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1. Introduction
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• Differences between sampling-based inference and design-based inference.

• Consider two simple examples. 

• Table 1: finite population consisting of n units with each unit characterized by 

a pair of variables, 𝑌𝑖 and 𝑍𝑖. 
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Table 1: Sampling-based Uncertainty (√ is observed, ? is missing)
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• Consider an estimand that is function of the full set of pairs 𝑌𝑖, 𝑍𝑖 𝑖=1
𝑛𝑖 . 

• Uncertainty about such an estimand arises when we observe the values (𝑌𝑖 , 𝑍𝑖)
only for a sample, that is, for a subset of the population. 

• In Table 1, inclusion of unit 𝑖 in a sample is coded by the binary variable 

𝑅𝑖 ∈ {0, 1}.
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• Sampling-based inference uses information about the process that determines 

the sampling indicators 𝑅1, … , 𝑅𝑛 to assess the variability of estimators across 

different samples. 

• The second and third sets of columns in Table 1 depict such alternative 

samples. 

• Table 2 depicts a different scenario in which we observe for each unit in the 

population the value of one of two potential outcome variables, either 𝑌𝑖
∗ 1 or 

𝑌𝑖
∗ 0 , but not both.
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Table 2: Sampling-based Uncertainty (√ is observed, ? is missing)
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• The binary variable 𝑋𝑖 ∈ {0, 1} indicates which potential outcome we observe.

• Consider an estimand that is a function of the full set of triples 

𝑌𝑖
∗ 1 , 𝑌𝑖

∗ 0 , 𝑋𝑖 𝑖=1
𝑛 . 

• As before, an estimator is a function of the observed data, the pairs (𝑋𝑖 , 𝑌𝑖), for 

𝑖 = 1,… , 𝑛, where 𝑌𝑖 = 𝑌𝑖
∗(𝑋𝑖) is the realized value. 

• Design-based inference uses information about the process that determines the 

assignment 𝑋1, … , 𝑋𝑛 to assess the variability of estimators across different 

samples. 

• The second and third sets of columns in Table 2 depicts such alternative 

samples.
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• More generally, can have missing data processes that combine features of these 

two examples, with some units not included in the sample at all, and with some 

of the variables not observed for the sampled units. 

• Articulating both the exact nature of the estimand of interest and the source of 

uncertainty that makes an estimator stochastic is a crucial first step to valid 

inference. 

• For this purpose, it will be useful to distinguish.

• Descriptive estimands, where uncertainty stems solely from not observing all 

units in the population of interest.

• Causal estimands, where the uncertainty stems, at least partially, from 

unobservability of some of the potential outcomes.
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2. A Simple Example
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• A finite population of size n. 

• We sample N units from this population, with {𝑅𝑖 ∈ {0, 1} indicating whether a 

unit was sampled (𝑅𝑖 = 1) or not (𝑅𝑖 = 0) so that 𝑁 = σ𝑖=1
𝑛 𝑅𝑖. 

• There is a single binary regressor, 𝑋𝑖 ∈ {0, 1}, and 𝑛𝑥 (𝑟𝑒𝑠𝑝. 𝑁𝑥) is the number 

of units in the population (resp. the sample) with 𝑋𝑖 = 𝑥. 
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• We view the regressor 𝑋𝑖 not as a fixed attribute or characteristic of each unit, 

but as a cause or policy variable whose value could have been different from 

the observed value. 

• This generates missing data of the type shown in Table 2, where only some of 

the states of the world are observed, implying that there is design-based 

uncertainty. 

• For the RTC example, 𝑌𝑖
∗ 1 and 𝑌𝑖

∗(0) could be state-level crime rates with 

and without RTC. 

• Realized outcome:

which is the observed state-level crime rate in the RTC example.
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• Potential outcomes are viewed as non-stochastic attributes for unit i, 

irrespective of the realized value of 𝑋𝑖. 

• They, as well as the additional observed attributes, remain fixed in repeated 

sampling thought experiments, whereas 𝑅𝑖 and 𝑋𝑖 are stochastic.

• As a result, so are the realized outcomes in the sample, 𝑌𝑖. 

• Let 𝒀, 𝒀∗ 1 , 𝒀∗ 0 , 𝑹, and 𝑿 be the population n-vectors with i-th element 

equal to 𝑌𝑖 , 𝑌𝑖
∗ 1 , 𝑌𝑖

∗ 0 , 𝑅𝑖, and 𝑋𝑖 respectively. 

