Interpreting IV More On Roy Model

James J. Heckman
University of Chicago
Extract from: Building Bridges Between Structural and Program Evaluation Approaches to Evaluating Policy James Heckman (JEL 2010)

Econ 312, Spring 2021

Identifying Policy Parameters

- Commonly used specifications

$$
\begin{equation*}
Y_{1}=\mu_{1}(X)+U_{1}, \quad Y_{0}=\mu_{0}(X)+U_{0}, \quad C=\mu_{C}(Z)+U_{C}, \tag{1}
\end{equation*}
$$

where (X, Z) are observed by the analyst, and U_{0}, U_{1}, U_{C} are unobserved.

- Define Z to include all of X.
- Variables in Z not in X are instruments.
- $Z \Perp\left(U_{0}, U_{1}, U_{C}\right) \mid X$
- $I_{D}=E\left(Y_{1}-Y_{0}-C \mid \mathcal{I}\right)=\mu_{D}(Z)-V$
$\mu_{D}(Z)=E\left(\mu_{1}(X)-\mu_{0}(X)-\mu_{C}(Z) \mid \mathcal{I}\right)$
$V=-E\left(U_{1}-U_{0}-U_{C} \mid \mathcal{I}\right)$.
- Choice equation:

$$
\begin{equation*}
D=1\left(\mu_{D}(Z)>V\right) . \tag{2}
\end{equation*}
$$

- In the early literature that implemented this approach $\mu_{0}(X)$, $\mu_{1}(X)$, and $\mu_{C}(Z)$ were assumed to be linear in the parameters, and the unobservables were assumed to be normal and distributed independently of X and Z.

Useful fact (previously discussed):

Choice Probability: $\quad P(z)=\operatorname{Pr}(D=1 \mid Z=z)$

$$
\begin{aligned}
& =\operatorname{Pr}\left(\mu_{D}(z) \geq V\right) \\
& =\operatorname{Pr}\left(\frac{\mu_{D}(z)}{\sigma_{V}} \geq \frac{V}{\sigma_{V}}\right)
\end{aligned}
$$

$$
\begin{aligned}
P(z) & =F_{\left(\frac{v}{\sigma_{V}}\right)}\left(\frac{\mu_{D}(z)}{\sigma_{V}}\right) \\
U_{D} & =F_{\left(\frac{v}{\sigma_{V}}\right)}\left(\frac{V}{\sigma_{V}}\right) ; \quad \text { Uniform }(0,1)
\end{aligned}
$$

$$
\begin{aligned}
P(z) & =\operatorname{Pr}\left(F_{\frac{v}{\sigma_{V}}}\left(\frac{\mu_{D}(z)}{\sigma_{V}}\right) \geq F_{\left(\frac{v}{\sigma_{V}}\right)}\left(\frac{V}{\sigma_{V}}\right)\right) \\
& =\operatorname{Pr}\left(P(z) \geq U_{D}\right)
\end{aligned}
$$

$P(z)$ is the $p(z)^{\text {th }}$ quantile of U_{D}.

- It is also a monotonic transformation of the mean utility $\frac{\mu_{D}(z)}{\sigma_{V}}$
- So $P(z)$ is a monotonic transformation of utility

Recall

$$
\begin{aligned}
Y & =D Y_{1}+(1-D) Y_{0} \\
& =Y_{0}+D\left(Y_{1}-Y_{0}\right)
\end{aligned}
$$

Keep X implicit (condition on $X=x$)

$$
\begin{aligned}
E(Y \mid Z=z) & =E\left(Y_{0}\right)+\underbrace{E\left(Y_{1}-Y_{0} \mid D=1, Z=z\right) P(z)}_{\text {from law of iterated expectations }} \\
& =E\left(Y_{0}\right)+E\left(Y_{1}-Y_{0} \mid P(z) \geq U_{D}\right) P(z)
\end{aligned}
$$

\therefore It depends on Z only through $P(Z)$.

$$
\begin{gathered}
E\left(Y \mid Z=z^{\prime}\right)=E\left(Y_{0}\right)+E\left(Y_{1}-Y_{0} \mid P\left(z^{\prime}\right) \geq U_{D}\right) P\left(z^{\prime}\right) \\
\text { Index Sufficiency }
\end{gathered}
$$

- Question: Why? Under what conditions?
- What is $E\left(Y_{1}-Y_{0} \mid P(z) \geq U_{D}\right)$? (Treatment on the treated)

Derivation

- Let the joint density of $\left(Y_{1}-Y_{0}, U_{D}\right)$ be

$$
f_{Y_{1}-Y_{0}, U_{D}}\left(y_{1}-y_{0}, u_{D}\right) .
$$

- It does not depend on Z.
- It may, in general, depend on X.

$$
\begin{aligned}
& E\left(Y_{1}-Y_{0} \mid P(z) \geq U_{D}\right) \\
& \quad=\frac{\int_{-\infty}^{\infty} \int_{0}^{P(z)}\left(y_{1}-y_{0}\right) f_{y_{1}-y_{0}, u_{D}}\left(y_{1}-y_{0}, u_{D}\right) d u_{D} d\left(y_{1}-y_{0}\right)}{\operatorname{Pr}\left(P(z) \geq U_{D}\right)}
\end{aligned}
$$

