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Abstract

While interest in social determinants of individual behavior has led to a rich
theoretical literature and many efforts to measure these influences, a ma-
ture “social econometrics” has yet to emerge. This chapter provides a critical
overview of the identification of social interactions. We consider linear and
discrete choice models as well as social networks structures. We also con-
sider experimental and quasi-experimental methods. In addition to describing
the state of the identification literature, we indicate areas where additional re-
search is especially needed and suggest some directions that appear to be
especially promising.
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Like other tyrannies, the tyranny of the majority was at first, and is
still vulgarly, held in dread, chiefly as operating through the acts
of the public authorities. But reflecting persons perceived that
when society is itself the tyrant-society, collectively over the sep-
arate individuals who compose it-its means of tyrannising are not
restricted to the acts which it may do by the hands of its politi-
cal functionary. Society can and does execute its own mandates:
and if it issues wrong mandates instead or right, or mandates at
all in things with which it ought not to meddle, it practices a so-
cial tyranny more formidable than many kinds of political oppres-
sion, since, though not usually upheld by such extreme penalties,
it leaves fewer means of escape, penetrating more deeply into the
details of life, and enslaving the soul itself. Protection, therefore,
against the tyranny of the magistrate is not enough: there needs
protection also against the tyranny of prevailing opinion and feel-
ing; against the tendency of society to impose, by means other
than civil penalties, its own ideas and rules of conduct on those
who dissent from them; to fetter the development and, if possible
prevent the formation, of any individuality not in harmony with its
ways, and compel all characters to themselves upon the model of
its own.
John Stuart Mill, On Liberty (1859)’

'On Liberty and other Writings, S. Collini ed., Cambridge: Cambridge University Press,
p. 8.



1 Introduction

This chapter explores identification problems that arise in the study of social
economics. We survey some of the existing empirical work, but do so in the
context of different identification strategies. Our concern is in understanding
general conditions under which the finding of evidence of social interactions is
possible and when it is not; we therefore do not focus on particular contexts. A
valuable complement to our chapter is Epple and Romano (forthcoming) who
provide an integration of theoretical, econometric and empirical work on the
specific question of peer effects in education.



2 Decision making in group contexts

Our baseline model of social interactions studies the joint behavior of indi-
viduals who are members of a common group g. The population size of a
group is denoted as n,. Our objective is to probabilistically describe the indi-
vidual choices of each i, w;. Choices are made from the elements of some
set of possible behaviors (2;,. This set is both individual- and group-specific,
though the econometric literature has typically not exploited the fact that differ-
ent groups may offer different choices. This is an unexplored and interesting
possibility. For each i, w_;, denotes the choices of others in the group, which
are one possible source of social interactions. From the perspective of econo-
metric evaluation, itis useful to distinguish between five forms of influences on
individual choices. These influences have different implications for how one
models the choice problem. These forms are:



(}’E

An R-vector of observable (to the modeler) individual-specific char-
acteristics;

An S -vector of observable (to the modeler) group-specific charac-
teristics;

A probability measure, unobservable (to the modeler), that de-
scribes the beliefs individual i possesses about behaviors of oth-
ers in the group;*

A vector of random individual-specific characteristics describing i,
unobservable to the modeler; and

A vector of random group-specific characteristics, unobservable to
the modeler.

4Li and Lee (2009) consider the use of survey data to render beliefs observables; we
discuss their work in section 5.vi. For purposes of the elucidation of the basic theory of choice
in the presence of social interactions, we focus on the case where beliefs are latent variables.



The distinction between observable and unobservable determinants of individ-
ual choices corresponds to the standard difference between observable and
unobservable heterogeneity in econometrics, or even more crudely, between
the data w;,, x;, vy, and the full range of factors affecting choices. Among the dif-
ferent sources of unobserved heterogeneity, i (w_;, ) functions very differently
from &; and «, since the logic of the choice problem determines the structure
of u$ (w_;,) in ways that do not apply to the other terms, which are shocks from
the perspective of the modeler.



Individual choices w;, are characterized as representing the maximiza-
tion of some payoff function V,

wig € argmax V (A, Xi, Ve, i (W_ig), &, @g). ()
;iEQ{g

The decision problem facing an individual, a function of preferences (embod-
ied in the specification of V); constraints (embodied in the specification of (;,):

and beliefs (embodied in the specification of ,uf(m_,'g]).f' Thus it is based on
completely standard microeconomic reasoning. While the equilibria of these
models can exhibit a range of interesting properties, such as multiple equilib-
ria and bifurcations of the equilibrium properties of the environment around

certain parameter values, these are properties of equilibria generated by this
standard choice framework.®

>Throughout, probability measures are denoted by u( - ).

®See surveys by Blume and Durlauf (2001), Brock and Durlauf (2001b) and Durlauf and
loannides (2010) for overviews of these and other theoretical features of these models as well
as the bibliographies of these papers for specific theoretical contributions.



As suggested above this choice model with social interactions is closed
by the assumptions under which u¢(w-;s) is determined. Without some struc-
ture on these beliefs, the model is consistent with any observed pattern of
undominated choices. The standard assumption in the theoretical and econo-
metric literatures, which we follow, closes the model by imposing an equilib-
rium condition: self-consistency between subjective beliefs y¢(w_;,) and the
objective conditional probabilities of the behaviors of others given i's informa-
tion set F,

(i (w-ig) = p(w—iglFi). (2)

The requirement in (2) is usually called self-consistency in the social inter-
actions literature and is nothing more than an equilibrium condition, from the
perspective of empirical analysis. We assume that for each i, F; consists of, for
all (x;) jeg: vo, € @and . In other words, each agent knows his own character-
istics x;, as well as those of others in the group, the observed and unobserved
group-level characteristics of his group (and of other groups), and his idiosyn-
cratic error. Agents do not observe the ¢;’s of others.



From the perspective of modeling individual behaviors, it is typically
assumed that agents do not account for the effect of their choices on the de-
cisions of others via expectations formation. The equilibrium in this model can
be seen as a Bayes-Nash equilibrium of a simultaneous-move incomplete-
information game. The individual decisions as described by

Wig = W Xis Yo H{W_jglFi), &0y ). (3)

Existence of an equilibrium for the group-wide vector of choices w, is equiv-
alent to establishing that there exists a joint probability measure of these
choices such that (3) is consistent with this joint probability measure. In ap-
plications in the literature, this is typically assured by a standard fixed point
theorem, e.g. Brock and Durlauf (2001a), Cooley (2008). Notice that it is pos-
sible for y, and u(w_;,|F;) to appear in equation (1) but not in equation (3).
In this case, group behaviors and characteristics act as externalities but do
not influence individual behaviors. This distinction is discussed in Cooper and
John (1988). From the perspective of the empirical study of social interactions,
equation (3) has been the main object of interest. Typically, (3) is assumed to
exhibit a form of supermodularity in the sense that the redistribution of prob-
ability mass of u(w-_;e|F;) towards larger (in an element-by-element pairwise
comparison sense) vectors of choices of others increases w;,. Milgrom and
Roberts (1990) and Vives (1990) launched the now immense literature in eco-
nomics on how supermodularity affects equilibrium outcomes for a wide range
of environments; ideas from this literature often indirectly appear in the em-
pirical social interactions literature, but with the exception of Aradillas-Lopez
(2009), discussed in section 5.vi.d, this literature has been underutilized in the
study of identification.



The distinction between y, and p(w-;,|Fi) is important in the social
econometrics literature. Following Manski (1993), the former is known as a
contextual effect whereas the latter (including the case of perfect foresight)
iIs known as an endogenous effect. The importance of this distinction is that
contextual interactions involve the interactions of predetermined (from the per-
spective of the model) attributes of one agent affecting another whereas en-
dogenous interactions allow for the possibility of simultaneity of interactions in
individual outcomes.



To see how identification problems arise in a social interactions expla-
nation of inequality, consider the stylized fact that the probability that a student
graduates from high school is negatively associated with growing up in a poor
neighborhood. Among the many possible explanations for this bivariate rela-
tionship are the following:

1. Heterogeneity in educational outcomes is determined by family-specific in-
vestment. Poor parents, following Becker and Tomes (1979) or Loury (1981),
invest fewer resources in their children’s education. If parental income is a
sufficient statistic for parental investment, then the mechanism for lower grad-
uation rates among poorer individuals is observable, constituting an element
of x;. The low graduation rate/poor neighborhood relationship is due to the
interfamily correlation of low incomes that defines a poor neighborhood.

2. Effort choices by students depend on their assessments of the payoff to
education. Poor neighborhoods contain distributions of role models that ad-
versely affect educational choices. If a poor neighborhood tends to contain
individuals whose incomes are relatively low compared to educational levels
(as would occur via self-selection of lower incomes into poor neighborhoods),
then the payoff to education may appear less attractive to high school stu-
dents and thereby affect effort in high school as well as graduation decisions.”
Relative to our candidate explanations, observed occupations and educational
levels of adults in a community are observable, then the low graduation/poor
neighborhood relationship are observable and included in y,. This is an exam-
ple of how contextual effects can link poverty and low graduation rates.



3. High school graduation decisions are influenced by the choices of peers
because of a direct desire to conform to the behaviors of others. Poorer neigh-
borhoods have the feature that low values of the u(w—_;,|F;) are self-reinforcing,
whereas high values of the u(w-;,|F;) are self-reinforcing for more affluent
neighborhoods. Thus endogenous social interactions can explain the rela-
tionship, although one has to be careful to explain why the peer interactions
lead to lower graduation rates in poorer neighborhoods. We can offer three
possible explanations: (i) The unique equilibrium could be characterized by a
social multiplier that magnifies the consequences of income differences. (ii)
In the spirit of Brock and Durlauf (2001a), there could be multiple equilibria in
low income neighborhoods but not in more affluent neighborhoods, because
the poor may face lower marginal returns to education, which would magnify
the influence of peer interactions relative to education returns in the equilib-
rium decision rule. (iii) There could be multiple equilibria for both high and
low income neighborhoods, and an (unmodeled) selection mechanism could
favor different equilibria in different neighborhoods in a manner correlated with
income.

"Streufert (2002) formalizes this type of idea and shows that the intuitive story just given
is in fact oversimplified in the sense that the mapping from neighborhood levels of parental
education/outcome relationships to student assessments of the returns to education may not
lead to lower estimates of the returns in poorer neighborhoods but the story we describe is
possible.



4. Parents transmit a host of skills to their children. Following Cunha and
Heckman (2007) and Heckman (2007), suppose that poorer parents tend to
have lower cognitive and non-cognitive skills which help to explain their lower
socioeconomic status and are in turn transmitted to their children. This would
imply that correlations among &; are the reason why poor neighborhoods have
lower graduation rates. This is an example of correlated unobservables and is
suggestive of the standard self-selection problem in econometrics.

5. Graduation decisions are affected by the quality of schools, where quality
involves a host of factors ranging from the distribution of teacher ability to
safety. Poorer neighborhoods have lower unmeasured school quality, then
neighborhood poverty is a proxy for a low value of a,, i.e. the graduation
finding is caused by an unobserved group effect.

The bottom line is that each of the factors we have identified as deter-
minants of individual outcomes can produce a relationship between individual
outcomes and neighborhood characteristics, even when the mechanism is in-
dividual and not socially based. Of course, no economist would ever consider
arguing that the fact that poor neighborhoods are associated with lower grad-
uation rates speaks to any of these mechanisms per se. The identification
question is whether these different explanations are distinguishable given the
sorts of data that are available for analysis. It is this question that motivates
the methods we describe.



We close this section with the observation that the behavioral model
(3) cannot be nonparametrically identified without additional assumptions on
structure. One reason for this is the possible existence of the unobserved
group effects a, which cannot be disentangled from elements of y,: Formally,
there exist classes of models such that for any proposed function ¢(-) and as-
sociated choices of unobservables «,, one can choose an alternative function
¢' and alternative choice of unobservables «;, such that all probability state-
ments about the observables are identical. Brock and Durlauf (2007) show this
for the binary choice model with social interactions which contains far more
structure than (3), a model we will discuss in section 5 below.

Nonparametric identification may also fail even if one rules out unob-
served group effects; Manski (1993) Proposition 3 gives various cases under
which nonparametric identification fails for a version of the individual decision

function eq. (3). Specifically, Manski studies an environment in which the
expected value of each person’s choice is determined by®

E(wiglyg. xi) = Gb(E(fUr'gL‘*’g)a -*‘f:‘)- (4)

8Appendix 1 contains an example of a model where this is a Bayes-Nash equilibrium
condition.



