Using Matching, Instrumental Variables and Control Functions to Estimate Economic Choice Models *Review of Economics and Statistics* 86(1) (2004)

James J. Heckman and Salvador Navarro University of Chicago

Econ 312, Spring 2021

Two potential outcomes (Y_0, Y_1) . D = 1 if Y_1 is selected. D = 0 if Y_0 is selected. Let V be utility.

$$V = \mu_V(Z, U_V)$$
 $D = 1 (V > 0)$ (1)

Z : observed factors determining choices, U_V unobserved

$$Y_1 = \mu_1(X, U_1) \tag{2a}$$

$$Y_0 = \mu_0(X, U_0).$$
 (2b)

 U_0, U_1, U_V are (absolutely) continuous

$$\Delta = Y_1 - Y_0.$$

Additively Separable Case: For Familiarity. Not essential.

$$V = \mu_V(Z) + U_V \quad E(U_V) = 0 \tag{1'}$$

$$Y_1 = \mu_1(X) + U_1 \quad E(U_1) = 0 \tag{2a'}$$

$$Y_0 = \mu_0(X) + U_0 \quad E(U_0) = 0. \tag{2b'}$$

ATE :
$$E(Y_1 - Y_0|X)$$
 (Average Treatment Effect)

$$TT$$
 : $E(Y_1-Y_0|X,D=1)$ (Treatment on the Treated)

$$MTE : E(Y_1 - Y_0 | X, Z, V)$$
 (Marginal Treatment Effect)

These are familiar but by no means the only parameters we could consider

From MTE, can identify many other parameters

(Recall IV Lectures)

Samples generated by choices:

$$E(Y|X, Z, D = 1) = E(Y_1|X, Z, D = 1)$$
$$E(Y|X, Z, D = 0) = E(Y_0|X, Z, D = 0)$$

Data:

$$\begin{split} &\mathsf{Pr}\left(D=1|X,Z\right)\\ &\mathsf{E}\left(Y_1|X,D=1\right) \text{ and } \mathsf{E}\left(Y_0|X,D=0\right). \end{split}$$

From raw means, we get biases. Can form $E(Y_1|X, D = 1) - E(Y_0|X, D = 0)$.

In General This Produces BIASES

TT :

Bias
$$TT = [E(Y|X, D = 1) - E(Y|X, D = 0)]$$

 $-E(Y_1 - Y_0|X, D = 1)$
 $= [E(Y_0|X, D = 1) - E(Y_0|X, D = 0)].$

Under Additive Separability

Bias
$$TT = E(U_0|X, D = 1) - E(U_0|X, D = 0)$$

ATE :

Bias
$$ATE = E(Y|X, D = 1) - E(Y|X, D = 0)$$

 $-E(Y_1 - Y_0|X).$

Under Additive Separability

Bias
$$ATE = [E(U_1|X, D = 1) - E(U_1|X)] - [E(U_0|X, D = 0) - E(U_0|X)]$$

MTE :

Bias
$$MTE = E(Y|X, Z, D = 1) - E(Y|X, Z, D = 0)$$

 $-E(Y_1 - Y_0|X, Z, V)$

Under Additive Separability

Bias
$$MTE = E(U_1|X, Z, D = 1) - E(U_1|X, Z, V)$$

- $[E(U_0|X, Z, D = 0) - E(U_0|X, Z, V)]$

Matching

$$W = (X, Z)$$
$$(Y_1, Y_0) \perp D | W$$
(M-1)

" $\bot\!\!\!\perp$ " denotes independence given W

$$0 < \Pr(D = 1 | W) = P(W) < 1,$$
 (M-2)

Rosenbaum and Rubin (1983) show (M-1) and (M-2) imply

$$(Y_1, Y_0) \perp D | P(W). \tag{M-3}$$

Using Matching

$$E(Y_1|D = 0, P(W)) = E(Y_1|D = 1, P(W)) = E(Y_1|P(W))$$

$$E(Y_0|D = 1, P(W)) = E(Y_0|D = 0, P(W)) = E(Y_0|P(W)).$$

Dependence between U_V and (U_1, U_0) is eliminated by conditioning on W:

$$U_V \perp (U_1, U_0) | W.$$

"Selection on Observables"

If P(W) = 1 or P(W) = 0, method breaks down for those values.

Extensions (Heckman, Ichimura, Smith and Todd)

Distinction between X and Z

Introducing Z allows one to solve the breakdown problem arising from

$$P(X, Z) = 1 \text{ or } P(X, Z) = 0$$

Thus if outcomes are defined in terms of X and

Support
$$(X|Z) =$$
 Support (X)

If we can find another value Z' such that

$$\Pr(X, Z') \neq 1,$$

can match using this (IV assumption)

Require only weaker mean independence assumptions

$$E(Y_1|W, D = 1) = E(Y_1|W) E(Y_0|W, D = 0) = E(Y_0|W).$$

Can be used for Means.

Matching is "for free" (Gill and Robins (2001)):

 $E(Y_0|D=1, W)$ is not observed.

Can just as well replace it by

$$E(Y_0|D=1,W) = E(Y_0|D=0,W)$$

However, the implied economic restrictions are not "for free".

Imposes that, conditional on X and Z, the marginal person is the same as the average person.

This is the same as a flat MTE(X, U) in U. (MTE does not depend on U)

Additively Separable Case

We observe left-hand sides of

 $E(Y_1|X, Z, D = 1) = \mu_1(X) + E(U_1|X, Z, D = 1)$ $E(Y_0|X, Z, D=0) = \mu_0(X) + E(U_0|X, Z, D=0).$ If $(U_1, U_V) \perp X, Z$ $E(U_1|X, Z, D = 1) = E(U_1|\mu_V(Z) > U_V) = K_1(P(X, Z)).$ If $(U_1, U_V) \perp X, Z$ $E(U_0|X, Z, D = 0) = E(U_0|\mu_V(Z) < U_V) = K_0(P(X, Z))$

So, key assumption

$$(U_1, U_0, U_V) \perp\!\!\!\perp (X, Z).$$

Under this condition

$$E(Y_1|X, Z, D = 1) = \mu_1(X) + K_1(P(X, Z))$$
$$E(Y_0|X, Z, D = 0) = \mu_0(X) + K_0(P(X, Z))$$

Need Limit Set Results

$$\lim_{P \to 1} K_1(P) = 0 \text{ and } \lim_{P \to 0} K_0(P) = 0$$

- If there are limit sets \mathbb{Z}_0 and \mathbb{Z}_1 such that $\lim_{Z \to \mathbb{Z}_0} P(X, Z) = 0$ and $\lim_{Z \to \mathbb{Z}_1} P(X, Z) = 1$, then we can identify the constants.
- There are semiparametric versions of these estimators.
- Use polynomials in *P*; Local Linear Regression in *P*.

