Ben-Porath Notes

James Heckman University of Chicago

Econ 350, Spring 2022

Perfect Capital Markets

- Perfect Capital Markets
- No Nonmarket Benefits of Human Capital

- Perfect Capital Markets
- No Nonmarket Benefits of Human Capital
- Fixed Labor Supply

- Perfect Capital Markets
- No Nonmarket Benefits of Human Capital
- Fixed Labor Supply
- H is human capital

- Perfect Capital Markets
- No Nonmarket Benefits of Human Capital
- Fixed Labor Supply
- H is human capital
- $I \in [0,1]$ is investment time

- Perfect Capital Markets
- No Nonmarket Benefits of Human Capital
- Fixed Labor Supply
- H is human capital
- $I \in [0,1]$ is investment time
- D is goods input

- Perfect Capital Markets
- No Nonmarket Benefits of Human Capital
- Fixed Labor Supply
- H is human capital
- $I \in [0, 1]$ is investment time
- D is goods input
- F is a strictly concave function in two normal inputs

•
$$\dot{H}(t) = F(I(t), H(t), D(t)) - \sigma H(t)$$

•
$$\dot{H}(t) = F(I(t), H(t), D(t)) - \sigma H(t)$$

•
$$F(I(t), H(t), D(t)) = F(I(t)H(t), D(t))$$
 (neutrality)

- $\dot{H}(t) = F(I(t), H(t), D(t)) \sigma H(t)$
- F(I(t), H(t), D(t)) = F(I(t)H(t), D(t)) (neutrality)
- R is rental rate of human capital.

Human Capital

- $\dot{H}(t) = F(I(t), H(t), D(t)) \sigma H(t)$
- F(I(t), H(t), D(t)) = F(I(t)H(t), D(t)) (neutrality)
- R is rental rate of human capital.
- Potential earnings: Y(t) = RH(t).

Human Capital

- $\dot{H}(t) = F(I(t), H(t), D(t)) \sigma H(t)$
- F(I(t), H(t), D(t)) = F(I(t)H(t), D(t)) (neutrality)
- R is rental rate of human capital.
- Potential earnings: Y(t) = RH(t).
- Observed earnings:

$$E(t) = RH(t) - \underbrace{RI(t)H(t)}_{\text{earnings}} - \underbrace{P_DD(t)}_{\text{direct goods}}$$
foregone costs

$$\int_{0}^{T} e^{-rt} E(t) dt \qquad \text{given } H(0) = H_0$$

• Consumer problem (max with respect to I(t), D(t)):

$$\int_{0}^{T} e^{-rt} E(t) dt \qquad \text{given } H(0) = H_0$$

• Formal solution (Hamiltonian): Flow of value from the optimal lifetime program

$$\underbrace{e^{-rt}[RH(t)-RI(t)H(t)-P_DD(t)]}_{\text{current flow}} + \underbrace{\mu(t)[\dot{H}]}_{\text{shadow price}}$$

• FOC Conditions (for interior solution):

$$I(t)$$
: $Re^{-rt}H(t) = \mu(t)F_1H(t)$

$$D(t): e^{-rt}P_D = \mu(t)F_2$$

$$\dot{\mu}(t) = -e^{-rt}[R - RI(t)] - \mu(t)F_1I(t) + \mu(t)\sigma$$

Use FOC for investment to obtain:

$$\dot{\mu}(t) = -e^{-rt}R + \mu(t)\sigma.$$

Define $g(t) = \mu(t)e^{+rt}$

$$\dot{g}(t) = \dot{\mu}e^{+rt} + r\mu(t)e^{+rt}$$

$$\dot{g}(t) = (\sigma + r)g(t) - R.$$

• Transversality: $\lim_{t\to T} \mu(t)H(t) = 0$

$$\therefore \mu(T) = 0 \Longrightarrow g(T) = 0$$

$$g(t) = \frac{R\left(1 - e^{(\sigma+r)(t-T)}\right)}{\sigma + r}.$$

$$\therefore \mu(T) = 0 \Longrightarrow g(T) = 0$$

$$g(t) = \frac{R\left(1 - e^{(\sigma+r)(t-T)}\right)}{\sigma + r}.$$

 Note that g(t) is a discount factor that adjusts for exponential depreciation of gross investment. • Transversality: $\lim_{t\to T} \mu(t)H(t) = 0$

$$\therefore \mu(T) = 0 \Longrightarrow g(T) = 0$$

$$g(t) = \frac{R\left(1 - e^{(\sigma+r)(t-T)}\right)}{\sigma + r}.$$

- Note that g(t) is a discount factor that adjusts for exponential depreciation of gross investment.
- $\dot{H}(t) + \sigma H(t) = F(IH(t), D(t)).$

ullet 0 < I(t) < 1, we can set up the problem in a "myopic" way.

- 0 < I(t) < 1, we can set up the problem in a "myopic" way.
- Gross "output" is F(I(t)H(t), D(t)).

- 0 < I(t) < 1, we can set up the problem in a "myopic" way.
- Gross "output" is F(I(t)H(t), D(t)).
- Returns on gross output: g(t).

- 0 < I(t) < 1, we can set up the problem in a "myopic" way.
- Gross "output" is F(I(t)H(t), D(t)).
- Returns on gross output: g(t).
- Costs: $P_DD(t) + RI(t)H(t)$.

- 0 < I(t) < 1, we can set up the problem in a "myopic" way.
- Gross "output" is F(I(t)H(t), D(t)).
- Returns on gross output: g(t).
- Costs: $P_DD(t) + RI(t)H(t)$.
- Note: these are costs and returns as of period t.

• The agent's problem is:

$$\max_{I(t), D(t)} [g(t)F(I(t)H(t), D(t)) - P_DD(t) - RI(t)H(t) = 0]$$

FOC:

- $g(t)F_1(I(t)H(t), D(t))H(t) = RH(t)$
- $g(t)F_2(I(t)H(t), D(t)) P_D = 0.$

Demand functions are inverted first order conditions:

From normality of inputs, since $\dot{g}(t) < 0$, we have:

•
$$I\dot{H}(t) < 0$$
, $\dot{D}(t) < 0$.

• The agent's problem is:

$$\max_{I(t),D(t)} [g(t)F(I(t)H(t),D(t)) - P_DD(t) - RI(t)H(t) = 0]$$

FOC:

•
$$g(t)F_1(I(t)H(t), D(t))H(t) = RH(t)$$

•
$$g(t)F_2(I(t)H(t), D(t)) - P_D = 0.$$

Demand functions are inverted first order conditions:

•
$$I(t)H(t) = I(t)H\left(\frac{R}{g(t)}, \frac{P_D}{g(t)}\right)$$

From normality of inputs, since $\dot{g}(t) < 0$, we have:

•
$$I\dot{H}(t) < 0$$
, $\dot{D}(t) < 0$.

• The agent's problem is:

$$\max_{I(t),D(t)} [g(t)F(I(t)H(t),D(t)) - P_DD(t) - RI(t)H(t) = 0]$$

FOC:

•
$$g(t)F_1(I(t)H(t), D(t))H(t) = RH(t)$$

•
$$g(t)F_2(I(t)H(t), D(t)) - P_D = 0.$$

Demand functions are inverted first order conditions:

•
$$I(t)H(t) = I(t)H\left(\frac{R}{g(t)}, \frac{P_D}{g(t)}\right)$$

•
$$D(t) = D\left(\frac{R}{g(t)}, \frac{P_D}{g(t)}\right)$$

From normality of inputs, since $\dot{g}(t) < 0$, we have:

•
$$I\dot{H}(t) < 0$$
, $\dot{D}(t) < 0$.