Each individual is small relative to the population, producing the rational ex-
pectations equilibrium condition

E(wj,ly,) = J E[mgﬂ_‘»‘g..x‘)dF_rh,g (5)

where Fy,, is the conditional distribution function of x; in group g given y,. To
say each individual is small is to say that knowledge of his own x; does not
affect the distribution function of individual characteristics within his group in
a nonnegligible way. For the joint model (4) and (5) one set of conditions un-
der which nonparametric identification fails are 1) the solution to equation (5)
is unique and 2) x; is functionally dependent on y,. It is evident under these
conditions that one cannot nonparametrically identify the separate effects of x;
and y, in determining w;, since differences in outcomes between two individ-
uals with differences in x; can always be attributed to the differences in their
associated values of y,.



To make this example concrete, suppose that x; is an individual's in-
come and y, is the mean income of a residential neighborhood. Functional de-
pendence would occur if neighborhoods were perfectly segregated by income,
l.e. no neighborhood contained individuals with different incomes. For this
case, it would impossible to distinguish the roles of individual and neighbor-
hood incomes on outcomes since they would coincide. Less trivially, suppose
that neighborhoods are fully segregated by income, which means that the em-
pirical supports of incomes across neighborhoods never intersect. Suppose
that individual income has no direct effects on outcomes whereas average
neighborhood income has a monotonic effect on equilibrium outcomes. In this
case, one could not distinguish an effect of neighborhood incomes on out-
comes from the case where individual incomes directly affect outcomes, but
do so in a step function fashion, where the jumps coincide with income levels
that define the lower endpoints of the neighborhood income supports.



Manski also shows that identification will fail when x; and y, are sta-
tistically independent. Non-identification follows from statistical independence
because E(wj,ly,) will not vary across groups, and so the effect cannot be
distinguished from a constant term. An obvious example of this would occur if
families were distributed across neighborhoods in such a way that each neigh-
borhood had the same mean income in realization. Manski's result is in fact
more general and is based on the observation that statistical independence
implies that E(wielye) = j @(E ({u,'gl_rxq].x)dF_r, which by uniqueness means
that E(wje|y,) must be independent of y,.°

9The argument may be seen in Manski (1993, p. 539).



3 Linear Models of Social Interaction

i. Basic structure
a. description

Much of the empirical literature on social economics has involved variations of
a general linear model, dubbed by Manski (1993) the linear-in-means model

wig = k + cxi + dyg + Jmi, + &, (6)

where mf@ denotes the average behavior in the group, i.e.

? |
m}f = E(wj|F;) . (7)
£ Jjeg



Following our definitions of the variables, note that k and J are scalars whereas
c and d are R- and S - vectors, respectively.'® Claims about social interactions
are, from the econometric perspective, equivalent to statements about the val-
ues of d and J. The statement that social interactions matter is equivalent to
the statement that at least some element of the union of the parameters in d
and the scalar J are nonzero. The statement that contextual social interactions
are present means that at least one element of d is nonzero. The statement
that endogenous social interactions matter means that J is nonzero. In Man-
ski’'s original formulation, y, = ¥,, where X, = qu 2. jeg X;j denotes the average
across individuals i of individual characteristics x; within a given group g, which
explains the model’'s name. Regardless of whether they are equal, we assume
that both y, and ¥, are observable to individuals, and discuss how to relax this

below.

1%Throughout, coefficient vectors such as ¢ are row vectors whereas variable vectors such
as x; are column vectors.



We initially study the model under two assumptions on the errors. First
we assume that the expected value of g; is 0, conditional on the information
set (X, %4, Ve, i €g),1"

foreachgandie g E(&i|xi, %, v, i€ g) =0. (8)
Second we assume that

foreach i, j,g,hsuchthati+ jorg#h )

COV(&;€jl|Xi, Xg, Vg, I € & Xj X Vipn JE R) = 0.

Equation (9) eliminates conditional covariation between the errors. The inclu-
sion of the group memberships, e.g. i € g rules out some relationship between
the identity of the group and model errors, thereby allowing us to treat groups
as exchangeable.

"The conditioning argument i € g means that one is conditioning on the fact that i is a
member of group g.



From equations (6) and (7), and assuming that each individual is small
enough relative to the group that the effect of his knowledge of his own &; on
m;, can be ignored, equilibrium implies that each actor's expected average
beﬁmvimr will be equal to a common value. This common value is derived in
appendix 1 and is described by

k+cX, +dy,

€ —
H?:- —.*‘H.f— [—J

(10)
This equation says that the individuals’ expectations of average behavior in
the group equal the average behavior of the group, and this in turn depends
linearly on the average of the individual determinants of behavior, ¥,, and the
contextual interactions that the group members experience in common, y,.
The condition J < 1, which is required for equation (10) to make sense, is
guaranteed to hold in the game-model of appendix 1. There, J maps the
marginal rate of substitution between private return and social conformity, a
non-negative real number, into the interval [0, 1).



b. reduced form

Substitution of (10) into (6) eliminates m, and so provides a reduced form
version of the linear in means model in that the individual outcomes are deter-
mined entirely by observables and the individual-specific error:

k J d
Wiy = = j—I—M—I—l_Jr CX, —I—l_j}\,;.—l—frf. (11)



Much of the empirical literature has ignored the distinction between endoge-
nous and contextual interactions, and has focused on this reduced form, i.e.
focused on the regression

Wig = Ty T TX; + T2V, + &, (12)

where the parameters g, 71, 72 are taken as the objects of interest in the em-
pirical exercise. A comparison of (12) with (11) indicates how findings in the
empirical literature that end with the reporting of mp.m, m inadequately ad-
dress the task of fully characterizing the social interactions that are present in
the data. For example, from the perspective of (12), the presence of social
interactions is equivalent to m» # 0, whereas from the perspective of (6) this
is neither necessary nor sufficient for social interactions to be present since
J = 0 is neither necessary nor sufficient for 71, = 0. To be clear, this observa-
tion does not mean that estimates of (12) are uninformative, rather that these
estimates should be mapped to structural parameters in the sense of (6) when
identification holds, and that if identification does not hold, then the informa-
tional limits of (12) in terms of distinguishing types of social interactions should
be made explicit.



The reduced form version of the linear in means model illustrates some
features of the structure that are of interest. First, the linear in means model
limits the effects of reallocations of individuals across groups. To see this, sup-
pose one thinks of each choice in the population as w;, = ¢(x;.y,) + &i. Sup-
pose that y, is a scalar and that y, = ¥, this means that w;, = &(x;, x_;,) + &,
where x_;, denotes the vector of individual characteristics other than x; among
group g members with typical element x_;;,. Finally, assume all groups are of
equal size. Under the linear functional form (11), for all j, ("}Ed)/ﬁ.xr-,x_gjf = 0.
This is the condition under which all allocations of individuals across groups
produce the same expected population-wide average outcome for 2. jc, wje.
This was first recognized in Becker's (1973) analysis of efficiency in the mar-
riage market, in which groups are of size 2 and naturally extends to groups of
any size. (See Durlauf and Seshadri (2003).) It is the case, extending an ex-
ample of the type in Durlauf and Seshadri (2003), that if groups are of different
sizes, the reallocation of individuals across them can affect average outcomes.
This nonetheless does not diminish the qualitative point that the fact that all
cross partial derivatives equal 0 in the reduced form of the linear in means
model severely restricts the effects of reallocations of group memberships.



ii. instrumental variables and the reflection problem

We first consider the estimates of the regression coefficients for (6) under the
expectations formation restriction (10). It is obvious that if @, is projected
against the union of elements of &, and y,, this produces the population mean
m,. Hence, we can proceed as if m, is observable. Put differently, our identi-
fication arguments rely on the analogy principle which means that one works
with population moments to construct identification arguments.'? Since y, ap-
pears in (10), it will not facilitate identification. As we shall see, identification
via instrumental variables is determined by the informational content of %, rel-
ative to y,.

12Goldberger (1991, p. 117) gives a concise description.



As first recognized by Manski (1993), identification can fail for the lin-
ear in means model when one focuses on the mapping from reduced form
regression parameters to the structural parameters. This may be most easily
seen under Manski’s original assumption that y, = ¥,. This means that every
contextual effect is the average of a corresponding individual characteristic. In
this case, equation (10) reduces to

k+(c+d)yg

7 (13)

me =
This means that the regressor m, in equation (6) is linearly dependent on the
other regressors, i.e. the constant and y,. This linear dependence means that
identification fails: the comovements of m, and y, are such that one cannot
disentangle their respective influences on individuals. Manski (1993) named
this failure the reflection problem. Metaphorically, if one observes that w;, is
correlated with the expected average behavior in a neighborhood, (13) indi-
cates it may be possible that this correlation is due to the fact that m, may
simply reflect the role of y, in influencing individuals.



Under what conditions is this model identified? A necessary condition
is that Manski's assumption that y, = X, is relaxed. This will allow for the pos-
sibility m, is not linearly dependent on the constant and y,. The reason for this
is the presence of the term ¢,/ (1 — J) in equation (10). This term can break
the reflection problem. This will happen if the c%, /(1 — J) term is not linearly
dependent on a constant and y,. When this is so, m, cannot be linearly depen-
dent on the other regressors in equation (10). This immediately leads to the
argument in Brock and Durlauf (2001b) that a necessary condition for identi-
fication in the linear in means model, is that there exists at least one element
of x; whose group level average is not an element of y, , while Durlauf and
Tanaka (2008) provide a sufficient set of conditions. Necessity and sufficiency
can be linked as follows. Let proj(alb,c) denote the linear projection of the
scalar random variable a onto the elements of the random vectors b and ¢.13

3Formally, this is the projection of  onto the Hilbert space generated around the elements
of b and ¢ where the inner product between any two elements is the expected value of their
product so that the metric measuring the length of an element is the square root of the inner
product of an element with itself.



Consider the projections proj(w,|l, y,. X,) and proj(w,|l.y,), where 1 is simply
a random variable with mean 1 and variance 0, corresponding to the constant
term in (6). The first projection provides an optimal linear forecast (in the vari-
ance minimizing sense) of the group average choice, @, = (1/n,) 3 e, Wig,
conditioning on the random variables defined by 1 and the elements of y, and
¥, Whereas the second projection provides the optimal linear forecast when
only 1 and the elements of y, are used. The difference between the two projec-
tions thus measures the additional contribution to predicting @, beyond what
can be achieved using , in addition to 1 and y,. When this marginal contribu-
tion is nonzero, then it is possible to estimate equation (10) using instrumental
variables for @, or equivalently estimate (6) when (10) is imposed by instru-
menting m,.'* Formally,

Theorem 1. Identification in the linear in means model. The parameters k,
¢, J and d are identified if and only if proj(@g|l, ve, Xg) — proj(@e|l.ye) # 0.

Recall that in equilibrium, proj(@,|l,y,, X;) = proj(mgll.y.. ¥,) and proj(@,|l,y,) =
proj(mgll, ye ).