From this model can obviously identify

$$ATE = \mu_1(X) - \mu_0(X)$$

(As we have seen)

Plus,

$$TT = \mu_1(X) - \mu_0(X) + E(U_1 - U_0|X, Z, D = 1)$$

= $\mu_1(X) - \mu_0(X) + K_1(P(X, Z))$
+ $\left(\frac{1-P}{P}\right) K_0(P(X, Z))$

$$MTE = \mu_{1}(X) - \mu_{0}(X) + \frac{\partial [E(U_{1} - U_{0}|X, Z, D = 1) P(X, Z)]}{\partial P(X, Z)}$$

= $\mu_{1}(X) - \mu_{0}(X) + \frac{\partial [P(X, Z) \{K_{1}(P(X, Z) + \frac{1-P}{P}K_{0}(P(X, Z))\}]}{\partial P(X, Z)}$

Marginal and Average are allowed to be different. **Problem: Show this for** P(X, Z) = U(p)

Both Matching and Control functions are defined only over

Support $(X|D = 1) \cap$ Support (X|D = 0)

Method of control functions does not require

$$(U_0, U_1) \perp U_V | (X, Z)$$

But Matching does.

Matching is a special case of control functions in the additively separable case.

Additive separability and control functions assumptions are central to this claim.

$$E(U_1|X, Z, D = 1) = E(U_1|X, Z) = E(U_1|P(W))$$

$$E(U_0|X, Z, D = 0) = E(U_0|X, Z) = E(U_0|P(W)).$$

lf

$$\mu_1(W)=E\left(Y_1|W
ight)$$
 and $\mu_0\left(W
ight)=E\left(Y_0|W
ight)$

then

$$E(U_1|P(W)) = 0$$
 and $E(U_0|P(W)) = 0$

However, this is not strictly required

In the method of control functions,

If
$$(X, Z) \perp (U_0, U_1, U_V)$$

E(Y|X,Z,D)

- $= E(Y_1|X, Z, D = 1) D + E(Y_0|X, Z, D = 0) (1 D)$
- $= \mu_0(X) + (\mu_1(X) \mu_0(X)) D + E(U_1|X, Z, D = 1) D$ $+ E(U_0|P(X, Z), D = 0) (1 - D)$
- $= \mu_0(X) + (\mu_1(X) \mu_0(X)) D + E(U_1|P(X,Z), D = 1) D$ $+ E(U_0|P(X,Z), D = 0) (1 - D)$
- $= \mu_0(X)$ $+ [\mu_1(X) - \mu_0(X) + K_1(P(X,Z)) - K_0(P(X,Z))] D$ $+ K_0(P(X,Z)).$

To identify

$$\mu_1(X) - \mu_0(X)$$

must isolate it from

 $K_1(P(X,Z))$

 $K_0(P(X,Z))$.

and

Tables 1 and 2 present sensitivity analysis for the case of

SO

Bias
$$TT(P(Z) = p) = \sigma_0 \rho_{0V} M(p)$$

Bias $ATE(P(Z) = p) = M(p) [\sigma_1 \rho_{1V} (1-p) + \sigma_0 \rho_{0V} p]$

where $M(p) = \frac{\phi(\Phi^{-1}(1-p))}{p(1-p)}$ Problem: Using the Generalized Roy model derive these results for bias

m 1	1	-1
Tat	ile.	
		-

Mean Dias for freatment on the freated					
ρ_{0V}	Average Bias $(\sigma_0 = 1)$	Average Bias $(\sigma_0 = 2)$			
-1.00	-1.7920	-3.5839			
-0.75	-1.3440	-2.6879			
-0.50	-0.8960	-1.7920			
-0.25	-0.4480	-0.8960			
0.00	0.0000	0.0000			
0.25	0.4480	0.8960			
0.50	0.8960	1.7920			
0.75	1.3440	2.6879			
1.00	1.7920	3.5839			

Mean Bias for Treatment on the Treated

 $\mathrm{BIASTT} = \rho_{0V} * \sigma_0 * M(p)$

$$M(p) = \frac{\varphi(\Phi^{-1}(p))}{[p*(1-p)]}$$

$(\sigma_0 = 1)$									
ρ_{0V}	-1.00	-0.75	-0.50	-0.25	0	0.25	0.50	0.75	1.00
$\rho_{1V}(\sigma_1 = 1)$									
-1.00	-1.7920	-1.5680	-1.3440	-1.1200	-0.8960	-0.6720	-0.4480	-0.2240	0
-0.75	-1.5680	-1.3440	-1.1200	-0.8960	-0.6720	-0.4480	-0.2240	0	0.2240
-0.50	-1.3440	-1.1200	-0.8960	-0.6720	-0.4480	-0.2240	0	0.2240	0.4480
-0.25	-1.1200	-0.8960	-0.6720	-0.4480	-0.2240	0	0.2240	0.4480	0.6720
0	-0.8960	-0.6720	-0.4480	-0.2240	0	0.2240	0.4480	0.6720	0.8960
0.25	-0.6720	-0.4480	-0.2240	0	0.2240	0.4480	0.6720	0.8960	1.1200
0.50	-0.4480	-0.2240	0	0.2240	0.4480	0.6720	0.8960	1.1200	1.3440
0.75	-0.2240	0	0.2240	0.4480	0.6720	0.8960	1.1200	1.3440	1.5680
1.00	0	0.2240	0.4480	0.6720	0.8960	1.1200	1.3440	1.5680	1.7920
				$\rho_{1V}(a$	$\tau_1 = 2)$				
-1.00	-2.6879	-2.2399	-1.7920	-1.3440	-0.8960	-0.4480	0	0.4480	0.8960
-0.75	-2.4639	-2.0159	-1.5680	-1.1200	-0.6720	-0.2240	0.2240	0.6720	1.1200
-0.50	-2.2399	-1.7920	-1.3440	-0.8960	-0.4480	0	0.4480	0.8960	1.3440
-0.25	-2.0159	-1.5680	-1.1200	-0.6720	-0.2240	0.2240	0.6720	1.1200	1.5680
0	-1.7920	-1.3440	-0.8960	-0.4480	0	0.4480	0.8960	1.3440	1.7920
0.25	-1.5680	-1.1200	-0.6720	-0.2240	0.2240	0.6720	1.1200	1.5680	2.0159
0.50	-1.3440	-0.8960	-0.4480	0	0.4480	0.8960	1.3440	1.7920	2.2399
0.75	-1.1200	-0.6720	-0.2240	0.2240	0.6720	1.1200	1.5680	2.0159	2.4639
1.00	-0.8960	-0.4480	0	0.4480	0.8960	1.3440	1.7920	2.2399	2.6879

