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Rising Within-Group (“Residual”) Inequality
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e Aheights (trends): LF composition (unobserved skill “prices”) held
constant; “price” effects more pronounced (are these really prices?)

@ Assumption: distribution of unobserved skills constant over time
(otherwise, just observing increasing inequality in unobserved skill
distributions over time)
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How Do We Explain Rising Inequality?

@ One explanation: skill-biased technological change (SBTC)
@ Another explanation: rise (fall) in demand for complex (routine) tasks

@ Report will (sequentially) discuss both
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© Skills
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Baseline Skills Model: Setup

e Katz and Murphy (1992): “canonical” high (H) vs. low (L)-skilled
worker model

Key feature: labor-augmenting technologies (Ap, A))
Production function:

Y(t) = Ad(AI(£)L(2))” + (An(t)H(2))]7]

@ Profit maximization yields relative demand for skills:

wa _ (AT (R
Wy N A/ L
@ How inequality responds to technological change depends on o:
9 (VMVT’Z) _ 0~ 1
A
o(%) 7
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Baseline Skills Model: Results

e Katz and Murphy (1992) first to estimate:

wh(t) An(t) H(t)
In wi(t) (0 —1)/oln (A/(f)) —1/oln (L(t)) +&¢

@ Results:

in ) _ 033(0.01) « £ — 0.71(15) In (H(t)> +C

L(t)

e Conclusion: SBTC (increase in Ap) increases inequality (CES > 1,
since 6 = 1.41)
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Extensions (1): Acemoglu and Autor (2011)

Katz-Murphy prediction model for the college-high school wage gap

Log wage gap
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Source: Acemoglu and Autor (2011)
e Katz and Murphy (1992) model fits post-1995 data poorly

@ SBTC in recent periods may affect middle- (as opposed to low-)
skilled workers: wage/job “polarization”
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“Wage Polarization”

Changes in male & female log hourly wages by percentile

relative to the median
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Source: Acemoglu and Autor (2011)

Changes in male log hourly wages by percentile

relative to the median
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o Larger (male, female) high/low-end wage growth wrt. median (but
low-end growth could be affected by min. wage increases?)

e Contrasts w/ monotonic rise in education wage premium and

“canonical” model
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“Job Polarization”

Panel A. Smoothed changes in employment by skill percentile, 1980-2005
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Source: Autor and Dorn (2013)
o Larger employment growth in high/low-skill occupations wrt.
median-skill ones (challenged!)
o Criticisms: i) lower-tail findings not replicable w/ CPS data (Mishel
et al., 2013); ii) lower-tail job loss non-gradual /mostly
recession-driven (Beaudry et al., 2016)
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Extensions (2): Deming and Kahn (2018) Data

@ Variation in skill demand vs. wages/firm performance?

@ Online job posting microdata from “Burning Glass Technologies”
(BG) for Metropolitan Statistical Areas (MSAs), MSA
wages from OES survey, firm data from Compustat

e Focus on:
e “Cognitive” (“problem solving”,“research”, “analytical”: matches
“non-routine analytical” (Autor et al., 2003))

e “Social” (“communication”, “teamwork”, “collaboration”:
matches (Deming, 2017))
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Extensions (2): Deming and Kahn (2018) Specifications

log(Wage)om = a + Skillom3" + Controls + €om

o Wage,,, and Skill om median MSA(m)-occupation(o) hourly wage and
(average) skill requirement

Firm_perf; = ag + Skill¢ 3 + 1 + X¢y' + 1" + 0, + €5

@ Skillf average shares of ads per requirement, I° share of postings per
occupation, I™ ad-weighted average MSA characteristics: all firm
f-level

e Firm_perf¢: indicator for public listing: publicly traded f generally
larger, higher-paying, more successful (is this correlated with demand
for given skills?)

e Firm_perf¢ also: revenue/worker (in publicly traded firm f): proxy for
productivity (are firm skill demand differences associated w/
differences in bottom line?)

@ Controls: “Base”: MSA characteristics, 4-digit SOC occupation FE;

“Detailed”: MSA/6-digit SOC occupation FEs, industry shares
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Main Results (1): Skill Demand & Wages

log(Wage)om = a + Skillom3" + Controls + €om

Table 3
Average Wages and Skill Requirements

Dependent Variable: Log(Mean Wages) in MSA-Occupation Cells

(1) (&) G) ) ©) (6)

Cognitive L3O AI3RRE 450t IRTEEE Q79290 0465%%%
(00908)  (.0166)  (00784) (.0139)  (00873)  (.0122)
Social 420085 00196 301%0E236RHE 051796 0202
(0155)  (.0206)  (0121)  (.0167)  (00966)  (.0127)

Both required 1.319%%* 157%%% 0760%%*
(.0349) (.0278) (.0198)

Years of education A3 129%%E 0764%%% 0765%%F  00865%FF 00873%%*

(.000770) (.000763) (.000844) (.000844) (.000995) (.000995)

Years of experience JA60%HE 161 0848 08491 #* 03184+ 0318%**

(.00120)  (.00118) (.00120) (.00120) (00102)  (.00102)
Base controls X X

Detailed controls X X
F-statistic (cognitive

and social) 553.1 855.0 1,004 680.4 69.66 51.35
F-statistic (all 10 skills) 1,874 2,054 612.6 560.1 59.93 55.83
MSA-occupation cells 56,611 56,611 56,611 56,611 56,611 56,611
R? 702 710 846 846 940 941

Source: Deming and Kahn (2018)
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Skill Demand & Wages: Interpretation

@ 10 ppt increase in share of vacancies requiring cognitive skills
associated w/ 1.1% higher wages (Col. 1)

@ 1 s.d. increase (0.10) in share of vacancies requiring both cognitive
and social skills associated w/ 14% higher wages (Col. 2)

@ Results robust to highly controlled specifications (Cols. 5, 6)

o Take-aways: i) positive, significant relationship between high-skill
requirements and wages; ii) social-cognitive skill complementarity
(e.g., positive return for cognitive skills nearly triples when social skills
also required)
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Main Results (2): Skill Demand & Firm Performance

