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• This is a version of an hedonic model.

• It features 1-1 matches.

• Assume that we can rank workers and firms by a skill scale: ` is
amount of labor skill, c is amount of capital owned by firm.

• F (`, c) is output. Assume a common production technology.
One worker – one firm match F` > 0, Fc > 0, F`` < 0, Fcc < 0,
no need to make scale restrictions.
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• Can be increasing returns to scale technologies.

• Homogeneous output of firms, identical technologies.

• Let G (`) be cdf of ` in population. Let K (c) be cdf of c in
population. Assume both monotone strictly increasing, density
has positive support – no mass points.

• Let W (`) be wage for worker of type `.

• Let π(c) denote “profit” for a firm of type c .
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• Assume
∂2F

∂`∂c
> 0 (opposite sign produces negative sorting).

• Assume wage function exists.

• This is something to be proved.

• Firm indexed by c .

• Profit maximization requires that

max
`

(F (`, c)−W (`))

FOC:
∂F

∂`
= W ′(`) SOC:

∂2F

∂`2
−W ′′(`) < 0

• Defines demand for worker of type ` for firm type c .
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• Differentiate FOC totally with respect to `:

W ′′(`)− ∂2F (`, c)

∂`2
− ∂2F

∂`∂c

dc

d`
= 0

(
W ′′(`)− ∂2F (`, c)

∂`2

)
︸ ︷︷ ︸

>0, from SOC

=

(
∂2F

∂`∂c

)
︸ ︷︷ ︸

+

dc

d`
(1)

• ∴
dc

d`
> 0 (“best firms match with best workers”)
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• Opposite true if we have
∂2F

∂`∂c
< 0 (dc/dl < 0).

• Retain
∂2F

∂`∂c
> 0 for specificity.

• Profits residually determined:

π(c) = F (`(c), c)−W (`(c)).

• Observe that the roles of ` and c can be reversed (labor hires
capital) and labor incomes could be residually determined.
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• The continuum hypothesis for skills =⇒ local returns to scale

dF = F`d` + Fcdc

• ∴ we get product exhaustion locally.

• Residual claimant gets marginal product, no matter who is
claimant.

• Now suppose number of workers (N`).

• Number of capitalists (Nc).
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• Let WR be the reserve price of workers (what they could get
not working in the sector being studied). Let πR be reserve
price of capitalist. Let `∗ be the least productive worker
(employed). We need W (`∗) ≥ WR .

• If all capital employed, and c ∈ [c , c̄], `∗ works with
c ,

least productive capitalist

assuming that π(c) ≥ πR .
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• How to establish that decentralized wage setting is optimal and
a wage function exists?

• Solve Social Planner’s Problem.
∂2F (`, c)

∂`∂c
> 0⇒

maximize total output by matching the best with the best.
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Proof: trivial based on proof by contradiction

Take a discrete example

two workers `1 < `2

two firms c1 < c2

From complementarity (or supermodularity)

F (`2, c2) + F (`1, c1) > F (`2, c1) + F (`1, c2)

because

F (`2, c2)− F (`1, c2) > F (`2, c1)− F (`1, c1)

due to
∂2F (`, c)

∂` ∂c
> 0.
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• Using the fact that the best matches with the best, sort
top-down.

• Assume densities “continuous” (absolutely continuous).

N`

∫ ∞
`(c)

g(`) d` = Nc

∫ ∞
c

k(c) dc

N` (1− G (`(c))) = Nc (1− K (c))

(1− G (`(c))) =

(
Nc

N`

)
(1− K (c))

G−1
[

1−
(
Nc

N`

)
(1− K (c))

]
= `(c)

• This defines the optimal sorting function.

Heckman Sattinger (1979), January 25, 2021 4:36pm 11 / 60



Use survivor function:

S(x) = Pr [X ≥ x ]

SG (`) = 1− G (`)

SK (c) = 1− K (c)

SG (`(c)) =

(
Nc

N`

)
SK (c)

`(c) = S−1G

(
Nc

N`
SK (c)

)
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• Defines a relationship:

` = ϕ(c) (most productive match with each order)

This function has an inverse from strictly decreasing survivor
function assumption (density has no mass points or holes).
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• Feasibility requires, using ϕ−1(`) = c , that the lowest quality
capitalist cover his/her reserve income outside the sector

π(c) = F (`(c), c)−W (`∗) ≥ πR .

• If not satisfied we have unemployed capital.

• Jack up c∗ > c until constraint satisfied.
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• From the allocation derived from the social planner’s problem,
we can derive the hedonic equation (instead of assuming it).

• The slope of the wage function is given by FOC (using
c = ϕ−1|l)

W ′(`) =
∂F

∂`
(`, ϕ−1(`))

(the right-hand side determined by the equilibrium sorting).

• This defines the slope of hedonic line with a continuum of labor.
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• Note that if we totally differentiate the right-hand side,

W ′′(`) = F``
<0

+ F`c
+

dc

d`
+

∴ SOC satisfied, because W ′′(`)− F`` ≥ 0 as required.

