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• Consider the model:

log yit = α0 + α1Si + Uit

where yit = income, Si = schooling, and α0 and α1 are
parameters of interest.

• Omitted from the above specification is unobserved ability,
which is captured in the residual term Uit .
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• We thus re-write the above as:

log yit = α0 + α1Si + ai + εit

where ai is ability, (εit , εi ′t) ⊥⊥ (Si , Si ′), and we believe that
Cov(ai , Si) 6= 0.

• Si is schooling of a sibling (could be a twin).

• Thus, E (Uit | Si) 6= 0, so that OLS on our original specification
gives biased and inconsistent estimates.
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Strategies for Estimation

1 Use proxies for ability : Find proxies for ability and include them
as regressors. Examples may include: height, weight, etc. The
problem with this approach is that proxies may measure ability
with error and thus introduce additional bias (see Section 9).

2 Fixed Effect Method : Find a paired comparison. Examples may
include a genetic twin or sibling with similar or identical ability.
Consider two individuals i and i ′:

log yit − log yi ′t = (α0 + α1Si + Uit)− (α0 + α1Si ′ + Ui ′t)

= α1(Si − Si ′) + (ai − ai ′) + (εit − εi ′t)
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Note: if ai = ai ′ , then OLS performed on our fixed effect estimator
is unbiased and consistent.

• If ai 6= ai ′ , then we just get a different bias (see Section 7).
Further, if Si is measured with error, we may exacerbate the
bias in our fixed effect estimator (see Section 9).
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OLS vs. Fixed Effect (FE)

• In the OLS case with ability bias, we have:

plim (αOLS
1 ) = α1 +

Cov(a, S)

Var(S)

• We also impose:

Var(S) = Var(S
′
)

Cov(a, S) = Cov(a′, S ′)

Cov(a′, S) = Cov(a, S ′)
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• With these assumptions, our fixed effect estimator is given by:

plim αFE
1 = α1 +

Cov (S − S ′, (a − a′) + (ε− ε′))

Var(S − S ′)

= α1 +
Cov(a, S)− Cov(a′, S)

Var(S)− Cov(S , S ′)
.

Note that if Cov(a′, S) = 0, and ability is positively correlated with
schooling, then the fixed effect estimator is upward biased. From
the preceding, we see that the fixed effect estimator has more
asymptotic bias if:

Cov(a, S)− Cov(a′, S)

Var(S)− Cov(S , S ′)
>

Cov(a, S)

Var(S)

⇒ Cov(a, S)

Var(S)
>

Cov(a′, S)

Cov(S , S ′)
.

Prove.
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Measurement Error

• Say S∗ = S + ν, where S∗ is observed schooling.

• Our model now becomes:

log y = α0 + α1S + U = α0 + α1S
∗ + (a + ε− α1ν)

and the fixed effect estimator gives:

log y − log y ′ = (α0 + α1S + U)− (α0 + α1S
′ + U ′)

= α1(S∗ − S∗
′

) + (U − U ′) + α1(ν ′ − ν)
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• Now we wish to examine which estimator (OLS or fixed effect),
has more asymptotic bias given our measurement error problem.

• For the remaining arguments of this section, we assume:

E (ν | S) = E (ν ′ | S) = E (ν | ν ′) = 0

so that the OLS estimator gives:

plim αOLS
1 = α1 +

Cov(S∗, a + ε− α1ν)

Var(S∗)

= α1 +
Cov(a, S)− α1Var(ν)

Var(S) + Var(ν)
.
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• The fixed effect estimator gives:

plim αFE
1 = α1 +

Cov
(
S∗ − S∗

′
, (U − U ′) + α1(ν ′ − ν)

)
Var(S∗ − S∗

′
)

= α1 +
Cov ((S − S ′), (a − a′))− α1Var(ν ′ − ν)

Var(S − S ′) + Var(ν ′ − ν)

= α1 +
Cov(a, S)− Cov(a, S ′)− α1Var(ν)

Var(S) + Var(ν)− Cov(S ′ , S)
.
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• Under what conditions will the fixed effect bias be greater?