Firm_perf s = ag + Skille 8’ + 12 + Xy + 17 + 0, + €5

Table 4

Firm Outcomes and Average Skill Requirements

Publicly Traded

Log(Revenue per Worker)

(1) @ [€)) “) (5) (6) @) (8)
Cognitive 0131 —170% 0318%* — 136 A69F 624 379w 0761
(0122) (0180) (.0129) (.0185) (117) (.190) (136) (.218)
Social L2 09345 — 0364 218%% 348 239% —.00813
(0114) (0115) (105) (164) (123) (-185)
Both required —.268 531%
(:259) 298)
Years of education —.00212 —.00141 —.00242* .00423 00312 00979 00974
(.00134) (00134) (.00135) (0222) (0222) (.0266) ( ozee)
Years of experience 10236 .0125° . 0839 119
(.00150) (:00150) (:00157) (.00157) (0144) (:0145) (.0182) (omz)
Base controls X X X X
Detailed controls X X X X
F-statistic (cognitive and social) 110.2 138.1 4193 81.19 12.43 8.644 6.560 5432
F-statistic (all 10 skills) 181.6 183.1 1303 133.2 10.96 10.06 4072 3.993
Number of firms 85,695 85,695 85,695 85,695 3,622 3,622 3,622 3,622
R 246 248 330 332 511 511 736 737

Nore —Observations are at the firm level, weighted by mumber of ads posted by the firm. All egressions control for the share of ads with cach of the eight other job skill
crience equal O if the firm has no ads that spe

ucation, and experience requirements. Years of ed
equal to 1if the firm can be matched

digit North As Industry Classification System industry fixed effects and the ad
(MSA) characteristics from the American Community Survey. Detailed controls include ind
cupational Classification occupation fixed effects. See table 1 Tor skills deinitons.

Source: Deming and Kahn (2018)

o Compusta equal to the log of e

¢
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Skill Demand & Firm Performance: Interpretation

e Cols. 1-4: effect on probability of being publicly traded (e.g., 1 s.d.
increase in share vacancies requiring social skills associated w/ 3.2
ppt. increase in the public trading probability in Col. 1)

e Cols. 5-8: effect on productivity proxy or log(revenue)/worker
(sample: 30% of ads; gains in ads w/ joint requirement, e.g. Col. 8)

o Take-aways: i) positive relationship between high-skill requirements
and firm performance across specifications; ii) further evidence of
social-cognitive skill complementarity
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© Skills and Tasks
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Premise (1): Definitions

@ Skill: worker’s stock of capability to perform given task(s) (e.g.,
Heckman and Sedlacek (1985))

@ Task: unit of work activity producing output (Acemoglu and Autor,
2011) via skill utilization

@ Tasks vary by degree of routineness (Deming, 2017)

o Routine: well-established/correct way to perform it (Deming,
2017); can be automated via explicit, programmed rules (Autor
et al., 2003).

@ Non-routine: rules cannot be specified mechanically

@ Both can be divided into:

e Cogpnitive/Analytic: demanding regarding flexibility,
creativity, generalized problem-solving, and complex
communications (Autor et al., 2003)

e Manual: physically demanding (Autor and Handel, 2013)
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Premise (2): The “Task Approach”

@ Tasks as proxy for “jobs” or services provided; task is occupation
(which may require multiple skills as inputs, depending on
technology); “canonical” model does not distinguish b/w tasks and
skills (i.e., imposes 1:1 mapping b/w the two)

@ Workers highly productive in given tasks self-select into occupations
paying differential wages (Autor and Handel, 2013)

@ Mapping from skill content to tasks/wages highly affected by SBTC
(Acemoglu and Autor, 2011); skills may be repurposed away from
obsolete tasks

@ Does task = f(skills), e.g., task specialization based on skill profile
(Deming, 2017)? If so, could represent results wrt. skills

e What is f and how does f(skill content of the task) change over time?

@ All of the above hinges on definition of skills, tasks and their
classifications into different types (unclear in literature - e.g.,
Acemoglu and Autor (2011) definition of tasks very precise but not
universally applied)
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Premise (3): Task Measurement

@ Occupational Information Network (O*NET) data since 1998
(successor of Dictionary of Occupational Titles, DOT)
@ Matches 12,000 DOT job codes to 1,102 O*NET “occupational
units”; data self-reported by workers
@ 277 occupational descriptors
e Example: Caines et al. (2017a) used 2015 O*NET to classify
occupations by complexity
o Example of other measures: labor force data (e.g., IBB/IAB in
Germany)
@ Consistency in task coding over time needed to ensure sound analyses
of trends in task allocation, etc.
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Premise (4): Trends in Measured Tasks

Worker Tasks in the U.S. Economy, 1960 — 1998:
Autor, Levy, and Murnane (2003) Figure 1

Worker Tasks in the U.S. Economy, 1960 —2009:
All Education Groups
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Figure 1. Autor, Levy and Murnane (2003) Figure I Figure 2. Replication and Extension of ALM Figure 1: 1960 - 2009

Source: Autor and Price (2013)
@ Changes in task input wrt. 1960 distribution, measured in percentiles
@ Steady rise in non-routine analytical/interpersonal task (~more
“complex”) input over time
@ Routine-cognitive (e.g., bookkeeping and data entry) vs.
routine-manual (e.g., repetitive assembly-line production) tasks

Chiu, Mylonas, Zaporzan Skills, Tasks and Occupations February 1 2021 22/76



Skills and Tasks: Hershbein and Kahn (2018)

@ Does (educational, experiential, cognitive, computer) skill demand
vary by MSA following Great Recession? Also use BG data:

outcomegme — outcomegmoo7 = (o + {shockm X It} a1+ 1"+ X+ egme

@ outcomegm: — outcomegmapo7: change in skill demand for MSA m in
year t (2010-2015), and occupation/firm group g wrt. t = 2007

@ shockpm: MSA-specific employment shock as A(projected employment
growth) from peak (2006) to recession (2009); scaled s.t. 1-unit
change is difference b/w 10th and 90th percentile MSAs (large values
as worse shocks):