The intuition for the theorem is simple; identification requires that one
can project @, (equivalently) onto a space of variables such that the projection
is not collinear with the other regressors in the model. As such, the theorem
verifies that identification in the linear in means model is a species of identifi-
cation of a linear simultaneous equations system, as argued above.'®

Theorem 1 was derived under the assumption that ¥, and y, are known
to the individual decisionmakers at the time that their choices are made. This
assumption is a strong one and further may appear to be inconsistent with
our assumption that @, is unobservable to them. This latter concern is not
tenable: in a context such as residential neighborhoods, it is possible for a

contextual effect such as average income to be observable whereas the school
effort levels of children in the neighborhood are not. However, it is important
to understand the interactions of relaxing are informational assumptions on
identification. This is the contribution of Graham and Hahn (2005). The models
they study can be subsumed as variants of a modified version of equation (6):

Wig =k +cxi +dE(yolF ) +Jmg + & (14)

®The conditions of the theorem do not preclude a functional dependence of x; on Ve s
which, combined with the uniqueness of m,, means that the nonparametric analog to the
model is not identified, following Manski (1993, Proposition 3). This observation builds on
discussion in Manski (1993, p. 539).



where individuals are assumed to possess a common information set F. As
such, it is clear that the conditions for identification in theorem 1 are easily
generalized. One simply needs a set of additional instruments ¢, such that
the elements of ¢, can jointly instrument E(y,) and m,. As they observe, the
variables ¢, constitute exclusion restrictions and so require prior information
on the part of the analyst. For their context, y, is a strict subset of x,, soitis
difficult to justify the observability of those elements of X, that do not appear in
v, when the others are by assumption not observable. In our view, the appro-
priate route to uncovering valid instruments ¢,, under the Graham and Hahn
information assumptions, most likely requires the development of an auxiliary
model of x; and hence %,. In other words, Graham and Hahn's concerns reflect
the incompleteness of (14) in the sense that the individual characteristics are
not themselves modeled. Hence, we interpret their argument as one that calls
for the embedding of outcomes such as (14) in a richer simultaneous equa-
tion system, possibly one including dynamics, which describes how individual
characteristics are determined. We fully agree with Graham and Hahn that in
isolation, finding valid instruments for (14) is difficult, but would argue that this
difficulty reflects the limitations of studying w;, in isolation rather than as one
of a set of equilibrium outcomes.



a. partial linear in means models

The linear structure in (6) is typically only theoretically justified under strong
function form assumptions for utility, as shown in appendix 1, which leads to
the question of whether relaxation of the linearity assumption affects identifica-
tion. One such relaxation is studied in Brock and Durlauf (2001b) and involves
a particular nonlinear generalization of (6) under rational expectations

Wip = k +cx; +dy, + Ju(mgy) + &;. (15)

This type of structure is known as a partial linear model. Brock and Durlauf
establish that the parameters of this model are identified for those elements
of the space of twice differentiable functions, for known u(m,) , so long as
fijp(mg]/ﬁmg # 0, outside of nongeneric cases. The intuition is straightfor-
ward; the reflection problem requires linear dependence between group out-
comes and certain group-level aggregates, which is ruled out by the nonlin-
earity in (15). Note that there does not exist any identification results, as far
as we know, if the functional form for u(m,) is unknown, so in this sense the
identification of (15) does not exploit results from the semiparametric literature
on partial linear models.1®

16See Tamer (2008) for a survey.



b. dynamic linear models

Similarly, dynamic analogs of the linear in means model may not exhibit the
reflection problem. Brock and Durlauf (2001b) illustrate this with the dynamic
social interactions model

Wit — Kk + cxjp +dye + My + &5

where for all s,r # 0,
Cfﬁ'r(gr'r,gir'r_g) = (. (16)



This model avoids linear dependence between the contextual and endogenous
variables since

K+ cXy + dyy

| —BL

where L is alag operator. Equation (17) implies that m,, depends on the entire
history of X,; and y,;. This model is essentially backwards looking and is driven
by the idea that current behaviors are directly affected by past beliefs. A more
natural approach, of course, is to consider how beliefs about the future affect
current behaviors. An example of a model in this class is

Mg = (17)

Wigr = K+ cxjp + dygr + Bmy,yy + &5t (18)

where (16) is again assumed. This model is equivalent to the workhorse ge-
ometric discount model in rational expectations (Hansen and Sargent, 1980).



The equilibrium average choice level for a group equals, following Hansen and
Sargent,’

k =
Mgy = m + Z{;ﬁs Er{(.‘,fg T d_‘b’f;_|_lg). (19)
It is immediate from (19) that the regressors in (18) are linearly independent
so long as X4 and y, are not both random walks. Identification of this class of
dynamic models was originally studied in Wallis (1980) and has recently been
explored in Binder and Pesaran (2001).

17In this formulation we restrict ourselves to fundamental solutions of the expected average
choice level. The possibility of a nonfundamental solution, i.e. bubbles, is not germane to the
discussion.



¢. heirarchical models

In fields such as sociology, social interactions are typically explored using hi-
erarchical models, i.e. models in which contextual interactions alter the coeffi-
cients that link individual characteristics to outcomes. See Bryk and Rauden-
bush (2001) for a full description of the method. The reason for this appears
to be a different conceptualization of the meaning of social interactions in eco-
nomics in comparison to other social sciences. Hierarchical models appear, in
our reading, to be motivated by a view of social groups as defining ecologies
in which decisions are made and matter because different social backgrounds
induce different mappings from the individual determinants of these behaviors
and choices, cf. Raudenbush and Sampson (1999). Economics, in contrast,
regards the elements that comprise endogenous and contextual social inter-
actions as directly affecting the preferences, constraints, and beliefs of agents
and so treats them as additional determinants to individual specific charac-
teristics, x;. That said, there do not exist formal arguments for favoring one
approach versus another at an abstract level. At the same time the additivity
assumption in both approaches is ad hoc from the perspective of economic
theory, even if the assumption is ubiquitous in empirical practice.



For hierarchical models, there has been no attention to the reflection
problem. The only exception of which we are aware is Blume and Durlauf
(2005). Here we modify the Blume and Durlauf analysis and consider a for-
mulation that closely follows the conceptual logic of hierarchical models in that

social interactions are entirely subsumed in the interactions on parameters.
Formally, this means that individual outcomes obey

Wip = ko + CoXi + &i (20)
with individual- and group-specific components obeying
ke =k +dy, + Jm, (21)
and

Cog = C+ ¥, ¥ +mgth (22)

respectively.



In (22), Y is a matrix and ¢ is a vector. We omit any random terms
in (21) and (22) for simplicity, although hierarchical models typically include
them. This formulation assumes that the endogenous effect directly affects the
individual level coefficients and so differs from the Blume and Durlauf example.
Imposing rational expectations, the hierarchical model described by (20)-(22)
Is equivalent to the linear model

Wig =k +cxi +dyg + Img + v, Yx; + mghx; + &;. (23)

Hence, the difference between the linear model used in economics and the
hierarchical structure is the addition of the terms y,¥x; and mgx; by the hi-
erarchical model to equation (6). Thus the hlerarchlcal model does nothing
deeper than add the cross products of variables in (6) to allow for nonlinearity.
As such, the approach is far behind the econometrics literature on semipara-
metric methods which allows for much deeper forms of nonlinearity. On the
other hand, the use of cross products of variables is still common in empirical
economics.



Can this model exhibit the reflection problem? The self-consistent so-

lution to (23) is
k+cX, +dy, + -v.!r:l{;'fﬁ*

Recall that the reflection problem necessarily emerged in (6) when y, = ¥,. If
we impose this condition in the hierarchical model, (24) becomes

(24)

My =

k=+ (c+d)y, +, ¥y,
l - j - -;ﬂf}‘g .

(25)

My =

Equation (25) makes clear that the relationship between m, and the other re-
gressors is nonlinear. Further, the presence of y, Ty, in the numerator and
—iry, in the denominator ensures that linear dependence will not hold, except

for hairline cases, so long as there is sufficient variation in x; and y,.



Hierarchical models thus exhibit different identification properties from
linear in means models because their structure renders the endogenous effect
mg, a nonlinear function of the contextual interactions y, (and also a nonlinear
function of X, if this variable is distinct from y,). The reflection problem can
thus be overcome without prior information about the relationship between x,
and y,. However, this does not mean that users of hierarchical models of so-
cial interactions can ignore the possibility of endogenous social interactions
and only focus on contextual effects. The nonlinear relationship between m,
and y, means that the failure to account for endogenous social interactions
in hierarchical models will lead to inconsistent estimates of the contextual ef-
fect parameters. Further, hierarchical models cannot be used to evaluate the
interactions of changes in different variables, or the interactions on individ-
ual outcomes of altering group memberships, e.g. by changing school district
boundaries.’® These types of policy interventions will depend on the value
of all the social interactions parameters and the attendant nonlinearity de-
scribed by equation (25). Hierarchical models thus contrast with the linear
in means example given in Manski (2010) where policy evaluation does not
require knowledge of all parameters.



lii. variance-based approaches

As noted above, a second route to identification of the linear in means model
may be derived from the covariance structure model errors. This approach is
discussed in classic treatments of identification such as Fisher (1966) and re-
lies on strong prior information on the covariance structure of a given model’s
errors. In general, this approach to identification became unpopular in eco-
nomics because modern econometrics has emphasized the relaxation of as-
sumptions on error structures, as manifested in the work on heteroskedastic
and autocorrelation consistent covariance matrix estimation initiated by White
(1980)."° This emphasis on econometric analysis under weak assumptions
on errors is properly regarded as a major breakthrough since in many socioe-
conomic contexts, assumptions such as homoskedasticity have no theoretical
justification. To the extent that theory does constrain the stochastic processes
for model errors, modern econometrics has focused on incorporating this de-
pendence into the empirical analysis. Heckman (2001) gives an overview of
this perspective for microeconomics, which is of course the locus of social
interactions. It is therefore unsurprising that most work on empirical social
economics has avoided exploiting covariance restrictions as a source of iden-
tification.

19See West (2008) for an overview.



To see how this approach, which Graham refers to as the method of

variance contrasts, works, we employ a simplified version of his model, which
assumes that individual outcomes are affected by the realized mean outcomes
in classrooms,?’

Wie = J, + & = Jm, + & + JE,. (26)

Individual and contextual interactions are thus assumed away, which renders
the instrumental variable strategies we have described for identification impos-
sible. Graham further assumes that the individual errors obey

var(glie G) = o’ (27)

&

and

fori# j, cov(gejli.j€g)=0. (28)

21Graham allows for unobserved group level interactions, which we consider below.



Graham’s insight, which builds on earlier work by Glaeser, Sacerdote, and
Scheinkman (1996) (which will be discussed in the context of discrete choice
models) is that the presence of J affects the variance of w;, and may be used
for identification. For this model, one can think of the outcomes as gener-
ated by a reduced form in which the errors fully determine the outcomes, in
other words, all information about the model parameters is embedded in the
variance covariance matrices of the various w,’'s. Graham shows that for the
model (26), under assumptions (27) and (28):

I,
var(wg ) = (Ing — ”—f.,,,g] o (29)
g

where 1, is an ng X n, identity matrix and ¢, is a n, X n, matrix of 1's. Eq. (29)
implies that if there are two groups with different sizes, one can use the dif-
ferences in the intergroup outcome variances to identify J. Following Graham,
this result follows intuitively from the fact that for larger groups the variance
in @, is smaller. We should note that the assumption expressed by (28) is
stronger than what can be justified by exchangeability of the individual errors
per se. Durlauf and Tanaka (2008) explicitly show that Graham’s results follow
if one starts with exchangeability of the individual errors and further assumes
that error variances are independent of classroom size.



Iv. unobserved group effects

As suggested in the introduction, one of the major limits to identification of
social interactions is the presence of unobserved group-level heterogeneity.
To introduce this factor, we modify (6) to

Wig = k+ cxi +dyy, +Jmg + ag + & (30)

where rational expectations is imposed as in (10). The associated reduced
form for (30) is

d
1 —-J

k
Wjg = —— T CX; T+

=7 e T

Vo T Xy T+ E;. (31)

1-J
It is evident from (31) that correlation of @, with the regressors in the equation
can lead to identification problems. It is hard to see how one can rule such
correlations out. For example, correlation with x; naturally arises from self-
selection and correlation with y, naturally arises from imprecise or incomplete
measurement of group contextual effects.



a. instrumental variables

One approach to dealing with unobserved group level heterogeneity in (30) or
(31) is the use of instrumental variables. This approach is generally difficult
to justify in addressing unobserved group characteristics for both the linear in
means and other models. The reason for the difficulty is that a, is itself un-
dertheorized, in other words, this term captures aspects of a group that affect
outcomes which the model does not explicitly describe. Beyond this, valid in-
strumental variables require the property that they have been excluded from
(30) as either individual or contextual determinants of outcomes. It is hard to
see how, in typical socioeconomic contexts, such instruments may be found,
since the instruments must be known on a priori grounds to be uncorrelated
with both the undertheorized a, and ;. Social interactions models are typically
what Brock and Durlauf (2001c) have termed openended, which means that
their theoretical structure does not naturally identify variables to exclude from
equations such as (30). In other words, social interactions theories are ope-
nended because the presence of a given type of social interaction does not
logically preclude the empirical relevance of other theories; the econometric
analog of this is that social economics models do not provide a logical ba-
sis for choosing instruments. This is quite different from rational expectations
models, for example, whose logic often allows one to express linear combina-
tions of variables as forecast errors, which must logically be orthogonal to an
agent’s information set; in macroeconomics a key example of this is the Euler
equation in a stochastic optimization model.



b. panel data

A second standard strategy for dealing with unobserved group interactions
involves the use of panel data to difference the interactions out. Supposing
that the variables in (30) are indexed by ¢, this amounts to working with

Wigr — Wigi—1 = C(Xjp — Xjp—1) + d(."‘*"gr — Voi—1) (32)
+ J(mg —mg1) + €is — Eir-1 -

Recall that our identification theorem 1 depended on the relationship between
Xg, Vo @and m,. For (32), theorem 1 immediately can be applied if one considers
the requirements of the theorem as they apply to X,; — X511, Vor — Ver—1 and
Mg — My,—1. S0 long as there is temporal variation in X, and y,, i.e. the first
differences in (32) are not zero, then the conditions for identification will be the
same as in the original linear model without a,. Note that variation in ¥,, and/or
v Will induce variation in m, over time. An early example of this strategy is
Hoxby (2000) who focuses on variation in the percentage of a student’s own
ethnic group in a classroom.



