Some Generalized Roy Math

James J. Heckman
University of Chicago

Econ 350, Winter 2021
This draft, January 12, 2021 1:35pm

Review Generalized Roy Model

$$
\begin{aligned}
Y_{1} & =\mu_{1}(X)+U_{1} \\
Y_{0} & =\mu_{0}(X)+U_{0} \\
C & =\mu_{C}(Z)+U_{C}
\end{aligned}
$$

Net Benefit: $I=Y_{1}-Y_{0}-C$

$$
I=\underbrace{\mu_{1}(X)-\mu_{0}(X)-\mu_{C}(Z)}_{\mu_{D}(Z)}+\underbrace{U_{1}-U_{0}-U_{C}}_{-V}
$$

$\left(U_{0}, U_{1}, U_{C}\right) \Perp(X, Z)$
$E\left(U_{0}, U_{1}, U_{C}\right)=(0,0,0)$
$V \Perp(X, Z)$

- Assume Normally Distributed Errors.
- Assume Z contains X but may contain other variables (exclusions)
$Y=D Y_{1}+(1-D) Y_{0}$ observed Y (switching regression model)
$D=1(I \geq 0)=1\left(\mu_{D}(Z) \geq V\right)$
- Assume $V \sim N\left(0, \sigma_{V}^{2}\right)$
- "Propensity Score:" a.k.a. probability of choosing $D=1$

$$
\begin{aligned}
& \operatorname{Pr}(D=1 \mid Z=z)=\Phi\left(\frac{\mu_{D}(z)}{\sigma_{V}}\right) \\
& E(Y \mid D=1, X=x, Z=z)=\mu_{1}(X)+\underbrace{E\left(U_{1} \mid \mu_{D}(z) \geq V\right)}_{K_{1}(P(z))}
\end{aligned}
$$

because $(X, Z) \Perp\left(U_{1}, V\right)$.

- Under normality

$$
E\left(U_{1} \left\lvert\, \frac{\mu_{D}(z)}{\sigma_{V}} \geq \frac{V}{\sigma_{V}}\right.\right)=\frac{\operatorname{Cov}\left(U_{1}, \frac{V}{\sigma_{V}}\right)}{\operatorname{Var}\left(\frac{V}{\sigma_{V}}\right)} \tilde{\lambda}\left(\frac{\mu_{D}(z)}{\sigma_{V}}\right)
$$

- Terms defined below
- Why?

$$
U_{1}=\operatorname{Cov}\left(U_{1}, \frac{V}{\sigma_{V}}\right) \frac{V}{\sigma_{V}}+\varepsilon_{1}
$$

$\varepsilon_{1} \Perp V$

$$
\begin{aligned}
& E\left(\frac{V}{\sigma_{V}} \left\lvert\, \frac{\mu_{D}(z)}{\sigma_{V}} \geq \frac{V}{\sigma_{V}}\right.\right)=\frac{\int_{-\infty}^{\frac{\mu_{D}(z)}{\sigma_{V}}} t \frac{1}{\sqrt{2} \pi} e^{\frac{-t^{2}}{2}} d t}{\int_{-\infty}^{\mu_{D}(z)}} \frac{1}{\sigma_{V}} e^{-\frac{t^{2}}{2}} d t \\
& \int_{-\infty}^{\sqrt{2} \pi}\left(\frac{\mu_{D}(z)}{\sigma_{V}}\right) \\
& =\frac{\frac{-1}{\sqrt{2} \pi} e^{\left(-\frac{1}{2}\right)\left(\frac{\mu_{D}(z)}{\sigma_{V}}\right)^{2}}}{\Phi\left(\frac{\mu_{D}(z)}{\sigma_{V}}\right)}=\tilde{\lambda}\left(\frac{\mu_{D}(z)}{\sigma_{V}}\right)=\frac{-\phi\left(\frac{\mu_{D}(z)}{\sigma_{V}}\right)}{\Phi\left(\frac{\mu_{D}(z)}{\sigma_{V}}\right)}
\end{aligned}
$$