K
AEp: = Z Gmkr(In Ee —In Eg 1—1), shockn = AEma009 — AEmo06
k=1
® @mk,r: industry k employment share in MSA m, year 7 (2004-2005
avg.); Egr: national employment in industry k, year t
@ Shock calculation takes care of measurement error in MSA
employment growth and captures impact of local labor demand
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Main Results (1): MSA-level “Upskilling” Demand

Education requirement Experience requirement
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FIGURE 2. SKILL REQUIREMENTS AND THE MSA-SPECIFIC EMPLOYMENT SHOCK
Source: Hershbein and Kahn (2018)
@ ay: effect across MSAs from shock,-and-year dummy /* interaction
on A(share ads posting any skill requirement)
e “Dip” in 2012 due to lack of BG data availability
@ "“Upskilling” starkest in most-impacted MSAs
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Main Results (2): Within-occupation “Upskilling” Demand

TABLE 2—WITHIN-OCCUPATION CHANGES IN SKILL REQUIREMENTS

Education  Experience Cognitive Computer
(1 (2 (3) 4)
Shock x 2010 0.0526 0.0490 0.0275 0.0203
(0.0135) (0.0134) (0.00726)  (0.00859)
Shock %2011 0.0475 0.0443 0.0281 0.0243
(0.0131) (0.0134) (0.00731)  (0.00716)
Shock %2012 0.0233 0.0253 0.0186 0.0207
(0.0128) (0.0136) (0.00693)  (0.00848)
Shock x 2013 0.0400 0.0363 0.0253 0.0252
(0.0120) (0.0122) (0.00642)  (0.00664)
Shock x 2014 0.0429 0.0436 0.0265 0.0227
(0.0143) (0.0140) (0.00657)  (0.00679)
Shock x 2015 0.0488 0.0468 0.0300 0.0134
(0.0143) (0.0142) (0.00730)  (0.00807)
Number Occ-MSA-Year Cells 193,086 193,086 178.176 178.176
R 0.044 0.069 0.040 0.034

Source: Hershbein and Kahn (2018)

@ Main specification again, but at occupation-MSA-year level

e Magnitude/persistence comparable to MSA-level effects

@ Results not driven by changes in the occupation mix of postings, but
by increased skill requirements within similar types of jobs

Chiu, Mylonas, Zaporzan
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Main Results (3): “Upskilling” and Capital Investment

Panel A. PCs (HH) Panel B. Capital holdings (Compustat)
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Source: Hershbein and Kahn (2018)

e Add: [shockny, x I' x Capitalf]ay; Capitals change in PC/PPE
investment as A b/w 2010/2012/2014 & 2002/2004 /2006 avgs.

@ a2: in harder-hit MSAs, high-investment firms increase likelihood of
posting requirements wrt. low-investment ones

@ Requirements all complement routine-biased technologies, so
“upskilling” reflects changes in production inputs; physical + human
capital deepening within same firms
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Main Results (4): “Upskilling” and Job Types

Education requirement Experience requirement
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FIGURE 6. DIFFERENTIAL UPSKILLING FOR ROUTINE OCCUPATIONS

Source: Hershbein and Kahn (2018)
e Add: [shockm x I* x Routinel]as; Routinel =1 if job o in
top-quartile wrt. routine-cognitive/-manual classification by

Acemoglu and Autor (2011)

@ ap: additional effect for top-quartile jobs wrt. effect in bottom 3
quartiles of each type (blue: cognitive; red: manual)
o Greater degree of “upskilling” in routine-cognitive jobs
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Main Results (5): Job Types and Labor Market Outcomes

Involuntary separations (CPS) Relative employment (OES)
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FiGURE 7. DisFERENTIAL EMPLOYMENT AND WAGE EFFECTS FOR ROUTINE OCCUPATIONS

Source: Hershbein and Kahn (2018)

e Changes in wages/employment/separations as additional outcomes

o ldea: routine-cognitive labor complementary via
routine-manual labor substituteable

‘upskilling”;

e Evidence: drop/no change (rise) in routine-manual (-cognitive)
employment/wages; higher involuntary layoffs for routine-manual jobs
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@ The “Task Approach”
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Main Idea: Task-Biased Technological Change (TBTC)

Case 1: Routine TBTC (RTBTC)
e Example: Autor and Dorn (2013)

Case 2: Complex TBTC (CTBTC)

e Example: Caines, Hoffmann and Kambourov (2017a)

e Example: Caines, Hoffmann, Kambourov et al. (2017b)
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Routine TBTC: Autor and Dorn (2013)

@ Punchline: wage/job “polarization” due to RTBTC as a result of
automation; model: workers as suppliers of: i) routine (R) or ii)
abstract (A) or iii) manual (M) tasks

@ 722 Commuting Zones/CZs (groups of counties with strong
commuting ties) capture local labor markets (cover entire US,
economically meaningful, available for entire period)

@ Occupation k-specific routine task intensity:

RTl = |“(T/51980) - |n(TI£\,41980) - |“(T/é1980)

@ Routine employment share (RSH;;) by commuting zone j in time t
using occupation-zone-time-specific employment Lj;:

-1
K K
RSH;: = (Z Lie - 1 [RT/k > RTIP66]) (Z ijt)
k=1

k=1

@ 1 indicator if k is “routine” (i.e., in 1980 top employment-weighted
third of RTI distribution)
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Routine Intensity and Automation (1)

A'Dstt“ = 51‘ + BO X RSHjsto + Vs

TABLE 3—COMPUTER ADOPTION AND TASK SPECIALIZATION
WITHIN COMMUTING ZONES, 1980-2005

+ €jst

(Dependent variables: 10 x annual change in adjusted PCs per employee,

10 x annual change in employment share of routine occupations)

() (2) 3)
Panel A. A Adjusted PCs per employee, 1980-2000
1980-1990 1990-2000 1980-2000
Share of routine occs_, 069555 0.490%5= 06192
(0.061) (0.076) (0.044)
R 0.577 0332 0385

