^m, PE^m, h^m_{t-1}, \mu_{mt}, \mu^W_m, \tilde{\varepsilon}^W_{mt}, \varepsilon^M_t\right).$$
(26)

Marriage offers for males (\mathcal{M}_{mt}) have an analogous form.

Given a marriage offer \mathcal{M}_{jt} , a single person can construct the vector $(\Omega_{ft}, \Omega_{mt})$ that characterizes the state of the couple if they marry. That is, $(\Omega_{jt}, \mathcal{M}_{jt}) \rightarrow (\Omega_{ft}, \Omega_{mt})$ for j = f, m. The potential partner also knows $(\Omega_{ft}, \Omega_{mt})$. Both parties calculate the value of marriage, denoted by $V_t^{jM}(\Omega_{mt}, \Omega_{ft})$ for j = f, m in equation (12). A marriage is formed if and only if

$$V_t^{fM}(\Omega_{mt}, \Omega_{ft}) > V_t^f(\Omega_{ft}) \quad \text{and} \quad V_t^{mM}(\Omega_{mt}, \Omega_{ft}) > V_t^m(\Omega_{mt}).$$
(27)

3.6. Terminal Period and Retirement

Eckstein et al.

4. Solution of the Model

Eckstein et al.

5. Estimation and Identification

Eckstein et al.

6. Estimation Results and Interpretation

Eckstein et al.

6.1. Wages and Employment by Cohort

				Co	ontribution of l	ribution of Each Factor		
	1935 Fitted	1975 Fitted	Total % Change	Benchmark	Marriage Market	Labor Market	Contra- ception	
Wages (Thousands of \$)								
Married Women-Ages 25-34	20.5	39.0	90%	11%	7%	65%	8%	
Married Women-Ages 35-44	25.1	51.2	104%	12%	5%	81%	5%	
Unmarried Women—Ages 25-34	23.3	37.7	62%	4%	1%	55%	1%	
Unmarried Women-Ages 35-44	28.4	43.5	53%	3%	1%	49%	0%	
Married Men—Ages 25-34	36.2	51.3	42%	1%	1%	40%	0%	
Married Men—Ages 35-44	52.2	69.8	34%	1%	1%	32%	0%	
Unmarried Men-Ages 25-34	30.0	42.9	43%	3%	1%	39%	0%	
Unmarried Men—Ages 35-44	42.9	56.3	31%	2%	1%	28%	0%	
Employment								
Married Women—Ages 25-34	0.27	0.63	130%	13%	13%	67%	36%	
Married Women-Ages 35-44	0.44	0.66	50%	4%	5%	35%	6%	
Unmarried Women—Ages 25-34	0.68	0.75	11%	1%	0%	8%	1%	
Unmarried Women—Ages 35-44	0.70	0.72	2%	0%	0%	2%	0%	
Married Men—Ages 25-34	0.91	0.89	-2%	0%	-1%	-1%	0%	
Married Men—Ages 35-44	0.92	0.90	-2%	0%	-1%	-2%	0%	
Unmarried Men—Ages 25-34	0.78	0.79	2%	0%	0%	2%	0%	
Unmarried Men—Ages 35-44	0.79	0.75	-5%	0%	0%	-5%	0%	

TABLE I DECOMPOSING SOURCES OF COHORT DIFFERENCES—WAGES AND EMPLOYMENT

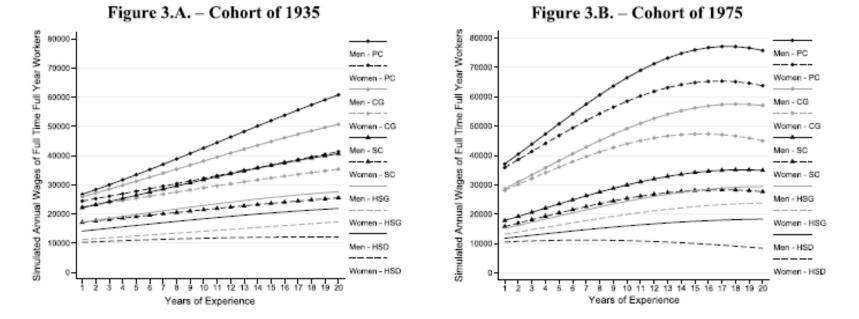


FIGURE 3.—Simulated annual wages by education and years of experience.

6.2. The Marriage Wage Gap

Eckstein et al.

TABLE II

MARRIAGE WAGE GAP BY GENDER AND COHORT

	Women Marriage Wage Gap				Men Marriage Wage Gap					
	1935	1945	1955	1965	1975	1935	1945	1955	1965	1975
Data	-8.9%	-6.8%	-1.7%	2.0%	5.2%	19.7%	18.7%	19.5%	19.7%	18.3%
Benchmark Model	-3.6%	-3.7%	-1.1%	0.8%	1.3%	11.9%	12.3%	12.0%	12.9%	12.3%
Full Model	-8.4%	-6.4%	-1.0%	2.3%	4.4%	12.9%	13.8%	13.6%	13.8%	13.7%
Control for Experience	-3.3%	-2.8%	2.0%	3.2%	5.0%	4.3%	4.4%	5.5%	6.5%	6.4%
Control for Ability	0.8%	0.8%	1.1%	0.7%	1.0%	1.2%	0.8%	0.9%	1.4%	0.9%

