Roy Models of Policy Evaluation

James J. Heckman and Edward Vytlacil
(Extracted from: Understanding Instrumental Variables
in Models with Essential Heterogeneity)

Econ 350, Winter 2021
This draft, January 12, 2021 1:22pm

1. Policy adoption problem

- Suppose a policy is proposed for adoption in a country.
- What can we conclude about the likely effectiveness of the policy in countries?
- Build a model of counterfactuals.

$$
\begin{align*}
& Y_{1}=\mu_{1}(X)+U_{1} \tag{1}\\
& Y_{0}=\mu_{0}(X)+U_{0}
\end{align*}
$$

Consider the Basic Generalized Roy Model

- Two potential outcomes $\left(Y_{0}, Y_{1}\right)$.
- A choice equation

$$
D=\mathbf{1}[\underbrace{\mu_{D}(Z, V)}_{\text {net utility }}>0] .
$$

- Observed outcomes:

$$
Y=D Y_{1}+(1-D) Y_{0}
$$

- Assume $\mu_{D}(Z, V)=\mu_{D}(Z)-V$.
- This separability plays a key role in the IV (LATE) and discrete choice.
- Can be relaxed, but things look much less traditional.

Switching Regression Notation

$$
\begin{align*}
Y & =Y_{0}+\left(Y_{1}-Y_{0}\right) D \tag{2}\\
& =\mu_{0}+\left(\mu_{1}-\mu_{0}+U_{1}-U_{0}\right) D+U_{0} .
\end{align*}
$$

(Quandt, 1958, 1972).

In Conventional Regression Notation

$$
\begin{gather*}
Y=\alpha+\beta D+\varepsilon \tag{3}\\
\alpha=\mu_{0}, \beta=\left(Y_{1}-Y_{0}\right)=\mu_{1}-\mu_{0}+U_{1}-U_{0}, \varepsilon=U_{0} .
\end{gather*}
$$

- β is the "treatment effect."

Figure 1: Distribution of gains, a Roy economy

$\mathrm{TT}=2.666=E\left(Y_{1}-Y_{0} \mid D=1\right)$, TUT $=-0.632=E\left(Y_{1}-Y_{0} \mid D=0\right)$
Return to Marginal Agent $=C=1.5$, ATE $=\mu_{1}-\mu_{0}=\bar{\beta}=0.2$

The model

Outcomes
 Choice Model

$$
\begin{aligned}
& Y_{1}=\mu_{1}+U_{1}=\alpha+\bar{\beta}+U_{1} \quad D=\left\{\begin{array}{l}
1 \text { if } D^{*}>0 \\
0 \text { if } D^{*} \leq 0
\end{array}\right. \\
& Y_{0}=\mu_{0}+U_{0}=\alpha+U_{0}
\end{aligned}
$$

General Case

$$
\begin{gathered}
\left(U_{1}-U_{0}\right) \not \Perp D \\
\text { ATE } \neq T \mathrm{~T} \neq \mathrm{TUT}
\end{gathered}
$$

Parameterizing the model

The Researcher Observes (Y, D, C)

$$
Y=\alpha+\beta D+U_{0} \text { where } \beta=Y_{1}-Y_{0}
$$

Parameterization

$$
\begin{array}{ccc}
\alpha=0.67 & \left(U_{1}, U_{0}\right) \sim N(\mathbf{0}, \boldsymbol{\Sigma}) & D^{*}=Y_{1}-Y_{0}-C \\
\bar{\beta}=0.2 & \boldsymbol{\Sigma}=\left[\begin{array}{cc}
1 & -0.9 \\
-0.9 & 1
\end{array}\right] & C=1.5
\end{array}
$$

- In the case when $U_{1}=U_{0}=\varepsilon_{0}$, simple least squares regression of Y on D subject to a selection bias if ε_{0} determines D.
- Notice that in a Roy model where $D=1\left(Y_{1}-Y_{0} \geq 0\right)$ and $U_{1}=U_{0}, D=1\left(\mu_{1}(x)-\mu_{0}(x) \geq 0\right)$ where $\mu_{1}(\cdot)$ and $\mu_{0}(\cdot)$ depend on $X=x$.
- "Regression discontinuity" at set of points $x \in\left\{x \mid \mu_{1}(x)-\mu_{0}(x)=0\right\}$.
- If

$$
\begin{aligned}
& D=1\left(Y_{1}-Y_{0}-C \geq 0\right) \\
& C=\mu_{C}(Z)+U_{C}
\end{aligned}
$$

there would be selection bias if $U_{0} \not \Perp U_{C}$.