• From the above, we know that this will be true if and only if:

Cov(a, S)− Cov(a, S ′)− α1Var(ν)

Var(S) + Var(ν)− Cov(S ′, S)
>

Cov(a, S)− α1Var(ν)

Var(S) + Var(ν)

⇒ Cov(a, S ′) (Var(S) + Var(ν)) >

(α1Var(ν)− Cov(a, S))Cov(S ′, S)

⇒ Cov(a, S)− α1Var(ν)

Var(S) + Var(ν)
>

Cov(a, S ′)

Cov(S ′ , S)
.

• If this inequality holds, taking differences can actually worsen
the fit over OLS alone.

• Intuitively, we see that we have differenced out the true
component, S , and compounded our measurement error
problem with the fixed effect estimator.
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• In the special case a = a′, the condition is

−α1Var(ν)

Var(S) + Var(ν)− Cov(S ′, S)
>

Cov(a, S)− α1Var(ν)

Var(S) + Var(ν)
.
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Errors in Variables
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The Model

• Suppose that the equation for earnings is given by:

Yt = X1tβ1 + X2tβ2 + Ut

where E (Ut | X1t ,X2t) = 0 ∀ t, t ′.

• Also define:

X ∗1t = X1t + ε1t and X ∗2t = X2t + ε2t .

Heckman Ability Bias



• Here, X ∗1t and X ∗2t are observed and measure X1t and X2t with
error.

• We also impose that Xi ⊥⊥ εj ∀ i , j .

• So, our initial model can be equivalently re-written as:

Yt = X ∗1tβ1 + X ∗2tβ2 + (Ut − ε1tβ1 − ε2tβ2).

• Finally, by assumed independence of X and ε, we write:

Σx∗ = Σx + Σε.

Heckman Ability Bias



McCallum’s Problem

• Question: Is it better for estimation of β1 to include other
variables measured with error? Suppose that X1t is not
measured with error, in the sense that ε1t = 0, while X2t is
measured with error. Below, we consider both excluding and
including X2t , and investigate the asymptotic properties of both
cases.
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Excluded X2t

• The equation for earnings with omitted X2 is:

y = X1β1 + (U + X2β2)

• Therefore, by arguments similar to those in the appendix, we
know:

plim β̃1 = β1 +
σ12

σ11
β2. (1)

• Here, σ12 is the covariance between the regressors, and σ11 is
the variance of X1.

• Before moving on to a more general model for the inclusion of
X2t , let us first consider the classical case for including both
variables.
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• Suppose

Σε =

[
σ∗11 0
0 σ∗22

]
,Σx =

[
σ11 0
0 σ22

]
.

• We know that:

plim β̂ =
[
I − (Σx∗)

−1 (Σε)
]
β (2)

where the coefficient and regressor vectors have been stacked
appropriately (see Appendix for derivation).

• Note that Σε represents the variance-covariance matrix of the
measurement errors, and Σx is the variance-covariance matrix
of the regressors.
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Derivation of Equation (2)

• We can write

yt = x∗β + (Ut − ε1tβ1 − ε2tβ2),

where:

x∗ =
[
x∗1 x∗2

]
and β =

[
β1

β2

]
,

and x∗1 , x
∗
2 , are T × 1.
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• So:

β̂OLS =
(
x∗
′
x∗
)−1

(x∗
′
y)

= β +
(
x∗
′
x∗
)−1 (

x∗
′
(U − ε1β1 − ε2β2)

)
= β +

((
x∗
′
x∗
)

T

)−1

×
((

x∗
′
U

T

)
−
(
x∗
′
ε1β1

T

)
−
(
x∗
′
ε2β2

T

))
→ β +

(
E
(
x∗
′
x∗
))−1

×
(
E
(
x∗
′
U
)
− E

(
x∗
′
ε1

)
β1 − E

(
x∗
′
ε2

)
β2

)
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= β −
[
E
(
x∗
′

1 x∗1
)

E
(
x∗
′

1 x∗2
)

E
(
x∗
′

2 x∗1
)