• Then, if $\sigma = 0$, $\dot{E} = RF(I(t)H(t), D(t)) - RI\dot{H}(t) - P_D\dot{D}(t) > 0$.

- Then, if $\sigma = 0$, $\dot{E} = RF(I(t)H(t), D(t)) RI\dot{H}(t) P_D\dot{D}(t) > 0$.
- Otherwise earnings can rise and then fall over the life cycle. $(\sigma \neq 0)$.

- Then, if $\sigma = 0$, $\dot{E} = RF(I(t)H(t), D(t)) RI\dot{H}(t) P_D\dot{D}(t) > 0$.
- Otherwise earnings can rise and then fall over the life cycle. $(\sigma \neq 0)$.
- What about $\ddot{E}(t)$? Ben Porath chose a Cobb-Douglas form for F(I(t)H(t),D(t)) and proves $\ddot{E}(t)<0$.

- Then, if $\sigma = 0$, $\dot{E} = RF(I(t)H(t), D(t)) RI\dot{H}(t) P_D\dot{D}(t) > 0$.
- Otherwise earnings can rise and then fall over the life cycle. $(\sigma \neq 0)$.
- What about $\ddot{E}(t)$? Ben Porath chose a Cobb-Douglas form for F(I(t)H(t),D(t)) and proves $\ddot{E}(t)<0$.
- ... Earnings increase at a decreasing rate over the life cycle.

- Then, if $\sigma = 0$, $\dot{E} = RF(I(t)H(t), D(t)) R\dot{I}H(t) P_D\dot{D}(t) > 0$.
- Otherwise earnings can rise and then fall over the life cycle. $(\sigma \neq 0)$.

Finite Horizon

- What about E(t)? Ben Porath chose a Cobb-Douglas form for F(I(t)H(t), D(t)) and proves E(t) < 0.
- Earnings increase at a decreasing rate over the life cycle.
- To simplify derivations, let $F_2 \equiv 0$ (i.e. ignore D(t)).

• First order condition for investment is:

$$g(t)F'(IH) = R.$$

$$\dot{g} = (\sigma + r)g(t) - R$$

$$g(t)F'(IH) = R.$$

Human Capital

$$\dot{g} = (\sigma + r)g(t) - R$$

• Differentiate the first order condition for investment.

• First order condition for investment is:

$$g(t)F(IH) = R.$$

 $\dot{g} = (\sigma + r)g(t) - R$

- Differentiate the first order condition for investment.
- Set R = 1 (for convenience)

(Note that
$$\frac{\dot{g}}{g} = \sigma + r - \frac{1}{g}$$
)

$$\dot{g}(t)F(I(t)H(t)) + g(t)F'(I(t)H(t))I(t)\dot{H}(t) = 0.$$

Thus
$$IH(t) = -\left(\frac{\dot{g}(t)}{g(t)}\right)\left[\frac{F'}{F'}\right].$$

• To simplify notation, drop "t" argument for I(t), H(t), g(t) unless it clarifies matters to keep it explicit

Mincer

- To simplify notation, drop "t" argument for I(t), H(t), g(t)unless it clarifies matters to keep it explicit
- Then $\ddot{H} = -\left|\frac{\ddot{g}}{g} \left(\frac{\dot{g}}{g}\right)^2\right| \frac{F'}{F''} \frac{\dot{g}}{g}\left[\dot{H} \frac{FF'''}{(F')^2}\dot{H}\right].$

- To simplify notation, drop "t" argument for I(t), H(t), g(t) unless it clarifies matters to keep it explicit
- Then $\ddot{l}H = -\left[\frac{\ddot{g}}{g} \left(\frac{\dot{g}}{g}\right)^2\right] \frac{F'}{F'} \frac{\dot{g}}{g} \left[\dot{l}H \frac{FF'''}{(F')^2}\dot{l}H\right].$
- Note that $\ddot{g} = (\sigma + r)\dot{g}$.

• To simplify notation, drop "t" argument for I(t), H(t), g(t) unless it clarifies matters to keep it explicit

- Then $\ddot{l}H = -\left[\frac{\ddot{g}}{g} \left(\frac{\dot{g}}{g}\right)^2\right] \frac{F'}{F'} \frac{\dot{g}}{g} \left[\dot{l}H \frac{FF'''}{(F')^2}\dot{l}H\right].$
- Note that $\ddot{g} = (\sigma + r)\dot{g}$.
- $\therefore \frac{\ddot{g}}{\dot{g}} = (\sigma + r)$ and $\frac{\ddot{g}}{g} = (\sigma + r)\frac{\dot{g}}{g} \ (\dot{g} \neq 0)$.

Mincer

• To simplify notation, drop "t" argument for I(t), H(t), g(t)unless it clarifies matters to keep it explicit

• Then
$$\ddot{l}\dot{H} = -\left[\frac{\ddot{g}}{g} - \left(\frac{\dot{g}}{g}\right)^2\right] \frac{F'}{F'} - \frac{\dot{g}}{g}\left[\dot{l}\dot{H} - \frac{FF'''}{(F')^2}\dot{l}\dot{H}\right].$$

• Note that $\ddot{g} = (\sigma + r)\dot{g}$.

•
$$\therefore \frac{\ddot{g}}{\dot{g}} = (\sigma + r)$$
 and $\frac{\ddot{g}}{g} = (\sigma + r)\frac{\dot{g}}{g} \ (\dot{g} \neq 0)$.

• Thus, substituting for IH we have

$$\ddot{l}\dot{H} = -\left[\frac{\ddot{g}}{g} - \left(\frac{\dot{g}}{g}\right)^2\right]\frac{F}{F'} + \left(\frac{\dot{g}}{g}\right)^2\left[1 - \frac{FF'''}{(F')^2}\right]\left[\frac{F}{F'}\right].$$

• Earnings growth is given by (recall R = 1)

- ullet Earnings growth is given by (recall R=1)
- $\dot{E} = F(IH) I\dot{H} \sigma H$

- Earnings growth is given by (recall R = 1)
- $\dot{E} = F(IH) I\dot{H} \sigma H$
- $\ddot{E} = F'(IH)\dot{I}H \ddot{I}H \sigma \dot{H}$

Appendix

- Earnings growth is given by (recall R = 1)
- $\dot{E} = F(IH) I\dot{H} \sigma H$
- $\ddot{E} = F(IH)\dot{IH} \ddot{IH} \sigma \dot{H}$
- Since $F = \frac{1}{r}$ we have that $\ddot{E} = \overset{g}{-} \ddot{I} \dot{H} - \ddot{I} \dot{H} - \sigma \dot{H}$

$$\ddot{E} = \frac{1}{g}\ddot{I}\dot{H} - \ddot{I}\dot{H} - \sigma\dot{H}$$

- Earnings growth is given by (recall R = 1)
- $\dot{E} = F(IH) I\dot{H} \sigma H$
- $\ddot{E} = F(IH)I\dot{H} I\ddot{H} \sigma\dot{H}$
- Since $F = \frac{1}{g}$ we have that $\vdots \quad 1 \cdot \vdots \quad \vdots \quad \vdots$

$$\ddot{E} = \frac{1}{g}\dot{I}\dot{H} - \ddot{I}\dot{H} - \sigma\dot{H}$$

• Set $\sigma = 0$ for the moment and use the expression for IH given above (including IH).

Thus

•
$$\ddot{E} = I\dot{H}\left[\frac{1}{g} + \frac{\dot{g}}{g}\left(1 - \frac{FF'''}{(F')^2}\right)\right] + \left(\frac{\ddot{g}}{g} - \left(\frac{\dot{g}}{g}\right)^2\right)\frac{F'}{F''}$$
.