Panel B. A Share routine occupations, 1980-2005

All workers College Noncollege
Share of routine occs_; —0.254%%% —0.153%** —0.295%%*
(0.023) (0.024) (0.018)
s 0433 0.206 0.429

Source: Autor and Dorn (2013)

e APCjs "adjusted PCs/employee firm” purged of

industry-establishment size FEs (though imperfect measure of tech

adoption); year (d;) and state (vs) FEs

@ [ identified by within-State, cross-CZ variation
Skills, Tasks and Occupations
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Routine Intensity and Automation (2)

TaBLE 3—COMPUTER ADOPTION AND TASK SPECIALIZATION

WITHIN COMMUTING ZONES, 1980-2005
(Dependent variables: 10 x annual change in adjusted PCs per employee,

10 x annual change in employment share of routine occupations)

(n (2) (3)
Panel A. A Adjusted PCs per employee, 1980-2000
1980-1990 1990-2000 19802000
Share of routine oces_; 0.695%*= 0.490%#= 0.619%=*
(0.061) (0.076) (0.044)
IS 0.577 0.332 0.385
Panel B. A Share routine occupations, 1980-2005
All workers College Noncollege
Share of routine occs_; —0.254%%% 153#% —0.295%%*
(0.023) (0.024) (0.018)
R 0433 0.206 0.429

Source: Autor and Dorn (2013)

@ Routine intensity associated w/ computerization

@ Routine-intense zones associated w/ fall in routine-intense

occupations
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Positive relationship b/w lagged routine employment share
and growth in service employment

TaBLE S—ROUTINE EMPLOYMENT SHARE AND GROWTH OF SERVICE EMPLOYMENT
WITHIN COMMUTING ZONES, 1980-2005: STACKED FiksT Dire OLS AnD 2SLS ESTIMATES
(Dependent variable: 10 x annual change in share of noncollege employment in service occupations)

m @ 3) “) s) () ]
Panel A. OLS estimates: covariates specified in lagged levels
Share of routine 0.105%*%  0.066% 0.066%* 0.110%*  0.110%* 0.069* O.111%%*
oces (0.032)  (0.036)  (0.029)  (0.031)  (0.049)  (0.035) (0.034)
College /noncollege 0.012%*= 0.011#=
pop_, (0.004) (0.005)
Immigr /noncollege 0.042%% 0.025**
pop_, (0.017) (0.011)
Manufact /fempl_; —0.056%** —0.036%**
(0.015) (0.011)
Unemployment rate | —0.067 —0.313%=*
(0.069) (0.068)
Female empl/pop | —0.044 —0.200%**
(0.039) (0.037)
Age 65+/pop —0.114%=* —0.061%=*
(0.035) (0.020)
Share workers with —0.134%%% 0, ]9T***
wage, < min wage,, | (0.020) (0.029)
R 0.179 0.189 0.196 0.195 0.191 0.196 0.233

Panel B. 25LS estimates: covariates specified in lagged levels

Share of routine occs 0.192%%% () ]18%#% () |48*&= () 162%*= (28R () |74 0.149%=%
(0.035)  (0.046)  (0.044)  (0.031)  (0.054)  (0.035)  (0.056)
R 0.169 0.186 0.189 0.192 0.182 0.182 0264

Panel C. 25LS estimates: covariates specified in ten year changes
Share of routine oces_; 0.192=%%  (Q,173%**  0.152%*= 0.170%** (,180%=* 0O.174%***  0.112%*
(0.035)  (0.043)  (0.032)  (0035)  (0035)  (0.035)  (0.044)
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Interpretation

@ Intuition: polarization in US employment explained (in part) by rising
employment in low-skill service occupations

o Panel A: ASVCjst = 0r + B1RSHjt, + Xy B2 + s + €jst

@ Panels B,C: 2S5LS w/ instrument:

!
RSH; = Z E;ij 1950 X Ri—j 1950
i=1

@ Interact 1950 employment in industry i, CZ j w/ US-wide (excl. CZ
J) routine occupation share in industry i: predicted value for routine
employment share in each CZ; depends only on 1950 national
occupation and local industry mix (so correlated w/ long-term
component of routine shares only)

@ 2SLS idea: isolate stable differences in production structure across
CZs as source of variation (OLS biased due to potential cyclical
fluctuations, e.g. local labor demand shocks)

e Typically 2S5LS > OLS (e.g., .15 vs. .1 under Col. 7)
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Wages/employment shares in high-routine content
occupations

TABLE T—ROUTINE EMPLOYMENT SHARE AND CHANGE IN OCCUPATIONAL EMPLOYMENT SHARES AND WAGE LEVELS
WTHIN COMMUTING ZONES, 1980-2005: 2SLS AN Renucen Fora OLS ESTIMATES
(Dependent variable: 10  annual change in share of noncollege employment by occupation: log real hourly wage)

L. Occupations with 11 Oceupations with
low routine content high routine content
Transport, Managers,
construct,  prof, tech, Administrative  Precision
mechanics, finance, support,  production, Machine
Service  mining,  public retail craft  operators,
aces farm safety sales workers  assemblers
] @ (3 @ 5 (6)
Panel A. Change in share of noncollege emplayment
(i) An Share of routine oces | 0.192%%*  0.248%¥%  0.028 —0.277%*%  _0.085%%F _(.107%*
(0.035)  (0.037)  (0.029) (0.038) 0.017)  (0.044)
(ii) Males  Share of routine occs_y 0.210%%+  0.246%%% _0,043 —0.055% —0.145¥FF —0213%**
(0027)  (0.046)  (0.036) (0.030) (0.026)  (0.046)
(iii) Females Share of routine oces_; 0.253%%*  0.002 0.117%%% —0.431%%%  _0.008%% 0.087
(0.073)  (0.045)  (0.030) (0.062) (0.012)  (0.055)
Panel B. log hourly wages of noneollege workers
(i) An Share of routine ocesgy x 2005 0.381%%*  0.023 0.433%%% 0.337%+* 0078 —0.388s**
(0.091)  (0.099)  (0.113) (0.082) (0.109)  (0.085)
(ii) Males  Share of routine occsgy x 2005 0.346%%*%  0.015 0.287% 0.187% —0.075 —0374%%%
(0.132)  (0.097)  (0.149) (0.097) (0.140)  (0.106)
(iii) Females Share of routine ocesgy x 2005 0.328%%% 03107 0.618%%F 04681 0203 —0415%%%
(0.095)  (0.183)  (0.116) (0.082) (0.139)  (0.105)