E
(
x∗
′

2 x∗2
) ]−1

×
(
E

[
x∗
′

1 ε1

x∗
′

2 ε1

]
β1 + E

[
x∗
′

1 ε2

x∗
′

2 ε2

]
β2

)
= β −

[
E
(
x∗
′

1 x∗1
)

E
(
x∗
′

1 x∗2
)

E
(
x∗
′

2 x∗1
)

E
(
x∗
′

2 x∗2
) ]−1

×
[
E
(
x∗
′

1 ε1

)
E
(
x∗
′

1 ε2

)
E
(
x∗
′

2 ε1

)
E
(
x∗
′

2 ε2

) ] [ β1

β2

]
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=

(
I − (Σx∗)

−1

[
E
((
ε
′
1 + x

′
1

)
ε1

)
E
((
ε
′
1 + x

′
1

)
ε2

)
E
((
ε
′
2 + x

′
2

)
ε1

)
E
((
ε
′
2 + x

′
2

)
ε2

) ])
×
[
β1

β2

]
=

(
I − (Σx∗)

−1 (Σε)
)
β,

where the second-to-last step follows from the independence of x
and ε. This type of argument is also used to derive the probability
limit of the β’s in section 2.
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• Straightforward computations thus give:

plim β̂

=

[
I −

[
σ11 + σ∗11 0

0 σ22 + σ∗22

]−1 [
σ∗11 0
0 σ∗22

]] [
β1

β2

]

=


σ11

σ11 + σ∗11

0

0
σ22

σ22 + σ∗22

[ β1

β2

]
.

Heckman Ability Bias



Included X2t

• In McCallum’s problem we suppose that σ∗12 = 0.

• Further, as X1t is not measured with error, σ∗11 = 0.

• Substituting this into equation 2 yields:

plim β̂ = β −
[
σ11 σ12

σ12 σ22 + σ∗22

]−1 [
0 0
0 σ∗22

]
β

Heckman Ability Bias



• With a little algebra, the above gives:

plim β̂1 = β1 + β2

(
σ12

σ11

) σ∗22

σ22 + σ∗22 −
σ2

12

σ11


= β1 + β2

(
σ12

σ11

)(
σ∗22

σ22 (1− ρ2
12) + σ∗22

)
where ρ2

12 is simply the correlation coefficient,
σ2

12

σ11σ22
. Further,

we know that:
0 < ρ2

12 < 1

so including X2t results in less asymptotic bias (inconsistency).
• (We get this result by comparing the above with the bias from

excluding X2t in section 18, the result captured in equation
(1)).
• So, we have justified the kitchen sink approach. This result

generalizes to the multiple regressor case - 1 badly measured
variable with k good ones (Econometrica, 1972).
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General Case

• In the most general case, we have:

plim β̂ = β − (Σx∗)
−1 Σεβ

= β −
[
σ11 + σ∗11 σ12 + σ∗12

σ12 + σ∗12 σ22 + σ∗22

]−1 [
σ∗11 σ∗12

σ∗12 σ∗22

] [
β1

β2

]
.

• With a little algebra we find:

det(Σx∗) = σ11σ22 + σ11σ
∗
22 + σ∗11σ22 + σ∗11σ

∗
22− σ∗

2

12− 2σ12σ
∗
12− σ2

12
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• Therefore:

plim β̂ = β − 1

det(Σx∗)

[
σ22 + σ∗22 − (σ12 + σ∗12)
− (σ12 + σ∗12) σ11 + σ∗11

]
×
[
σ∗11 σ∗12

σ∗12 σ∗22

] [
β1

β2

]
• Supposing σ∗12 = 0, we get:

det(Σ̃x∗) = det(Σx∗) |σ∗12 = 0

= σ11σ22 + σ11σ
∗
22 + σ∗11σ22 + σ∗11σ

∗
22 − σ2

12
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• And thus:

plim β̂ = β −

 (σ22+σ∗22)σ∗11

det(Σ̃x∗ )

−σ12σ
∗
22

det(Σ̃x∗ )

−σ∗11σ12

det(Σ̃x∗ )

(σ11+σ∗11)σ∗22

det(Σ̃x∗ )

[ β1

β2

]
• Note that if β2σ12 < 0, OLS may not be downward biased for
β1.