For those elements of x;; and y,; that do not vary over time, differencing
means that their associated coefficients will not be identified. Defining the

time invariant elements of y, as -‘*’.Ie= the lack of identification of their associated

parameters d' occurs for the obvious reason that one cannot differentiate the
effect of d]_v;, from a,. On the other hand, all elements of x; may be identified
if additional assumptions are placed on g;;. As formally discussed in Graham
and Hahn (2005), suppose that

E(&itlFyjgt: Vor- gr 1 € g @t time t)) = 0.

In this case, intragroup variation in x; at a single point in time can identify
all of the elements of ¢. The reason for this is that for group ¢ at a fixed ¢,
k + dyg + Jmg + ag acts as a constant term for the members of the group.
Brock and Durlauf (2001b, 2006, 2007) use this same argument for cross-
section identification of individual interactions coefficients in discrete choice
models. As noted by Graham and Hahn, this type of argument is originally
due to Hausman and Taylor (1981).



c. Vvariance approaches and group-level unobservables

Graham (2008) provides a strategy for identifying the parameter for endoge-
nous interactions in the presence of unobserved group interactions in parallel
to the arguments that identified J in (26). Graham works with the natural gen-
eralization of (26):

wip = J, + ay, + &

= Jm, +a, +5; + JE,



Critically, Graham assumes that a, is a random effect, specifically requiring
that the conditions

cov(ageli€ g) =0 (33)
and
var(a,li € g) = cri (34)

hold in addition to equations (27) and (28). Equation (33) states that individual
and group unobservables are uncorrelated and is justified in Graham’s context
by the random assignment of teachers across classrooms. Equation (34) rules
out any dependence of the variance of unobserved group effect on group size.
In a classroom context, this means that the variance of teacher quality does
not depend on the number of students. In a direct generalization of equation
(29), Graham (2008) shows that

J
var(w,) = (I ne T

-1 -1
) 7 J
?\"‘r i i ” [=

g

which means that one can again use differences in the variance of outcomes
across groups of different sizes to identify J.



v. self-selection

It is natural for many social contexts to expect individuals to self-select into
groups. This is most obvious for the case of residential neighborhoods; models
such as Bénabou (1993, 1996), Durlauf (1996a,b) and Hoff and Sen (2005),

for example, all link social interactions to neighborhood choice. In terms of
estimation, self-selection generally means that equation (8) is violated.



Following Heckman'’s original (1979) reasoning, one can think of indi-

viduals choosing between groups ¢ = 1,.. ., G based on an overall individual-
specific quality measure for each group:

— - y -. ',
I;'Iq = Y1Xi T Y2Vg T Y3idig T Vigs

where z;, denotes those observable characteristics that influence i's evalua-
tion of group g but are not direct determinants of w; and v;, denotes an unob-
servable individual-specific group quality term. Individual i chooses the group
with the highest I;‘E. We assume that prior to group formation, for all i and g,
E(&ilxi, g, 2ig) = 0 and E(viglé, v, zig) = 0.



From this vantage point, the violation of equation (8) amounts to
El(&ilx, X 1,91, 21, -« v s YG. VG- Zig.1 € g) # 0. (36)

Notice that equation (36) includes the characteristics of all groups. This condi-
tioning reflects the fact that the choice of group depends on characteristics of

the groups that were not chosen in addition to the characteristics of the group
that was chosen. Equation (36) suggests that the linear in means model, un-
der self-selection, should be written as

Wig = CXi +dye + Jmg + E(&ilxi, X1, V1. Zi1s - o\ YG.VG.zig.1 € g) +&.  (37)

where by construction E(&j|xi. X1, V1. 2i1. .. . .. YG. VG, Zig.1 € g) = 0. Notice that
the conditioning in (36) includes the characteristics of all groups in the choice

set. This is natural since the characteristics of those groups not chosen are
informative about the errors.



Egs. (36) and (37) illustrate Heckman’s (1979) insight that in the pres-
ence of self-selection on unobservables, the regression residual ; no longer
has a conditional mean of zero, yet (37) can be consistently estimated using
ordinary least squares if one adds a term to the original linear in means model
(6) that is proportional to the conditional expectation on the left hand side of
(36), i.e., prior to estimation. Denote this estimate as

-y

k E(&ilxi, X1.91. 21+ - - . ¥G. VG- ZiG.1 € g) . (38)

Heckman’'s fundamental insight was that one can construct such a term by
explicitly modeling the choice of group. From this perspective, controlling for
self-selection amounts to estimating

Wig = cXi +dyg + Jmy + p K E(&ilXi, X1, V1. Zits« - - »- YG. VG, ZiG.1 € g) +&i. (39)

Thus, accounting for self-selection necessitates considering identification for
this regression, as opposed to (6).



The property of interest for the identification of social interactions is that
the addition of the term (39) can help facilitate identification. To see this, con-
sider two possible reasons why agents choose particular groups. First, agents
may choose groups on the basis of the expected average behaviors that oc-
cur. For example a family chooses a neighborhood based on its expectation
of the average test score among students in the school their child will attend.
In the extreme case where this is the only neighborhood factor that matters to
families, the conditional expectation associated with the selection correction
will be a function of the agent's characteristics and the expected outcomes in
each of the neighborhoods, i.e.

E(&ixi X1, V1. Zi1s e v s. XG. VG, Zic.1 € g) = @(xj,myq, ..., me ) (40)
By the same logic that rendered the partial linear model (15) identified, (40) is

also identified as m, cannot, outside of nongeneric cases, be linearly depen-
dent on a constant term and y,.



vi. social interactions via unobserved variables

Our discussion of the linear in means model has assumed that the variables
through which social interactions operate either are directly observable or rep-
resent rational expectations forecasts of observable (to the analyst) variables.

Recent work by Arcidiacono, Foster, Goodpaster, and Kinsler (2009) consid-
ers this possibility in a panel context, which is applied to classrooms at the
University of Maryland, where grades are the outcome measure. Translating
their model into our notation, they analyze

Wigr = CXj + dXg + eutj + flig + it (41)

where y,, = X, is assumed. Endogenous social interactions are ruled out a
priori. The key innovation in Arcidiacono et al. is that the individual variable u;
and associated group variables ii,; are both unobservable. Notice that x; and
u; are time invariant whereas ii,; and %, are time dependent. The time de-
pendence of the latter terms occurs because group memberships can change
over time.



The identification of social interactions for this problem thus hinges
upon overcoming unobservability of the contextual interactions ii,. In order
to achieve identification, Arcidiacono et al. restrict the coefficients in (41) by
assuming the existence of a scalar y such that

e = yc; f=vd.

This assumption follows Altonji, Huang, and Taber (2005). In the spirit of si-
multaneous equations theory this is analogous to a coefficient restriction that
facilitates identification. This assumption fixes the ratios of the coefficients of
observed individual characteristics to equal those of the corresponding peer
characteristics. Arcidiacono et al. describe this (pg. 6) as rendering the
two dimensions of peer effects versus the two dimensions of individual effects
“‘equally important”. This is an ill-defined claim. The Arcidiacono et al. strategy
is better thought of as a restriction on coefficients that, in the classical simulta-
neous equations sense, may help with identification and its justification should
be assessed from the perspective of whether the restriction can be justified by
economic theory or by some other argument.



Arcidiacano et al. proceed by focusing on a general notion of fixed
effects for each individual, defining these fixed effects the determinants of out-
comes (outside the errors g;;) as

Ki = CXj + eli;.
Letting &,y = HLEr Yice Kigrs ©0. (41) can be re-expressed as

Wig = Kj + YKot + Eip.



From this perspective, Arcidiacono et al. frame the identification problem for
social interactions as the problem of consistently estimating y in the presence
of a large number of fixed interactions. Their theorem 1 locates a set of suffi-
cient conditions so that a consistent and asymptotically normal estimator of y
may be found. Identification is implicit in this proof. We do not repeat their as-
sumptions here but note that the essential substantive economic requirements
are 1) the composition of an individual’s peer groups change over time and 2)
Vi, j.t, E(eikj) = 0. The first condition is needed since identification requires
individuals to be exposed to different peers to allow for distinguishing the influ-
ence of the fixed effects of others on a given individual. The second condition
delimits the nature of self-selection into classrooms. Although Arcidiacono et
al. argue that they allow for self-selection based on the ability of peers, this
second condition appears to limit how selection can occur. This criticism does
not detract from the value of their contribution, but points to an instance of
the general proposition that explicit modeling of selection is essential in under-
standing identification conditions.



A third approach to unobservability is developed in Solon, Page, and
Duncan (2000) and further studied in Page and Solon (2003a,b). This anal-
ysis assumes that one cannot observe any of the determinants of individual
outcomes; only the outcome data are available. Unlike work such as Gra-
ham (2008), no assumption is made that social interactions are endogenous
rather than contextual. Rather, it is assumed that individuals are influenced
by family-level, group-level, and idiosyncratic influences. Individuals are dis-
tinguished by family and group (in this case residential neighborhood). A vari-
ance decomposition for individual outcomes is constructed to bound the con-
tribution of group effects to variance of individual outcomes. The analysis may
be understood in terms of a variance components model (Searle, Casella, and
McCulloch, 2006, p. 14):

Wig = [y + Ve + 0fe + & (42)



In (42), ur denotes a family effect, v, denotes a group effect, or, denotes an
interactive effect between family and group, and &; denotes an idiosyncratic
effect. A decomposition of this type always exists in which the components
are orthogonal. In terms of mapping this expression back to a measure of the
role of group influences, one difficulty lies with o¢,. Does the covariation be-
tween family and group represent a group effect or self-selection? Solon, Page
and Duncan address this issue by comparing intra-family (sibling) and group
(in their case residential neighborhood) variances to bound the variance of
ve, finding the variance contribution is small. Oreopoulos (2003) finds similar
results, focusing on a data set which involves adults who, as children, were
randomly assigned to different public housing projects, thereby presumably
eliminating o¢,. He finds a small role for v, and so concludes that neighbor-
hood effects do not play a major role in explaining the variance of various adult
outcomes.



One limitation of this approach is that it reduces the vector of social in-
teractions to a scalar so that one cannot tell which social factors matter. In fact,
it is possible for different social factors to cancel each other out. And to the ex-
tent that unobserved group effects «, do not represent social interactions, as
was the case for our example of teacher quality and classroom outcomes, it is
not clear that a large variance contribution from v, has a social interactions in-
terpretation. These caveats do not render such exercises uninteresting; rather
they illustrate how economically substantive assumptions matter in producing
economically substantive interpretations.



vii. social multipliers and information from aggregated data.

We close this section on the linear in means model by turning to how the
relationship between individual and aggregated data may provide evidence
of social interactions when individual actions are generated by the linear in
means model. The relationship between individual and aggregated data is
studied in Glaeser and Scheinkman (2002) and applied by Glaeser, Sacer-
dote, and Scheinkman (2003). The essential idea behind their analysis is that
endogenous social interactions can generate social multipliers in the sense
that a change in private incentives for every agent in a population will have an
equilibrium effect that is greater than the direct effect of the incentive change
on each individual because the changes in the behavior of others create addi-
tional effects on that individual. This difference is evident in the reduced form
(11) since x; and %, have different coefficients. Focusing on a scalar case
(extension to vectors is straightforward but algebraically tedious), Glaeser and
Scheinkman (2002) propose comparing the coefficient b in the regression

Wi, = a+ bx; + &
with the coefficient #’ in its group counterpart
W, =a +b' X, + &, (43)
and define the social multiplier as the coefficient ratio:

S =—.
b



In the context of the linear in means model, it is straightforward to compute
this ratio. Our calculations differ from Glaeser and Scheinkman as we focus
on the difference in the regressions as a misspecification problem. To make
this calculation, notice that for the Glaeser and Scheinkman case, the reduced
form (11) becomes:

k cf
{Uf;;r——l_J‘Ff’i + l_j,¥lq—|—£,'. (44)
Comparing (44) and (43), it is evident that the population value of b is reedily
calculated using the standard omitted variables formula that b = ¢ + = J,B
where g is implicitly defined by proj(X,|1.x;) = «x+ Bx;, i.e. B = cov(x;, X,)/
var(x;). In eentreet |t is evident from tekmg expected values on both sides of
(44) that " =

T 1-J+JB (45)



Notice that if there is perfect segregation across groups, so that incomes
within a group are identical, then cov(x;,X,) = var(x;), which implies that
S = 1 whereas under random assignment, cov(x;,¥,) = 0, which implies
S = ﬁ The latter value of S takes a form that echoes the classic Keynsian
income/expenditure multiplier, with the marginal propensity of consumption re-
placing J. Moreover, in the Bayesian game described in appendix 1, which lays
out the underlying decision-theoretic framework of the linear in means model,
S =1(1+¢)/(1+ o) where ¢ measures the marginal rate of substitution
between conformity and and the private value of the choice variable. Note the
surprising fact that, as the pressure to conform increases, the social multiplier
may either decrease or increase, depending upon whether 5 exceeds or is ex-
ceeded by 1. Both are possible since we have not specified how individuals
are sampled across groups. For example, if there is systematic sampling ofx;
values below ¥, in each group, then 5 > 1 may occur. The dependence of the
social multiplier upon 5 makes it difficult to interpret.