- Notice

$$
\begin{aligned}
\lim _{\mu_{D}(z) \rightarrow \infty} \tilde{\lambda}\left(\frac{\mu_{D}(z)}{\sigma_{V}}\right) & =0 \\
\lim _{\mu_{D}(z) \rightarrow-\infty} \tilde{\lambda}\left(\frac{\mu_{D}(z)}{\sigma_{V}}\right) & =-\infty
\end{aligned}
$$

- Propensity score:

$$
\begin{aligned}
& P(z)=\operatorname{Pr}(D=1 \mid Z=z)=\Phi\left(\frac{\mu_{D}(z)}{\sigma_{V}}\right) \\
& \therefore\left(\frac{\mu_{D}(z)}{\sigma_{V}}\right)=\Phi^{-1}(\operatorname{Pr}(D=1 \mid Z=z))
\end{aligned}
$$

- Thus we can replace $\frac{\mu_{D}(z)}{\sigma_{V}}$ with a known function of $P(z)$
- As $P(Z) \rightarrow 1$, selection bias term goes to zero.
- Notice that because $(X, Z) \Perp(U, V), Z$ enters the model (conditional on X) only through $P(Z)$: Index Sufficiency.
- It holds true for the LATE model as it does here.
- We can apply our material on the Roy model to the Generalized Roy model.
- Put all of these results together to obtain

$$
\begin{aligned}
& E(Y \mid D=1, X=x, Z=z)=\mu_{1}(x)+\left(\frac{\operatorname{Cov}\left(U_{1}, \frac{V}{\sigma_{V}}\right)}{\operatorname{Var}\left(\frac{V}{\sigma_{V}}\right)}\right) \tilde{\lambda}\left(\frac{\mu_{D}(z)}{\sigma_{V}}\right) \\
& =E\left(Y_{1} \mid D=1, X=x, Z=z\right)=\mu_{1}(x)+\left(\frac{\operatorname{Cov}\left(U_{1}, \frac{V}{\sigma_{V}}\right)}{\operatorname{Var}\left(\frac{V}{\sigma_{V}}\right)}\right) \tilde{\lambda}\left(\frac{\mu_{D}(z)}{\sigma_{V}}\right) \\
& \tilde{\lambda}(z)=E\left(\frac{V}{\sigma_{V}} \left\lvert\, \frac{V}{\sigma_{V}}<\frac{\mu_{D}(z)}{\sigma_{V}}\right.\right)<0 \\
& \lambda(z)=E\left(\frac{V}{\sigma_{V}} \left\lvert\, \frac{V}{\sigma_{V}} \geq \frac{\mu_{D}(z)}{\sigma_{V}}\right.\right)>0 \\
& E(Y \mid D=0, X=x, Z=z)=\mu_{0}(x)+\left(\frac{\operatorname{Cov}\left(U_{0}, \frac{V}{\sigma_{V}}\right)}{\operatorname{Var}\left(\frac{V}{\sigma_{V}}\right)}\right) \lambda\left(\frac{\mu_{D}(z)}{\sigma_{V}}\right) \\
& \operatorname{Var}\left(\frac{V}{\sigma_{V}}\right)=1
\end{aligned}
$$

$$
\begin{aligned}
& \frac{V}{\sigma_{V}}=-\frac{\left(U_{1}-U_{0}-U_{C}\right)}{\sigma_{V}} \\
& \operatorname{Cov}\left(U_{1}, \frac{V}{\sigma_{V}}\right)=-\operatorname{Cov}\left(U_{1}, \frac{V}{\sigma_{V}}\right)+\operatorname{Cov}\left(U_{0}, \frac{V}{\sigma_{V}}\right)+\operatorname{Cov}\left(U_{C}, \frac{V}{\sigma_{V}}\right)
\end{aligned}
$$

In Roy model case $\left(U_{C}=0\right)$,

$$
\begin{aligned}
\operatorname{Cov}\left(U_{1}, \frac{V}{\sigma_{V}}\right) & =-\operatorname{Cov}\left(U_{1}, \frac{U_{1}-U_{0}}{\sigma_{V}}\right) \\
& =\frac{\operatorname{Cov}\left(U_{1}-U_{0}, U_{1}\right)}{\sqrt{\operatorname{Var}\left(U_{1}-U_{0}\right)}}
\end{aligned}
$$