• The marginal wage at minimum quality `∗ satisfies

W ′(`∗) =
∂F

∂`
(`∗, ϕ−1(`∗)).
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• Competitive labor market forces W (`∗) = WR .

• You cannot pay any less than reserve wage.

• If you pay more, all workers from the “reserve” will want to
work in the sector being studied and hence it forces wages
down.

W (`) =

∫ `

`∗

∂F

∂x
(x , ϕ−1(x))dx + WR .

“hedonic function”

• Similarly

π(c) =

∫ c

c∗

dF

dz
(ϕ(z), z)dz + πR .

(Reserve value of capital is nonnegative; πR ≥ 0.)
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• Under our assumptions (more workers than firms and
unemployed worker, Nc > N`), rents are assigned to firms.

• Density of earnings is obtained from inverting wage function

w(`) = η(`) η−1(w) = ` (exists under our assumptions)

• Density of earnings is

g(η−1(w))
dη−1(w)

dw

Density of profits obtained in a similar way.
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Cobb Douglas Example

• F (`, c) = `αcβ, α > 0, β > 0.

• Assume Pareto distribution of endowments:

g(`) = j`−γ γ > 2, ` ≥ 1

k(c) = hc−σ σ > 2, c ≥ 1.

• This ensures finite variances. Obviously F`c > 0.

• The higher γ, the more equal is the distribution of `.

• The higher σ, the more equal is the distribution of c .
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• Equilibrium:

Nc

∫ ∞
c(`)

hx−σdx = N`

∫ ∞
`

jη−γdη

c(`) =

[
N`j

Nch

(σ − 1)

(γ − 1)

] 1
1−σ

(`)
1−γ
1−σ .
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• FOC (for wages) α`α−1cβ = W ′(`).

• Substitute for c(`) to reach

∴ W ′(`) = α

[
N`j(σ − 1)

Nch(γ − 1)

] β
1−σ

`P

P =
(α− 1)(1− σ) + β(1− γ)

1− σ
≷ 0

W (`) =


α

[
N`j(σ − 1)

Nch(γ − 1)

] β
1−σ

(
α(1−σ)+β(1−γ)

1−σ

)


︸ ︷︷ ︸
g1

· (`)
(

α(1−σ)+β(1−γ)
(1−σ)

)
+ k1,

and where k1 is a constant of integration, determined by
WR : W (`∗) ≥ WR .
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• Obviously W (`) ↑ as ` ↑. Convexity or concavity in labor
quality hinges on whether

P ≶ 0

P = (α− 1) + β
(1− γ)

1− σ
.
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• If α + β = 1 (CRS)

P = β

[
−1 +

1− γ
1− σ

]
= β

[
σ − γ
1− σ

]
= β

[
γ − σ
σ − 1

]
• Convexity or concavity of wage function depends on P .

• If γ > σ,W (`) is convex in `. (More firms out in tail than
workers – workers get scarcity payment).

• Firms less equally distributed (more “productive” firms out in
tail).

• If β ↑ (from CRS) reinforces effect (Renders capital relatively
more productive).
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• If γ = σ and β + α > 1 (β big enough), P > 0 and hence
produces convexity.

• Increasing returns to scale gives rise to convexity (scale of
productivity of resources effect).
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• Profits can be written as

π(c) = `αcβ − w(`)

• From the equilibrium matching condition we obtain

` = g0(c)
1−σ
1−γ g0 =

[
Nch(γ − 1)

N`j(σ − 1)

] 1
1−γ

π(c) =
[
g0(c)

(1−σ)
(1−γ)

]α
cβ − g1

(
g0(c)

(1−σ)
(1−γ)

)α(1−σ)+β(1−γ)
1−σ − k1

α(1− σ)

1− γ
+ β =

α(1− σ) + β(1− γ)

1− γ
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π(c) =
[
gα0 − g1(g0)

α(1−σ)+β(1−γ)
1−σ

]
· c

α(1−σ)+β(1−γ)
1−γ − k1

• For positive marginal productivity of capital, this requires that

α +
β(γ − 1)

σ − 1
>

[
Nch(γ − 1)

N`j(σ − 1)

] γ(β−1)
(σ−1)(γ−1)

• Otherwise, coefficient on c
α(1−σ)+β(1−γ)

1−γ is negative.
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π(c) = ac
α(1−σ)+β(1−γ)

1−γ − k2

a = (g0)α − g1(g0)
α(1−σ)+β(1−γ)

1−σ > 0

(True if Nc � N`, for example.)
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• ∴ convexity of π(c) is determined by sign of

α(1− σ) + β(1− γ)

1− γ
− 1

=
α(1− σ) + (β − 1)(1− γ)− 1 + γ

1− γ

=
(γ − 1)(β − 1) + (σ − 1)α

γ − 1

= (β − 1) +

(
σ − 1

γ − 1

)
α.

• Observe if α + β > 1 then both π(c) and W (`) can be convex
in their arguments. With CRS one must be concave, the other
convex.

• Linearity arises when we have γ = σ and α + β = 1.
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• γ big relative to σ (scarcity of labor at top firms (high c firms)).

• α, β big – scale effects – we get convexity at top of distribution.