Source: Autor and Dorn (2013)
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Interpretation

@ Panel B Specification:
In wijke = Yji + Ak { RSHj 1080 X L[t = 2005]} + X[ ¢ + ke + Pst + €jjie

® RSH; 1980 (instrumented) start-of-period routine employment share

@ M« {RSH; 1950 x 1[t = 2005]} measures impact of CZ 1980
routine-intensity on 1980-2005 wage growth

e Higher (non-College) services sector worker wages in high-routine
share CZs (7 ppt higher routine share in 1980 predicts 3 log points
greater wage growth in service occupations between 1980 and 2005);
opposite in manual (“assembler”) occupations

@ Bottom line: rise in low-skill services explains relatively large wage
growth among occupations with relatively low wages in 1980
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CTBTC: Premise

e BUT (!): 1980 Census Integrated Public Use Microdata (Census) and
2005 American Community Survey (ACS) show both routine,
non-routine occupations undergo low- and high-wage growth

e Craft (i.e., routine-manual) occupations saw wage growth in past
decades - contrary to RTBTC predictions (Katz, 2014)

@ Goal: go beyond explaining mean outcomes by wage level; instead
explain occupation-level variance in outcomes

Routine Occupations Non-Routine Occupations

A5
L

Fraction
Fraction
1

5

ot

s 0 5
change in log hourly wage, 1980-2005

0 5
change in log hourly wage, 19802005

Source: Caines et al. (2017a)
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Side Note: Routineness and Occupations (1)

Figure 3: Wage and Employment Growth by Routine Task Intensity

Change in Log Wage Change in Employment Share

.005

0

-.005

Roufine Task Intensity Roufine Task Intensity

Notes: Data taken from the 1980 5% Sample of the US Census and the 2005 American Community Survey (ACS). Hourly
wages constructed from total wage and salary data (adjusted using PCE deflator), number of weeks worked per year, and usual
number of hours worked per year. Data is defined on the 3-digit occupation level.

Source: Caines et al. (2017b)
@ Occupation-level differences in Autor and Dorn (2013) “routineness”
do not explain 1980-2005 wage/employment growth variation
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Measuring “Complexity”

@ “Complexity index” of occupations using O*NET data:

@ 35 occupational descriptors selected/aggregated using PCA into
single measure of “task complexity”:

Co:’Y'Xo

T= 7 Y X -G

argmin ",
where: C, complexity score for occupation o, v factor loading
vector and X, O*NET descriptor vector
@ Occupations ranked above 66th percentile of the complexity
index are regarded complex, and vice versa
@ Top 10%: professional/scientific/medical, senior mgmt, etc.
@ Bottom 10%: service and manual, etc.

@ Routine task-intensity index as in Autor and Dorn (2013)
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Side Note: Complexity and Occupations (2)

Figure 4: Wage Levels and Wage Growth by Complexity

Log Wages in 1980 Change in Log Wage

.
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Complexity Index ! Complexity Index

Notes: Data taken from the 1980 5% Sample of the US Census and the 2005 American Community Survey (ACS). Hourly
wages constructed from total wage and salary data (adjusted using PCE deflator), number of weeks worked per year, and usual
number of hours worked per year. Data is defined on the 3-digit occupation level.

Source: Caines et al. (2017b)
e Complexity associated w/ increases in 1980 wage levels/1980-2005
wage growth at occupation level (weaker association w/ employment)
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CTBTC: Caines, Hoffmann and Kambourov (2017a)

@ How is task complexity related to wages and employment (both level
and growth)? Is task routineness still significant after taking
complexity into account?

o “Complex" Task: higher-order, relatively scarce abilities -
abstract/solve problems, make decisions, communicate effectively

@ "Simple” Occupation: raw physical, cognitive, and interactive skills
only; abundant labor supply

@ Examples:
Simple Complex
Routine Bank tellers Statistical clerks
Non-routine | Waiters and waitresses Physicians

Source: Autor et al. (2003); Caines et al. (2017a)
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Task Complexity and Individual Wage Level

Table 4
Individual-level wage regression, 1980 and 2005.

Dependent variable: log wages

Independent variable 1980 2005
Complexity index 0.347%* 0.711%+*
(7.25) (14.32)
Routine index —0.0154 0.0157
(—0.34) (031)
N 2664259 673783

Notes: The regressions include fixed effects for age (4 categories: 16-28, 29-40, 41-52,
53-64), education level (less than high school, high school, some college, college), and race
(white, nonwhite). Standard errors clustered at occupation level. t-statistics are in parentheses.
*p <0.1; % p < 0.05; ** p <0.01.

Source: Caines et al. (2017a)

@ 1980 Census and 2005 ACS; consists of non-farm workers in mainland
US, aged 14-16, mainly males

@ Task complexity positively associated w/ wages at individual (and
occupational) levels

e Controlling for complexity, no significant relationship b/w routineness
and mean wage
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Complexity & Occupational Wage Level: Results

Table 5

Occupation-level wage regression with occupational demographic controls.
Independent (A) Dependent variable: log wages in 1980 (B) Dependent variable: log wages in 2005
variable Complex variable: index Complex variable: indicator? Complex variable: index Complex variable: indicator?