As articulated in this example, the social multiplier provides a different
perspective on the effects of endogenous social interactions on changes in
private incentives. In terms of identification, it may also be of value. Clearly
the social multiplier calculations have little to add if complete individual level
data are available across the various groups of interest. On the other hand,
suppose that aggregate data are incomplete; i.e. one knows about outcomes
in a subset of classrooms in a school. One can imagine identification of J via
analogs to (45) that compare different levels of aggregation and thus exploit
variation in S to uncover J. Alternatively, one can imagine partial identifica-
tion approaches that exploit the fact that different g's reflect different levels of
aggregation with respect to the same underlying population.



4 Social networks and spatial models of social
interactions

In defining social interactions thus far we have presumed that interactions are
generated by group-specific averages. Social network models provide further
focus on the microstructure of interactions among agents and allow for hetero-
geneity of interactions across pairs of agents. Jackson (2008) provides a thor-
ough overview of the new social networks literature. In this section we address
the identification of social interactions in social networks. In addition, we dis-
cuss the use of spatial econometrics models to study social interactions. The
social networks and spatial analysis approaches are mathematically very sim-
ilar, and yet, they have been until recently developed independently from one
another. This similarity is not surprising as spatial econometrics approaches
deal with physical space, whereas social networks address a more abstract
social space, yet still a space with well posed notions of distance and the like.



I. graphical models of social networks

Before extending the model of social interactions to social networks it is use-
ful to establish some basic terminology. For this setting, social interactions
among individuals are defined by means of a social structure (or topology, the
two terms are used interchangeably in the literature and here) that takes the
form of a network, whose mathematical description is a graph with the vertices
representing individuals and edges representing links between them. Network
vertices and population members are thus identical concepts. What is of in-
terest is the network structure that links agents. Network structure among
individuals is modeled either as an undirected or a directed graph. Here we
shall focus on the latter case, since it allows us to express a richer set of social
relations.



Directed graphs consist of vertices (also known as nodes) and directed
edges. A directed edge is an ordered pair (i, j) of vertices. A directed graph
is a pair (V, E) where V is the set of nodes, with cardinality ny, and E is the
set of edges. A subgraph (V'.E") of (V,E) is a graph where V' is a subset
of V.and E’ is a subset of E. A subgraph (V’, E’) is induced by (V, E) if and
only if £’ contains all edges of E which begin and end in V’. A social network
is a graph (V. E) where V is the set of individuals and the directed edges in E
signify social influence: (i, j) is in E if and only if j influences i.



A social network can be represented by its adjacency matrix A, also
known as its sociomatrix in the mathematical sociology literature. An adja-
cency matrix is an ny X ny matrix, with one row and one column for each
individual in V. For each pair of individuals i and j, a;; = 1 if there is an edge
from i to j, and O otherwise. Since the network is supposed to represent social
connections, it is natural to assume that no i is connected to himself. That is,
for all i, a; = 0. A path from i to jis a sequence of individuals iy, ..., ix such
thatip = i,ix = j,andforallk = 1,..., K — 1, there is an edge from i;_; to
ir. Such a path is said to have length K. If there is a path from i to j of length
exceeding 1, then i indirectly influences j. The adjacency matrix A displays
all paths of length 1. The K-fold product AX counts all paths of length K if
the ij'th element of AX is n, then there are n paths of length K from i to j. A
subgraph (W, F) of (V, E) is strongly connected if and only if forany i and j in
W there is a path from i to j consisting solely of edges in F.. A subgraph which
is strongly connected and is a subgraph of no larger such graph is a strongly
connected component of (V, E).25 A graph (V. E) is strongly connected if and
only if some power of its adjacency matrix is strictly positive. The literature
also contains the less restrictive requirement of weak connectivity. Intuitively,
it is the notion of connectivity that emerges when one can walk links in any
direction. By suitably ordering the vertices, the adjacency matrix of a graph
(V, E) can be written as a block-diagonal matrix where the rows (columns) of
each block correspond to a weakly connected component.?® A graph (V. E)
is complete if for each pair i and j in V there is an edge from i to j. A graph
is oriented if the existence of an edge from i to j implies that there is no edge
from j back to i.

25Note that a strongly connected component can have links into it from outside the compo-
nent, and links to the outside. But no other node is on a path from the component and a path
to the component.

26Weak connectivity is connectivity assuming that all edges can be traversed in any direc-
tion.



While social influence can be a one-way relationship, we usually think
of some relationships, for example friendship, as being bidirectional and the
social network is represented by an undirected graph, and the adjacency ma-

trix is symmetric. Edges are now undirected, and so there is a path from i to j
if and only if there is a path from j to i. A subgraph (V’, E’) of the undirected
graph (V, E) is connected if and only if between any two nodes i and jin V’
there is a path in (V’, E’) between them. A component of the graph (V. E) is,
as before, a subgraph which is connected and maximal with respect to inclu-
sion. The distance between any two nodes is the length of the shortest path
between them.



Some particular network topologies are important in the social net-
works literature. A star network is an undirected graph in which one individual,
the center, is connected to all other individuals while all other individuals are
connected only to the center. A group, also known as a complete network,
is one that contains an edge between each two of its vertices. lts adjacency
matrix is all 1s. In a bipartite graph, the vertex set V is the union of two disjoint
sets T and U, and all edges are between members of T and members of U,
l.e. edges represent matches between vertices in the two sets. We will call a
bipartite graph directed if forall (i, j) € E,ie T and je U.



Sociologists allege that social relations like friendship exhibit the prop-
erty of homophily — loosely but accurately described by the phrase “the friend
of my friend is my friend, too.” This property is described by the prevalence
of transitive triads. Triads are connected subgraphs consisting of three nodes.
Transitivity is the property that the existence of an edge from node i to j and
an edge from j to k implies the existence of an edge from i to k. A graph
is transitive if it contains no intransitive triads. The linear in means model is
specified by assuming A is symmetric, that edges are bidirectional, and that
the graph is transitive. If this is true, then the graph is the union of completely
connected components. The nodes of the component containing i constitute
i's group.



While the linear in means model is a good starting point for the study
of social interactions, social networks allow for a much richer specification of
social relations. The model can be enriched still further by allowing the ele-
ments of adjacency matrices to be arbitrary real numbers. In such models, the
magnitude of the number a;; measures the degree of influence j has on i, and
the sign expresses whether that influence is positive or negative. Throughout
this section we will assume that all elements a;; are non-negative except as
noted, and that that contextual variables are weighted averages of the indi-

vidual characteristics. This generalizes the contextual effects in the linear in
means model case in which y, = ¥,.

Note that in this section, we defined choices as w;. No additional sub-
script is employed to denote a person’s social environment. The reason for
this is that the networks literature focuses on members of a common popu-
lation and introduces social structure for the population as a whole via the
matrix A.



ii. identification in social networks: basic results

Cohen-Cole (2006) appears to be the first analysis of the linear in means
model under richer interactions structures. That is, he posits that an indi-
vidual reacts to multiple reference groups, such as a teenage boy might care
differently about what other teenage boys do than about what teenage girls
do. He shows that the model with agents’ beliefs about actions in multiple
other groups as well as observables for each group can be fully identified pro-
vided that there are more observed linearly independent group level effects
than there are groups in the sample and that there is some pair of groups for
which agents in one group care about the actions in the other. This type of rea-
soning is extended in an analysis by De Giorgi, Pellizari, and Redaelli (2010)
of peer effects in the choice of college education. From the econometric per-
spective, Bramoullé, Djebbari, and Fortin (2009), Lee, Liu, and Lin (2010) and
Lin (forthcoming) constitute the most systematic explorations of social inter-
actions in social and spatial contexts respectively, but there are several other
contributions which we will discuss below.



The network model employed by Bramoullé et al. assumes that each
individual i is influenced by the average behavior of a set of peers P(i) and
that, like Moffitt (2001) but unlike Manski (1993), individual i is not his own
peer. The peer relationship is not assumed to be symmetric, so the social net-
work is represented by a directed graph. The social interactions are described
by a weighted adjacency matrix:

| T :
—— if je P(i),
ai; = | P00 J .( ) (46)
0 otherwise.
Individual outcomes are then described by the behavioral equation system
w; = f(—l-(.‘ﬁ.‘;—kdz ﬂ’,‘j,l.'j—l—JZ ajjw;j+ &; (47)
J#i j

with the error restriction

E(si(xi)iev.A) = 0. (48)



The reduced form for this system may be described in vector notation as
w=k(I-JA) Y+ (IT-JA) eI+ dA)x+ (I-JA) e (49)

where I refers to the ny X ny identity matrix and ¢ is a ny x 1 vector of 1's.
(Recall that ny is the number of individuals in the network.) Bramoullé et al.
focus on identification by studying this reduced form. Recognizing, as did
Moffitt (2001), that systems of this type are examples of linear simultaneous
equations models in which one can think of the outcomes for the members
of the overall network as the endogenous variables and the individual effects
as the exogenous variables.?” The important insight of Bramoullé et al. is
that the ideas concerning the averages of behaviors and characteristics of
groups carry over into more general social-network settings. Bramoullé et al.
provide a fundamental algebraic result with respect to identification of models
like equations (47) and (48), which does not rely on the constraint (46). The
theorem assumes that J can take values in an arbitrary parameter set 7 in R.

27 If v, were included in the system, this vector would also represent a set of exogenous
variables.



Theorem 2. Identification of social interactions in linear network models.
For the social interactions model described by egs. (47), and (48), assume
that Jc +d # 0 and that for all values of J € J, (I — JA)~! exists.

i. If the matrices I, A, and A” are linearly independent, then the parame-
tersk, ¢, d and J are identified.

ji. If the matrices I, A, and A? are linearly dependent, if for all i and |,
Yk ik = Yypdj, and if A has no row in which all entries are 0, then
parameters k, ¢, d and J are not identified.



The condition that Jc 4 d # 0 requires, in the network setting, that endogenous
and contextual effects do not cancel out in the reduced form. Theorem 2.i is a
purely algebraic result. This is to say, it does not rely on the specific structure
of A which arises from its network context. It applies to any linear system of
the form (47) for which [J] - [|A]] < | for all possible parameter values J. An
interesting feature of this result is that it does not rely on exclusion restrictions.
This should not be surprising. Although the number of equations in the system
is ny, the size of the population, there are only four parameters to estimate.
There are thus many cross-equation and within-equation linear equality con-
straints: The independence condition describes when these constraints satisfy
the appropriate rank condition. Theorem 2.ii identifies an important case for
which linear independence of 7 , A and A” is necessary as well as sufficient
for identification. The requirements on A mean that each individual averages
in some way over those who influence him, and that no one is isolated. The
result can be thought of as a converse to theorem 2.i.



The analysis of group interaction is the leading case in the econometric
literature on networks. It is also appealing from the perspective of existing
data sets such as the National Longitudinal Study of Adolescent Health (Add
Health).?® Suppose that the peer relation is symmetric, j € P(i) if and only
if i € P(j). Suppose too that the peer relation is transitive: If j € P(i) and
k € P(j), then k € P(i). As discussed in section 4.i, the graph is the union
of a finite number G of completely connected components, that is, groups.
Suppose that component ¢ has n, members. We will consider two ways to
average over the group: Exclusive averaging excludes i from P(i). In this
case, fori € g,

1 e s, o
0 = no-T if j£iand je g,
0 otherwise.

Inclusive averaging includes i in P(i). In this case, fori € g,

1 .
-.._{ﬁ for all j € g,

0 otherwise.

28The Add Health data set is the outcome of a longitudinal data collection exercise de-
signed to facilitate study of health-related behaviors of adolescents in grades 7 through 12.
The data set includes information, for example, on the structure of adolescent friendships via
responses to questions on the identities of best friends. As such, directions of friendships are
revealed but not intensity. See http://www.cpc.unc.edu/projects/addhealth for details.



