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Roy Model

(Y0,Y1) potential outcomes

I ∗ = Y1 − Y0 choice index

Observe Y1 if Y1 ≥ Y0.

Observe Y0 if Y1 < Y0.

Cannot simultaneously observe Y0 and Y1.
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We can conduct an identification analysis assuming we know

I =
I ∗

σY1−Y0

=
Y1 − Y0

σY1−Y0

for each person where D = 1(I > 0).

Why do we know this? Conditions established in the literature

[Source: Cosslett (1983), Manski (1988), Matzkin (1992)]

We observe (Y0,D) and (Y1,D). We never observe the full triple
(Y0,Y1,D) for anyone.
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Under conditions specified in the literature, F (Y0, I |X ,Z ) and
F (Y1, I |X ,Z ) are identified where:

Y0 = µ0(X ) + U0 E (Y0 | X ) = µ0(X ) (1)

Y1 = µ1(X ) + U1 E (Y1 | X ) = µ1(X ) (2)

I ∗ = µI (X ,Z ) + UI (3)

I =
µI (X ,Z )

σUI

+
UI

σUI

(4)

Assume (X ,Z ) ⊥⊥ (U0,U1,UI ).

Source: Heckman (1990), Heckman and Honoré (1990)

The key idea in these papers is “sufficient” variation in Z
holding X fixed.
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Identifying the Index Choice Probability

From the left-hand side of

Pr(D = 1|X ,Z ) = Pr(µI (X ,Z ) + UI ≥ 0|X ,Z ),

we can identify the distribution of UI

σUI
, as well as µI (X ,Z)

σUI
.

Just invert known fUI
to establish µI (X ,Z)

σI
. Prove.

This is true under normality or for assumed functional forms for the
distribution of UI

σUI
.

Also, we do not have to assume the distribution of UI is known or that the
functional form of µI (X ,Z ) is linear, e.g. µI (X ,Z ) = XβI + ZγI .

See the conditions in the Matzkin (1992) paper and the survey in
Matzkin, 2007, Handbook of Econometrics.
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Suppose UI is symmetric around zero:

Pr(D = 1|X ,Z ) =

∫ ∞
−µI (X ,Z)

f (UI )dUI

= 1− FUI

(
µI (X ,Z )

σUI

)
⇒FUI

−1[1− Pr(D = 1|X ,Z )] =
µI (X ,Z )

σUI

Can recover µI (X ,Z ) nonparametrically (up to scale)
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Suppose functional form of distribution unknown?

Pr(D = 1|X ,Z ) = Pr(UI ≥ −µI (X ,Z )) (**)

=

∫ ∞
−µI (X ,Z)

f (UI )dUI

We can trace out F (UI ) up to scale.

We can get scale using the joint distributions of
(Y0,D), (Y1,D).
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Another Way Without Assuming Functional Forms

Suppose µI (X ,Z ) differentiable in Z .

Z has 2 (or more) elements.

∂ Pr(D=1|X ,Z)
∂Z1

∂ Pr(D=1|X ,Z)
∂Z2

=

(
∂µI (X ,Z)
∂Z1

)
fUI

(µI (X ,Z ))(
∂µI (X ,Z)
∂Z2

)
fUI

(µI (X ,Z ))

=

∂µI (X ,Z )

∂Z1

∂µI (X ,Z )

∂Z2
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Application to Psychic Cost Estimation

Consider a generalized Roy Model

D = 1(Y1 − Y0 − C > 0|X ,Z )

C = φ(Z ) + V .

(Z like an “instrument” – e.g., tuition, distance to school).

µI (X ,Z ) =µ1(X )− µ0(X )− φ(Z )

UI =U1 − U0 − V

σ2
I =σ11 + σ00 + σVV − 2σ10 − 2σ1V + 2σ0V

Pr(D = 1X ,Z ) =1− FU1−U0−V

(
µ1(X )− µ0(X )− φ(Z )

σI

)
We can identify µ1(X ), µ0(X ), (from selection bias analysis).

We can also identify σ11, σ00 from same analysis.
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We can identify σ2
I if there is independent variation in φ(Z ),

e.g., through exclusion available in Z , not in X , and not
collinear with X . (Why? We know µ1(X ) and µ0(X ).

∴ we can identify φ(Z ) (psychic cost function).

What about σ2
V ?

Yes, under some assumptions, e.g.,

σ10 = 0, σ1V = 0, σ0V = 0

Way too strong; can relax.

Lots of approaches in literature.

Carries over to Dynamic Models.
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Example

Suppose µI (X ,Z ) = γZ

∂µI (X ,Z)
∂Z1

∂µI (X ,Z)
∂Z2

=
γ1

γ2

Normalize γ1 = 1; can identify all the other terms.
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To identify FUI
non-parametrically requires full support of Z

and restrictions on µI (X ,Z ). See Matzkin (1992).

A key condition is

Support

(
µI (X ,Z )

σUI

)
⊇ Support

(
UI

σUI

)
and other regularity conditions.