Table 2 Mean Bias for Average Treatment Effect

 $BIASATE = \rho_{1V} * \sigma_1 * M_1(p) - \rho_{0V} * \sigma_0 * M_0(p)$

 $\text{BIASMTE} = \text{BIASATE} - \Phi^{-1}(1-p) * (\rho_{1V} * \sigma_1 - \rho_{0V} * \sigma_0)$

$$M_1(p) = \frac{\varphi(\Phi^{-1}(p))}{p}$$

 $M_0(p) = \frac{-\varphi(\Phi^{-1}(p))}{[1-p]}$

Heckman

Using Matching

Matching and Method of control functions work with E(Y|X, Z, D) and Pr(D = 1|X, Z).

$$Y = DY_1 + (1 - D) Y_0$$

= $\mu_0 (X) + (\mu_1 (X) - \mu_0 (X) + U_1 - U_0) D + U_0$
= $\mu_0 (X) + \Delta (X) D + U_0$

If $U_1 = U_0$

$$E(U_0|P(X,Z),X) = E(U_0|X)$$
(IV-1)

 $\Pr(D = 1|X, Z)$ is a nontrivial function of Z for each X. (IV-2)

When

$$U_1 \neq U_0$$
, but $D \perp (U_1 - U_0) | X$

or alternatively

$$U_V \perp (U_1 - U_0|X),$$

we have all three mean treatment effects are the same

$$\begin{array}{rcl} ATE & = & E\left(Y_{1}-Y_{0}|X\right) = E\left(\Delta\left(X\right)|X\right) \\ TT & = & E\left(Y_{1}-Y_{0}|X,D=1\right) = E\left(Y_{1}-Y_{0}|X\right) \\ & = & MTE \end{array}$$

Analytically More Interesting Case $U_1 \neq U_0$ and $D \not\perp (U_1 - U_0)$ For *ATE* :

$$E(U_{0} + D(U_{1} - U_{0}) | P(X, Z), X) = E(U_{0} + D(U_{1} - U_{0}) | X)$$
(IV-3)
For *TT*:

$$E(U_{0} + D(U_{1} - U_{0}) - E(U_{0} + D(U_{1} - U_{0})|X)|P(X, Z), X)$$

= $E(U_{0} + D(U_{1} - U_{0}) - E(U_{0} + D(U_{1} - U_{0})|X)|X)$

For ATE we can rewrite:

$$E(U_0|P(X,Z),X) + E(U_1 - U_0|D = 1, P(X,Z),X)P(X,Z) = E(U_0|X) + E(U_1 - U_0|D = 1,X)P(X,Z)$$

All mean parameters are the same if $U_1 = U_0$, or $(U_1 - U_0) \perp D | P(X, Z), X$

- Method of Control Functions Models Dependence between (U_1, U_0) and V.
- 2 Matching assumes $(U_1, U_0) \perp V \mid X, Z$.
- **3** Z independent of U_0, U_1 conditional on X.

Local Instrumental Variables (LIV) require that

 $\mu_D(Z)$ be a non-degenerate random variable given X (existence of an exclusion restriction) (2)

$$(U_0, U_1, U_V) \perp Z | X$$
 (LIV-2)

$$0 < \Pr(D|X) < 1 \tag{LIV-3}$$

Support
$$P(D|(X,Z)) = [0,1]$$
 (LIV-4)

Under these conditions,

$$\frac{\partial E(Y|X, P(X, Z))}{\partial (P(Z))} = MTE(X, P(Z), V)$$

identifying Assumptions and implicit economic Assumptions (indentying the rour methods Discussed in this raper					
Conditional on X and Z					
Method	Exclusion Required?	Separability of Observables	Functional Forms	Marginal =	Key Identification
		and Unobservables	Required?	Average?	Condition for Means
		in Outcome Equations?		(Given X, Z)	(assuming separability)
Matching*	No	No	No	Yes	$E(U_1 X, D = 1, Z) = E(U_1 X, Z)$
					$E(U_0 X, D = 0, Z) = E(U_0 X, Z)$
Control Function**	Yes (for	Conventional,	Conventional,	No	$E(U_0 X, D = 0, Z)$ and
	nonparametric	but not required	but not required		$E(U_1 X, D = 1, Z)$
	identification)				can be varied independently of
					$\mu_0(X)$ and $\mu_1(X)$, respectively
					and intercepts can be identified
					through limit arguments or symmetry assumptions
IV	Yes	Yes	No	No (Yes in	$E(U_0 + D(U_1 - U_0) X, Z)$
(conventional)				standard case)	$= E (U_0 + D (U_1 - U_0) X) (ATE)$
					$E(U_0 + D(U_1 - U_0) - E(U_0 + D(U_1 - U_0) X) P(Z), X)$
					$= E (U_0 + D (U_1 - U_0) - E (U_0 + D (U_1 - U_0) X) X) (TT)$
LIV	Yes	No	No	No	$(U_0, U_1, U_v) \perp Z X$
					Pr(D = 1 Z, X) is a nontrivial function of Z for each X.

Table 3 Identifying Assumptions and Implicit Economic Assumptions Underlying the Four Methods Discussed in this Paper

*For propensity score matching, (X, Z) are replaced with P(X, Z) in defining parameters and conditioning sets.

**Conditions for writing the control function in terms of $P\left(X,Z\right)$ are given in the text.

Fundamental Problem: Information of the Analyst often less than that of the Agent.

Definition 1

We say that $\sigma(I_{R^*})$ is a **relevant information set** if its associated random variable, I_{R^*} , satisfies (M-1) so

 $(Y_1, Y_0) \perp D | I_{R^*}$

Definition 2

We say that $\sigma(I_R)$ is a **minimal relevant information set** if it is the intersection of all sets $\sigma(I_{R^*})$ and $(Y_1, Y_0) \perp D|I_R$. The associated random variable I_R is the minimum amount of information that guarantees that (M-1) is satisfied. Intersection may be empty. May not be a unique minimal information set.