Thus

$$\bullet \ \ddot{E} = I\dot{H} \left[\frac{1}{g} + \frac{\dot{g}}{g} \left(1 - \frac{FF''}{(F')^2} \right) \right] + \left(\frac{\ddot{g}}{g} - \left(\frac{\dot{g}}{g} \right)^2 \right) \frac{F}{F'}.$$

• Use
$$I\dot{H} = -\frac{\dot{g}}{g}\frac{F'}{F'}$$
 and $\frac{\ddot{g}}{g} = (\sigma + r)\frac{\dot{g}}{g}$ to conclude that

$$\begin{split} \ddot{\mathsf{E}} &= -\frac{\dot{\mathsf{g}}}{\mathsf{g}} \left[\frac{\mathsf{F}'}{\mathsf{F}''} \right] \left\{ \frac{1}{\mathsf{g}} + \frac{\dot{\mathsf{g}}}{\mathsf{g}} \left(1 - \frac{\mathsf{F}'\mathsf{F}''}{(\mathsf{F}'')^2} \right) \right\} \\ &+ \left((\sigma + \mathsf{r}) \frac{\dot{\mathsf{g}}}{\mathsf{g}} - \left(\frac{\dot{\mathsf{g}}}{\mathsf{g}} \right)^2 \right) \frac{\mathsf{F}'}{\mathsf{F}''} \\ &= -\frac{\dot{\mathsf{g}}}{\mathsf{g}} \left(\frac{\mathsf{F}'}{\mathsf{F}''} \right) \left\{ \begin{array}{l} \frac{1}{\mathsf{g}} + \frac{\dot{\mathsf{g}}}{\mathsf{g}} \left(1 - \frac{\mathsf{F}'\mathsf{F}'''}{(\mathsf{F}'')^2} \right) \\ -\frac{\mathsf{g}(\sigma + \mathsf{r}) - \dot{\mathsf{g}}}{\mathsf{g}} \end{array} \right\} \end{split}$$

but $\dot{g} = (\sigma + r)g - 1$ $(\sigma + r)g - \dot{g} = 1$.

Thus

$$\ddot{E} = \left(-\frac{\dot{g}}{g}\frac{F}{F'}\right)\left(\frac{\dot{g}}{g}\right)\left(1 - \frac{FF''}{(F')^2}\right)$$

$$= -\left(\frac{\dot{g}}{g}\right)^2\frac{F'}{F''}\cdot\left(1 - \frac{F'F'''}{(F')^2}\right).$$
(by concavity)

Term depends on the sign of F'''

• Define
$$\eta = 1 - \frac{F'F''}{(F'')^2}$$
.

• Define
$$\eta = 1 - \frac{FF''}{(F')^2}$$
.

• Necessary condition for concavity of earnings profiles with age is F'' > 0:

- Define $\eta = 1 \frac{FF''}{(F')^2}$.
- Necessary condition for concavity of earnings profiles with age is F" > 0;
- Stronger condition is $-\eta > 0$.

• Note: if
$$F(x) = \frac{Ax^{\alpha}}{\alpha}$$
, $-\infty < \alpha < 1$, $A > 0$, $F(x) = Ax^{\alpha-1}$

• Note: if
$$F(x) = \frac{Ax^{\alpha}}{\alpha}$$
, $-\infty < \alpha < 1$, $A > 0$, $F(x) = Ax^{\alpha-1}$

•
$$F'(x) = (\alpha - 1)Ax^{\alpha - 2}$$

• Note: if
$$F(x) = \frac{Ax^{\alpha}}{\alpha}$$
, $-\infty < \alpha < 1$, $A > 0$, $F(x) = Ax^{\alpha-1}$

•
$$F'(x) = (\alpha - 1)Ax^{\alpha - 2}$$

•
$$F''(x) = (\alpha - 1)(\alpha - 2)Ax^{\alpha - 3}$$

• Note: if
$$F(x) = \frac{Ax^{\alpha}}{\alpha}$$
, $-\infty < \alpha < 1$, $A > 0$, $F(x) = Ax^{\alpha-1}$

•
$$F'(x) = (\alpha - 1)Ax^{\alpha - 2}$$

•
$$F''(x) = (\alpha - 1)(\alpha - 2)Ax^{\alpha - 3}$$

• $\eta = \frac{\alpha - 2}{\alpha - 1} < 0$. Thus \tilde{E} is negative (concavity).

- Note: if $F(x) = \frac{Ax^{\alpha}}{\alpha}$, $-\infty < \alpha < 1$, A > 0, $F(x) = Ax^{\alpha-1}$
- $F'(x) = (\alpha 1)Ax^{\alpha 2}$
- $F''(x) = (\alpha 1)(\alpha 2)Ax^{\alpha 3}$
- $\eta = \frac{\alpha 2}{\alpha 1} < 0$. Thus \ddot{E} is negative (concavity).
- If $F(x) = a be^{-cx}$, for b, c > 0, $\eta = 0$ and \ddot{E} negative.

- Note: if $F(x) = \frac{Ax^{\alpha}}{\alpha}$, $-\infty < \alpha < 1$, A > 0, $F'(x) = Ax^{\alpha-1}$
- $F'(x) = (\alpha 1)Ax^{\alpha 2}$
- $F''(x) = (\alpha 1)(\alpha 2)Ax^{\alpha 3}$
- $\eta = \frac{\alpha 2}{\alpha 1} < 0$. Thus \tilde{E} is negative (concavity).
- If $F(x) = a be^{-cx}$, for b, c > 0, $\eta = 0$ and \tilde{E} negative.
- Obviously fails with quadratic technologies.

Period of Specialization

- Period of specialization is associated with full time investment.
- Assume $F_2 \equiv 0$ (ignore D).
- Suppose that at time t

$$F'(H_0)g(t) > R$$
.

- Then it pays to specialize.
- How to solve? Initially assume $\sigma = 0$.
- Note that marginal returns to investment decline with capital stock growth $(F'\downarrow)$ and with time $\dot{g}<0$.

- Then there is at *most* one period of specialization: $[0, t^*]$.
- This is "schooling" in the Ben-Porath model.
- t* is characterized by

$$F'(H(t^*))g(t^*) = R$$

 $\mathit{I}(t^*) = 1$ (at the endpoint of the interval)

$$H(t^*)=\int_0^{t^*}F(H(au))\,d au+H_0.$$

- Note that anything that lowers g(t) (and not R) lowers t^* .
- Thus the higher r, the lower t*.
- Note, also, that the higher H_0 , the lower t^* , since it takes less time to acquire $H(t^*)$.

- Now to get $H(\tau)$, notice that H = F(H) in the period of specialization.
- Solve jointly to get t*.

- Now, if $\sigma > 0$, we get the same condition for specialization but could get cycling in the model. (Initially, high σ knocks off capital makes specialization in investment productive again.)
- Let $\sigma = 0$, thus no cycling possible in the model.

Cobb-Douglas example:

$$\dot{H} = A(IH)^{\alpha} - \sigma H$$
, $0 < \alpha < 1$, $A > 0$

A period of specialization arises if

$$g(t_0)\alpha A(H_0)^{\alpha-1} > R.$$

Then if

$$(H_0)^{\alpha-1} > \left[\frac{R}{g(t_0)\alpha A}\right]$$

or $H_0 < \left[\frac{R}{g(t_0)\alpha A}\right]^{\frac{1}{\alpha-1}}$,

the agent will specialize.