(i) (ii) (iif) (iv) (v) (vi) (vii) (viii)

Complexity 0102* 0.106* 0.00228 0.0235 0.401%* 0416 0.115%* 0.0862**
variable (171) (1.75) (0.08) (0.79) (5.31) (5.45) (3.29) (2.19)
Routine 0.0131 0.00442 0.00846 0.0512 0.0394 0.0317
index (0.41) (014) (0.26) (1.28) (0.95) (0.76)
Female —0.143"* —0.147%% —0.154"* —0.155*** —0.128* —0.143** —0.159*+* —0.174%*
share (—3.52) (—3.51) (—3.68) (=371) (—2.53) (—2.76) (—2.97) (—3.24)
College 0.260%* 0.265%** 0.325%* 0.295%* 0.530%* 0.553*+* 0.715%* 0.676**
share (3.49) (3.50) (4.64) (3.74) (571) (5.85) (8.01) (6.61)
High school 0427+ 0.423%* 0.468** 0478+ 0.361% 0.345* 0.441%* 0.568**
share (3.50) (3.45) (3.84) (3.97) (235) (224) (2.80) (3.64)
Non-white —0.284 —0.282 —0.269 -0279 -0.172 —0.164 —0.0910 —0.139
share (—1.38) (-137) (-130) (-133) (—067) (—0.64) (—0.35) (—0.52)
Married 0.884** 0.868*** 0.938%** 0.922%* 0.568* 0509 0.701** 0.717**
share (3.47) (337) (3.66) (3.60) (1.79) (1.59) (214) (217)
Mean 0.00845** 0.00851** 0.00835** 0.00844** 0.0104** 0.0106** 0.00822 0.00991*
age (2.16) (217) (211) (214) (2.09) (213) (1.61) (1.92)
Mean # —0.0710 —0.0644 —0.0661 —0.0699 0.0437 0.0692 0.0789 0.0583
children (—0.64) (-0.57) (—0.59) (—0.62) (0.31) (0.49) (0.54) (0.39)
N 315 315 315 315 310 310 310 310

Source: Caines et al. (2017a)
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Complexity & Occupational Wage Level: Interpretation

@ Regressions of log of mean occupational wages on task complexity
and routine task intensity, controlling for an array of demographics

@ Percentile of complexity index used, w/ interpretation that:

@ mean wages of individuals in most complex occupations are 10%
higher than those in least complex occupations (Cols. (i) and
(i)

@ gap b/w mean wage in the most and least complex occupations
at 40% in 2005 (Cols. (v) and (vi))

e Controlling for complexity, no significant relationship b/w routineness
and mean wage at occupation level
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Complexity & Occupational Wage Growth: Results

Table 6

Occupation-level wage growth regression with occupational demographic means.

Dependent variable: change in log wages 1980-2005

Independent Complex variable: index Complex variable: indicator?
variable 0) ) (i) ) )
Complexity variable 0.304*** 0.316*** 0.347*+* 0.138*** 0.0683**
(4.94) (5.07) (5.74) (5.02) (218)
Routine index 0.0398 0.0336 0.0262 0.0161
(121) (1.05) (0.81) (048)
Female share 0.00599 —0.00561 —0.0299 —0.0267 —0.0504
(015) (=013) (=0.71) (—0.63) (=115)
College share 0.270*** 0.288*** 0.287*+* 0.349%** 0.381***
(3.56) (3.73) (3.52) (4.37) (4.35)
High school share —0.102 —0.115 0.0629 0119 0.235%
(—0.82) (=0.91) (0.50) (0.94) (1.81)
Non-white share 0.106 0112 0.0181 0.100 0.0551
(0.51) (0.54) (0.09) (0.49) (0.26)
Married share —0.244 —0.290 0.0537 0232 0.209
(—0.94) (=111) (0.20) (0.87) (0.76)
Mean age 0.00207 0.00222 0.00364 0.000595 0.00271
(051) (0.55) (0.90) (015) (0.64)
Mean # children 0.0549 0.0747 0.00478 —0.0198 —0.00485
(048) (0.64) (0.04) (=017) (—0.04)
Order of 1980 wage poly. 0 0 3 3 3
N =310

Notes: Demographic variables are occupation-level means of the share of workers in an occupation with a college/high-school degree, the share of workers
in an occupation who are non-white, the share of workers in an occupation who are married, the share of female workers in an occupation, the mean age
of workers in an occupation, and the mean number of children of workers in an occupation. t-statistics are in parentheses. Significance levels are: *** 1%,

** 5%, * 10%.

3 Complex occupations are defined as those above the 50th percentile (column (iv)) or above the 66th percentile (column (v)) of the complexity index.

Source: Caines et al. (2017a)

@ Same for wage growth at occupational (3-digit DOT/O*NET) and

group levels
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Task Complexity and Occupational Employment

Table 7

Occupation-level employment growth regression with occupational demographic means.

Dependent variable: change in employment share 1980-2005

Independent Complex variable: index Complex variable: indicator®
variable @ (i) (i) ) W
Complexity variable 0.00162 0.00135 0.00154 0.00000113 0.000876
(144) (119) (134) (0.00) (156)
Routine index —0.000871 —0.000822 —0.000961 —0.000783
(—1.44) (—1.34) (=157) (=127)
Female share 0.000152 0.000407 0.000207 0.000131 0.0000781
(0.20) (052) (0.26) (0.16) (0.10)
College share 0.000808 0.000419 0.000563 0.00136 0.000282
(0.58) (029) (0.36) (0.89) (0.18)
High school share —0.00114 —0.000878 —0.000129 0.000499 0.000791
(—0.50) (=038) (=0.05) (0.21) (0.33)
Non-white share —0.000418 —0.000536 —0.000877 —0.000595 —0.00102
(—=011) (—0.14) (~022) (~0.15) (~0.26)
Married share —0.00478 —0.00375 —0.00189 —0.000950 —0.00167
(—1.00) (~0.78) (~037) (~019) (~0.33)
Mean age —0.00000104 —0.00000499 —0.00000580 —0.0000103 —0.00000498
(=0.01) (=0.07) (—0.08) (=013) (=0.07)
Mean # children 0.000758 0.000317 0.0000537 0.00000976 —0.0000621
(0.36) (0.15) (0.02) (0.00) (—0.03)
Order of 1980 wage poly. 0 0 3 3 3

N =315

Notes: Demographic variables are occupation-level means of the share of workers in an occupation with a college/high-school degree, the share of workers
in an occupation who are non-white, the share of workers in an occupation who are married, the share of female workers in an occupation, the mean age
of workers in an occupation, and the mean number of children of workers in an occupation. t-statistics are in parentheses. Significance levels are: *** 1%,

** 5%, * 10%.

3 Complex occupations are defined as those above the 50th percentile (column (iv)) or above the 66th percentile (column (v)) of the complexity index.