Definition 3

The agent's information set, $\sigma(I_A)$, is defined by the information I_A used by the agent when choosing among treatments. Accordingly, we call I_A the **agent's information**.

Definition 4

The econometrician's **full information set**, $\sigma(I_{E^*})$, is defined by **all** the information **available** to the econometrician, I_{E^*} .

Definition 5

The econometrician's **information set**, $\sigma(I_E)$, is defined by the information **used** by the econometrician when analyzing the agent's choice of treatment, I_E .

Obvious Inclusions: $\sigma(I_R) \subseteq \sigma(I_{R^*}), \sigma(I_R) \subseteq \sigma(I_A)$ and $\sigma(I_E) \subseteq \sigma(I_{E^*})$

This assumes I_R exists.

Matching implies

 $\sigma\left(I_{R}\right)\subseteq\sigma\left(I_{E}\right)$

Generalized Roy Examples (Assume Factor Structure for error terms)

- Consider bias from matching with different information sets (i.e., different *p* specifications).
- Remember the Rosenbaum and Rubin result.

$$V = Z\gamma + U_V$$

= $Z\gamma + \alpha_{V1}f_1 + \alpha_{V2}f_2 + \varepsilon_V$,
 $D = 1$ if $V \ge 0$, = 0 otherwise

$$\begin{array}{rcl} Y_1 &=& \mu_1 + U_1 = \mu_1 + \alpha_{11}f_1 + \alpha_{12}f_2 + \varepsilon_1 \\ Y_0 &=& \mu_0 + U_0 = \mu_0 + \alpha_{01}f_1 + \alpha_{02}f_2 + \varepsilon_0, \end{array}$$

 $(f_1, f_2, \varepsilon_V, \varepsilon_1, \varepsilon_0)$ mean zero random variables, mutually independent of each other and Z The minimal relevant information set when factor loadings are not zero:

$$I_R = \{f_1, f_2\}$$
.

Agent information sets may include different variables. If shocks to the outcomes not known, but other terms are:

$$I_{A} = \{f_1, f_2, Z, \varepsilon_V\}$$

Under perfect certainty, $I_A = \{f_1, f_2, Z, \varepsilon_V, \varepsilon_1, \varepsilon_0\}.$

Construct examples using:

$$(f_1, f_2, \varepsilon_V, \varepsilon_1, \varepsilon_0) \sim N(0, \Sigma),$$

diag $(\Sigma) = (\sigma_{f_1}^2, \sigma_{f_2}^2, \sigma_{\varepsilon_V}^2, \sigma_{\varepsilon_1}^2, \sigma_{\varepsilon_0}^2)$

Suppose
$$I_E = \{Z, f_1, f_2\}$$

$$E(Y_1|D = 1, I_E) - E(Y_0|D = 0, I_E)$$

= $\mu_1 - \mu_0 + (\alpha_{11} - \alpha_{01}) f_1 + (\alpha_{12} - \alpha_{02}) f_2$

Knowledge of (Z, f_1, f_2) and of $P(Z, f_1, f_2)$ equivalent

$$P(I_E) = \Pr\left(\frac{\varepsilon_V}{\sigma_{\varepsilon_V}} > \frac{-Z\gamma - \alpha_{V1}f_1 - \alpha_{V2}f_2}{\sigma_{\varepsilon_V}}\right)$$
$$= 1 - \Phi\left(\frac{-Z\gamma - \alpha_{V1}f_1 - \alpha_{V2}f_2}{\sigma_{\varepsilon_V}}\right) = p$$

$$E(Y_{1}|D = 1, P(I_{E}) = p) - E(Y_{0}|D = 0, P(I_{E}) = p)$$

$$= \mu_{1} - \mu_{0} + E(U_{1}|D = 1, P(I_{E}) = p)$$

$$-E(U_{0}|D = 0, P(I_{E}) = p)$$

$$= \mu_{1} - \mu_{0} + E\left(U_{1}|\frac{\varepsilon_{V}}{\sigma_{\varepsilon_{V}}} > \Phi^{-1}(1-p)\right)$$

$$-E\left(U_{0}|\frac{\varepsilon_{V}}{\sigma_{\varepsilon_{V}}} \le \Phi^{-1}(1-p)\right)$$

$$= \mu_{1} - \mu_{0}$$

All the treatment parameters equal

$$\begin{split} MTE &= ATE = LATE = TT \\ E \left(U_1 | \frac{\varepsilon_V}{\sigma_{\varepsilon_V}} > \Phi^{-1} (1-p) \right) &= \frac{COV (U_1, \varepsilon_V)}{\sigma_{\varepsilon_V}} M_1(P) \\ E \left(U_0 | \frac{\varepsilon_V}{\sigma_{\varepsilon_V}} \le \Phi^{-1} (1-p) \right) &= \frac{COV (U_0, \varepsilon_V)}{\sigma_{\varepsilon_V}} M_0(P) \end{split}$$

where

$$M_1(P) = rac{\phi(\Phi^{-1}(1-p))}{p} \ \, ext{and} \ \, M_0(P) = rac{\phi(\Phi^{-1}(1-p))}{1-p}$$

because

$$COV(U_i, \varepsilon_V) = COV(\alpha_{i1}f_1 + \alpha_{i2}f_2 + \varepsilon_i, \varepsilon_V) = 0, \quad i = 0, 1.$$

$$I_E = \{Z\}$$

$$\frac{z\gamma + \alpha_{V1}f_1 + \alpha_{V2}f_2 + \varepsilon_V}{\sqrt{\alpha_{V1}^2\sigma_{f_1}^2 + \alpha_{V2}^2\sigma_{f_2}^2 + \sigma_{\varepsilon_V}^2}} = \Phi^{-1}(1-p).$$