If $T \to \infty$, the condition simplifies to

$$H_0 < \left(\frac{r}{\alpha A}\right)^{\frac{1}{\alpha-1}} = \left(\frac{\alpha A}{r}\right)^{\frac{1}{1-\alpha}}$$

since $g(t) = \frac{R}{r}$

If the condition required for specialization is satisfied, we obtain:

$$\dot{H} = A(IH)^{\alpha}$$

$$\dot{H} = A$$

$$H(t)^{1-\alpha} = (1-\alpha)At + (1-\alpha)K_0$$
 $H(t) = [(1-\alpha)At + (1-\alpha)K_0]^{\frac{1}{1-\alpha}}$
 $[K_0(1-\alpha)]^{\frac{1}{1-\alpha}} = H_0$
 $K_0(1-\alpha) = H_0^{1-\alpha}$
 $K_0 = \frac{H_0^{1-\alpha}}{(1-\alpha)}$

Rate of Return

$$H(t) = [A(1-\alpha)t + K_0(1-\alpha)]^{\frac{1}{1-\alpha}}$$

= $[A(1-\alpha)t + H_0^{1-\alpha}]^{\frac{1}{1-\alpha}}$.

At the end of the period of specialization we have that

$$\alpha g(t^*)A(H(t^*))^{\alpha-1}=R.$$

Let $T \to \infty$, then $g(t^*) = R/r$ and t^* is defined by solving

$$\alpha \frac{R}{r} A \left(A(1-\alpha)t^* + H_0^{1-\alpha} \right)^{-1} = R.$$

Thus,

$$\left(\frac{\alpha A}{r}\right) = A(1-\alpha)t^* + H_0^{1-\alpha}$$
Schooling:
$$t^* = -\frac{H_0^{1-\alpha}}{A(1-\alpha)} + \left(\frac{\alpha}{1-\alpha}\right)\frac{1}{r}$$

Higher A, higher t^* "ability to learn." Higher H_0 , lower t^* "ability to earn." Define post school work experience as $\tau = t - t^*$. Then

$$E(\tau) = R \int_0^{\tau} \dot{H}(\ell + t^*) d\ell + RH(t^*) - RIH(\tau + t^*).$$

At school leaving age and beyond we have

$$\alpha g(t) A(IH(t))^{\alpha-1} = R.$$

Thus, we have

$$[IH(t)]^{\alpha-1} = \frac{R}{\alpha g(t)A}$$

$$IH(t) = \left[\frac{\alpha g(t)A}{R}\right]^{\frac{1}{1-\alpha}}.$$

Thus,

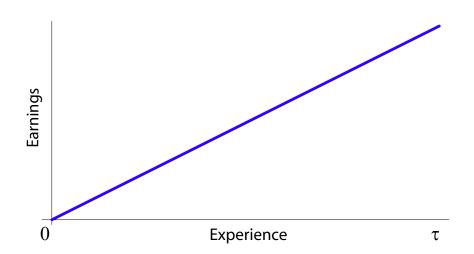
$$\dot{H} = A \left[\frac{\alpha g(t)A}{R} \right]^{\frac{\alpha}{1-\alpha}}.$$

Earnings are given by

$$E(\tau) = R \int_{0}^{\tau} A \left[\frac{\alpha g(\ell + t^{*}) A}{R} \right]^{\frac{\alpha}{1 - \alpha}} d\ell + RH(t^{*})$$
$$-R \left[\frac{\alpha g(\tau + t^{*}) A}{r} \right]^{\frac{1}{1 - \alpha}}.$$

Let
$$T \to \infty$$
, then $g(t) = \frac{R}{r}$

$$E(\tau) = RA \left[\frac{\alpha A}{r}\right]^{\frac{\alpha}{1-\alpha}} \tau + R \left[\frac{\alpha A}{r}\right]^{\frac{1}{1-\alpha}} - R \left[\frac{\alpha A}{r}\right]^{\frac{1}{1-\alpha}}$$
$$= RA \left[\frac{\alpha A}{r}\right]^{\frac{\alpha}{1-\alpha}} \tau.$$



Human Capital Dynamics

Human Capital

$$t_0 < t < T,$$
 $T \to \infty,$ $t^* = \left(\frac{\alpha}{1-\alpha}\right) \frac{1}{r} - \frac{H_0^{1-\alpha}}{A(1-\alpha)}$

$$t = t_0 \implies H(t) = H_0$$

$$t_{0} < t < t^{*} \Rightarrow H(t) = (A(1-\alpha)t + H_{0}^{1-\alpha})^{\frac{1}{1-\alpha}}$$

$$t = t^{*} \Rightarrow H(t) = \left(\frac{\alpha A}{r}\right)^{\frac{1}{1-\alpha}}$$

$$t^{*} < t \Rightarrow H(t) = \left(\frac{\alpha A}{r}\right)^{\frac{\alpha}{1-\alpha}} (t - t^{*}) + H(t^{*})$$

Investment Dynamics

Specialization

Human Capital

$$t_0 < t < T, \qquad T o \infty, \qquad t^* = \left(rac{lpha}{1-lpha}
ight)rac{1}{r} - rac{H_0^{1-lpha}}{A(1-lpha)}$$
 $t = t_0 \quad \Rightarrow \quad I(t) = 1 \quad ext{if} \quad F'(H_0)g(t) > R$ $t_0 < t \le t^* \quad \Rightarrow \quad I(t) = 1$ $t^* < t \quad \Rightarrow \quad I(t) = rac{\left(rac{lpha A}{r}
ight)^{rac{1}{1-lpha}}}{\left(rac{lpha A}{r}
ight)^{rac{1}{1-lpha}}}(t-t^*) + H(t^*)$ $I(t) \quad = \quad \left(\left(rac{lpha A}{r}
ight)^{-1}(t-t^*) + 1
ight)^{-1}$

Appendix

Earnings Dynamics

Human Capital

$$t_{0} < t < T, \qquad T \to \infty, \qquad t^{*} = \left(\frac{\alpha}{1-\alpha}\right) \frac{1}{r} - \frac{H_{0}^{1-\alpha}}{A(1-\alpha)}$$

$$E(t) = RH(t) \cdot (1 - I(t)), \text{ so}$$

$$t_{0} < t \le t^{*} \Rightarrow I(t) = 1 \Rightarrow E(t) = 0$$

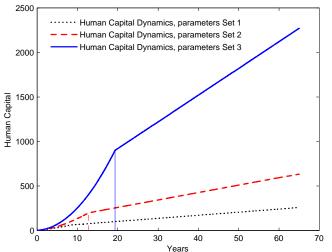
$$t^{*} < t \Rightarrow E(t) = RH(t) - RH(t)I(t)$$

$$= RH(t) - \left(\frac{\alpha A}{r}\right)^{\frac{1}{1-\alpha}}$$

$$= R(A(1-\alpha)t + H_{0}^{1-\alpha})^{\frac{1}{1-\alpha}} - \left(\frac{\alpha A}{r}\right)^{\frac{1}{1-\alpha}}$$

Human capital dynamics, varying α (A = 3, r = 0.05, $H_0 = 1$)

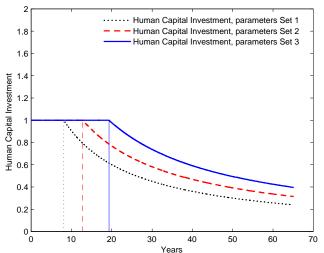
$$lpha=$$
 0.3 (dotted line), $lpha=$ 0.4 (dashed line), $lpha=$ 0.5 (solid line)



Human Capital

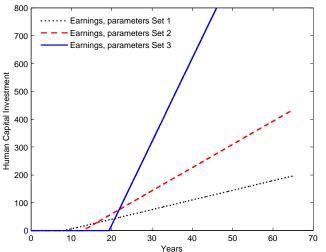
Human investment dynamics, varying α (A = 3, r = 0.05, $H_0 = 1$, R = 1)