6.3. Marriage, Divorce, Assortative Mating, Fertility, and Education

TABLE III

DECOMPOSING SOURCES OF COHORT DIFFERENCES-MARRIAGE, CHILDREN, EDUCATION

				Contribution of Each Factor			
	1935 Fitted	1975 Fitted	Total % Change	Benchmark	Marriage Market	Labor Market	Contra- ception
Family moments							
Marriage Rate—Ages 25-34	0.86	0.60	-30%	-20%	-7%	-3%	0%
Marriage Rate—Ages 35–44	0.84	0.70	-16%	-7%	-7%	-2%	-1%
Divorce Rate—Ages 25-34	0.03	0.09	206%	31%	144%	13%	17%
Divorce Rate—Ages 35-44	0.08	0.12	62%	3%	54%	5%	0%
Married Women # of Children—Ages 25-34	2.54	1.51	-41%	-8%	-12%	0%	-20%
Married Women # of Children—Ages 35-44	2.24	1.94	-14%	-2%	-4%	0%	-6%
Unmarried Women # of Children—Ages 25-34	0.92	0.32	-66%	-6%	-6%	-1%	-53%
Unmarried Women # of Children—Ages 35-44	0.75	0.51	-32%	-3%	-4%	-1%	-24%
Education Distribution at 30							
Women's CG + PC Rate	0.05	0.36	620%	180%	220%	200%	20%
Men's CG + PC Rate	0.20	0.29	45%	5%	10%	30%	0%
Assortative Mating							
HSD With HSD	0.55	0.56	2%	0%	2%	2%	-2%
HSG With HSG	0.64	0.49	-23%	-9%	-8%	-5%	-2%
SC With SC	0.24	0.53	121%	-4%	25%	100%	0%
CG With CG	0.33	0.49	48%	6%	15%	27%	0%
PC With PC	0.12	0.43	258%	33%	33%	183%	8%
HSG Women With CG Men	0.34	0.08	-76%	-9%	-21%	-47%	0%
CG Women With HSG Men	0.02	0.12	500%	100%	150%	250%	0%

6.4. Robustness Checks: Home Production and Savings

Eckstein et al.

7. Policy Analysis: Tax Reform and Labor Supply

Eckstein et al.

TABLE IV

IMPLEMENTING INDIVIDUAL TAXATION OF INCOME FOR 1965 COHORT^a

	1965							
	Baseline	Individual Tax	Percentage Change	Ind. Tax Revenue Neutral	Percentage Change			
Gross Wages (Thousands of \$)								
Married Women	41.9	42.4	1.3%	42.4	1.2%			
Unmarried Women	42.0	42.3	0.6%	42.3	0.7%			
Married Men	63.4	63.3	-0.2%	63.3	-0.2%			
Unmarried Men	47.6	47.7	0.0%	47.7	0.1%			
Employment								
Married Women	0.65	0.70	8.3%	0.71	9.0%			
Unmarried Women	0.75	0.76	0.9%	0.76	1.2%			
Married Men	0.89	0.89	0.6%	0.89	0.9%			
Unmarried Men	0.76	0.76	-0.1%	0.76	0.2%			
Family Moments								
Marriage Rate	0.68	0.73	8.0%	0.73	8.1%			
Divorce Rate	0.12	0.12	-4.3%	0.12	-5.1%			
Married Women # of Children	1.66	1.60	-3.9%	1.59	-4.0%			
Unmarried Women # of Children	0.40	0.40	-1.1%	0.40	-1.3%			
Education								
Women's CG + PC Rate	0.24	0.25	4.2%	0.25	4.2%			
Men's CG + PC Rate	0.26	0.26	0.0%	0.26	0.0%			

^aGross Wages—Average simulated annual wages of full-time workers aged 25 to 55. Employment—Average simulated employment rate of workers aged 25 to 55. Family moments—Average simulated rates for people aged 25 to 55. Education—Simulated college and post-college graduation rates at age 30.

Eckstein et al.

Elasticities	1935	1945	1955	1965	1975
Married Women—Ages 25-34	1.80	1.84	1.27	1.25	1.13
Married Women—Ages 35-44	1.12	1.32	1.13	1.12	1.18
Married Women—Ages 45-54	1.20	1.10	1.04	1.06	
Unmarried Women—Ages 25-34	0.21	0.23	0.19	0.18	0.22
Unmarried Women—Ages 35-44	0.19	0.28	0.21	0.21	0.17
Unmarried Women—Ages 45-54	0.16	0.16	0.20	0.20	
Married Men—Ages 25–34	0.15	0.15	0.20	0.17	0.19
Married Men—Ages 35–44	0.14	0.17	0.20	0.15	0.17
Married Men—Ages 45-54	0.16	0.19	0.20	0.15	
Unmarried Men—Ages 25–34	0.16	0.16	0.20	0.18	0.23
Unmarried Men—Ages 35-44	0.17	0.20	0.21	0.16	0.16
Unmarried Men—Ages 45-54	0.21	0.18	0.16	0.22	

TABLE V LABOR SUPPLY ELASTICITIES BY GENDER, MARITAL STATUS, AGE, AND COHORT

8. Conclusion

Eckstein et al.