• For sampled units (units with 𝑅𝑖 = 1) we observe 𝑋𝑖 and 𝑌𝑖. For all units we 

observe 𝑅𝑖.
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• In general, estimands are functions of the full set of values (𝒀∗ 1 , 𝒀∗ 0 , 𝑿, 𝑹)
for all units in the population, both those in the sample and those not in the 

sample. 

• We consider two types of estimands, descriptive and causal. 

• If an estimand can be written as a function of (𝒀, 𝑿), free of dependence on 𝑹
and on the potential outcomes beyond the realized outcome, we label it a 

descriptive estimand. 

• Intuitively a descriptive estimand is an estimand whose value would be known 

with certainty if we observe the realized values of all variables for all units in 

the population. 

• If an estimand cannot be written as a function of (𝒀, 𝑿, 𝑹) because it depends 

on the potential outcomes 𝒀∗(1) and 𝒀∗(0), then we label it a causal estimand.
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• Consider three closely related estimands, one descriptive and two causal:

• Focus on the properties of a particular estimator:
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• This is the least squares estimator of the coefficient on 𝑋𝑖 for the regression in 

the sample of 𝑌𝑖 on 𝑋𝑖 and a constant. 

• There are two sources of randomness in this estimator: 

• A sampling component arising from the randomness of 𝑹.

• A design component arising from the randomness of 𝑿. 

• Uncertainty generated by the randomness in the sampling component as 

sampling-based uncertainty.

• Uncertainty generated by the design component as design-based uncertainty.
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)

)

• 𝑁1 ≥ 1 and 𝑁0 ≥ 1.
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• Taking the expectation only over the random sampling, or taking the expectation 

only over the random assignment, or over both, we find:

• Next, we look at the variance of the estimator, maintaining both the random 

assignment and random sampling assumption. 

• Define the population variances
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3. Design
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• We define the “design variance” conditional on 𝑹, so that only the design 

uncertainty is taken into account. 

• To make the different variances interpretable, look at the expected value of the 

variances, taking the expectation both over the assignment and the sampling.
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• In this single binary regressor example the EHW variance estimator can be 

written as

and መ𝑆0
2 is defined analogously. 

• Adjusting the degrees of freedom, using the modification proposed in 

MacKinnon and White (1985) specialized to this binary regressor example, we 

obtain ෨𝑉𝑒ℎ𝑤 =
መ𝑆1
2

𝑁1
+

መ𝑆0
2

𝑁0
, which is identical to the variance estimator proposed 

by Neyman (1990), with the expectation of this modified EHW variance 

estimator ෨𝑉𝑒ℎ𝑤 (conditional on 𝑁0and 𝑁1) equal to the sampling variance in the 

infinite population case, 𝑉𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑁1, 𝑁0, ∞,∞ .

• In the infinite population case the design-based uncertainty does not matter, so 

the EHW variance can be interpreted as implicitly taking into account design-

uncertainty by focusing on the infinite population case.
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• We could also estimate the variance using resampling methods, which would 

give us variance estimates close to ෠𝑉𝑒ℎ𝑤. 

• To be precise, suppose we use the bootstrap where we draw 𝑁1 bootstrap 

observations from the 𝑁1 treated units and 𝑁0 bootstrap units from the 𝑁0
control units. 

• In that case the bootstrap variance would in expectation (over the bootstrap 

replications) be equal to ෠𝑉𝑒ℎ𝑤.
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Comment 6. CAN WE IMPROVE ON THE EHW VARIANCE ESTIMATOR?

• The difference between 𝐸 ෨𝑉𝑒ℎ𝑤|𝑁1, 𝑁0 (or the Neyman variance) and the total 

variance is equal to 𝑆𝜃
2/𝑛. 

• The term 𝑆2 is difficult to estimate because it depends on the unobserved 

differences 𝑌𝑖
∗ 1 − 𝑌𝑖

∗(0). 

• As a result, 𝑆𝜃
2/𝑛 is typically ignored in analyses of randomized experiments

• (see Imbens and Rubin, 2015). 

• In particular, the EHW variance estimator implicitly sets the estimator of 𝑆𝜃
2 to 

be equal to zero, resulting in conservative inference. 

• For the case of a randomized experiment with a binary treatment Aronow et al. 

(2014) provide a lower bound for 𝑆𝜃
2 based on the Frechet-Hoefffding

inequality. 

• In Section 3, we propose an improved variance estimator that exploits the 

presence of fixed attributes. 