- We can identify $\mu_{1}(x), \mu_{0}(x)$
- From Discrete Choice model, identify

$$
\frac{\mu_{D}(z)}{\sigma_{V}}=\frac{\mu_{1}(x)-\mu_{0}(x)-\mu_{C}(z)}{\sigma_{V}}
$$

- If we have a regressor in X that does not affect $\mu_{C}(z)$ (say regressor x_{j}, so $\frac{\partial \mu_{C}(z)}{\partial x_{j}}=0$), we can identify σ_{V} and $\mu_{C}(z)$.
- We can identify the net benefit function and the cost function up to scale.
- \therefore We can compute ex ante subjective net gains.
- Method generalizes:

Don't need normality

$$
\begin{aligned}
& E(Y \mid D=1, X=x, Z=z)=\mu_{1}(x)+\overbrace{K_{1}(P(z))}^{\text {control function }} \\
& E(Y \mid D=0, X=x, Z=z)=\mu_{0}(x)+\underbrace{K_{0}(P(z))}_{\text {control function }} \\
& \lim _{P(z) \rightarrow 1} E(Y \mid D=1, X=x, Z=z)=\mu_{1}(x) \\
& \lim _{P(z) \rightarrow 0} E(Y \mid D=0, X=x, Z=z)=\mu_{0}(x)
\end{aligned}
$$

- Identification in limit sets ("large support" conditions)
- e.g., samples where everyone participates or no one participates
- If this condition satisfied, we can identify ATE:

$$
E\left(Y_{1}-Y_{0} \mid X=x\right)=\mu_{1}(x)-\mu_{0}(x)
$$

- ATE is defined in a limit set. This is true for any model with selection on unobservables (IV; selection models; LATE)
- What about treatment on the treated?

$$
E\left(Y_{1}-Y_{0} \mid D=1, X=x, Z=z\right)
$$

(a) From the data, we observe

$$
E\left(Y_{1} \mid D=1, X=x, Z=z\right)
$$

(1) Can also create it from the model
© $E\left(Y_{0} \mid D=1, X=x, Z=z\right)$ is a counterfactual We know
$E\left(Y_{0} \mid D=0, X=x, Z=z\right)=\mu_{0}(x)+\operatorname{Cov}\left(U_{0}, \frac{V}{\sigma_{V}}\right) \lambda\left(\frac{\mu_{D}(Z)}{\sigma_{V}}\right)$
(this is data)
d We seek
$E\left(Y_{0} \mid D=1, X=x, Z=z\right)=\mu_{0}(x)+\operatorname{Cov}\left(U_{0}, \frac{V}{\sigma_{V}}\right) \tilde{\lambda}\left(\frac{\mu_{D}(z)}{\sigma_{V}}\right)$
But under normality, we know $\operatorname{Cov}\left(U_{0}, \frac{v}{\sigma_{v}}\right)$
We know $\frac{\mu_{D}(Z)}{\sigma_{V}}$
$\tilde{\lambda}(\cdot)$ is a known function.
Can form $\tilde{\lambda}\left(\frac{\mu_{D}(z)}{\sigma_{V}}\right)$ and can construct counterfactual.

- More generally, without normality (but with $(X, Z) \Perp(U, V))$

$$
\begin{aligned}
& E\left(Y_{1} \mid D=1, X, Z\right)=E(Y \mid D=1, X=x, Z=z)=\mu_{1}(x)+K_{1}(P(z)) \\
& E\left(Y_{0} \mid D=0, X, Z\right)=E(Y \mid D=0, X=x, Z=z)=\mu_{0}(x)+\tilde{K}_{0}(P(z))
\end{aligned}
$$

where $K_{1}(P(z))=E\left(U_{1} \mid D=1, X=x, Z=z\right)$
$=E\left(U_{1} \left\lvert\, \frac{\mu_{D}(z)}{\sigma_{V}}>\frac{V}{\sigma_{V}}\right.\right)$
$\tilde{K}_{1}(P(z))=E\left(U_{1} \left\lvert\, \frac{\mu_{D}(z)}{\sigma_{V}}>\frac{V}{\sigma_{V}}\right.\right)$
$\tilde{K}_{0}(P(z))=E\left(U_{0} \left\lvert\, \frac{\mu_{D}(z)}{\sigma_{V}}>\frac{V}{\sigma_{V}}\right.\right)$