Bias
$$TT(P(Z) = p) = \beta_0 M(p)$$
,

$$M(P) = M_1(P) - M_0(P)$$

Bias *ATE* $(P(Z) = p) = M(p) [\beta_1 (1 - p) + \beta_0 p]$

Bias *MTE*
$$(P(Z) = p) = M(p) [\beta_1 (1-p) + \beta_0 p] - \Phi^{-1} (1-p) [\beta_1 - \beta_0]$$

where

$$M(p) = \frac{\phi(\Phi^{-1}(1-p))}{p(1-p)}$$

$$\beta_{1} = \frac{\alpha_{V1}\alpha_{11}\sigma_{f_{1}}^{2} + \alpha_{V2}\alpha_{12}\sigma_{f_{2}}^{2}}{\sqrt{\alpha_{V1}^{2}\sigma_{f_{1}}^{2} + \alpha_{V2}^{2}\sigma_{f_{2}}^{2} + \sigma_{\varepsilon_{V}}^{2}}}$$

$$\beta_{0} = \frac{\alpha_{V1}\alpha_{01}\sigma_{f_{1}}^{2} + \alpha_{V2}\alpha_{02}\sigma_{f_{2}}^{2}}{\sqrt{\alpha_{V1}^{2}\sigma_{f_{1}}^{2} + \alpha_{V2}^{2}\sigma_{f_{2}}^{2} + \sigma_{\varepsilon_{V}}^{2}}}$$

Problem: Verify the equations on all slides.

Heckman

$$I'_E = \{Z, f_2\}$$

May raise or lower the bias.

A Prototypical Model of Economic Choice Parameters Discussed Today The Selection Problem How Different Methods Solve the

<u>Link</u>

Figure 1.--Bias for Treatment on the Treated Special case:Adding relevant information f2 increases the bias

leckman

Using Matching

Figure 2.--Bias for Average Treatment Effect Special case: Adding relevant information f2 increases the bias

Figure 3.--Bias for Marginal Treatment Effect Special case: Adding relevant information f2 increases the bias

Control Function Method Models the Bias

In control function method, adding f_2 we simply change the control function. We go from

$$K_1(P(Z) = p) = \beta_1 M_1(p)$$

 $K_0(P(Z) = p) = -\beta_0 M_0(p)$

to

$$\begin{aligned} & \mathcal{K}_{1}'\left(\mathcal{P}\left(\mathcal{Z},f_{2}\right)=p\right) &= \beta_{1}'M_{1}\left(p\right) \\ & \mathcal{K}_{0}'\left(\mathcal{P}\left(\mathcal{Z},f_{2}\right)=p\right) &= -\beta_{0}'M_{0}\left(p\right) \end{aligned} \\ \end{aligned} \\ \text{where } M_{1}\left(p\right) &= \frac{\phi\left(\Phi^{-1}(1-p)\right)}{p} \text{ and } M_{0}\left(p\right) = \frac{\phi\left(\Phi^{-1}(1-p)\right)}{1-p} \end{aligned}$$

This protects us against misspecification.

Suppose we do not know f_2 , just proxy it by Z

$$\widetilde{I}_{E^*} = \left\{ Z, \widetilde{Z} \right\}.$$

Suppose
$$I_E = \widetilde{I}_{E^*}$$

Suppose further that

$$\widetilde{Z} \sim N(0, \sigma_{\widetilde{Z}}^2)$$

$$corr\left(\widetilde{Z}, f_2\right) = \rho, \text{ and } \widetilde{Z} \perp (\varepsilon_0, \varepsilon_1, \varepsilon_V, f_1).$$

Expressions corresponding to β_0 and β_1 :

$$\widetilde{\beta}_{1} = \frac{\alpha_{11}\alpha_{V1}\sigma_{f_{1}}^{2} + \alpha_{12}\alpha_{V2}(1-\rho^{2})\sigma_{f_{2}}^{2}}{\sqrt{\alpha_{V1}^{2}\sigma_{f_{1}}^{2} + \alpha_{V2}^{2}\sigma_{f_{2}}^{2}(1-\rho^{2}) + \sigma_{\varepsilon_{V}}^{2}}} \\ \widetilde{\beta}_{0} = \frac{\alpha_{01}\alpha_{V1}\sigma_{f_{1}}^{2} + \alpha_{02}\alpha_{V2}(1-\rho^{2})\sigma_{f_{2}}^{2}}{\sqrt{\alpha_{V1}^{2}\sigma_{f_{1}}^{2} + \alpha_{V2}^{2}\sigma_{f_{2}}^{2}(1-\rho^{2}) + \sigma_{\varepsilon_{V}}^{2}}}$$

- By substituting I'_E for *l̃_E* and β'_j for *β̃_j* (j = 0, 1) into Conditions (1), (2) and (3) we obtain equivalent results for this case. Whether *l̃_E* will be bias reducing depends on how well it spans I_R and the signs of the terms in the absolute values.
- In this case, there is another parameter ρ ($\rho = 0$).

The bias generated when the econometrician's information is I_E can also be smaller than when it is I'_E. It can be the case that knowing the proxy variable Z̃ is better than knowing the actual variable f₂. Take treatment on the treated as the parameter. The bias is reduced when Z̃ is used instead of f₂ if

$$\frac{\alpha_{01}\alpha_{V1}\sigma_{f_{1}}^{2} + \alpha_{02}\alpha_{V2}\left(1 - \rho^{2}\right)\sigma_{f_{2}}^{2}}{\sqrt{\alpha_{V1}^{2}\sigma_{f_{1}}^{2} + \alpha_{V2}^{2}\sigma_{f_{2}}^{2}\left(1 - \rho^{2}\right) + \sigma_{\varepsilon_{V}}^{2}}} \left| < \left| \frac{\alpha_{01}\alpha_{V1}\sigma_{f_{1}}^{2}}{\sqrt{\alpha_{V1}^{2}\sigma_{f_{1}}^{2} + \sigma_{\varepsilon_{V}}^{2}}} \right| \right|$$

Problem: Prove this

leckman

Using Matching

Heckman

Heckman

Using Matching

- Adding more variables to the Information Set may increase Bias.
- How to choose the relevant W variables?
- Standard methods on model selection criteria fail.
- An implicit assumption underlying such procedures is that the added conditioning variables *C* are exogenous in the following sense

$$(Y_0, Y_1) \perp D | I_E, C \tag{M-4}$$

 $(I_E$ is the list of initial variables used as conditioning variables.)

- Sometimes procedures suggested "Add variables when t ratios big in propensity score"
- Improve Fit
- Such procedures can raise the bias.

Consider the following example:

$$\widetilde{\widetilde{I}}_E = \{Z, S\}$$

where

$$S = V - Z\gamma + \eta$$

$$\eta \sim N(0, \sigma_{\eta}^{2})$$

$$\eta \perp (f_{1}, f_{2}, \varepsilon_{0}, \varepsilon_{1}, \varepsilon_{V}).$$

S might be an elicitation from a questionaire.