• If β2 = 0, we get:

plim β̂2 =
β1σ12σ

∗
11

det(Σ̃x∗)

so, if X2 were a race variable and blacks get lower quality
schooling, (where schooling is measured by X1t , ) then σ12 < 0,
and hence β̂2 < 0.

• This would be a finding in support of labor market
discrimination.
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The Kitchen Sink Revisited

• McCallum’s analysis suggests that one should toss in a variable
measured with error if there is no measurement error in X1t .

• But suppose that there is measurement error in X1t .

• Is it still better to include the additional variable measured with
error as a regressor?

• We proceed by imposing β2 = 0.

• (i) Excluded X2t .

• The equation for earnings with measurement error in X1 and
excluded X2 is:

y = (X ∗1 + ε1) β1 + (U + X2β2)

= X ∗1 β1 + (U + X2β2 + β1ε1)
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• Therefore:

plim β̃1 = β1 − β1

(
σ∗11

σ11 + σ∗11

)
= β1

(
σ11

σ11 + σ∗11

)
(3)

= β1

 1

1 +
σ∗11

σ11


• (ii) Included X2t .
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• From our analysis in the General Case, we know that:

plim β̂1 = β1

(
(σ22 + σ∗22)σ11 − σ2

12

det(Σ̃x∗)

)
. (4)
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• If σ∗22 = 0, so that X2t is not measured with error:

plim β̂1 = β1

(
σ11σ22 − σ2

12

σ11σ22 − σ2
12 + σ∗11σ22

)
(5)

= β1

(
1− ρ2

12

1− ρ2
12 +

σ∗11

σ11

)
.

• Comparing eqn (4) and eqn (5), we see that adding the variable
measured without error always exacerbates the bias.
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• For, the bias in the excluded case will be smaller if:

β1

 1

1 +
σ∗11

σ11

 > β1

 1− ρ2
12

1− ρ2
12 +

σ∗11

σ11


⇐⇒

(
1− ρ2

12 +
σ∗11

σ11

)
>

(
1 +

σ∗11

σ11

)(
1− ρ2

12

)
⇐⇒ 0 > −ρ2

12

σ∗11

σ11
.

which is always the case, provided ρ2
12 > 0.

• (Note that the coefficients on β1 for both the excluded and
included case are less than one.

• So, the larger coefficient is the one with less bias, as stated
above.)
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• Now suppose that σ∗22 > 0, so that both variables are measured
with error.

• Then:

plim β̂1 = β1

(
(σ22 + σ∗22)σ11 − σ2

12

det(Σ̃x∗)

)

= β1

 1 +
σ∗22

σ22
− ρ2

12

1 +
σ∗11

σ11
+
σ∗11

σ11

σ∗22

σ22
+
σ∗22

σ22
− ρ2

12

 .

• Intuitively, adding measurement error in X2t can only worsen the
bias, and thus exclusion should again be preferred to inclusion.
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• Formally, including X2t gives more bias if and only if:

β1

 1 +
σ∗22

σ22
− ρ2

12

1 +
σ∗11

σ11
+
σ∗11

σ11

σ∗22

σ22
+
σ∗22

σ22
− ρ2

12

 < β1

 1

1 +
σ∗11

σ11


⇐⇒

(
1 +

σ∗11

σ11

)(
1 +

σ∗22

σ22
− ρ2

12

)
<

(
1 +

σ∗11

σ11
+
σ∗11

σ11

σ∗22

σ22
+
σ∗22

σ22
− ρ2

12

)
⇐⇒ −ρ2

12

σ∗11

σ11
< 0.

Heckman Ability Bias



• Thus, provided ρ2
12 > 0, including X2t results in more bias than

excluding it.