- Use the transformation

$$
\begin{aligned}
& \frac{F_{V}}{\sigma_{V}}\left(\frac{\mu_{D}(z)}{\sigma_{V}}\right)=P(z) \\
& \frac{F_{V}}{\sigma_{V}}\left(\frac{V}{\sigma_{V}}\right)=U_{D} \quad(\text { a uniform random variable }) \\
& D=1\left(\frac{\mu_{D}(z)}{\sigma_{V}} \geq \frac{V}{\sigma_{V}}\right)=1\left(P(z) \geq U_{D}\right) \\
& K_{1}(P(z))=E\left(U_{1} \mid P(z)>U_{D}\right) \\
& K_{1}(P(z)) P(z)+\tilde{K}_{1}(P(z))(1-P(z))=0 \\
& \therefore \text { we can construct } \tilde{K}_{1}(P(z)) \\
& \therefore \text { we can form the counterfactual. }
\end{aligned}
$$

- Symmetrically

$$
\begin{aligned}
& \tilde{K}_{0}(P(z))=E\left(U_{0} \mid P(z) \leq U_{D}\right) \\
& K_{0}(P(z))=E\left(U_{0} \mid P(z)>U_{D}\right) \\
& (1-P(z)) \tilde{K}_{0}(P(z))+P(z) K_{0}(P(z))=0
\end{aligned}
$$

- \therefore If we have "identification in limit sets" we can construct

$$
E\left(Y_{1}-Y_{0} \mid X=x\right)=\mu_{1}(x)-\mu_{0}(x)
$$

- We can construct TT

$$
\begin{aligned}
& E\left(Y_{1}-Y_{0} \mid D=1, X=x, Z=z\right)= \\
& \quad=\underbrace{\left[\mu_{1}(x)+K_{1}(P(z))\right]}_{\text {factual }}-\underbrace{\left[\mu_{0}(x)+K_{0}(P(z))\right]}_{\text {counterfactual }}
\end{aligned}
$$

- We form $\mu_{1}(x)+K_{1}(P(z))$ from data
- We get $\mu_{0}(x)$ from limit set $P(z) \rightarrow 0$ identifies $\mu_{0}(x)$
- We can form $K_{0}(P(z))=-\tilde{K}_{0}(P(z)) \frac{P(z)}{1-P(z)}$
- \therefore Can construct the desired counterfactual mean.
- Notice how we can get EOTM: Effect of Treatment for Person at the Margin of Going into the Program

$$
E\left(Y_{1}-Y_{0} \mid I=0, X=x, Z=z\right)
$$

- Under normality we have (as a result of independence and normality)

$$
\begin{aligned}
& E\left(Y_{1}-Y_{0} \mid I=0, X=x, Z=z\right) \\
& =\mu_{1}(x)-\mu_{0}(x)+E\left(U_{1}-U_{0} \left\lvert\, \frac{\mu_{D}(z)}{\sigma_{V}}=\frac{V}{\sigma_{V}}\right., X=x, Z=z\right) \\
& =\mu_{1}(x)-\mu_{0}(x)+\operatorname{Cov}\left(U_{1}-U_{0}, \frac{V}{\sigma_{V}}\right) \frac{\mu_{D}(z)}{\sigma_{V}}
\end{aligned}
$$

In the Generalized Roy Model where $U_{C}=0$ but $\mu_{C}(z) \neq 0$

$$
\begin{aligned}
& =\mu_{1}(x)-\mu_{0}(x)-\sigma_{V}\left(\frac{\mu_{D}(z)}{\sigma_{V}}\right) \\
& =\mu_{1}(x)-\mu_{0}(x)-\mu_{D}(z) \\
& =\mu_{C}(z)
\end{aligned}
$$