Same expressions for the biases using $\widetilde{\beta}_j$ (j = 0, 1) instead of β_j where:

$$\widetilde{\widetilde{\beta}}_{1} = \frac{\left(\alpha_{11}\alpha_{V1}\sigma_{f_{1}}^{2} + \alpha_{12}\alpha_{V2}\sigma_{f_{2}}^{2}\right)}{\sqrt{\alpha_{V1}^{2}\sigma_{f_{1}}^{2} + \alpha_{V2}^{2}\sigma_{f_{2}}^{2} + \sigma_{\varepsilon_{V}}^{2} + \sigma_{\eta}^{2}}}$$
$$\widetilde{\widetilde{\beta}}_{0} = \frac{\left(\alpha_{01}\alpha_{V1}\sigma_{f_{1}}^{2} + \alpha_{02}\alpha_{V2}\sigma_{f_{2}}^{2}\right)}{\sqrt{\alpha_{V1}^{2}\sigma_{f_{1}}^{2} + \alpha_{V2}^{2}\sigma_{f_{2}}^{2} + \sigma_{\varepsilon_{V}}^{2} + \sigma_{\eta}^{2}}}$$

In general, these expressions are not zero. Bias can be increased *or* decreased.

Problem: Derive these conditions

When $\sigma_{\eta}^2 = 0$ we can perfectly predict D. (Will pass a goodness-of-fit criterion) Thus for

$$2arepsilon > \sigma_\eta^2 > arepsilon > 0$$

It follows that

$$\begin{split} &\lim_{\varepsilon \to 0} \Pr\left(D = 1 | V - Z\gamma + \eta\right) = 1 \text{ for } V > Z\gamma \\ &\lim_{\varepsilon \to 0} \Pr\left(D = 1 | V - Z\gamma + \eta\right) = 0 \text{ for } V < Z\gamma. \end{split}$$

Assumption (M-2) is violated and matching breaks down Making σ_{η}^2 arbitrarily small, we can predict *D* arbitrarily well. Can improve over the fit with (f_1, f_2) in the set which produces no bias.

	Goodness of fit statistics		Average Bias		
Variables in Probit	Correct in-sample prediction rate	Pseudo \mathbb{R}^2	TT	ATE	MTE
Z	66.88%	0.1284	1.1380	1.6553	1.6553
Z, f_2	75.02%	0.2791	1.2671	1.9007	1.9007
Z, f_1, f_2	83.45%	0.4844	0.0000	0.0000	0.0000
Z, S_1	77.38%	0.3282	0.9612	1.3981	1.4070
Z, S_2	92.25%	0.7498	0.9997	1.4541	1.4590

Table 4

Model:

$$\begin{split} V &= Z + f_1 + f_2 + \varepsilon_v \quad \varepsilon_v \sim N\left(0,1\right) \quad S_1 = V + u_1 \quad u_1 \sim N\left(0,4\right) \\ Y_1 &= 2f_1 + 0.1f_2 + \varepsilon_1 \quad \varepsilon_1 \sim N\left(0,1\right) \quad S_2 = V + u_2 \quad u_2 \sim N\left(0,0.25\right) \\ Y_0 &= f_1 + 0.1f_2 + \varepsilon_0 \quad \varepsilon_0 \sim N\left(0,1\right) \\ &\qquad f_1 \sim N\left(0,1\right) \\ &\qquad f_2 \sim N\left(0,1\right) \end{split}$$

A More General Example

Considers use of a proxy regressor

$$Q = \alpha_{Q_Z} Z + \alpha_{Q_1} f_1 + \alpha_{Q_2} f_2 + \tau + \eta$$

- $Z \perp\!\!\!\perp (f_1, f_2, \tau, \eta);$
- (f_1, f_2, τ, η) has mean zero
- $f_1 \perp \perp f_2$, $\tau \perp \perp \eta$ and $(f_1, f_2) \perp \perp (\tau, \eta)$;
- τ possibly dependent on ε_V in the latent variable generating the treatment choice
- η is measurement error.
- For different levels of dependence between τ and ε_V, and different weights on Z, f₁, f₂ and on the scale of measurement error, Q can be a better predictor of D than f₁, f₂ or even f₁, f₂, Z.

- However, in general, $(Y_1, Y_0) \not\perp D \mid Q$ because Q is an imperfect proxy for the combinations of f_1 and f_2 entering Y_1 and Y_0 .
- Thus conditioning on Q can produce a better fit for D but greater bias for the treatment parameters.

Consider the following example where Y is an outcome and I is an index

$$Y = \theta + \varepsilon_Y$$
$$I = \theta + \varepsilon_I$$

where

$$\theta \perp (\varepsilon_Y, \varepsilon_I),$$

 $\varepsilon_Y \perp \varepsilon_I.$

Obviously $Y \perp I \mid \theta$.

- Suppose instead that we have a candidate conditioning variable $Q = \alpha_{\theta}\theta + \eta + \tau$.
- Suppose that all variables are normal with zero mean and are mutually independent.
- Then we may write

$$I = \pi_I Q + \varepsilon_Q$$

where

$$\pi_I = \frac{\alpha_\theta \sigma_\theta^2 + \sigma_{\tau,\varepsilon_I}}{\alpha_\theta^2 \sigma_\theta^2 + \sigma_\eta^2 + \sigma_\tau^2}.$$

- It is assumed that η is independent of all other error components on the right hand sides of the equations for Q, I and y.
- From normal regression theory we know that conditioning is equivalent to residualizing.
- · Constructing the residuals we obtain

$$I - \pi_I Q = \theta \left(1 - \alpha_{\theta} \pi_I \right) + \varepsilon_I - \pi_I \left(\eta + \tau \right).$$

• By a parallel argument

$$Y - \pi_{Y}Q = \theta \left(1 - \alpha_{\theta}\pi_{Y}\right) + \varepsilon_{Y} - \pi_{Y} \left(\eta + \tau\right)$$

 $Y \perp | Q$ requires that $I - \pi_I Q$ and $Y - \pi_Y Q$ be uncorrelated, which in general does not happen.

Conclusion

- Letting the dependence between τ and ε_I get large, and setting α_{θ} to suitable values, we can predict I better (in the sense of R^2) with Q than with θ .
- Letting D = 1(I > 0) produces a simple version of the example because better prediction of I produces better prediction of D.