 $\alpha =$ 0.3 (dotted line), $\alpha =$ 0.4 (dashed line), $\alpha =$ 0.5 (solid line)



Earnings dynamics, varying α (A = 3, r = 0.05, $H_0 = 1$)

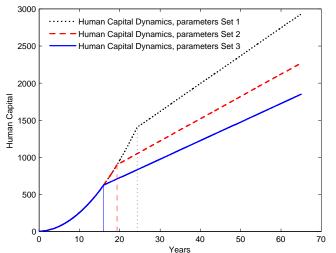
$$lpha=$$
 0.3 (dotted line), $lpha=$ 0.4 (dashed line), $lpha=$ 0.5 (solid line)



Human Capital

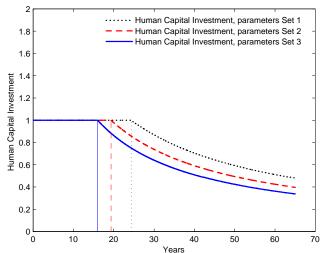
Human capital dynamics, varying r (A = 3, $H_0 = 1$, $\alpha = 0.5$)

$$r = 0.04$$
 (dotted line), $r = 0.05$ (dashed line), $r = 0.06$ (solid line)



Human investment dynamics, varying r (A = 3, $H_0 = 1$, $\alpha = 0.5$)

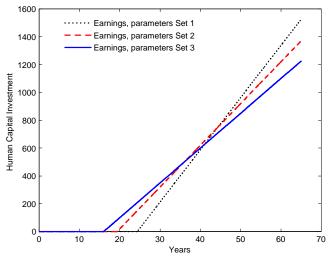
r = 0.04 (dotted line), r = 0.05 (dashed line), r = 0.06 (solid line)



Human Capital

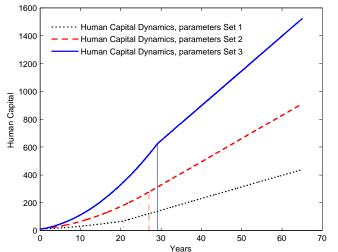
Earnings dynamics, varying r (A = 3, $H_0 = 1$, $\alpha = 0.5$, R = 1)

r = 0.04 (dotted line), r = 0.05 (dashed line), r = 0.06 (solid line)



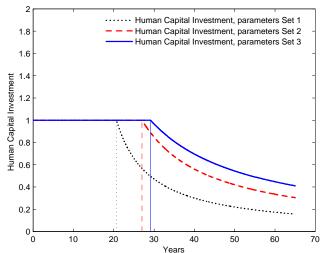
Human capital dynamics, varying A (r = 0.03, H_0 = 10, α = 0.5)

A=0.5 (dotted line), A=1.0 (dashed line), A=1.5 (solid line)



Human investment dynamics, varying A (r = 0.03, $H_0 = 10$, $\alpha = 0.5$)

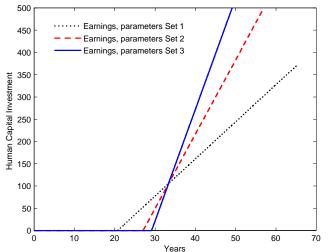
$$A = 0.5$$
 (dotted line), $A = 1.0$ (dashed line), $A = 1.5$ (solid line)



Human Capital

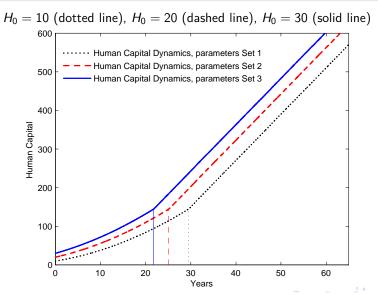
Earnings dynamics, varying A (r = 0.03, H_0 = 10, α = 0.5)

$$A=0.5$$
 (dotted line), $A=1.0$ (dashed line), $A=1.5$ (solid line)



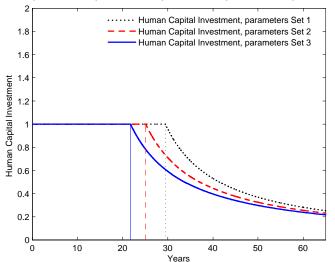
Human Capital Specialization Cobb-Douglas Finite Horizon Mincer Rate of Return Growth Appendix

Human capital dynamics, varying H_0 (A=0.6, r=0.025, $\alpha=0.5$, R=1.0)



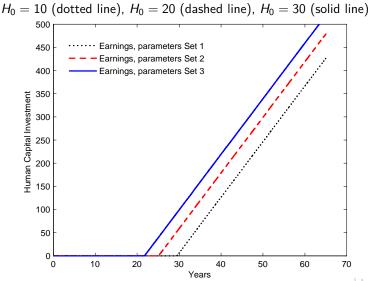
Earnings dynamics, varying H_0 (A = 0.6, r = 0.025, $\alpha = 0.5$, R = 1.0)

$$H_0 = 10$$
 (dotted line), $H_0 = 20$ (dashed line), $H_0 = 30$ (solid line)



Human Capital Specialization Cobb-Douglas Finite Horizon Mincer Rate of Return Growth Appendix

Human investment dynamics, varying H_0 (A=0.6, r=0.025, $\alpha=0.5$, R=1.0)



Finite Horizon Ben Porath Model in Level and Autogressive Form $(\alpha = 1/2)$

•
$$\dot{H} = A (IH)^{\alpha}$$

•
$$\alpha = 1/2$$
 (Haley, 1976; Rosen, 1976)

$$\sigma = 0$$

Human Capital

 \bullet R = rental rate

$$\dot{E}(\tau) = \frac{A^2}{2}g(\tau + t^*) - 2R\left[\frac{A}{2}\frac{g(\tau + t^*)}{R}\right]\left[\frac{A}{2R}\dot{g}(\tau + t^*)\right]$$

$$\dot{g} = rg - R$$

Thus,

$$\dot{E}(\tau) = \left[\frac{A^2}{2R}\right] g[2R - rg]$$
$$\ddot{E}(\tau) = \frac{-A^2}{R} (\dot{g})^2.$$

• Using $\dot{g} = rg - R$,

$$\dot{E}(\tau) = \frac{A^2}{2R} \left(\frac{\dot{g} + R}{r} \right) \left(2R - r \frac{(\dot{g} + R)}{r} \right)$$
$$= \frac{A^2}{2Rr} (R^2 - (\dot{g})^2).$$

Thus,

$$\dot{E}(\tau) = \frac{A^2}{2Rr}R^2 - \frac{1}{2r}\frac{A^2}{R}(\dot{g})^2$$
$$= \frac{A^2}{2Rr}R^2 + \frac{1}{2r}\ddot{E}(\tau).$$

Thus,

$$\ddot{E}(\tau) = 2r\dot{E}(\tau) - A^2R. \tag{1}$$

 This is a standard ordinary differential equation with constant coefficients. The solution is of the form

$$E(\tau)=c_1e^{2r\tau}+c_2\tau+c_0.$$

We can pin this equation down knowing that

$$E(0) = 0$$
 (so $c_1 + c_0 = 0$)

$$\dot{E}(T) = 0$$
 (so $2rc_1e^{2rT} + c_2 = 0$).