- Upward biased for β if $\operatorname{Cov}\left(D, \varepsilon_{0}\right)>0$.
- In the example, if $\operatorname{Cov}\left(\varepsilon_{0}, U_{C}\right)<0$, you get upward bias for OLS. If $\operatorname{Cov}\left(\varepsilon_{0}, U_{C}\right)>0$, OLS is downward biased.
- Prove. How does this covariance relate to the question of whether a country is a meritocracy?
- Three main approaches have been adopted to solve this problem:
(1) Selection models
(2) Instrumental variable models (experiments; RDD is local IV)
(3) Matching: assumes that $\varepsilon \Perp D \mid X$.
- Matching is just nonparametric least squares and assumes access to rich data which happens to guarantee this condition.

Instrumental Variables in Case \mathbf{I}, the traditional case: β is a constant

- If there is an instrument Z, with the property that

$$
\begin{array}{r}
\operatorname{Cov}(Z, D) \neq 0 \\
\operatorname{Cov}(Z, \varepsilon)=0 \tag{5}
\end{array}
$$

then

$$
\operatorname{plim} \hat{\beta}_{\mathrm{IV}}=\frac{\operatorname{Cov}(Z, Y)}{\operatorname{Cov}(Z, D)}=\beta
$$

- If other instruments exist, each identifies the same β.

Case II, heterogeneous response case: β is a random variable even conditioning on X

Sorting bias

or sorting on the gain which is distinct from sorting on the level.

> Essential heterogeneity $$
\operatorname{Cov}(\beta, D) \neq 0 .
$$

Suppose (4), (5) and

$$
\begin{equation*}
\operatorname{Cov}(Z, \beta)=0 . \tag{6}
\end{equation*}
$$

- Can we identify the mean of $\left(Y_{1}-Y_{0}\right)$ using IV?
- In general we cannot (Heckman and Robb, 1985).
- Let

$$
\begin{array}{r}
\bar{\beta}=\left(\mu_{1}-\mu_{0}\right) \\
\beta=\bar{\beta}+\eta \\
U_{1}-U_{0}=\eta \\
Y=\alpha+\bar{\beta} D+[\varepsilon+\eta D] .
\end{array}
$$

- Need Z to be uncorrelated with $[\varepsilon+\eta D]$ to use IV to identify $\bar{\beta}$.
- This condition will be satisfied if policy adoption is made without knowledge of $\eta\left(=U_{1}-U_{0}\right)$.
- If decisions about D are made with partial or full knowledge of η, IV does not identify $\bar{\beta}$.
- Crucial Question: What is the agent's information set?
- The IV condition is

$$
E[\varepsilon+\eta D \mid Z]=0
$$

- $E(\varepsilon \mid Z)=0, \quad E(\eta \mid Z)=0$.
- Even if $\eta \Perp Z, \eta \not \Perp Z \mid D=1$.
- $E(\eta D \mid Z)=E(\eta \mid D=1, Z) \operatorname{Pr}(D=1 \mid Z)$.
- But $E(\eta \mid Z, D=1) \neq 0$, in general, if agents have some information about the gains.
- Draft Lottery example (Heckman, 1997).
- Linear IV does not identify ATE or any standard treatment parameters.