Heckman

Using Matching

Comparable to β_1 and β_0 above, we can define

$$\beta_1' = \frac{\alpha_{V1}\alpha_{11}\sigma_{f_1}^2}{\sqrt{\alpha_{V1}^2\sigma_{f_1}^2 + \sigma_{\varepsilon_V}^2}}$$
$$\beta_0' = \frac{\alpha_{V1}\alpha_{01}\sigma_{f_1}^2}{\sqrt{\alpha_{V1}^2\sigma_{f_1}^2 + \sigma_{\varepsilon_V}^2}}.$$

Condition 1 The bias produced by using matching to estimate TT is smaller in absolute value for any given p when the new information set $\sigma(l'_E)$ is used if

 $|\beta_0| > |\beta'_0| \,.$

Condition 2 The bias produced by using matching to estimate ATE is smaller in absolute value for any given p when the new information set $\sigma(l'_E)$ is used if

$$\left|eta_1\left(1-
ho
ight)+eta_0
ho
ight|>\left|eta_1'\left(1-
ho
ight)+eta_0'
ho
ight|.$$

Condition 3 The bias produced by using matching to estimate MTE is smaller in absolute value for any given p when the new information set $\sigma(l'_E)$ is used if

$$\left| \begin{array}{c} \mathsf{M}(p) \left[\beta_1 \left(1 - p \right) + \beta_0 p \right] - \Phi^{-1} \left(1 - p \right) \left[\beta_1 - \beta_0 \right] \right| \\ > \quad \left| \mathsf{M}(p) \left[\beta_1' \left(1 - p \right) + \beta_0' p \right] - \Phi^{-1} \left(1 - p \right) \left[\beta_1' - \beta_0' \right] \right| \end{array} \right|$$

Proof of Condition 1

Suppose

$$\beta_{0} = \frac{\alpha_{V1}\alpha_{01}\sigma_{f_{1}}^{2} + (\alpha_{V2}^{2})\left(\frac{\alpha_{02}}{\alpha_{V2}}\right)\sigma_{f_{2}}^{2}}{\sqrt{\alpha_{V1}^{2}\sigma_{f_{1}}^{2} + \alpha_{V2}^{2}\sigma_{f_{2}}^{2} + \sigma_{\varepsilon_{V}}^{2}}} > \underbrace{\frac{\alpha_{V1}\alpha_{01}\sigma_{f_{1}}^{2}}{\sqrt{\alpha_{V1}^{2}\sigma_{f_{1}}^{2} + \sigma_{\varepsilon_{V}}^{2}}}}_{\text{when } f_{2} \text{ is in information set}} > \underbrace{\frac{\alpha_{V1}\alpha_{01}\sigma_{f_{1}}^{2}}{\sqrt{\alpha_{V1}^{2}\sigma_{f_{1}}^{2} + \sigma_{\varepsilon_{V}}^{2}}}}_{\text{when } f_{2} \text{ is not}} = \beta_{0}^{\prime}.$$
When $\left(\frac{\alpha_{02}}{\alpha_{V2}}\right) = 0, \ \beta_{0} < \beta_{0}^{\prime}.$

$$\frac{\partial\beta_{0}}{\partial\left(\frac{\alpha_{02}}{\alpha_{V2}}\right)} = \frac{\alpha_{V2}^{2}\sigma_{f_{2}}^{2}}{\sqrt{\alpha_{V1}^{2}\sigma_{f_{1}}^{2} + \alpha_{V2}^{2}\sigma_{f_{2}}^{2} + \sigma_{\varepsilon_{V}}^{2}}} > 0.$$

There is some critical value $\alpha^*_{\rm 02}$ beyond which $\beta_{\rm 0}>\beta'_{\rm 0}$

Assume

$$\alpha_{01} = \alpha_{V_1} = \alpha_{V_2} = 1$$

 $\alpha_{02} = \alpha_{12} = 1$
 $\alpha_{11} = 2$

A Prototypical Model of Economic Choice Parameters Discussed Today The Selection Problem How Different Methods Solve the

Return to Text

$$\begin{array}{rcl} Y_j^* &=& \mu_j + U_j \\ U_j &=& \alpha_{j1}f_1 + \alpha_{j2}f_2 + \varepsilon_j \text{ , } j = 0,1 \\ Y_j &=& 1 \text{ if } Y_j^* \geq 0, \quad = 0 \text{ otherwise,} \end{array}$$

People receive treatment according to the rule

$$V = \mu_V + U_V$$

$$U_V = \alpha_{V_1} f_1 + \alpha_{V_2} f_2 + \varepsilon_V$$

$$D = 1 \text{ if } V \ge 0, = 0 \text{ otherwise};$$

 $f_1 \perp\!\!\!\perp f_2, \ \varepsilon_0 \perp\!\!\!\perp \varepsilon_1 \perp\!\!\!\perp \varepsilon_V, \qquad (f_1, f_2) \perp\!\!\!\perp (\varepsilon_0, \varepsilon_1, \varepsilon_V)$

The effect of treatment is given by:

$$\Delta_1(I_E) = \frac{\Pr(Y_1 = 1, D = 1 | I_E)}{\Pr(Y_0 = 1, D = 1 | I_E)}.$$

A second definition works with odds ratios:

$$\Delta_{2}(I_{E}) = \frac{\frac{\Pr(Y_{1}=1,D=1|I_{E})}{\Pr(Y_{1}=0,D=1|I_{E})}}{\frac{\Pr(Y_{0}=1,D=1|I_{E})}{\Pr(Y_{0}=0,D=1|I_{E})}}$$

One could also work with log Δ . Under the null hypothesis of no effect of treatment $\Delta_1 = \Delta_2 = 1$.

$$\widehat{\Delta}_1(I_E) = \frac{\Pr\left(Y_1 = 1, D = 1 | I_E\right)}{\Pr\left(Y_0 = 1, D = 0 | I_E\right)}.$$

The denominator replaces the desired probability

$$\Pr(Y_0 = 1, D = 1 | I_E)$$

by
$$\Pr(Y_0 = 1, D = 0 | I_E).$$

Under the Null Hypothesis of no "real" effect of treatment

$$\mu_1 = \mu_0 = \mu$$
$$F_{U_1} = F_{U_0} = F_U$$

can be generated by

$$\alpha_{11} = \alpha_{01} = \alpha_1$$
$$\alpha_{12} = \alpha_{02} = \alpha_2$$
$$F_{\varepsilon_1} = F_{\varepsilon_0} = F_{\varepsilon}$$