• Suppose we invoke full employment conditions for capital:

N` > Nc π(1) ≥ πR

Heckman Sattinger (1979), January 25, 2021 4:36pm 29 / 60



• We need to determine the constants for the wage equation.

• Minimum quality labor earns its opportunity cost outside of the
sector.

• Rents accrue to other workers.
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At lowest level of employment, we have (from matching function
c(`))

1 =

[
N`j(σ − 1)

Nch(γ − 1)

] 1
1−σ

(`∗)
1−γ
1−σ

∴ `∗ =

[
N`j(σ − 1)

Nch(γ − 1)

] 1
γ−1

W (`∗) = WR

∴ k1 =

WR −
α(1− σ)

α(1− σ) + β(1− γ)

[
N`j(σ − 1)

Nch(γ − 1)

] β
1−σ

(`∗)
α(1−σ)+β(1−γ)

1−σ .

π(c) defined residually. (Need to check π(1) > πR).
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• Pigou’s Problem: Why doesn’t the distribution of earnings
resemble the distribution of ability?

• Distribution of earnings: (generated from distribution of
endowments by the pricing function).

• Look at distribution of translated earnings (translated around
the constant k1).

(W (`)− k1) ∼ (W − k1)−[1+ (γ−1)(σ−1)
α(σ−1)+β(γ−1) ]

Distribution of raw skills ∼ `−γ.

• Higher γ is associated with more equality in the distribution of
labor skills.
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• One way to measure the market-induced change in inequality is
the change in the wage distribution from γ.

• Example:

1 +
(γ − 1)(σ − 1)

α(σ − 1) + β(γ − 1)
< γ

(wage inequality > inequality in `)

• For this to happen,

1

α + β
(γ − 1)

(σ − 1)

< 1

• The higher α + β, the more unequal the distribution of wages.

• Higher γ > σ (capital more unequally distributed) the greater
the wage inequality.
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• If γ = σ, α + β = 1, no induced change in inequality.

• If γ = σ, α + β > 1, more inequality in wages than skills.

• If σ � γ, then more inequality in wages than skills (Demand
for top talent).

• It is not “superstars” but “superfirms”.
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• The wage equation is an hedonic function.

• Hedonic Functions (Tinbergen, 1951, 1956; Rosen, 1974).
What can you estimate when you regress W on `? Obviously
we can estimate k1,

α(σ − 1) + β(γ − 1)

(σ − 1)

and slope coefficient (g1).

• Do not recover any single parameter of interest. We get lowest
` in market and from distribution of ` and c , we can get γ, σ, h
(if c fully employed).

• If we assume α + β = 1 (CRS) and we observe distributions of
the factors, we get σ, γ and hence α, β.
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• If we know `∗, we can get j .

• If we know N` and Nc , we can identify γ, σ but α, β are
unknown.

• α + β is known.

• CRS ⇒ α, β known.
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Identify the Technology

• Idea (Rosen, 1974). Two-stage estimation procedure. Assume
perfect data.

• Assume α 6= 1.

• No error term in model, no omitted variables.

• Use FOC for firm,

lnα + (α− 1) ln ` + β ln c = lnW ′(`)

i.e.,

ln ` = − lnα

α− 1
+

lnW ′(`)

α− 1
− β ln c

α− 1
.
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• Apparently, we can regress ln ` on lnW ′(`).

• Notice however that from the sorting condition,

ln ` = ln g0 +

(
σ − 1

γ − 1

)
ln c .

• We get no independent variation. lnW ′(`) is redundant.

• Alternatively, lnW ′(`) and ln c are perfectly collinear.
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• More general principle:

FOC:
∂2F

∂`2
d` +

∂2F

∂`∂c
dc = dW ′(`)

d` =
1(
∂2F

∂`2

)d [W ′(`)]−

∂2F

∂`∂c
∂2F

∂`2

dc .

• Functional dependence between c and W ′(`) does not
necessarily imply linear dependence.
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• ∴ we might be able to identify the model.

• Need shifter in regression.

• Functional dependence ; linear independence

y = α0 + α1X + α2X
2.

• Obviously X and X 2 only dependent but not linearly dependent.

• We return to this in a bit.
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Pareto Distribution
Pareto Distribution
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Pareto Distribution
Pareto Distribution
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Pareto Distribution
Pareto Distribution

1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X ~ f(x) = k . X 
 (-1-k) 

C
D

F
(X

) 
=

 1
 -

 X
 

 -
k
 

k = 1

k = 1.5

k = 3

X ∼ Pareto(k)→ FX(x) = 1− x
−k

3

X ∼ Pareto(k)→ FX (x) = 1− x−k

Heckman Sattinger (1979), January 25, 2021 4:36pm 43 / 60



Pareto Distribution
Pareto Distribution
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Ability Distributions
Ability Distributions
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Pareto Percentiles

Pareto Percentiles
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Capital/ability relation
Capital and Ability Function
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Wage derivative with respect to ability
∂W (L)

∂L
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Wage as a function of ability
Wage function of Ability
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Wage distribution
Wage Distribution
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Wage distribution
Wage Distribution
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Wage and ability distribution
Wage and Ability Distributions
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