- Recall that

$$
U_{D}=F_{\left(\frac{v}{\sigma_{V}}\right)}\left(\frac{V}{\sigma_{V}}\right) .
$$

- U_{D} is a quantile of the V / σ_{V} distribution.
- By construction, U_{D} is Uniform $(0,1)$ (this is the definition of a quantile).
- $\therefore f_{U_{D}}\left(u_{D}\right)=1$.
- Also, $\operatorname{Pr}\left(P(z) \geq U_{D}\right)=P(z)$.
- Notice, by law of conditional probability,

$$
f_{Y_{1}-Y_{0}, U_{D}}\left(y_{1}-y_{0}, u_{D}\right)=f_{Y_{1}-Y_{0}, U_{D}}\left(y_{1}-y_{0} \mid U_{D}=u_{D}\right) \underbrace{f_{U_{D}}\left(u_{D}\right)}_{=1} .
$$

$$
\begin{aligned}
& E\left(Y_{1}-Y_{0} \mid P(z) \geq U_{D}\right) \\
& =\frac{\int_{0}^{P(z)} \int_{-\infty}^{\infty}\left(y_{1}-y_{0}\right) f_{Y_{1}-Y_{0}, u_{D}}\left(y_{1}-y_{0}, u_{D}\right) d\left(y_{1}-y_{0}\right) d u_{D}}{P(z)} \\
& E\left(Y_{1}-Y_{0} \mid P(z) \geq U_{D}\right) \\
& =\frac{\int_{0}^{P(z)} \int_{-\infty}^{\infty}\left(y_{1}-y_{0}\right) f_{Y_{1}-Y_{0}, U_{D}}\left(y_{1}-y_{0} \mid U_{D}=u_{D}\right) d\left(y_{1}-y_{0}\right) d u_{D}}{P(z)} \\
& =\frac{\int_{0}^{P(z)} E\left(Y_{1}-Y_{0} \mid U_{D}=u_{D}\right) d u_{D}}{P(z)}
\end{aligned}
$$

- Definition: $E\left(Y_{1}-Y_{0} \mid U_{D}=u_{d}\right)$ is marginal treatment effect (MTE)
- If $P(z)=U_{d}$, agent with $Z=z$ is indifferent between " 0 " and

$$
\begin{aligned}
& \therefore E(Y \mid Z=z)=E\left(Y_{0}\right)+\int_{0}^{P(z)} E\left(Y_{1}-Y_{0} \mid U_{D}=u_{D}\right) d u_{D} \\
& \frac{\partial E(Y \mid Z=z)}{\partial P(z)}=\underbrace{E\left(Y_{1}-Y_{0} \mid U_{D}=P(z)\right)}_{\substack{\text { EOTM or marginal gains for } \\
\text { people with } U_{D}=P(z)}} \\
& E\left(Y \mid Z=z^{\prime}\right)=E\left(Y_{0}\right)+\int_{0}^{P\left(z^{\prime}\right)} E\left(Y_{1}-Y_{0} \mid U_{D}=u_{D}\right) d u_{D}
\end{aligned}
$$

- Consider mean of Y for two different values of Z
- Suppose $P(z)>P\left(z^{\prime}\right)$
$\therefore E(Y \mid Z=z)-E\left(Y \mid Z=z^{\prime}\right)=$

$$
=\int_{P\left(z^{\prime}\right)}^{P(z)} E\left(Y_{1}-Y_{0} \mid U_{D}=u_{D}\right) d u_{D}
$$

$$
=E\left(Y_{1}-Y_{0} \mid P(z) \geq U_{D} \geq P\left(z^{\prime}\right)\right) \operatorname{Pr}\left(P(z) \geq U_{D} \geq P\left(z^{\prime}\right)\right)
$$

Notice

$$
\begin{aligned}
& \operatorname{Pr}\left(P(z) \geq U_{D} \geq P\left(z^{\prime}\right)\right)=\int_{P\left(z^{\prime}\right)}^{P(z)} d u_{D} \\
& \quad=P(z)-P\left(z^{\prime}\right) \\
& \quad E(Y \mid Z=z)-E\left(Y \mid Z=z^{\prime}\right) \\
& \quad=E\left(Y_{1}-Y_{0} \mid P(z) \geq U_{D} \geq P\left(z^{\prime}\right)\right)\left(P(z)-P\left(z^{\prime}\right)\right)
\end{aligned}
$$

- This is LATE: will see why in next slides

$$
\begin{aligned}
& \frac{E(Y \mid Z=z)-E\left(Y \mid Z=z^{\prime}\right)}{P(z)-P\left(z^{\prime}\right)}=\operatorname{LATE}\left(z, z^{\prime}\right) \\
& =\frac{\int_{P\left(z^{\prime}\right)}^{P(z)} \operatorname{MTE}\left(u_{D}\right) d u_{D}}{P(z)-P\left(z^{\prime}\right)}
\end{aligned}
$$

