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Basic Sheshinski Specification

• β = 1, α = 1 in Ḣ = AHβIα − σH

Ḣ = AIH − σH

H : e−rtR(1 − I)H + µ(AIH − σH)

• Bang-Bang: I = 1 if

µ(t)AH ≥ e−rtRH

µ(t)ert ≥ R
A
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• Let g(t) = µ(t)ert.

ġ = −R + (R − Ag)I + (σ + r)g
g(T) = 0

• Transversality: µ(T)H(T) = 0, i.e., g(T)H(T) = 0.

• Observe if g(0) > R
A , I(0) = 1.

• When I = 1,
ġ = (σ + r − A)g
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• If σ + r − A > 0, i.e., σ + r > A, so g ↑ and I = 1 ever after.
• Violates the transversality condition.

• Nothing bounds the policy.
• σ + r < A implies g ↓.
• Therefore, after g falls to R

A , I = 0. Then

ġ = −R + (σ + r)g.
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• Now with (σ + r)g < R, if the agent doesn’t ever invest again:

g(t) = R
T∫

t

e(σ+r)(t−τ)dτ

=
R

σ + r(1 − e(σ+r)(t−T)) ≤ R
σ + r

• If invest in future at t̂ > t

ġ = (σ + r − A/g) ↓

• ∴ g(t) is declining everywhere.
• Thus we never invest again in the future.
• Graphically displaying the rule we obtain:
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g(t)

R/A

0 t*

I=1
I=0
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• At switching age t∗,

R
A =

1
σ + r

(
1 − e(σ+r)(t∗−T)

)

t∗ = T +
1

σ + r −
1
A

t∗ is schooling.

• T ↑⇒ t∗ ↑
• σ, r ↑⇒ t∗ ↓
• A ↑⇒ t∗ ↑
• Initial endowments don’t affect schooling.

Heckman Sheshinski



Basic Sheshinski Specification Interior Sheshinski Specification Interior Modified Sheshinski Specification

• For t ∈ [0, t∗],

Ḣ
H =(A − σ)t + φ, H(0) = H0

H(t) =e(A−σ)tH(0).

• Human capital at schooling age t∗ is

H(t∗) = H(0)e(A−σ)

(
T +

1
σ + r −

1
A

)
.

• Coefficient on schooling: Mincer’s “r” is (A − σ)

Y(t∗) = RH(0)H(t∗)
lnY(t∗) = lnRH(0) + (A − σ)t∗

↑
years of school
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Interior Sheshinski Specification

• Now consider 0 < α < 1:

Ḣ = AIαH − σH

g(t) = µert

H = e−rtR(1 − I)H + µ(AIαH − σH)

• Therefore, if g(t) ≥ R
A , person invests, full time I = 1.

• We get Sheshinski-like policy:

ġ = (σ + r − A)g

• Need (σ + r − A) < 0 to satisfy optimality of investment
(g(T) = 0).
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Interior Solution Case

• We have

RH = αg(t)AIα−1H

ġ = −R(1 − I)− gAIα + (σ + r)g

• Now

g(t) =
∫ T

t
e−(σ+r)(t−τ)[(R)(1 − I)︸ ︷︷ ︸

cash
flow

+ gAIα︸︷︷︸
future

productivity

] dτ
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• I is obtained from the first order condition:

I =
[

R
αg(t)A

] 1
α−1

=

[
αg(t)A

R

] 1
1−α

ġ = −R
(

1 −
(
αA
R

) 1
1−α

g(t) 1
1−α

)

−gA
(
αA
R

) α
1−α

g α
1−α + (σ + r)g

= −R + (g) 1
1−αφ+ (σ + r)g
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ġ = −R + (g) 1
1−αφ+ (σ + r)g,

where

φ = R
(
αA
R

) 1
1−α

− A
(
αA
R

) α
1−α

= (A) 1
1−α

(α
R
) α

1−α
(α− 1) < 0.

When σ + r = 0, ġ < 0 for sure.
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• Note: Solution does not depend on initial conditions.
• Case α = 1

2 produces Riccati equation:

ġ = −R + g2φ+ (σ + r)g

• Solution: Let

g2φ+ (σ + r)g − R = 0
(g − r+)(g − r−) = 0

• r+ and r− are roots of equation (may be complex). Then, we
can easily solve.
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• Suppose r+ ̸= r− (distinct roots)
g(t)− r+
g(t)− r−

= c eφ(r+−r−)t

• Transversality ⇒ g(T) = 0. Therefore,
r+
r−

= ceφ(r+−r−)T

c =

(
r+
r−

)
e−φ(r+−r−)T

• For r+ = r− = r0 ̸= 0 because (σ + r) > 0, R > 0;

g(t)− r0 =
1

c − φt

g(t) = r0 +
1

c − φt

g(T) = 0 ⇒ c = φT − y 1
r0
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• Complex case is of economic interest.

r± =
−(σ + r)±

√
(σ + r)2 + 4φR

2φ

for α = 1
2 , φ = −(A)2R−1 1

4 .
• Therefore:

(σ + r)2 − 4R
4 (A2)R−1

(σ + r)2 − A2, but < 0 from transversality

r± =
−(σ + r)±

√
(σ + r)2 − A2

−1
2A2R−1

=
+2R(σ + r)

A2 ∓
2R
√

(σ + r)2 − A2

A2 .
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• Now solution is very simple.