Assume initially that

$$I_E = \{f_1, f_2\}$$
.

$$\begin{split} \widehat{\Delta}_1(I_E) &= \frac{\Pr(Y_1 = 1, D = 1 | f_1, f_2)}{\Pr(Y_0 = 1, D = 0 | f_1, f_2)} \\ &= \frac{\Pr(Y_1 = 1 | f_1, f_2)}{\Pr(Y_0 = 1 | f_1, f_2)} = \Delta_1(I_E). \end{split}$$

In general:

$$\begin{aligned} \Delta_1(I_E) &= \frac{\Pr(Y_1 = 1, D = 1 | I_E)}{\Pr(Y_0 = 1, D = 1 | I_E)} \\ &\neq \frac{\Pr(Y_1 = 1, D = 1 | I_E)}{\Pr(Y_0 = 1, D = 0 | I_E)} = \widehat{\Delta}_1(I_E) \end{aligned}$$

Figure 10.--Estimated Effect of Treatment under Different Information Sets

Figure 11.--Estimated Effect of Treatment under Different Information Sets No Effect of Treatment and av2=-1

Figure 12 .-- Estimated Effect of Treatment under Different InformationSets

Figure 13.--Estimated Effect of Treatment under Different Information Sets

Heckman

Using Matching

Figure 14.--Estimated Effects of Treatment under Different Information Sets

Heckman

Using Matching

Figure 16.--Estimated Effect of Treatment under Different Infomation Sets

Heckman

Figure 17.--Estimated Effects of Treatment under Different Information Sets

Heckman

Using Matching

Consider a general model of the form:

$$\begin{array}{rcl} Y_{1} & = & \mu_{1} + U_{1} \\ Y_{0} & = & \mu_{0} + U_{0} \\ V & = & \mu_{V} \left(Z \right) + U_{V} \\ D & = & 1 \mbox{ if } V \geq 0, \ = 0 \mbox{ otherwise} \\ Y & = & DY_{1} + (1 - D) \ Y_{0}. \end{array}$$

where

Heckman

Using Matching

Let $\phi(\cdot)$ and $\Phi(\cdot)$ be the pdf and the cdf of a standard normal random variable. Then, the propensity score for this model is given by:

$$\Pr(V > 0 | \mu_V(Z)) = P(\mu_V(Z)) = \Pr(U_V > -\mu_V(Z)) = p$$

= $1 - \Phi\left(\frac{-\mu_V(Z)}{\sigma_V}\right) = p$

SO

$$\frac{-\mu_V(Z)}{\sigma_V} = \Phi^{-1} \left(1 - p\right).$$

Since the event
$$\left(V \stackrel{\leq}{\underset{}{=}} 0, P\left(\mu_V(Z)\right) = p\right)$$
 can be written as
$$\frac{U_V}{\sigma_V} \stackrel{\leq}{\underset{}{=}} -\frac{\mu_V(Z)}{\sigma_V}$$
$$\frac{U_V}{\sigma_V} \stackrel{\leq}{\underset{}{=}} \Phi^{-1}(1-p)$$

we can write the conditional expectations required to get the biases as a function of p.

For U_1 :

$$E(U_{1}|V > 0, P(\mu_{V}(Z)) = p)$$

$$= \frac{\sigma_{1V}}{\sigma_{V}}E\left(\frac{U_{V}}{\sigma_{V}}|\frac{U_{V}}{\sigma_{V}} > \frac{-\mu_{V}(Z)}{\sigma_{V}}, P(\mu_{V}(Z)) = p\right)$$

$$= \frac{\sigma_{1V}}{\sigma_{V}}E\left(\frac{U_{V}}{\sigma_{V}}|\frac{U_{V}}{\sigma_{V}} > \Phi^{-1}(1-p)\right)$$

$$= \beta_{1}M_{1}(p)$$

$$E(U_{1}|V = 0, P(\mu_{V}(Z)) = p)$$

$$= \frac{\sigma_{1V}}{\sigma_{V}}E\left(\frac{U_{V}}{\sigma_{V}}|\frac{U_{V}}{\sigma_{V}} = \frac{-\mu_{V}(Z)}{\sigma_{V}}, P(\mu_{V}(Z)) = p\right)$$

$$= \frac{\sigma_{1V}}{\sigma_{V}}E\left(\frac{U_{V}}{\sigma_{V}}|\frac{U_{V}}{\sigma_{V}} = \Phi^{-1}(1-p), P(\mu_{V}(Z)) = p\right)$$

$$= \beta_{1}\Phi^{-1}(1-p)$$

Where

$$\beta_1 = \frac{\sigma_{1V}}{\sigma_V}$$

Similarly for U_0 :

$$\begin{split} & E\left(U_{0}|V>0, P\left(\mu_{V}\right)=p\right) = \beta_{0}M_{1}(p) \\ & E\left(U_{0}|V<0, P\left(\mu_{V}\right)=p\right) = \beta_{0}M_{0}(p) \\ & E\left(U_{0}|V=0, P\left(\mu_{V}\right)=p\right) = \beta_{0}\Phi^{-1}\left(1-p\right) \end{split}$$

Where

$$\beta_0 = \frac{\sigma_{0V}}{\sigma_V}.$$

and

$$M_{1}(p) = \frac{\phi(\Phi^{-1}(1-p))}{p}$$
$$M_{0}(p) = -\frac{\phi(\Phi^{-1}(1-p))}{(1-p)}$$

are inverse Mills ratio terms.

A Prototypical Model of Economic Choice Parameters Discussed Today The Selection Problem How Different Methods Solve the

Substituting these into the expressions for the biases

Bias ATE (p) =
$$\beta_1 M_1(p) - \beta_0 M_0(p)$$

= $M(p) (\beta_1 (1-p) + \beta_0 p)$

Bias
$$MTE = \beta_1 M_1(p) - \beta_0 M_0(p)$$

 $-\beta_1 \Phi^{-1} (1-p) + \beta_0 \Phi^{-1} (1-p)$
 $= M(p) (\beta_1 (1-p) + \beta_0 p)$
 $-\Phi^{-1} (1-p) [\beta_1 - \beta_0].$

where

$$M(p) = M_1(p) - M_0(p) = rac{\phi(\Phi^{-1}(1-p))}{p(1-p)}$$