Source: Caines et al. (2017a)
@ No significant effects on occupational employment share changes;
does not support “job polarization"due to RTBTC/automation
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Take-aways

o Conditional on task complexity, wage differences between routine and
non-routine jobs are not significant

@ Occupations with a high measure of task complexity had higher wages
and larger wage- and employment-growth than simple occupations

@ Reallocation from simple occupations to complex ones over time

@ Wages and wage growth in simple routine- and non-routine
occupations not statistically different

e RTBTC (via automation of middle-wage occupations) does not
explain wage/job polarization
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© Robustness
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Robustness Check: “Job Polarization” (Mishel et al., 2013)

o CPS-ORG data to “test” Acemoglu and Autor (2011) job
“polarization” finding (from decennial Census, ACS data)

@ CPS-ORG: smaller sample sizes, BUT yearly data and more accurate
hourly wage data (occupations ranked wrt. 1979 mean wage)

@ Major changes in occupation coding (1982-1983, 2002-2003) difficult
to bridge, lead to non-trivial employment share series breaks

@ “Absolute” job polarization: employment share growth at top, bottom
of (occupational) distribution w/ losses in middle

o “Relative” job polarization: U-shaped growth across distribution (i.e.,
at top, bottom wrt. middle)
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Findings

FIGURE E

Replication of key job polarization figure using CPS-ORG data adjusted for occupation coding
breaks in 1982/1983 and 2002/2003, 1979-89, 1989-2000, 2000-07
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Source: Authors’ analysis of Current Population Survey Outgoing Rotation Group microdata

Source: Mishel et al. (2013)
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Interpretation

@ 1980s: relative job polarization, less job loss for bottom than middle
(as opposed to monotonic increases in Acemoglu and Autor (2011))

@ 1990s: replicates Acemoglu and Autor (2011) (no “absolute”
polarization)

@ 2000-2007: of bottom half, only first five pctiles saw employment
share growth (as opposed to much more employment growth at
bottom in Acemoglu and Autor (2011)); little or no employment
expansion of occupations for upper half

@ Key insight: job polarization no longer a factor explaining US
inequality trends in 2000s
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Issues (1): Occupational Coding Breaks

Strategy: replace employment share change over break yrs. w/ avg.
change of 2 yrs. on either side of break

@ 1982-1983: masks the decline in middle jobs in 1980s (find job
polarization in 1980s while Acemoglu and Autor (2011) do not)

@ 2002-2003: leads to overstatement of bottom job growth in
2000-2007 period in Acemoglu and Autor (2011)

@ 2002/2003: removing break shows more modest growth in bottom
during 2000-2007 wrt. Acemoglu and Autor (2011)
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Issues (2): Oversmoothed Results in Literature

@ Variation of employment shifts across detailed occupations obscured
by locally-weighted smoothing regression lines in Acemoglu and Autor
(2011), etc.

@ Reproduce Figure E, w/ scale wide enough to fit unsmoothed log
employment share changes at each pctile

o Key insight: literature implicitly differencing potentially
non-well-estimated lines (so findings possibly subject to sizeable error
margins)
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Non-smoothed Results (1)

Changeinlog shares, by occ i wage percentile, 1979-1989
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*Ranked by 1979 occupational mean wage.
Note: Due to discontinuities in employment shares caused by a major occupational coding change between 1982 and
1983, the change in log employment share between 1982 and 1983 was replaced by the average change of 1980-1981,
1981-1982, 1983-1984, and 1984-1985.
Source: Authors’ analysis of Current Population Survey Outgoing Rotation Group microdata

Source: Mishel et al. (2013)
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Non-smoothed Results (2)

FIGURE FB

Change in log employment shares, by occupational wage percentile,, 1989-2000
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Source: Mishel et al. (2013)
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Non-smoothed Results (3)

URE FC

Change in log 1t shares, by occ ional wage percentile, 2000-2007
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Note: Due to discontinuities in employment shares caused by a major occupational coding change between 2002 and
2003, the change in log employment share between 2002 and 2003 was replaced by the average change of 2000-2001,
2001-2002, 2003-2004, and 2004-2005.

Source: Authors’ analysis of Current Population Survey Outgoing Rotation Group microdata

Source: Mishel et al. (2013)
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@ Discussion/Conclusion
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Alternative Explanations of Rising Inequality

o Literature explored factors in addition to SBTC/TBTC (though latter
generally deemed more relevant/important)

@ Rise of “superstar” individuals (CEOs, athletes, entertainers) w/
abnormally high returns to their skills: Rosen (1981) and related
literature (Tervio, 2009; Pallais, 2014)

e Organizational change affecting skill demand (Acemoglu, 1999;
Beaudry and Green, 2003; Ann et al., 2004; Caroli and Van Reenen,
2001; Bresnahan et al., 2002; Becker and Murphy, 1992), Dessain
and Santos (2008))

@ International Trade (Autor and Dorn, 2013; Acemoglu et al., 2016)
e Migration (Borjas, 1995; McKenzie and Rapoport, 2007)
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Conclusion

@ SBTC important in explaining selected labor market outcome
disparities (to an extent); “task approach”/TBTC as an additional
framework

o Key takeaway from this literature: impacts on outcomes (wages,
employment) highly dependent upon (labor demand responses to)
technological shocks

@ Open Questions:

e What is skill/task (demand)? How to classify skills/tasks?

@ How robust are the (wage/job) “polarization” findings?