(g(t)− r+) =
(

r+
r−

)
eφ(r+−r−)(t−T)(g(t)− r−)

g(t)
[
1 − r+

r−
eφ(r+−r−)(t−T)

]
= r+(1 − eφ(r+−r−)(t−T))

g(t) = r+
1 − eφ(r+−r−)(t−T)

1 − r+
r− eφ(r+−r−)(t−T)

.
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• Now,

r+ = a + bi, r+ − r− = (2bi), r− = a − bi

• Set θ = φ(2b)(t − T) (in radians)

g(t) = r+
(1 − eiθ)

1 − r+
r− eiθ

= (r+r−)
(1 − eiθ)

(r− − r+eiθ)

• r+r− = a2 + b2. Now multiply by e−iθ/2,

g(t) = (r+r−)
(e−iθ/2 − eiθ/2)

(r−e−iθ/2 − r+eiθ/2)
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Using cos(−x) = cos x sin(−x) = − sin x,

eix = cos x + i sin x

g(t) = (r+r−)
[
cos(θ/2)− i sin θ/2 − cos(θ/2)− i sin θ/2

−2ai sin θ/2 − 2bi cos θ/2

]
= (r+r−)

[
sin θ/2

a sin θ/2 + b cos θ/2

]

=
( r+r−

a
) 1

1 +
b
a cot θ/2


Therefore,

g(t) = (a2 + b2)

a

 1

1 +
b
a cotφb(t − T)
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a =
2(σ + r)R

A2 b =
2R
A2 (A

2 − (σ + r)2)1/2

φb = −1
2(A

2 − (σ2 + r2))1/2

b
a =

2R(A2 − (σ2 + r2))1/2/A2

2(σ + r)R
A2

=
[A2 − (σ2 + r2)]1/2

σ + r

When σ + r = 0,

r± = ±
√

4φR
2φ = ±

√
R
φ

= ±
√

4R
−A2R−1 =

(
2R
A

)
i

φb =

[
−(A)2 R−1

4

] [
2R
A2 A

]
= −A

2
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g(t) =

(
4R2

A2

)
tan
2R
A2 A

(θ/2)

=

(
2R
A

)
tan

[
θ

2

]
=

(
2R
A

)
tan

(
−A

2 (t − T)
)

=

(
2R
A

)
tan

(
A
2 (T − t)

)
• From definition of θ, we obtain

g(t) =
(

2R
A

)
tan

(
A
2 (T − t)

)
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Modified Sheshinski Specification (More Interesting)

Ḣ = AI − σ

H = e−rtR(1 − I)H + µ(t)(AI − σH)

• I = 1 if µA ≥ e−rtR
• I = 0 otherwise
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g(t) = µ(t)ert

ġ = −R(1 − I) + g(σ + r)

g(t) = R
∫ T

t
e+(σ+r)(t−τ)(1 − I) dτ

g ≥ R
AH, I = 1

• When I = 1, ġ = g(σ + r) > 0 and g↑
• Intuition: as t ↑ agent is getting nearer the payoff period.
• While the agent invests he/she gets no return.

Heckman Sheshinski



Basic Sheshinski Specification Interior Sheshinski Specification Interior Modified Sheshinski Specification

• First take case when σ = 0

ġ = −R(1 − I) + rg

• For t = 0, if g(t) ≥ R
AH(t); I = 1; Ḣ = A,

H(t) = At + H(0)

• Let t̂ be the age of the first interior solution.
• At t̂, g(̂t) = R

AH(̂t),

g(0)er̂t =
R
A [At̂ + H(0)]
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• Observe that
g(t) ≤ R

∫ T

t
e+(σ+r)(t−τ) dτ

(i.e. set I(τ) = 0).
• Therefore, g(t) ≤ R

σ+r
(
1 − e+(σ+r)(t−τ)

)
≤ R

σ+r
• Therefore, ġ < 0 (after the period of investment)
• Thus at most one period of specialization and it comes at the

beginning of life if at all. Will not arise if g(0) < R
A , i.e. A < r

precludes this (return by investment < return by saving in
lending market.

• This is a model of schooling.
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• Therefore, t∗ is solution from

R
r
(
1 − er(t∗−T)

)
=

R
A(At∗ + H0)

(
1 − er(t∗−T)

)
=

r
A(At∗ + H0)

• The higher H0, the lower t∗.
• Need r < A for feasibility.
• Human capital stock at end of school:

H = At∗ + H0

Y(t∗) = R(At∗ + H0)
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• Take case where σ > 0. Now, by the previous logic, g ≤ R
σ+r .

• Therefore, ġ < 0.
• Now investment pattern may be more complex.
• Suppose g(0) ≥ R

AH(0). Then I(0) = 1.