With inclusive averaging, equations (47) and (48) are equivalent to our
linear in means model, except that realized rather than expected outcomes af-
fect individual outcomes. This difference is inessential since the instrumental
variable projections used to replace the endogenous choices of others coin-
cide with equilibrium formulations of beliefs.?® Means and realizations, how-
ever, represent two distinct theoretical models. The first is a network version
of the incomplete-information game developed in appendix 1. The second is
a complete-information version of the same game. With exclusive averaging,
the subject of Bramoullé et al., an additional distinction is that the calculation
of group-level contextual effects does not include i's own individual character-
istics. This distinction is inessential in that the identification results for the two
models are nearly the same. The following result is a corollary of the forth-
coming theorem 3:

Corollary 1. Identification of social interactions in group structures with
different-sized groups. Suppose that individuals act in groups, and that the
a;j are given by either inclusive or exclusive averaging. Assume that Jc +d #
0. Then the parameters k, ¢, d and J are identified if and only if there are at
least two groups of different sizes.

29As we will see, the distinction is important for binary choice models.



The positive result of corollary 1 is similar to Graham'’s (2008) variance
contrast identification strategy, but its source is different. Here identification fol-
lows the reduced form regression parameters rather than the second moments
of the average group outcomes.®® Note that in Graham’s case, Jc +d = 0

since ¢ = d = 0, so his findings allow for identification when individual and
contextual effects are absent.

%CCorollary 1 is a special case of Lee’s (2007) result, without fixed effects. Lee (2007)
studied the effects of group size on identification while also allowing for unobserved group

fixed effects. He establishes identification of both the endoaenous and exocenous social
interactions provided there are sufficient variations in group sizes, but under somewhat re-

stricted conditions relating group sizes to the total number of observations, and also provides
asymptotic estimation properties. Davezies, d’'Haultfoeuille, and Foughre (2009) show that the
identification results hold under different conditions than Lee’s. For Davezies et al., identifica-
tion holds so long as 1) the sizes of groups do not depend on overall sample size, as in Lee
(2007), and 2) there exist at least three different group sizes. This avoids Lee’s requirements
that group sizes are linked to population size. Intuitively, this is possible because variations
in group sizes create variations in reduced form coefficients across groups. This variation is
evident from an example like that in Bramoullé, Djebbari, and Fortin (2009, p. 49), where the
reduced form coefficients depend on the size of the group to which an individual belongs.



At first glance, this corollary might appear to contradict theorem 1 and
indeed call into question Manski's nonidentification results on the linear in
means model, since neither involved groups sizes while the corollary links
groups sizes to identification. In fact, there is no contradiction. Theorem 1
and Manski’'s earlier analysis did not treat social interactions in the linear in
means model as a simultaneous equations system that explicitly relates indi-
vidual choices to one another within a group. More generally, previous studies
of identification of the linear in means model have taken the effects of group
averages as the objects of interest, not the pairs of cross-individual effects.
In contrast, the linear in means model as appears in the econometrics litera-
ture is a large sample approximation to the solution of a particular Bayes/Nash
game, as shown in appendix 1.3! If one relaxes the approximation, then the
coefficients of the linear in means model as it applies to a given group depend
on the group’s size. When groups sizes differ, the coefficients of their associ-
ated linear in means representations differ. When coefficients from groups of
different sizes are combined, this allows one to uncover the parameters &, ¢, d
and J.

31Compare equations (85) and (86) in appendix 1.



Powers of A describe the network topology. When we examine this in
detail, we find that for very few networks are parameter estimates not identi-
fied in the reduced form. Bramoullé et al. prove that identification fails in two
kinds of networks: groups and directed bipartite networks. In particular, within
the class of undirected networks, it is only with a single group or two or more
groups of the same size that identification fails. It is ironic that the importance
of groups is due to their prevalence as a common specification in econometric

studies, for it is only with groups that the identification issue even arises. By a
directed bipartite network we mean a bipartite network in which all edges go
one way — the vertex set is the disjoint union of two sets T and U, and all
edges (i.j) have i € T and j € U. Influence is one-way. While directed bipar-
tite networks are every parent's dream — children listen only to their parents
and never to their peers — they are largely irrelevant for the social networks
economists study. Interestingly, however, they satisfy a set of exclusion con-
ditions since the actions and characteristics of children do not appear in the
behavioral equations for the parents, but this does not help identification. We

state and prove (in appendix 2) a variant and unification of the Bramoullé et al.
results.



Theorem 3. Nonidentification of social interactions in network models
under exclusive and inclusive averaging. Assume Jc 4+ d # 0 and that for
all values of J, (I — JA)™! exists.

i. Under exclusive averaging, the parameters k, ¢, d and J are not iden-
tified in the reduced form (49) for the structural model (47) and (48) if
and only if the social network (V. E) is the union of weakly connected
components wherein each component is either a directed bipartite net-
work or a group, and all groups are the same size.

iil. Under inclusive averaging, the parameters k, ¢, d and J are not iden-
tified in the reduced form (49) for the structural model (47) and (48)
if and only if the social network (V. E) is the union of identically-sized
groups.

This theorem depends upon the particular weighting schemes used to average
across peers. It follows from the more general theorem 4, which is interesting
in its own right because it applies to any weighting scheme which puts positive
weight on all edges of E.32

32Bramoullé et al. discuss results of this type, but provide no general theorem like this.



Theorem 4. Non-identification for weighted averaging implies network
transitivity. Let (V, E) be a network with weighted adjacency matrix A as
described by (46). Assume that Jc + d # 0 and that for all values of J, (I —
JA)~! exists. If the parameters k, ¢, d and J are not identified, then (V,E) is
transitive. If the network is undirected, then (V. E) is the union of groups.

Finally, we note that all of this is based on the fundamental indepen-

dence criterion of theorem 2, which applies to any matrix A no matter what its
source, so long as it satisfies an algebraic criterion. From this general point
of view, it is clear that non-identification of parameters in the reduced form is
rare. We suppose without loss of generality that the parameter J takes values
[0, 1), and denote by S the set of all matrices A such that (1 — JA) is invertible.

3
If the matrices are ny X ny, S is a semi-algebraic set of full dimension in R™ 33

Theorem 5. Generic identifiability of the linear social networks model.
The set of all matrices A € S such that the powers I, A and A are linearly
dependent, is a closed and lower-dimensional (semi-algebraic) subset of S.

This theorem is a complement to McManus’ (1992) result on the generic iden-
tifiability of non-linear parametric models. For the social networks context, the
key intuition for generic identifiability is that since A is assumed to be known a
priori, this knowledge is the equivalent of a large number of coefficient restric-
tions on the coefficients in the reduced form representation of individual be-
haviors. These restrictions are rich enough that, outside of nongeneric cases,
they permit identification of k, ¢, d and J.



33A semi-algebraic set is a set which can be described as the solutions to a finite number
of polynomial inequalities. The set of ny x ny matrices such that for all J, (f - JA)‘I exists is

a semi-algebraic set in R“‘E'. Semi-algebraic functions are functions whose graphs are semi-
algebraic sets. Every semi-algebraic set is the union of a finite number of disjoint open C*™
manifolds. The dimension of a semi-algebraic set is the largest of the dimensions of these
manifolds. For more on semi-algebraic geometry see Bochnak, Coste, and Roy (1998).



lii. unobserved component-specific fixed effects

The analog to group-level unobservables in the linear in means model in net-
works is component-level unobservables. If individual outcomes contain unob-
servables that are correlated among individuals belonging to the same com-
ponent they may be treated as fixed effects in the stochastic structure of (47),
producing

wi =k+cxi+d Z aijxj+J Z ajjw; + ag + & (50)
JEi J

with error structure
E(85|(P‘q, ('xf)fE.E’A] =0 (51)
where a, is a component-specific fixed effect. This can be thought of as a

model of interacting in groups, in which the groups themselves have internal
social structure.



Little work has been done on this problem. We know of only the iden-
tification results of Bramoullé, Djebbari, and Fortin (2009). Since their model
is linear, component-specific fixed effects can be differenced away.3* In princi-
ple, this differencing can be done in many different ways, of which Bramoullé
et. al. discuss two. “Local differencing” subtracts from each individual’'s be-
havioral equation the average of those who directly influence him. “Global
differencing” subtracts from each individual’s behavioral equation the average
of those in the connected component to which the individual belongs. A third
differencing strategy not yet studied is to subtract from each individual’s be-
havioral equation the average of those to whom he is indirectly connected.
Differencing entails loss of information, and so conditions for identification are
stronger. But here too identification is determined by the network topology. In
particular, Bramoullé et. al. prove the following theorem:

Theorem 6. Identification of social interactions in linear network mod-
els with component-specific fixed effects. For the social interactions model
described by equations (46), (50) and (51), assume that Jc +d # 0. With
local differencing, a necessary and sufficient condition for identification of the
parameters k, ¢, d and J is that the matrices I, A, A% and A® are linearly inde-
pendent.

34Bramoullé, Djebbari, and Fortin (2009) refer to these fixed-effects as “network-specific”.
“Component-specific” is a more precise description.



iv. self-selection in social network models

Investigating self-selection in social network models requires modelling the co-
evolution of networks and behavior. Although the growth of networks has been
studied empirically, and evidently behavior on networks is a well-established
subject, the joint evolution of both has rarely been touched upon.®® In par-
ticular, the econometric issues posed by endogenous network formation are
briefly discussed by Jackson (2008, p. 437).%°

3 These issues have come up in the study of online commmunities. See Crandall, Cosley,
Huttenlocher, Kleinberg, and Suri (2008).

36See Bala and Goyal (2000) and Jackson and Wolinsky (1996) for notable contributions,
and Jackson (2008, ch. 6) for an extensive treatment of several other works.



v. spatial econometrics specifications of social interactions

A close relationship exists between social interactions and spatial economet-
rics models. Equation (47) implies the classic Cliff-Ord spatial autoregressive
(SAR) model with one spatial lag, as the special case of d = 0 where the
dimension of endogenous outcomes is equal to the number of spatial units.
These can be states, counties, parcels of land, etc. When instead of spa-
tial units, the model refers to individuals, one has a social interactions model.
The social interactions literature has recently sought to exploit the relation-
ship. See Lee (2007), who explored this link formally, and Lee, Liu, and Lin
(2010).37 In addition, the spatial econometrics literature has made important
advances in terms of allowing for spatial autocorrelation in error structures:
see Kapoor, Kelejian, and Prucha (2007) and Kelejian and Prucha (2010) for
recent examples of advances in the study of spatial environments under weak
error assumptions and Anselin (2010) for a review of the area. Spatial econo-
metrics models have a long tradition in geography where the weights attached
to different observations are motivated in terms of various distance concepts.
For example, if the units of observations are counties, one may wish to account
not only for adjacency but also for distance between their main population cen-
ters. Adding contextual effects, as in Lee (2007), brings the model closer to
standard social interactions models.

S7Boucher, Bramoullé, Djebbari, and Fortin (2010) estimate the full Lee (2007) model
with group-level unobservables using data on student achievement from Quebec secondary
schools and find evidence of endogenous peer effects while also controlling for contextual
effects and group unobservables in the form of fixed effects.



Lee, Liu, and Lin (2010) is a significant advance in the econometrics
of social networks and spatial models. It generalizes Lee (2007) by allowing
for group unobservables and correlated disturbances of connected individuals.
Spatial autocorrelations in the error structure of their model are accounted for
by assuming that the vector of shocks for a given component [ (comprised of n;
members), g, consists of the sum of group-specific fixed effects and stochastic
components that satisfy

g = J{_}'A:,FE.‘; + v

where A* is an exogenous and non-stochastic n; X n; non-negative error-inter-
actions matrix that need not coincide with A.3° The parameter p is the spa-
tial autocorrelation coefficient, and v; is a nj-vector of i.i.d. individual-specific

shocks. This error specification may be thought of as a generalization of a
number of previous studies. Relative to Lee (2007), in which an individual in
a group interacts with all other group members with equal weights (and iden-
tification is ensured by different group sizes), Lee, Liu, and Lin (2010) allows
different individuals to have their own social groups, defined by the respective
social interactions matrices A;.