• If ρ2
12 = 0, the bias from including X2t is obviously seen to be:

β1

 1 +
σ∗22

σ22

1 +
σ∗11

σ11
+
σ∗11

σ11

σ∗22

σ22
+
σ∗22

σ22

 = β1

 1 +
σ∗22

σ22(
1 +

σ∗22

σ22

)(
1 +

σ∗11

σ11

)


= β1

 1

1 +
σ∗11

σ11


so that including and excluding X2t yields the same result.
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• Finally, from the General Case section, we have:

plim β̂1 =
β1 (σ22 + σ∗22)σ11 − σ2

12 + β2 (σ12σ
∗
22)

σ11σ22 − σ2
12 + σ∗11σ

∗
22 + σ∗11σ22 + σ11σ∗22

.

• L’Hôpital’s rule on the above shows that:

σ∗11 −→ ∞ lim
(

plim β̂1

)
= 0, and

lim
σ∗22→∞

(
plim β̂1

)
=

β1σ11 + β2σ12

σ11 + σ∗11

=
β1σ11

σ11 + σ∗11

+
β2σ12

σ11 + σ∗11

.
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Appendix
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Twin Methods

Basic Principle: Monozygotic or MZ (identical) twins are more
similar than Dizygotic or DZ (fraternal) twins. The key assumption
is that if environmental factors are the same for both types of twins,
then we can estimate genetic components to outcomes.
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Univariate Twin Model

• Let y = observed phenotypic variable, x = unobserved
genotype, and u = environment.
• Further, suppose that we can write our model additively:

y = x + u

and assume independence of x and u so that σ2
y = σ2

x + σ2
u.

• Now suppose that we have data on another individual:

y ∗ = x∗ + u∗

• Then our phenotypic covariance is:

Cov (y , y ∗) = Cov (x , x∗) + Cov (u, u∗)

where we are imposing the assumption:

Cov (x , u∗) = Cov(x∗, u) = 0.
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• Defining standardized forms and some simplifying notation, let

ỹ ≡ y

σy
, x̃ ≡ x

σx
, ũ ≡ u

σu
, h2 ≡ σ2

x

σ2
y

, ρ2 ≡ σ2
u

σ2
y

Thus, ỹσy = x̃σx + ũσu which implies ỹ = hx̃ + ρũ. We can
also derive the identity:

h2 + ρ2 =
σ2
x

σ2
y

. +
σ2
u

σ2
y

= 1

where the last step follows from our assumption of
independence.
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• Now we wish to consider the correlation between observed
phenotypes of our two individuals:

C = Corr(y , y ∗)

= Corr(hx̃ + pũ, hx̃∗ + ρũ∗)

= h2Cov(x̃ , x̃∗)

Var(x̃)
+ ρ2Cov(ũ, ũ∗)

Var(ũ)

= h2g + ρ2ν

say, with g and ν defined as above.
• We assume that gMZ = 1 and that gDZ < 1.
• That is, the genotypic variable is perfectly correlated among

identical twins, but less than perfectly correlated among
fraternal twins.
• Replacing this result into the above produces:

CMZ = h2 + νMZρ
2

CDZ = h2gDZ + νDZρ
2
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• Therefore:

CMZ − CDZ = (1− gDZ )h2 + (νMZ − νDZ )ρ2

= (1− gDZ )h2 + (νMZ − νDZ )(1− h2)

where the last equality follows from our established identity.

• Solving for h2, we find:

h2 =
(CMZ − CDZ )− (νMZ − νDZ )

(1− gDZ )− (νMZ − νDZ )
.
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• The only known in the right hand side of the above equality is
the expression (CMZ − CDZ ), which is simply the correlation
coefficient of the observed phenotypic variable.
• The remaining two expressions, (1− gDZ ) and (νMZ − νDZ )

can not be computed as they represent statistics on variables
we don’t observe.
• One could impose νMZ = νDZ so that:

h2 =
CMZ − CDZ

1− gDZ
.

• The expression gDZ is a measure of how closely the genetic
variable is correlated across our two observations.
• One could then guess or estimate a value for this parameter to

derive corresponding estimates of h2, the ratio of how much
variance in the phenotypic variable is explained by variance in
the genetic component.
• Other studies have attempted to include Cov(x , u) 6= 0 but this

presents an identification problem.
• A typical value of the estimable portion of the above,
CMZ − CDZ , is commonly reported in the literature to be 0.2.
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