ġ
g = (σ + r)

Ḣ = A − σH

H(t) = A
∫ t

0
e−σ(t−τ) dτ + H(0)e−σt

=
A
σ
(1 − e−σt) + H(0)e−σt

=
A
σ
+

[
H(0)− A

σ

]
e−σt
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•

g(0)e(σ+r)̂t =
R
A

(
A
σ
(1 − e−σt̂) + H(0)e−σt̂

)
= R

(
H(0)

A − 1
σ

)
e−σt̂ +

R
σ

• To ensure Ḣ > 0 at t = 0, need
A − σH(0) > 0 ⇒ A > σH(0) ⇒ 1

σ
> H(0)

A .
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For intersection to occur, we have:

g(t)
H(t)

g(0)

RH(t)
   A

g

RH
 ARH

 A

t^

g

Heckman Sheshinski



Basic Sheshinski Specification Interior Sheshinski Specification Interior Modified Sheshinski Specification

•

g(0) ≥ R
AH(0)

H(t) = A
σ
+

[
H(0)− A

σ

]
e−σt

• t1 is the first point where g(t1) =
R
AH(t1)

• ġ(t) = (σ + r)g so g(t1) = e(σ+r)t1g(0).
• Then,

R
σ
+

R
A

[
H(0)− A

σ

]
e−σt1 = g(0)e(σ+r)t1 .
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• Then at t1, I = 0,

ġ = −R + (σ + r)g
H(t) = H(t1)e−σ(t−t1) t1 < t < t2

g(t) =
R

σ + r
(
1 − e+(σ+r)(t−t2)

)
+ g(t2)e(σ+r)(t−t2)

• At t2, we have that

RH(t2)

A = RH(t1)e−σ(t2−t1)

= g(t2) =

∫ T

t2

e−(σ+r)(t2−τ)(1 − I(τ)) dτ

• Then person bangs in at I = 1 and, possibly a sequence of
intervals of specialization.

• t2 < t < t3; etc.
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One possible trajectory

g(t)
H(t)

g(0)

g

g

H

H

H

g

First Episode

Second
Episode

RH(t)
   A

t t1 2
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• We could also have one shot indefinitely (but last shots are
“short”).

• Observe:

g(t) = R
∫ t2

t1

e(σ+r)(t−τ) dτ + · · ·+
∫ t4

t3

e(σ+r)(t−τ) dτ + · · ·
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• For t < t1, t ↑, g ↑ can happen.
• For this to occur:

• In a neighborhood of t1:

ġ(t1) <
RḢ(t)

A

∣∣∣∣∣
t=t1

(demand price less than opportunity cost).
• The curves must cross. Otherwise, we get failure of

transversality.
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• Whether or not such investment activity occurs depends on
initial H(0) and other parameters.

• Thus, at time t1, for this to arise, we need:

ġ
∣∣∣∣
t=t1

<
RḢ(t)

A

∣∣∣∣∣
t=t1

.

• g is continuous at t1 (but not necessarily differentiable and, in
our case, definitely not).

Heckman Sheshinski



Basic Sheshinski Specification Interior Sheshinski Specification Interior Modified Sheshinski Specification

• At t1, g(t1) =
R
AH(t1)

ġ = −R + (σ + r)g (from right)

R
AḢ(t1) = −σ

R
AH(t1) = −σg(t1)

• Therefore, we need:

−R + (σ + r)g(t1) < −σg(t1) =
RḢ(t)

A

∣∣∣∣∣
t=t1

• However, this is not guaranteed by R
σ+r > g. We need a tighter

bound.
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• For specialization to occur at 0, we need:

g(0) ≥ R
AH(0),

but we need the slope of RH(t)
A

∣∣∣
t=0

to exceed ġ
∣∣∣∣
t=0

(otherwise,

g curve and R
AH(t) curves do not intersect).

• For the required condition we need (using expression for RH(t)
in a neighborhood of t = 0):

R
(

1 − σH(0)
A

)
> g(0)(σ + r)
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• Sufficient condition:(
1 − σH(0)

A

)
≥ 1 − e(σ+r)T

(but this is way too strong)
• Necessary condition:

σH(0)
A < 1

(otherwise, never pays to specialize)
• Therefore, if H(0) is too high, agent never specializes.
• At g(0), we must have:

R
σ + r

(
1 − σH(0)

A

)
> g(0) > RH(0)

A .

If H(0) big enough, cannot happen.
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Observe that:

g(t) = R
∫ T

t
e−(σ+r)(t−τ)(1 − I(τ)) dτ

Recall that I switches between 0 and 1. Therefore:
• For 0 < t < t1 (person invests),

g(t) = R
σ+re

(σ+r)t
∑
k≥1

(−1)k+1e−(σ+r)tk

• For t1 < t < t2 (person does not invest),

g(t) = R
σ+r
[
1 − e(σ+r)(t−t2)

]
+ R

σ+re
(σ+r)t

∑
k≥3

(−1)k+1e−(σ+r)tk

• For t2 < t < t3 (etc.),

g(t) = R
σ+re

(σ+r)t
∑
k≥3

(−1)k+1e−(σ+r)tk
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• Cannot prove that g(t3) < g(t1) for all policies.
• Person may build up stock of human capital over the lifetime.
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