- Finally, optimality produces (1) above to get c_0 .
- Set

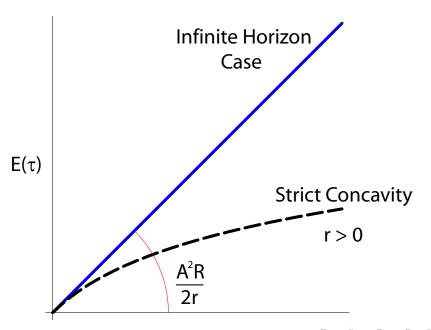
$$c_1 = -c_0$$

$$c_2 = \frac{A^2R}{2r}e^{2rT},$$

using E(T) = 0 and (1).

Thus

$$E(\tau) = \frac{A^2 R}{(2r)^2} e^{-2rT} (1 - e^{2r\tau}) + \left(\frac{A^2 R}{2r}\right) \tau. \tag{2}$$



- This, in its essential form, is the equation that Brown (JPE, 1976) fits; from the τ term, one can identify $\frac{A^2R}{2r}$.
- From the exponential (in τ) one can pick up r and A^2R , but his estimates are poor, $r \to 0$.
- But from Brown, $T \to \infty$ is a good approximation. (His sample is young). Thus

$$E(\tau) \doteq \frac{RA^2}{2}\tau.$$

• Thus "r" is not identified.

• Write this as an autoregression:

$$E(\tau+1)-E(\tau)=rac{A^2R}{(2r)^2}e^{-2rT}\left(e^{2r\tau}-e^{2r(\tau+1)}
ight)+rac{A^2R}{2r}$$

$$E(\tau) - E(\tau - 1) = \frac{A^2 R}{(2r)^2} e^{-2rT} \left(e^{2r(\tau - 1)} - e^{2r\tau} \right) + \frac{A^2 R}{2r}.$$

• Multiply second equation by e^{2r} :

$$e^{2r}[E(\tau) - E(\tau - 1)] = \frac{A^2R}{2r^2}e^{-2rT}(e^{2r\tau} - e^{2r(\tau+1)}) + e^{2r}\frac{(A^2R)}{2r}$$

$$= E(\tau + 1) - E(\tau) - (1 - e^{2r\tau})\frac{A^2R}{2r}.$$

Thus

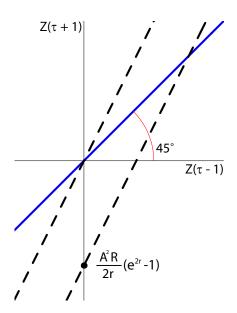
$$E(\tau+1)-E(\tau)=e^{2r}[E(\tau)-E(\tau-1)]-(e^{2r}-1)\frac{A^2R}{2r}.$$

Let

$$Z(\tau+1) = E(\tau+1) - E(\tau)$$

$$Z(\tau) = E(\tau) - E(\tau-1)$$

$$Z(\tau+1) = e^{2r}Z(\tau) - (e^{2r}-1)\left(\frac{A^2R}{2r}\right).$$



• Apparently explosive, it actually converges. Observe:

$$E(\tau) - E(\tau - 1) = \frac{A^2 R}{(2r)^2} e^{-2rT} (e^{2r(\tau - 1)} - e^{2r\tau}) + \frac{A^2 R}{2r}$$
$$= \frac{A^2 R}{2r} \left[1 + \frac{e^{-2rT}}{2r} e^{2r\tau} (1 - e^{2r}) \right]$$

•
$$\frac{\partial [E(\tau) - E(\tau - 1)]}{\partial \tau} = \frac{A^2 R}{2r} (e^{-2rT} e^{2r\tau} (1 - e^{2r}) < 0$$

- Increments are actually decreasing.
- Let $b = e^{2r}$.

$$c = -\left(\frac{e^{2r}-1}{2r}\right)\frac{A^2R}{2r} = \left(\frac{1-e^{2r}}{2r}\right)A^2R$$

$$Z(T) = \underbrace{(b)^T(Z_0)}_{\text{growing}} + c \sum_{j=0}^{I-1} b^j$$
,

but converges to a constant (even though autoregression is "explosive").

Deriving Mincer from Ben Porath

Using (2), we obtain

$$E(\tau) = \left(\frac{A^2R}{2r}\right)\left[\tau + \frac{e^{-2rT} - e^{2r(\tau - T)}}{2r}\right].$$

In logs,

$$\ln \mathsf{E}(\tau) = \ln \left(\frac{A^2 R}{2r} \right) + \ln \tau + \ln \left[1 + \frac{e^{-2rT} - e^{2r(\tau - T)}}{2r\tau} \right]$$
$$= \ln \left[\frac{A^2 R}{2r} \right] + \ln \tau + \ln \left[1 + \frac{e^{-rT}(1 - e^{2r\tau})}{2r\tau} \right].$$

The Taylor Expansions

Human Capital

$$\ln(\tau) \;\; \doteq \;\; \ln(\tau_0) + \frac{1}{\tau_0} (\tau - \tau_0) - \frac{1}{\tau_0^2} \frac{(\tau - \tau_0)^2}{2!}$$

$$\ln\left(1 + \frac{e^{-2rT} - e^{2r(\tau - T)}}{2r\tau}\right) \;\; \doteq \;\; \xi_0 + \xi_1 (\tau - \tau_0) + \xi_2 \frac{(\tau - \tau_0)^2}{2!}$$

$$\xi_{0} \equiv \ln\left(1 + \frac{e^{-2rT} - e^{2r(\tau_{0} - T)}}{2r\tau_{0}}\right)$$

$$\xi_{1} \equiv -\left(\frac{e^{-2rT} + e^{2r(\tau_{0} - T)}\left(2r\tau_{0} - 1\right)}{\tau_{0}\left(2r\tau_{0} + e^{-2rT} - e^{2r(\tau_{0} - T)}\right)}\right)$$

$$\xi_{2} \equiv \begin{bmatrix} \frac{\left(e^{-2rT} + e^{2r(\tau_{0} - T)}\left(2r\tau_{0} - 1\right)\right)}{\left(\tau_{0}\left(2r\tau_{0} + e^{-2rT} - e^{2r(\tau_{0} - T)}\right)\right)^{2}}\left(4r\tau_{0} + e^{-2rT} - e^{2r(\tau_{0} - T)}\left(2r\tau_{0} + 1\right)\right)}{-\left(\frac{\left(2r\right)^{2}\tau_{0}e^{2r(\tau_{0} - T)}}{\left(\tau_{0}\left(2r\tau_{0} + e^{-2rT} - e^{2r(\tau_{0} - T)}\right)\right)}\right)} \end{bmatrix}$$

Adding the terms together:

$$\ln (\tau) + \ln \left(1 + \frac{e^{-2rT} - e^{2r(\tau - T)}}{2r\tau}\right)$$

$$\dot{=} \alpha_0 + \alpha_1 (\tau - \tau_0) + \alpha_2 (\tau - \tau_0)^2$$

$$\alpha_0 \equiv \ln(\tau_0) + \xi_0$$

$$\alpha_1 \equiv \xi_1 + \frac{1}{\tau_0}$$

$$\alpha_2 \equiv \left(-\frac{1}{\tau_0^2} + \xi_2\right) / 2$$

To obtain Mincer Equations:

$$\ln\left(au
ight) + \ln\left(1 + rac{e^{-2rT} - e^{2r(au - T)}}{2r au}
ight) \doteq k_0 + k_1 au + k_2 au^2$$

$$k_0 \equiv \alpha_0 - \tau_0 \alpha_1 + \alpha_2 \tau_0^2$$

$$k_1 \equiv \alpha_1 - 2\alpha_2 \tau_0$$

$$k_2 \equiv \alpha_2$$

Mincer Obtained:

Mincer coefficients

$$\hat{k}_1 = 0.081$$
 $\hat{k}_2 = -0.0012$

• Using r = 0.0225, $\tau_0 = 29.54$, T = 41.43,

$$k_1 = 0.081$$

 $k_2 = -0.0010$

Parameters			Ben Porath Coefficients	
r	$ au_0$	T	k_1	k ₂
0.0225	29.54	41.43	0.081	-0.0010
0.05	25	60	0.0808	-0.0008
0.05	20	65	0.1002	-0.0013
0.0675	24.70	74.77	0.081	-0.0008
Mincer Coefficients			0.081	-0.0012

Model:
$$In(Earnings) = k_0 + k_1\tau + k_2\tau^2$$

Suppose

$$rT \doteq 0$$
 and $e^{-rT} = 1$.