Examples

$$
D=1\left(\mu_{D}(z)>V\right)
$$

(Notice: lower case z is a number; Z is a random variable.) Example:

$$
\begin{aligned}
& \mu_{D}(z)=\gamma z \\
& (V \Perp Z) \mid X .
\end{aligned}
$$

The propensity score or probability of selection into $D=1$:

$$
P(z)=\operatorname{Pr}(D=1 \mid Z=z)=\operatorname{Pr}(\gamma z>V)=F_{V}(\gamma z)
$$

F_{V} is the distribution of V.

Generalized Roy model

$$
U_{1} \neq U_{0}
$$

$$
\begin{aligned}
D & =\mathbf{1}\left[Y_{1}-Y_{0}-C \geq 0\right] \\
\text { Costs } C & =\mu_{C}(W)+U_{C} \\
Z & =(X, W) \\
\mu_{D}(Z) & =\mu_{1}(X)-\mu_{0}(X)-\mu_{C}(W) \\
V & =-\left(U_{1}-U_{0}-U_{C}\right) .
\end{aligned}
$$

Heterogeneous response model

In a general model with heterogenous responses, specification of $P(Z)$ and relationship with the rest of the model plays an essential role.

$$
\begin{aligned}
E & =(\eta D \mid Z=z) \\
& =E(\eta \mid D=1, Z=z) \operatorname{Pr}(D=1 \mid Z=z) \\
& =E(\eta \mid \gamma z \geq V, Z=z) \operatorname{Pr}(D=1 \mid Z=z)
\end{aligned}
$$

If F_{V} is weakly monotonic,

$$
=E\left(\eta \mid F_{V}(\gamma z) \geq F_{V}(V), Z=z\right) \operatorname{Pr}(D=1 \mid Z=z) .
$$

$$
\begin{aligned}
\text { Because } & Z \Perp \eta \mid X \\
& E\left(\eta \mid F_{V}(\gamma z) \geq F_{V}(V), Z=z\right) \\
= & E\left(\eta \mid F_{V}(\gamma z) \geq F_{V}(V)\right) \\
P(z)= & F_{V}(\gamma z) \text { "Propensity Score" } \\
U_{D}= & F_{V}(V) \text { "Uniform Random Variable" } \\
& E(\eta D \mid Z=z, D=1) \\
= & E\left(\eta \mid P(z) \geq U_{D}\right) P(z) .
\end{aligned}
$$

- Probability of selection enters this term, even though we use only one component of Z as an instrument.
- Selection models control for this dependence induced by choice.

Selection models

Assume

$$
\begin{equation*}
\left(U_{1}, U_{0}, V\right) \Perp Z \tag{7}
\end{equation*}
$$

[Alternatively $(\varepsilon, \eta, V) \Perp Z$].

$$
\begin{equation*}
\eta=\left(U_{1}-U_{0}\right), \varepsilon=U_{0} \tag{8}
\end{equation*}
$$

$$
\begin{aligned}
E(Y \mid D=0, Z=z) & =E\left(Y_{0} \mid D=0, Z=z\right) \\
& =\alpha+E\left(U_{0} \mid \gamma z<V\right)
\end{aligned}
$$

$$
E(Y \mid D=0, Z=z)=\alpha+\underbrace{K_{0}(P(z)}_{\text {control function }})
$$

$$
\begin{aligned}
E(Y \mid D=1, Z=z) & =E\left(Y_{1} \mid D=1, Z=z\right) \\
& =\alpha+\bar{\beta}+E\left(U_{1} \mid \gamma z>V\right) \\
& =\alpha+\bar{\beta}+\underbrace{K_{1}(P(z))}_{\text {control function }}
\end{aligned}
$$

- $K_{0}(P(z))$ and $K_{1}(P(z))$ are control functions in the sense of Heckman and Robb $(1985,1986)$.
- $P(z)$ is an essential ingredient in both matching and IV:
- Matching: $K_{1}(P(z))=K_{0}(P(z))$. Why? $E\left(U_{1} \mid Z\right)=E\left(U_{0} \mid Z\right)$.
- Matching balances
- It may or may not be true that $E\left(U_{1} \mid Z\right)=0$ or $E\left(U_{2} \mid Z\right)=0$.
- Matching differences out the common term.