$($ marginal gain $=$ marginal cost $)$

- MTE: Marginal Treatment Effect for a person for whom $U=u$

$$
\begin{aligned}
& E\left(Y_{1}-Y_{0} \mid V=v, X=x, Z=z\right)= \\
& \quad=\mu_{1}(x)-\mu_{0}(x)+\operatorname{Cov}\left(U_{1}-U_{0}, \frac{V}{\sigma_{v}}\right) v
\end{aligned}
$$

- EOTM picks $v=\frac{\mu_{D}(z)}{\sigma_{V}}$
- Notice we can use the result that

$$
\begin{aligned}
\frac{\mu_{D}(z)}{\sigma_{V}} & =F_{\left(\frac{v}{\sigma_{V}}\right)}^{-1}(P(z)) \\
V & =F_{\left(\frac{v}{\sigma_{V}}\right)}^{-v}\left(U_{D}\right)
\end{aligned}
$$

- EOTM:

$$
\begin{aligned}
& E\left(Y_{1}-Y_{0} \mid I=0, X=x, Z=z\right)= \\
& \quad=\mu_{1}(x)-\mu_{0}(x)+\operatorname{Cov}\left(U_{1}-U_{0}, \frac{V}{\sigma_{V}}\right) F_{\left(\frac{v}{\sigma_{V}}\right)}^{-1}(P(z))
\end{aligned}
$$

- MTE:

$$
\begin{aligned}
& E\left(Y_{1}-Y_{0} \mid V=v, X=x, Z=z\right)= \\
& \quad=\mu_{1}(x)-\mu_{0}(x)+\operatorname{Cov}\left(U_{1}-U_{0}, \frac{V}{\sigma_{V}}\right) F_{\left(\frac{v}{\sigma_{V}}\right)}^{-1}\left(U_{D}\right)
\end{aligned}
$$

A useful fact:

$$
\begin{gathered}
P(z)=\operatorname{Pr}(D=1 \mid Z=z) \\
=\operatorname{Pr}\left(\mu_{D}(z) \geq V\right) \\
=\operatorname{Pr}\left(\frac{\mu_{D}(z)}{\sigma_{V}} \geq \frac{V}{\sigma_{V}}\right) \\
P(z)=F_{\frac{V}{\sigma_{V}}}\left(\frac{\mu_{D}(z)}{\sigma_{V}}\right) \\
U_{D}=F_{\frac{V}{\sigma_{V}}}\left(\frac{V}{\sigma_{V}}\right) ; \quad \text { Uniform }(0,1)
\end{gathered}
$$

$$
\begin{aligned}
P(z) & =\operatorname{Pr}\left(F_{\frac{v}{\sigma_{V}}}\left(\frac{\mu_{D}(z)}{\sigma_{V}}\right)\right) \geq F_{\frac{v}{\sigma_{V}}}\left(\frac{V}{\sigma_{V}}\right) \\
& =\operatorname{Pr}\left(P(z) \geq U_{D}\right)
\end{aligned}
$$

$P(z)$ is the $p(z)^{\text {th }}$ quantile of U_{D}.

Recall

$$
\begin{aligned}
Y & =D Y_{1}+(1-D) Y_{0} \\
& =Y_{0}+D\left(Y_{1}-Y_{0}\right)
\end{aligned}
$$

Keep X implicit (condition on $X=x$)

$$
\begin{aligned}
E(Y \mid Z=z) & =E\left(Y_{0}\right)+\underbrace{E\left(Y_{1}-Y_{0} \mid D=1, Z=z\right) P(z)}_{\text {from law of iterated expectations }} \\
& =E\left(Y_{0}\right)+E\left(Y_{1}-Y_{0} \mid P(z) \geq U_{D}\right) P(z)
\end{aligned}
$$

\therefore It depends on Z only through $P(Z)$.

$$
E\left(Y \mid Z=z^{\prime}\right)=E\left(Y_{0}\right)+E\left(Y_{1}-Y_{0} \mid P\left(z^{\prime}\right) \geq U_{D}\right) P\left(z^{\prime}\right)
$$

- What is $E\left(Y_{1}-Y_{0} \mid P(z) \geq U_{D}\right)$?
- Let the joint density of $\left(Y_{1}-Y_{0}, U_{D}\right)$ be

$$
f_{Y_{1}-Y_{0}, u_{D}}\left(y_{1}-y_{0}, u_{D}\right) .
$$

- It does not depend on Z. It will, in general, depend on X.