Conclusion

- There may be no economic content in Mincer's "rate of return" on post-school investment.
- All of the economic content is in the intercept term.
- Note, however, holding experience constant, there should be no effect of schooling on the earnings function.
- Mincer finds an effect. This would seem to argue against the Ben-Porath model.
- Not necessarily. Look at equation

$$t^* = \frac{1}{r} - \frac{1}{2} \frac{H_0^{1/2}}{A}$$
 for $\alpha = 1/2$ and T "big."

- Suppose *A* is randomly distributed in the population.
- Then, we have that if H_0 is distributed independently of A, the coefficient on t^* (length of schooling) is

$$E\left[\left(-\frac{1}{2}\frac{H_0^{1/2}}{A}\right)(2\ln A)\right]>0.$$

Thus, the coefficient on schooling is

$$-E\left(H_0^{1/2}\right)E\left(\frac{\ln A}{A}\right).$$

If A is Pareto;

$$F(A) = \left(\frac{\alpha}{A_0}\right) \left(\frac{A_0}{A}\right)^{\alpha+1}, \quad A_0 > 0, \ \alpha > 0.$$

Integrate by parts to reach

$$E\left(\frac{\ln A}{A}\right) = -\frac{(A_0)^{\alpha+1}\alpha}{A_0}(\ln A_0) A_0^{-(\alpha+1)} - \frac{1}{\alpha+1}$$
$$= -\frac{\alpha \ln A_0}{A_0} - \frac{1}{\alpha+1}$$

Therefore, the coefficient on schooling is

$$E(H_0)^{1/2}\left[\frac{1}{\alpha+1}+\frac{\alpha\ln A_0}{A_0}\right]>0.$$

Since units of H_0 are arbitrary, we are done.

Therefore, positive coefficient on schooling solely as a consequence of *not* including ability measures.

Rate of Return to Post-School Investment

Let $T \to \infty$. Without post-school investment, person makes

$$R\left[\frac{\alpha A}{r}\right]^{\frac{1}{1-\alpha}}$$
.

Increment in earnings at post-school age au is simply

$$\underbrace{RA\left[\frac{\alpha A}{r}\right]^{\frac{1}{1-\alpha}}\tau}_{\text{Earnings (above school-ing earnings) at }\tau} - \underbrace{R\left[\frac{\alpha A}{r}\right]^{\frac{1}{1-\alpha}}}_{\text{Costs}}.$$

 \bullet ϕ is that rate that equates returns and costs. Thus, solve for ϕ .

$$\int_{0}^{\infty} e^{-\phi\tau} \left[RA \left[\frac{\alpha A}{r} \right]^{\frac{1}{1-\alpha}} \tau - R \left[\frac{\alpha A}{r} \right]^{\frac{1}{1-\alpha}} \right] d\tau = 0$$

- Use the Laplace transform.
- Then

$$\frac{1}{\phi^2} RA \left[\frac{\alpha A}{r} \right]^{\frac{\alpha}{1-\alpha}} - \frac{1}{\phi} R \left[\frac{\alpha A}{r} \right]^{\frac{1}{1-\alpha}} = 0$$
$$\phi = \frac{r}{\alpha}.$$

Human Capital

Mincer

• Therefore the rate of return to post-schooling investment is r/α .

• Smaller α , higher ϕ .

• Thus, the lower the productivity (i.e., α), the higher ϕ .

Rate of Return to Schooling (Holding Post-School Investment Fixed)

Person without schooling can earn RH_0 . With schooling can earn $RA\left\lceil \frac{\alpha A}{1-\alpha}\right\rceil \frac{\alpha}{1-\alpha}$. (Assuming no post school investment.)

Recall that (for $T \to \infty$), optimal schooling is given by

$$t^* = \frac{1}{r} - \frac{1}{2} \frac{H_0^{1/2}}{A}.$$

During this period (before t^*), under our assumptions, there are no earnings.

Then the rate of return is given by comparing

$$\int_{t^*}^{\infty} e^{-\phi t} \left[R \left(\frac{\alpha A}{r} \right)^{\frac{1}{1-\alpha}} \right] dt \text{ with } \int_{0}^{\infty} e^{-\phi t} R H_0 dt.$$

Solve for ϕ :

$$\left[\frac{\alpha A}{r}\right]^{\frac{1}{1-\alpha}} e^{-\phi t^*} = H_0$$

$$\ln \left[\frac{\alpha A}{r}\right]^{\frac{1}{1-\alpha}} - \phi t^* = \ln H_0$$

$$\phi = \frac{\ln \left[\frac{\alpha A}{r}\right]^{\frac{1}{1-\alpha}} - \ln H_0}{t^*} = \frac{\ln \left[\frac{\alpha A}{r}\right]^{\frac{1}{1-\alpha}} - \ln H_0}{\frac{1}{r} - \frac{1}{2} \frac{H_0^{1/2}}{A}}$$

Has no simple relationship to the rate of return to investment.

Growth of Earnings

- Keep time argument implicit unless being explicit helps.
- E, H, IH all depend on t.
- Growth of earnings:

$$\dot{E} = f(IH) - (I\dot{H})$$

$$\frac{\partial \dot{E}}{\partial r} = ?$$

FOC:

$$g(t) f(IH) = 1$$

$$g(t) = \frac{1 - e^{r(t-T)}}{r}$$

Totally differentiate FOC with respect to t:

$$\dot{g}f(IH) + gf'(IH)(\dot{IH}) = 0$$

$$-\left(\frac{\dot{g}}{g}\frac{f}{f'}\right) = (\dot{IH})$$

First note that

$$\frac{\partial \dot{E}}{\partial r} = f\left(\frac{\partial IH}{\partial r}\right) - \frac{\partial}{\partial r}\left[\left(\dot{IH}\right)\right].$$

Now observe further that

$$\frac{\partial (IH)}{\partial r} < 0$$

- Thus the first term is negative.
- Observe that we can show that

$$\frac{\partial (IH)}{\partial r} > 0$$

if concavity on earnings is satisfied ($\ddot{E} < 0$).

Human Capital

• Intuition: the time rate of decrease in IH is slowed down $(r \uparrow \Rightarrow IH \downarrow$; the function is "less concave").

• If we can establish this, we know that the contribution of the second term is negative and

$$\frac{\partial \dot{E}}{\partial r} < 0.$$

Appendix

$$\frac{\partial [\mbox{I\dot{H}$}]}{\partial r} = \left[-\frac{\dot{g}}{g} \right] \left[1 - \frac{f'f'''}{(f'')^2} \right] \frac{\partial (\mbox{IH$})}{\partial r} + \left(\frac{f'}{f''} \right) \frac{\partial}{\partial r} \left[-\frac{\dot{g}}{g} \right]. \label{eq:deltaff}$$

• From the earlier notes, concavity of earnings function in experience ($\ddot{E} < 0$)

$$\left[1-\frac{f'f''}{(f')^2}\right]<0.$$

$$\frac{\partial (\mathit{IH})}{\partial r} < 0.$$

To investigate the second term, we determine that

$$\dot{g} = rg - 1$$
, $\frac{\dot{g}}{g} = r - \frac{1}{g}$, $-\frac{\dot{g}}{g} = \frac{1}{g} - r$.