*®In their analysis, nondiagonal entries are assumed to be symmetric and positive, but
diagonal entries are 0.



vi. from econometrics to applications

We end this section with two illustrations of how the types of models we have
discussed have been applied in empirical work. Calvo-Armengol, Patacchini,
and Zenou (2009) is a good illustration of how network methods have been
employed. Using the Add Health data set, these authors estimate individual
school performance as a function of the topology of their friendship networks,

while controlling for individual characteristics. Individuals’ friends always lie in
the same school as themselves. They estimate a restricted variant of equation
(47) in which J = 0. This model is generalized, however, by allowing the
unobserved individual-level heterogeneity to also be related to the structure of
the component level interactions. For each component /, the vector of errors
g; for members of component / obeys

g = QAL+ pAg; + vy (52)



where A is the same adjacency matrix that links observable characteristics
across individuals, o measures the mean effect of the number of direct neigh-
bors for each individual (“best friends” according to the Add Health questions),
which is given by A, p denotes a spatial autocorrelation coefficient in the &'s,
and v, is again an n;-vector of i.i.d. individual-specific shocks.*® Since the er-
ror structure in (47), g, represents individual outcomes that are not explained
by individual characteristics x and contextual effects Ax, these authors reason
that it proxies for peer interactions. Their estimation of the stochastic structure
subsumes social interactions into the estimation of (.p) in (52), the former
because it controls for the number of best friends and the latter because it
reflects how each individual’'s unobservable shock is affected by those of his
friends. These authors interpret (0.p) as expressing peer effects, which is
not a standard use of terminology. From the perspective of the distinctions
we have drawn between types of social interaction effects, o and p parame-
terize the strengths of different contextual effects since neither refers to direct
interdependences of choices per se.

40 is an ny x 1 vector of 1's. For the Add Health data set, A is an adjacency matrix where a

1 means that at least i or j has designated the other as a best friend, so At is the number of
friends of each member of the component.



The crucial identifying assumption here is that workers can choose res-

idential locations down to a group of blocks, but do not purposefully choose
among the individual blocks in the group because of block-specific charac-
teristics. Therefore, conditional on sorting at the group of blocks level, the
assignment of individuals to specific blocks is independent of block-specific
characteristics. The authors use this conditional independence to identify lo-
cal interactions with respect to labor market referrals. Specifically, let i and
j denote individuals who reside in the same Census block group but do not
belong to the same household. The outcome of interest is the binary variable
w;; which indicates whether or not i and j work in the same Census block.*’
Further, (5*5’. is a dummy variable that equals 1 if i and j reside in the same
Census block, x;; denotes a vector of socio-demographic characteristics for
the pair i, j, and 1, denotes a reference group fixed effect which serves as
the baseline probability of an employment match for individuals living in the
same block group. The proposition that block-level interactions occurs in labor
market referrals is defined via the regression

Wijj = ,8.1‘,';‘ + (ag + (T].’f,‘j){ii} T g + Eij. (53)



The Bayer et al. test for the presence of social interactions due to proximity re-
duces to testing for the statistical significance of ag and a in (53). The observ-
able pair covariates term gx;; controls for individual-specific reasons why two
individuals work on the same block and , controls for any unobserved hetero-
geneity that occurs at the block group level and affects employment location.
For example, 1, may be argued to control for features of the urban transporta-
tion network that might induce clustering in both residence and work location.
The empirical strategy of Bayer et al. addresses several additional potential
pitfalls, including possible sorting below the block level and the possibility of
reverse causation due to co-workers giving referrals on desirable residential
areas, and find large block-level social interactions effects on employment lo-
cation, especially among individuals who are socioeconomically similar.



vii. social networks with unknown network structure?

All the results in this section so far have taken the social network matrix A as
known. This severely restricts the domain of applicability of existing identifi-
cation results on social networks. We finish this section by considering how
identification may proceed when this matrix is unknown. In order to do this,
we believe it is necessary to consider the full implications of the interpretation
of linear social interactions models as simultaneous equations systems. While
this interpretation is given in studies like Bramoullé et al., the full implications
of this equivalence have not been explored. This is evident if one observes
that the matrix form of the general social networks model may be written as

(I—JA)w = (cl +dA)x+ ¢ (54)

where for expositional purposes, the constant term is ignored. From this van-
tage point, it is evident that social networks models are special cases of the
general linear simultaneous equations system of the form

[w= Bx+ s. (55)

42This section was inspired by comments by Gary Becker and especially James Heckman.



Systems of this type, of course, are the focus of the classical identification in
econometrics, epitomized in Fisher (1966) and comprehensively summarized
in Hsiao (1983). One can go further and observe that the assumption that
the same network weights apply to both contextual and endogenous social
interactions is not well motivated by theory, and regard equation (55) as the
general specification of a linear social networks model where the normalization
I';; = 1 for all i is imposed. From this vantage point it is evident that the
distinction between J and A is of interest only when A is known a priori, as
is the case both for the linear in means model and the more general social
networks framework.



Following the classical literature, one can then think of the presence or
absence of identification in terms of whether particular sets of restrictions on
(55) produce identification. All previous results in this section are examples
of this perspective but rely on the very strong assumption of a particular way
of imposing these restrictions, i.e. I' = I — JA and B = ¢l + dA for known A.
Note that the results we have described do not employ information on the
variance covariance matrix of the reduced form error structure, which is one
source of identifying information and the basis for Graham’s (2008) results.
The simultaneous equations perspective makes clear that the existing results
on identification in linear social networks models can be extended to much
richer frameworks. We consider two classes of models in which we interpret
allagentsi = 1,..., ny as arrayed on a circle. We do this so that agents 1 and
ny are immediate neighbors of one another, thereby allowing us to work with
symmetric interaction structures.



First, assume that each agent only reacts to the average behaviors and
characteristics of his two nearest neighbors, but is unaffected by anyone else.
This is a linear variation of the model studied in Blume (1993). In terms of
the matrices I and B, one way to model this is to assume that, preserving
our earlier normalization, I';; = 1 and I';;i-y = I'jiy1 = y forall i, I';; =
otherwise; B;; = by, Bij—1 = Bii+1 = b, forall i, and B;; = 0 otherwise, where
here (and for the remainder of this discussion, all indices are mod ny). The
model is identified under theorem 4 since the nearest neighbor model may be
interpreted via the original social networks model via restrictions on A. For
our purposes, what is of interest is that identification will still hold if one re-
laxes the symmetry assumptions so that I';;-1 = vi-1, Liix1 = Vi1, Bii = bio,
Bii-1 = b;j_1 and B;;+1 = b;1. If these coefficients are nonzero, then the ma-
trices I and B fulfill the classical rank conditions for identification, cf. Hsiao
(1983, theorem 3.3.1) and one does not need to invoke theorem 4 at all. No-
tice that it is not necessary for the interactions parameters to be the same
across agents in different positions in the network. Relative to Bramoullé et
al., what this example indicates is that prior knowledge of A can take the form
of the classical exclusion restrictions of simultaneous equations theory. From
the vantage point of the classical theory, there is no need to impose equal co-
efficients across interactions as those authors do. Imposition of assumptions
such as equal coefficients may be needed to account for aspects of the data,
e.g. an absence of repeated observations of individuals. But if so, then the
specification of the available data moments should be explicitly integrated into
the identification analysis, something which has yet to be done. Further, data
sets such as Add Health, which produce answers to binary questions concern-
ing friends, are best interpreted as providing 0 values for a general A matrix,
but nothing more in terms of substantive information.



This example may be extended as follows. Suppose that one is not
sure whether or not the social network structure involves connections be-
tween agents that are displaced by 2 on the circle, i.e. one wishes to relax
the assumption that interactions between agents who are not nearest neigh-
bors are 0. In other words, we modify the example so that for all i, I';; = 1,
it = Ui = 71, Tiica = vica, Tiigo = vi2, Tij = O otherwise, B;; = by,
B;i_1 = b;j_q, BH—I—] = by, Bii_a = b;_», B,‘H_g = b;s, and B,‘j — 0 otherwise. If
the nearest neighbor coefficients are nonzero, then by Hsiao's theorem 3.3.1
the coefficients in this model are also identified regardless of the values of
the coefficients that link non-nearest neighbors. This is an example in which
aspects of the network structure are testable, so that relative to Bramoullé et
al. one does need to exactly know A in advance in order to estimate social
structure. The intuition is straightforward, the presence of overlapping net-
work structures between nearest neighbors renders the system overidentified:
so that the presence of some other forms of social network structure can be
evaluated relative to it. This form of argument seems important as it suggests
ways of uncovering social network structure when individual data are available,
and again has yet to be explored. Of course, not all social network structures
are identified for the same reason that without restrictions, the general linear
simultaneous equations model is unidentified. What our argument here sug-
gests is that there is much to do in terms of uncovering classes of identified
social networks models that are more general than those that have so far been
studied.



For a second example, we consider a variation of the model studied
by Bramoullé et al., which involves geometric weighting of all individuals ac-
cording to their distance; as before we drop the constant term for expositional
purposes. Specifically, we consider a social networks model

W; = CX; +dZ””- xj—I—J'Zu,J,_ Jwj+ &
J#EI J#EI

The idea is that the weights assigned to the behaviors of others are functions
of an underlying parameter y. In vector form, the model is

w=cx+dA(y)x +JA(y)w + . (56)
where
ro y ,},ﬁ ,},fc ]”k ,},fc—l ,},ﬁ ,};‘\
Al = |7 0 vy I A AN A RETRR & (57)
Y ¥ y 0




Following Bramoullé et al., x is a scalar characteristic. The parameter space
for this modelis P = {(c.d, J.y) € R*x R, x [0, 1)}. The reduced form for this

model is ]

0 =(1=JA®)) (eI + dA(y) (1= JA)) '
Denote by F : P — R™ the map
F(e,d,J,y) = (I=JA(y))™! (I +dA(y)) (58)

The function F characterizes the mapping of structural model parameters
(c.d.J,vy) to reduced form parameters. We will establish what Fisher (1959)
calls complete identifiability of the structural parameters from the regression
coefficients for the reduced form. By this he means that each reduced form
parameter vector is derived from only a finite number of structural parameter
vectors, i.e. that the map from structural models to reduced form models is
finite-to-one.



The behavioral model described by (56) is nonlinear in the parame-
ters because d, y and J interact multiplicatively. This is nonetheless a natural

model, as it is the simplest way to discount individual effects by distance. The
following complete identification result holds for this model:

Theorem 7. Identification of the linear social networks model with weights
exponentially declining in distance. Suppose that the number of individuals
ny is at least 4. Then for all (c¢.d.J.y) € P,

i. ifI —JA(vy) is non-singular, c +d # 0 and y # 0, then the cardinality of
F"(F(cr. d,J,}f)) is no more than 2(ny — 1).

ii. TheeventsJ =d = 0andy = 0 are observationally equivalent. In this
case, F(c,d, J,y) = cl.



Part i. of theorem 7 says the following: Each structural parameter vector is ob-
servationally equivalent to at most 2ny — 3 other structural parameter vectors
in the sense that they all generate the same reduced form. As such, while
point identification may not be achieved, any true structural parameter vec-
tor fails to be identified relative to at most 2ny — 3 alternatives. Notice that
complete identification is stronger than local identification. Local identification
implies that for the true structural parameters, there exists an open neighbor-
hood of these parameters that does not contain any observationally equivalent
structural parameters. The set of observationally equivalent structural param-
eters could nonetheless be countable. Complete identification requires that
the set be finite, which implies local identification. Part ii. notes that if there
are no social interactions, this imposes sufficiently strong restrictions on the
reduced form parameters to identify both ¢ and also requires that the matrix of
reduced form parameters is proportional to an identity matrix. We believe that
refinements of theorem 7.i are possible and leave this to future work.

These examples illustrate how the results of sections 3 and 4 are far
from exhaustive in understanding the identification of linear social interactions
models.



5 Discrete choice models of social interactions

In this section we consider identification for discrete choice models. Identifica-
tion conditions for discrete choice models will prove to be conceptually quite

different than the conditions that apply to linear models. Some reasons are
trivial. For example, discrete choice models, because they involve probabil-
ities, are inherently nonlinear and as we have discussed, nonlinear models
have very different identification conditions than linear ones. Other differences
will prove to be more subtle.



I. binary choice: basic structure

We first focus on binary choice models of social interactions. These have
been the primary focus of theoretical work. Early theoretical studies include
Blume (1993), Brock (1993), Durlauf (1993) and Glaeser, Sacerdote, and
Scheinkman (1996). Recent contributions which generalize these earlier anal-
yses in terms of the timing and network structure of interactions as well as in
terms of belief formation include Bisin, Horst, and Ozgur (2006), Horst and
Scheinkman (2006) and loannides (20086).



Identification for binary choice models has been studied in detail by
Brock and Durlauf (2001a,b, 2007); other contributions include Soetevent and
Kooreman (2007). We follow Brock and Durlauf (2001a,b) for the development
of an initial structure and indicate how subsequent analyses have relaxed as-
sumptions relating to their formulation. Choices are coded so that they belong
to the set {—1,1}. If the context is teenage pregnancy, then +1 can denote
had a child while a teenager while —1 can denote did not have a child while a
teenager. To interpret these choices as the outcomes of a decision problem,
we define individual-specific payoff functions V;{w;).