@ What explains "polarization” (SBTC/RTBTC/CTBTC/other
factors)?
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RESERVE SLIDES
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Skill Types in Deming and Kahn (2018)

Table 1

Description of Job Skills

Job Skills

Keywords and Phrases

Cognitive
Social
Character

Writing
Customer service

Project management

Problem solving, research, analytical, critical thinking, math, statistics

C ication, teamwork, i jation, p i

Organized, detail oriented, multitasking, time management, meeting
deadlines, energetic

Writing

Customer, sales, client, patient

Project management

People
Financial

Computer (general)

Software (specific)

upervisory, leadersh (not project), ing, staff

Budgeting, accounting, finance, cost

Computer, spreadsheets, common software (e.g., Microsoft Excel,
PowerPoint)

Programming language or specialized software (e.g, Java, SQL,
Python)

Source: Deming and Kahn (2018)
@ Coding based on keywords from more than 10,000 fields in BG data

(include if min. one keyword listed per ad: is this reasonable/skill

demand?)

e Mutually exclusive but not collectively exhaustive (e.g., “quick
learner” hard to classify)

@ Use literature for cognitive (Autor et al., 2003), social (Deming,
2017), character (Heckman and Kautz, 2012) classifications +
relevance/listing frequency for rest
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Skills Model Extensions: Brief Literature Review

e Multidimensionality of skills potentially important (Lise and
Postel-Vinay, 2020)

@ Returns to given skill “types”, e.g. social skills (Deming, 2017)

o (Early-life) skill formation improves adult outcomes (Kautz et al.,
2014; Orrell, 2018)

e Effects on policy of demand for given skills (e.g., Monras (2019)
showing minimum wage increases more likely when low-skill
employment rising)
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Variation in Skill Demand Explained by Ad Characteristics
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Source: Deming and Kahn (2018)
@ Variances of fitted values from regression of dummy for skill inclusion
in ad on occupation/MSA/firm FEs, controls; sample limited to firms
w/ min. 10 ads in 2 MSAs/occupations
o Large differences b/w firms in skill requirement propensity (approx.
30% of variance; unexplained variation at 50% total)
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Examples of Tasks, by Type

Routine Non-routine
Cognitive/Analytic Solving com.plex Forming or testing
mathematics hypotheses
Driving th h
Manual Repetitive assembly riving throug
traffic

Source: Autor et al. (2003); Deming (2017)
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Occupation List and Complexity/Routineness Percentiles

Table 2

Comparison of complexity and routinization.
Occupation title Routine index percentile Complexity index percentile

Routinizable occupations with high complex content
Financial managers 82.825 96.109
Real estate sales occupations 87416 66.033
Accountants and auditors 95.502 78.977
Insurance underwriters 95.976 65.348
Statistical clerks 93.661 93177
Clinical laboratory technologist and technicians 74.922 73236
Other financial specialists 77201 75251
Non-routinizable occupations with low complex content

‘Waiters and waitresses 12.038 3.617
Baggage porters, bellhops and concierges 9357 26.968
Recreation facility attendants 27.036 11736
Taxi cab drivers and chauffeurs 5.054 28.085
Personal service occupations 26.624 30.395
Door-to-door sales, street sales, and news vendors 26.855 6.419
Bus drivers 3775 12,672

Notes: The table reports values of the routine and complexity indices for a selection of occupations. The index values are converted to percentiles of the
occupation-level distribution. See Sections 2.2 and 2.3 for construction of the routine index and the complexity index.

Source: Caines et al. (2017a)
o O*NET-SOC occupations mapped into Census occupation codes

@ Occupations classified as “simple” if below 66th pctile of complexity
index (“complex” otherwise)
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Complexity, routineness, wages, and employment

Table 3
Complexity, routineness, wages, and employment.
log(wagejogo) log(wagegos) Alog(wage) Employment share % Employment
1980 2005 change
simple routine 1925 2.041 0.116 0.188 0.169 —0.098
nonroutine 1959 2.071 0.112 0.466 0.426 —0.086
complex 2.304 2.663 0.357 0.346 0.405 0.170

Notes: Wage and employment data taken from 1980 5% sample of the US Census and the 2005 ACS. Sample restricted to non-institutionalized males aged
16-64 in the mainland United States. Complex occupations defined as those whose complexity index is above the 66th percentile in the occupation-level
complexity distribution. All other occupations are defined as simple.

Source: Caines et al. (2017a)
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Task Complexity and Group!/Occupational Wage Growth

Table 8
Group-level wage growth regression.

Dependent variable: change in log wages 1980-2005

Independent variable (i) (i) (iii)
Complexity index 0.258" 0273 0349"
(1098) (10.02) (12559)
Routine index 00427 0.0440
(136) (149)
Order of 1980 wage poly. 0 0 3
N=15142

Notes: The table reports results when occupation-level data is disaggregated to occupation x
gender x education x race x age cells (see section 7) for discussion. Regressions include
gender x education x race x age fixed effects. Standard errors clustered at the occupation
level. t-statistics are in parentheses. Significance levels are: *** 1%, ** 5%, * 10%.

Table 9
Occupation-level wage growth regression by 1980 wage tercile.

Dependent variable: change in log wages 1980-2005

Independent variable First tercile Second tercile Third tercile
(i) (ii) (iii)

Complexity index 0,553+ 0490+ 0624
(835) (7.92) (5.43)

Routine index —0.0327 —0.0409 0131*
(-0.70) (-088) (1.90)

Order of 1980 wage poly. 3 3 3

N 112 108 %

Notes: The table reports results for occupation-level regressions run for different terciles of
the 1980 occupational wage distribution, t-statistics are in parentheses. Significance levels are:
1%, 5%, 10%.

Source: Caines et al. (2017a)

1demographic groups (men, women used as proxy for panel data w/ different cohorts): gender, education, race and age; 4
categories for education: i) <HS; ii) HS; iii) some College; and iv) College; 4 categories for age: i) 16-28; ii) 29-40; iii) 41-52;
and iv) 53-64; 2 categories for race (white, non-white). For each occupation-demographic cell (total of 15,142 cells): computed
1980-2005 mean wage/total employment changes using 1980 5% Census and 2005 ACS!
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