$$
\begin{aligned}
& E\left(Y_{1}-Y_{0} \mid P(z) \geq U_{D}\right) \\
& \quad=\frac{\int_{-\infty}^{\infty} \int_{0}^{P(z)}\left(y_{1}-y_{0}\right) f_{y_{1}-y_{0}, u_{D}}\left(y_{1}-y_{0}, u_{D}\right) d u_{D} d\left(y_{1}-y_{0}\right)}{\operatorname{Pr}\left(P(z) \geq U_{D}\right)}
\end{aligned}
$$

- Now recall that

$$
U_{D}=F_{\left(\frac{v}{\sigma_{V}}\right)}\left(\frac{V}{\sigma_{V}}\right) .
$$

- U_{D} is a quantile of the V / σ_{V} distribution.
- By construction, U_{D} is Uniform $(0,1)$ (this is the definition of a quantile).
- $\therefore f_{U_{D}}\left(u_{D}\right)=1$.
- Also, $\operatorname{Pr}\left(P(z) \geq U_{D}\right)=P(z)$.
- Notice, by law of conditional probability,
$f_{Y_{1}-Y_{0}, U_{D}}\left(y_{1}-y_{0}, u_{D}\right)=f_{Y_{1}-Y_{0}, U_{D}}\left(y_{1}-y_{0} \mid U_{D}=u_{D}\right) \underbrace{f_{U_{D}}\left(u_{D}\right)}_{=1}$.

$$
\begin{aligned}
& E\left(Y_{1}-Y_{0} \mid P(z) \geq U_{D}\right) \\
& =\frac{\int_{0}^{P(z)} \int_{-\infty}^{\infty}\left(y_{1}-y_{0}\right) f_{Y_{1}-Y_{0}, u_{D}}\left(y_{1}-y_{0}, u_{D}\right) d\left(y_{1}-y_{0}\right) d u_{D}}{P(z)}
\end{aligned}
$$

$$
E\left(Y_{1}-Y_{0} \mid P(z) \geq U_{D}\right)
$$

$$
=\frac{\int_{0}^{P(z)} \int_{-\infty}^{\infty}\left(y_{1}-y_{0}\right) f_{Y_{1}-Y_{0}, U_{D}}\left(y_{1}-y_{0} \mid U_{D}=u_{D}\right) d\left(y_{1}-y_{0}\right) d u_{D}}{P(z)}
$$

$$
=\frac{\int_{0}^{P(z)} E\left(Y_{1}-Y_{0} \mid U_{D}=u_{D}\right) d u_{D}}{P(z)}
$$

$$
\therefore E(Y \mid Z=z)=E\left(Y_{0}\right)+\int_{0}^{P(z)} E\left(Y_{1}-Y_{0} \mid U_{D}=u_{D}\right) d u_{D}
$$

$$
\frac{\partial E(Y \mid Z=z)}{\partial P(z)}=\underbrace{E\left(Y_{1}-Y_{0} \mid U_{D}=P(z)\right)}_{\text {EOTM or marginal gains }}
$$

$$
E\left(Y \mid Z=z^{\prime}\right)=E\left(Y_{0}\right)+\int_{0}^{P\left(z^{\prime}\right)} E\left(Y_{1}-Y_{0} \mid U_{D}=u_{D}\right) d u_{D}
$$

- Suppose $P(z)>P\left(z^{\prime}\right)$
$\therefore E(Y \mid Z=z)-E\left(Y \mid Z=z^{\prime}\right)=$

$$
\begin{gathered}
=\int_{P\left(z^{\prime}\right)}^{P(z)} E\left(Y_{1}-Y_{0} \mid U_{D}=u_{D}\right) d u_{D} \\
=E\left(Y_{1}-Y_{0} \mid P(z) \geq U_{D} \geq P\left(z^{\prime}\right)\right) \operatorname{Pr}\left(P(z) \geq U_{D} \geq P\left(z^{\prime}\right)\right)
\end{gathered}
$$