Now,

$$\frac{\partial}{\partial r} \left[-\frac{\dot{g}}{g} \right] = -\frac{1}{g^2} \frac{\partial g}{\partial r} - 1.$$

This term is negative. Why?

$$\frac{\partial g}{\partial r} = \frac{-(t-T)e^{r(t-T)}}{r} - \frac{1-e^{r(t-T)}}{r^2}$$
$$= \frac{1}{r^2} \left[e^{r(t-T)} \left(1 - r(t-T) \right) - 1 \right]$$

Now observe that

$$e^{r(T-t)} > 1 + r(T-t)$$
 for $T \ge t$.

Thus

$$\frac{\partial g}{\partial r} < 0.$$

Finite Horizon

Consider next that

$$\begin{split} & \frac{-\partial g}{g^2 \partial r} - 1 = \frac{1}{r^2} \left[\frac{1 - e^{r(t-T)} \left(1 - r(t-T) \right)}{g^2} \right] - 1 \\ & = \frac{1}{g^2 r^2} \left[1 - e^{r(t-T)} \left(1 - r(t-T) \right) - \left(1 - e^{r(t-T)} \right)^2 \right] \\ & = \frac{1}{(rg)^2} \left[1 - e^{r(t-T)} \left(1 - r(t-T) \right) - 1 + 2e^{r(t-T)} - e^{2r(t-T)} \right] \\ & = \frac{1}{(rg)^2} \left[e^{r(t-T)} \right] \left[1 + r(t-T) - e^{r(t-T)} \right]. \end{split}$$

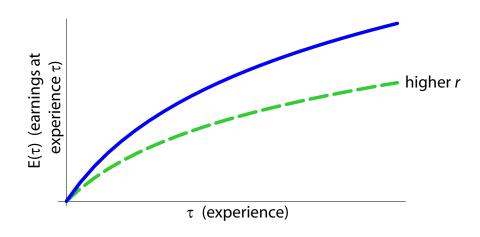
- This expression is clearly negative.
- Set $x \equiv T t$:

Human Capital

- $\frac{\partial}{\partial x} \left(1 rx e^{-rx} \right) = -r + re^{-rx} < 0.$
 - Thus from concavity (f' < 0),

$$\left(\frac{f}{f'}\right)\frac{\partial}{\partial r}\left[-\frac{\dot{g}}{g}\right]>0.$$

• Now the proposition is proved for $\sigma=0$ with $\ddot{E}<0$ everywhere. Q.E.D.



Appendix: Haley-Rosen: Let $\alpha = 1/2$.

$$E(au) = RH(t^*) + R\int\limits_0^ au A\left(rac{1}{2}rac{g(t^*+\ell)A}{R}
ight) \ d\ell - R\left[rac{1}{2}rac{g(au+t^*)A}{R}
ight]^2.$$

This can be written as a simple autoregression in earnings:

$$\dot{E}(\tau) = R \left[A \left(\frac{1}{2} \frac{g(t^* + \tau)A}{R} \right) - 2R \left[\frac{1}{2} \frac{g(\tau + t^*)A}{R} \right] \frac{A}{2R} \dot{g}(\tau + t^*) \right] \\
= \frac{1}{2} A^2 [g(t^* + \tau)(R - \dot{g}(t^* + \tau))].$$

$$\dot{g} = rg - R$$

Thus

$$\dot{E}(\tau) = \frac{A^2}{2R} [g(t^* + \tau) (R - \dot{g}(t^* + \tau))]$$

$$\dot{g} = rg - R$$
 $\ddot{g} = r\dot{g}.$

Haley-Rosen: $\alpha = \beta = 1/2$

$$\begin{split} E(\tau) &= RH(t^*) + R \int_0^{\tau} A \left(\frac{1}{2} \frac{g(t^* + \ell)A}{R} \right) d\ell - R \left[\frac{A}{2} \frac{g(\tau + t^*)}{R} \right]^2 \\ \dot{E}(\tau) &= \frac{A^2}{2} g(\tau + \tau^*) - 2R \left[\frac{A}{2} \frac{g(\tau + t^*)}{R} \right] \left[\frac{A}{2R} \dot{g} \right] \\ &= \frac{A^2}{2} g(\tau + t^*) - \frac{1}{2} \frac{A^2}{R} g \dot{g} \\ &= \frac{1}{2} A^2 g \left[1 - \frac{\dot{g}}{R} \right] \quad \text{use: } \dot{g} = rg - R \\ &= \frac{1}{2} \frac{A^2}{R} g [R - \dot{g}] = \frac{A^2}{2R} g [R - rg + R] \\ &= \frac{A^2}{2R} g [2R - rg] \end{split}$$

$$\ddot{E}(\tau) = \frac{A^2}{2R} [\dot{g}(2R - rg) + g(-r\dot{g})]
= \frac{A^2}{2R} \dot{g}[2R - 2rg] = \frac{A^2}{R} \dot{g}(R - rg)
= -\frac{A^2}{2} (\dot{g})^2.$$

Notice that $E(\tau)$ can be written as

$$\dot{E}(\tau) = \frac{A^2}{2R} \left(\frac{\dot{g} + R}{r} \right) \left(2R - r \frac{(\dot{g} + R)}{r} \right)
= \frac{A^2}{2R} \left(\frac{\dot{g} + R}{r} \right) (2R - \dot{g} - R)
= \frac{A^2}{2R} \left(\frac{\dot{g} + R}{r} \right) (R - \dot{g}) = \frac{A^2}{2Rr} (R^2 - (\dot{g})^2).$$

Thus we conclude that

$$\dot{E}(\tau) = \frac{A^2}{2Rr}R^2 - \frac{1}{2r}\frac{A^2}{R}(\dot{g})^2
= \frac{A^2}{2Rr}R^2 + \frac{1}{2r}\ddot{E}$$

so that

$$\ddot{E}(\tau) - 2r\dot{E}(\tau) + A^2R = 0.$$

Integrate once to reach

$$\dot{E}(\tau) - 2rE(\tau) + A^2R\tau + c_0 = 0$$

where c_0 is a constant of integration.

Then "reduced equation" is

$$\dot{E}(\tau) = 2rE(\tau)$$

so that

$$E(\tau)=c_1e^{2r\tau},$$

 c_1 is constant of integration.

The general solution is thus:

$$E(\tau) = c_0 + c_2 \tau + c_1 e^{2r\tau}.$$

For a period of specialization, E(0) = 0 so that $c_1 + c_0 = 0$.

$$\dot{E}(\tau) = 2rc_1e^{2r\tau} + c_2$$

so that at $\tau = 0$,

$$(2rc_1e^{2r\tau}+c_2)-2r[c_1e^{2r\tau}+c_0+c_2\tau]+A^2R\tau+c_0=0.$$

Thus we conclude that

$$c_2 = \frac{A^2R}{2r}$$

To this point, the equation looks like

$$E(\tau) = c_0(1 - e^{2r\tau}) + \frac{A^2R}{2r}\tau.$$

Now there is no investment at the end of life.

$$\dot{E}(\tau)=0.$$

Thus

$$\dot{E}(T) = 0 = -2rc_0e^{2rT} + \frac{A^2R}{2r}$$

so
$$c_0 = \frac{A^2 R}{(2r)^2} e^{-2rT}$$
. Thus

$$E(\tau) = \frac{A^2 R}{(2r)^2} e^{-2rT} (1 - e^{2r\tau}) + \frac{A^2 R}{2r} \tau.$$