Commonly it is assumed that for a fixed X

Support

(
µI (X ,Z )

σUI

)
= (−∞,∞).

This is called “identification at infinity.” When we vary Z (for
each X ) we trace out the full support of UI

σUI
.

Problem: Prove this using the first line of (**) realizing
that you know UI

δI
.
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Identifying the Joint Distribution of (Y0, I )

We know the conditional distribution of Y0:

F (Y0 | D = 0,X ,Z ) = Pr(Y0 ≤ y0 | µI (X ,Z ) + UI ≤ 0,X ,Z )

Multiply this by Pr(D = 0 | X ,Z ):

F (Y0 | D = 0,X ,Z ) Pr(D = 0 | X ,Z ) = Pr(Y0 ≤ y0, I
∗ ≤ 0 | X ,Z ) (*)

We can follow the analysis of Heckman (1990), Heckman and Smith
(1998), and Carneiro, Hansen, and Heckman (2003).
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Left hand side of (*) is known from the data.

Right hand side:

Pr

(
Y0 ≤ y0,

UI

σUI

< −µI (X ,Z )

σUI

| X ,Z
)

Since we know
µI (X ,Z )

σUI

from the previous analysis, we can vary it

for each fixed X .
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If µI (X ,Z ) gets small (µI (X ,Z )→ −∞), recover the marginal
distribution Y and in this limit set we can identify the marginal
distribution of

Y0 = µ0(X ) + U0 ∴ can identify µ0(X ) in limit.

(See Heckman, 1990, and Heckman and Vytlacil, 2007.)

More generally, we can form:

Pr

(
U0 ≤ y0 − µ0(X ),

UI

σUI

≤ −µI (X ,Z )

σUI

| X ,Z
)

X and Z can be varied and y0 is a number.

We can trace out joint distribution of
(
U0,

UI

σUI

)
by varying

(y0,Z ) for each fixed X (strictly speaking, varying y0,Z ).
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∴ Recover joint distribution of

(Y0, I ) =

(
µ0(X ) + U0,

µI (X ,Z ) + UI

σUI

)
.

Three key ingredients.

1 The independence of (U0,UI ) and (X ,Z ).

2 The assumption that we can set
µI (X ,Z )

σUI

to be very small (so

we get the marginal distribution of Y0 and hence µ0(X )).

3 The assumption that
µI (X ,Z )

σUI

can be varied independently of

µ0(X ).

Trace out the joint distribution of
(
U0,

UI

σUI

)
. Result generalizes

easily to the vector case. (Carneiro, Hansen, and Heckman, 2003,
IER)
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Another way to see this is to write:

F (Y0 | D = 0,X ,Z ) Pr(D = 0 | X ,Z )

This is a function of µ0(X ) and
µI (X ,Z )

σUI

(Index sufficiency)
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Varying the µ0(X ) and
µI (X ,Z )

σUI

traces out the

distribution of

(
U0,

UI

σUI

)
.

This means effectively that we observe the pairs(
I
σUI
,Y1

)
and

(
I
σUI
,Y0

)
.

We never observe the triple
(

I
σUI
,Y0,Y1

)
.
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Use the intuition that we “know” I .

We observe
F (Y0 | I < 0,X ,Z )

and
F (Y1 | I ≥ 0,X ,Z )

and
Pr(I ≥ 0 | X ,Z )

and can construct the joint distributions F (Y0, I | X ,Z ) and
F (Y1, I | X ,Z ).
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Roy Normal Case

Armed with normality (or the nonparametric assumptions in
Heckman and Honoré, 1990), we can estimate

Cov(I ,Y1) =
σ2
Y1
− σY1,Y0

σ2
Y1

+ σ2
Y0
− 2σY1,Y0

Cov(I ,Y0) = −
σ2
Y0
− σY1,Y0

σ2
Y1

+ σ2
Y0
− 2σY1,Y0

We know VarY1, VarY0 (e.g. normal selection model or use limit
sets)

∴ Cov(Y0,Y1) is identified (actually over-identified).

This line of argument does not generalize if we add a cost
component (C ) that is unobserved (or partly so).

James Heckman Note on Identification 20 / 23



References

The intuition is clear. In the Roy model the decision rule is
generated solely by (Y1,Y0). Knowing agent choices we observe the
relative order (and magnitude) of Y1 and Y0.

Thus we get a second valuable piece of information from agent
choices. This information is ignored in statistical approaches to
program evaluation.

But does this analysis generalize?
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Generalized Roy Model

Add cost
I = Y1 − Y0 − C

and assume that we do not directly observe C .

Observe Y1 | I > 0,

Observe Y0 | I < 0,

and

I =
Y1 − Y0 − C√

Var(Y1 − Y0 − C )
.
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We can identify VarY1 and can identify VarY0.

But we cannot directly identify Cov(Y0,Y1) which measures
comparative advantage.

Notice, however, we can determine if

E (Y1 | I > 0) > E (Y1)

E (Y0 | I < 0) > E (Y0)

(Are people who work in a sector above average for the sector?)
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