- Notice

$$
\begin{aligned}
& \operatorname{Pr}\left(P(z) \geq U_{D} \geq P\left(z^{\prime}\right)\right)=\int_{P\left(z^{\prime}\right)}^{P(z)} d u_{D} \\
& \quad=P(z)-P\left(z^{\prime}\right)
\end{aligned}
$$

$$
E(Y \mid Z=z)-E\left(Y \mid Z=z^{\prime}\right)
$$

$$
=\underbrace{E\left(Y_{1}-Y_{0} \mid P(z) \geq U_{D} \geq P\left(z^{\prime}\right)\right)}_{\text {LATE }}\left(P(z)-P\left(z^{\prime}\right)\right)
$$

$$
\frac{E(Y \mid Z=z)-E\left(Y \mid Z=z^{\prime}\right)}{P(z)-P\left(z^{\prime}\right)}=\operatorname{LATE}\left(z, z^{\prime}\right)
$$

$$
=\frac{\int_{P\left(z^{\prime}\right)}^{P(z)} \operatorname{MTE}\left(u_{D}\right) d u_{D}}{P(z)-P\left(z^{\prime}\right)}
$$

Policy Relevant Treatment Effect

(Keep X implicit)

$$
\begin{aligned}
& E\left(Y_{p}\right)= \int_{0}^{1} E\left(Y_{p} \mid P_{p}\left(Z_{p}\right)=t\right) d F_{P_{p}}(t) \\
&= \int_{0}^{1}\left[\int _ { 0 } ^ { 1 } \left[\mathbf{1}_{[0, t]}\left(u_{D}\right) E\left(Y_{1, p} \mid U_{D}=u_{D}\right)\right.\right. \\
&\left.\left.+\mathbf{1}_{(t, 1]}\left(u_{D}\right) E\left(Y_{0, p} \mid U_{D}=u_{D}\right)\right] d u\right] d F_{P_{p}}(t) \\
&= \int_{0}^{1}\left[\int _ { 0 } ^ { 1 } \left[\mathbf{1}_{\left[u_{D}, 1\right]}(t) E\left(Y_{1, p} \mid U_{D}=u_{D}\right)\right.\right. \\
&\left.\left.\quad+\mathbf{1}_{\left(0, u_{D}\right]}(t) E\left(Y_{0, p} \mid U_{D}=u_{D}\right)\right] d F_{P_{p}}(t)\right] d u_{D} \\
&= \int_{0}^{1}\left[\left(1-F_{P_{p}}\left(u_{D}\right)\right) E\left(Y_{1, p} \mid U_{D}=u_{D}\right)\right. \\
&\left.\quad+F_{P_{p} \mid X}\left(u_{D}\right) E\left(Y_{0, p} \mid U_{D}=u_{D}\right)\right] d u_{D} .
\end{aligned}
$$

- This derivation involves changing the order of integration.
- Note that from finiteness of the mean,

$$
\begin{aligned}
& E\left|\mathbf{1}_{[0, t]}\left(u_{D}\right) E\left(Y_{1, p} \mid U_{D}=u_{D}\right)+\mathbf{1}_{(t, 1]}\left(u_{D}\right) E\left(Y_{0, p} \mid U_{D}=u_{D}\right)\right| \\
& \quad \leq E\left(\left|Y_{1}\right|+\left|Y_{0}\right|\right)<\infty
\end{aligned}
$$

\therefore the change in the order of integration is valid by Fubini's theorem.

- Comparing policy p to policy p^{\prime},

$$
\begin{aligned}
E\left(Y_{p}\right) & -E\left(Y_{p^{\prime}}\right) \\
& =\int_{0}^{1} \underbrace{E\left(Y_{1}-Y_{0} \mid U_{D}=u_{D}\right)}_{\operatorname{MTE}\left(u_{D}\right)}\left(F_{P_{p^{\prime}}}\left(u_{D}\right)-F_{P_{p}}\left(u_{D}\right)\right) d u_{D}
\end{aligned}
$$

which gives the required weights.

- Policies shift the distribution of $P(Z)$.
- They keep the distribution of Y_{1} and Y_{0} unchanged.