An econometrically implementable choice structure is implemented by
assuming the difference between the payoffs for the two choices is additive in
the different factors that have been defined for the linear model, i.e.44

Vill) = Vi(=1) =k + cx; +dyg + IJmj, — ;. (59)

*4The payoff differential is written in terms of —&; for algebraic convenience. See the deriva-
tion of choice probabilities in appendix 3.



Note that unlike the linear in means model, it is not necessary to require J €
0, 1) because here it has a different interpretation, as a utility parameter. We
will almost always discuss the model as if J > 0 as this is the standard case
of interest in the literature, but theory imposes no natural upper bound on J.
Analogous to our initial analysis of the linear in means model, we make two
error assumptions. First, the expected value of the unobservable &; term is
independent of observable features of the individual and any features of his
group:

F(Efl(rxj]jegs_rg-fe EE'] — F:—:(Ef)- (BD)

Second, any pair i and j of the errors are conditionally independent within and
across groups:

F(&i, eil(Xk)kegs Yor [ € &4 (X1)ieh Vs J € h) = Fel&i) - Felgj)

61
unlessi = jand g = h. (61)



These conditions are the analogs of the error restrictions (8) and(9) that were
initially imposed on the linear in means model. These conditions are substan-
tially stronger than those that appear in the linear in means model as they
impose conditional independence rather than set certain conditional expecta-
tions equal to 0. They are also stronger than needed for identification proofs. It
is well understood in the discrete choice literature that median restrictions can
play a role analogous to expected value restrictions in linear models.*® We
make them here for ease of exposition and to link directly to theoretical results
as developed in Brock and Durlauf (2001a,b, 2007).

The decision problem for this binary choice context is simple: individual
i chooses +1 if and only if Vi(1) —V;(—=1) = 0. Hence

plw; = 1x;, v, i € g) = ,u(V,-[ 1)—-Vi(—1) = D) =

plei <k +cxid-dyg +Jmi,) = Fe(k+ cxi +dyg + Jmy,).

45See Horowitz (2009) for an extended treatment.



As before, the model is closed by imposing an equilibrium condition on beliefs.
Each person is assumed to know y,, F,, and F,,, the empirical within-group
distribution of x;. When the population size is large, equilibrium requires that
the expected value of the average choice level in the population, given this
information, is defined by

m, =2 | Folk+cx+dy,+ Jm,)dF ., — 1. (62)
g . g g g

L=

There typically does not exist a closed form solution for m,.



McFadden (1974) observed that the logit, probit, and similar discrete-
choice models have two interpretations. The first interpretation is that of in-
dividual random utility. A decisionmaker draws a utility function at random to
evaluate a choice situation. The distribution of choices then reflects the distri-
bution of utility, which is the object of econometric investigation. The second
interpretation is that of a population of decisionmakers. Each individual in the
population has a deterministic utility function. The distribution of choices in
the population reflects the population distribution of preferences. Brock and
Durlauf (2001a) (and theoretical models such as Blume (1993)) extend this
idea to games. One interpretation of this game theoretic approach is that the
econometrician confronts a population of random-utility maximizers whose de-
cisions are coupled. These models extend the notion of Nash equilibrium to
random-utility choice. The other interpretation views an individual's shock as
known to the individual but not to others in the population (or to the econom-
trician). In this interpretation, the Brock-Durlauf model is a Bayes-Nash equi-
librium of a game with independent types, where the type of individual i is the
pair (x;, £;). Information is such that the first component of each player i's type
is common knowledge, while the second is known only to player 1.



ii. identification

Identification of the parameters in the binary choice model holds for very differ-
ent conditions than were seen in the linear in means case. These differences
derive from the nonlinear nature of the binary choice and do not require that
the functional form F. is known a priori. The following theorem is proved in
Brock and Durlauf (2007). We emphasize that the theorem’s conditions are
sufficient, not necessary, and were chosen to render the sources for identifi-
cation transparent.



Theorem 8. Identification of the binary choice model with social interac-
tions. Suppose for the binary choice model social interactions described by
equations (59) through (62),
i. conditional on (x;.y,), the random payoff terms &; are distributed ac-
cording to F., and F.(0) = 0.5;

iil. Fgis absolutely continuous with associated density dF .. dF . is positive
almost everywhere on its support, the interval (L, U ), which may be

(—00,00);

iii. for at least one group g, conditional on y,, each element of the vector x;
varies continuously over all R and supp(.x;) is not contained in a proper
linear subspace of RK;

iv. vy, does not include a constant; each element of y, varies continuously
over all R; at least one element of d is non-zero; and supp(y,) is not
contained in a proper linear subspace of R®.

Thenk, ¢, d, J and F . are identified up to scale.



The intuition for why identification holds is as follows. Within a given
group, dy, + Jm, is constant for all agents. Assumptions i)—iii) are sufficient
to ensure that within that group, the parameter vector ¢ and density function
F. are identified up to scale. Identification of these objects up to scale was
originally established by Manski (1988). The assumptions stated here allow
for a proof structure that mimics Horowitz (2009). Assumption iv) ensures
that k, d and J are identified up to scale. Identification of k is trivial if the
other parameters are identified. The reason why d and J are identified is that
the unbounded support on the y, element with a nonzero coefficient ensures
that m, and y, cannot be linearly dependent. This follows simply from the
fact that m, is bounded between —1 and 1. This bound is not driven by any
functional form assumption but follows from the fact that the expected choice
values are functions of the choice probabilities which are bounded between
0 and 1. Hence the argument for identification is analogous to one of the
basic reasons why bounds can be established on probabilities in the partial
identification literature. (See Manski (2003) for a synthesis.) Note as well that
this is not an identification at infinity argument.



This theorem extends Brock and Durlauf (2001a,b) who proved iden-
tification when F, is a negative exponential distribution of the type used in
appendix 3 and Brock and Durlauf (2006) who proved identification for general
F. when F_ is known a priori. Clearly the conditions of this theorem can be
relaxed. For example, if condition iii) holds for all groups, then one can allow
for multiple F,,’s, i.e. different group-specific distributions. Similarly, one does
not need unbounded supports for all regressors, rather what one needs is a

large enough support for a nonlinear relationship between m, and y, to ensure
identification.



iii. observability of actions

The identification results in Brock and Durlauf (2007) are sensitive to the as-
sumption that individuals react to expected rather than realized behaviors of
others. This follows from the assumption that an individual's random shock
is observed only by himself. Soetevent and Kooreman (2007) build a game
theoretic model with a different assumption. They assume that each individual
knows the other individuals’ shocks, that shocks are invisible only to the econo-
metrician. Thus in equilibrium, each individual's expectation of the average
choice of others will be the realized average choice of others. Soetevent and
Kooreman have replaced the incomplete information and Bayes-Nash equilib-
rium of Brock and Durlauf (2001a) with complete information and Nash equi-
librium. They justify their informational assumption by presuming to study in-
teractions in relatively small groups of given sizes in which choices of other
individuals are assumed to be fully observed, and therefore an individual's
payoff depends on the actual choice of others in his group, as opposed to
expected choices as in Brock and Durlauf. This difference in information struc-

ture and the resulting equilibrium concept makes for an interesting contrast
between the identification conditions in the two models. The equilibrium payoff
difference equation (59) now becomes

J
Vi(1) = Vi(=1) = k+ cxi +dyg + —— > wjg - (63)
& J#i



Like Brock and Durlauf, Soetevent and Kooreman focus on pure Nash equilib-
ria with binary outcomes and estimate the model in effect as a system of simul-
taneous equations by means of simulation methods. Each individual choice is
determined by the rule

{l ifk +cx; +dy, + ”g%l Y i Wig > &
{u,",;, —

-1 ifk+cx;+dy, + ”g%l D jiWig < &

Unlike the Brock and Durlauf model, for given values of parameters (k. c.d. J)
and data (x;,y, ), the decision rules for the individual agents may not produce
unique strategy profiles.4¢ This creates a very different multiple equilibrium
problem than occurs in Brock and Durlauf, since in the latter, each agent has a
unique strategy profile given the expected average choice m,. Consequently,
the normal approach of forming the likelihood function would not be appropri-
ate in their case even when the &;'s are independent.

46Soetevent and Kooreman (2007, pp. 602-3). This finding verifies the claim by Krauth
(2006b) that with small (finite-size) social groups, the Brock and Durlauf model can exhibit
multiplicity of strategy profiles whenever observed group behavior exerts any influence. The
range of equilibrium group behavior depends on the size of the social group as well as its
strength of influence.



Soetevent and Kooreman employ simulation-based estimation meth-
ods to compute the likelihood that any choice pattern would be observed. Their
approach accounts for the potential multiplicity of non-cooperative equilibria.
For parameter values that generate multiple equilibria they assume that the
equilibria are equally likely, which in turn guarantees statistical coherency of
the model.#” Simulation of the model over different regions of the parameter
space allows for calculation of the number of equilibria for draws of the &;'s
which are assumed to be i.i.d. normal. The procedure skirts the issue of exact
identification of the model (no proof of identification is given) but provides a
practical approach for implementation of their theoretical model. Also, in their
actual estimation, Kooreman and Soetevent exclude contextual effects by set-
ting d = 0.

The multiplicity of equilibria in Soetevent and Kooreman is very simi-
lar to types of multiplicity that have been studied in the industrial organization
literature. Tamer (2003) launched a now thriving literature on multiple equi-
libria and partial identification by means of bounds for industrial organization
contexts. This body of work, surprisingly, has had little contact with the social
interactions literature. Clearly both literatures would benefit from integration.

4 The assumption that all equilibria are equally likely is questionable. Blume and Durlauf
(2003) show that in dynamic analogs of the Brock and Durlauf model, the percentage of time
spent in the vicinity of the highest average utility equilibrium exceeds that of other equilibria;
similarly Brock and Durlauf (2001b), for a version of the discrete choice model of social inter-
actions in which the conditional probabilities of each choice depend on the realized choices of

others, show that the equilibrium choice configuration will assign almost all probability to the
social optimum as the population becomes large. While these analyses employ different mi-
crofoundations from Soetevent and Kooreman, they suggest that not all equilibria are equally
likely. We thank James Heckman for discussion on this general issue.



iv. unobserved group effects

Unobserved group effects may be introduced in a fashion directly analogous
to the linear in means model. Specifically, payoff differentials are described by

Vill) = Vi(=1) =k +cx; +dy, + Jmy + ay — &

Here a, is a fixed effect and equilibrium is required. Recall that individual
agents are assumed to observe «, while the analyst does not.



Without any restrictions on this fixed effect, it is evident that identifi-
cation breaks down. Note that the presence of a fixed effect does not affect
identification (up to scale) of ¢ and F,.. This holds because «, is constant
within a group and so is subsumed in the constant term. To see why the other
parameters are not identified, observe that parameter values k, d and J are
observationally equivalent to k, d and J, that is, for all y, € suppy,

k+dye +Jdmg+a, =k+dy, +Jmg + @,

if one chooses @ = o + Jm, and J = 0. Thus J and d are not identified. (See
Brock and Durlauf (2007) for an elaboration.) We can therefore state:

Theorem 9. Non-identification with unobserved group effects. In the pres-
ence of unobserved group interactions whose properties are unrestricted, the
parameters of the binary choice model with social interactions are not identi-
fied up to scale.

In response to unobserved group effects, instrumental variables and
differencing strategies are available just as occurs for linear models. Our re-
marks on instrumental variables for the linear in means model apply for the
binary choice context as well and so are not repeated. Instead, we focus on
two strategies, one which parallels the linear in means model and one which
is new and only applies in the binary choice context.



a. panel data

We first consider how panel data can be used to eliminate unobserved group
effects for the binary choice model. Panel data, of course, allows one to con-
sider differencing methods. The notion of differencing in panels for binary
choice data is more subtle than was the case for the linear in means model
since it involves considering differences in probabilities across time. Chamber-
lain (1984) provides the generalization of differencing to discrete choice con-
texts. Identification of social interactions with differencing is studied in Brock
and Durlauf (2007) who consider

Vie(1) = Vigl(=1) =k +cxjp +dy, + eyy + Jmy + a, — ;. (64)

The vector y,, is introduced in order to distinguish between those contextual
effects that are time varying and those that are not. Applying Chamberlain’s
ideas on quasi-differencing of discrete data to models with social interactions,
Brock and Durlauf verify a corollary to theorem 8.



Corollary 2. Identification of a subset of parameters with panel of the
binary choice models of social interactions with fixed effects. For the
binary choice model with social interactions described equations (59)—(62),
assume that within period-choices are described by equation (64) and that
the model equilibrium conditions hold period by period. If the assumptions of
theorem 8 hold for all t, then ¢, e and J are identified up to scale whereas k
and d are not identified.



b. partial identification

For binary choice models, Brock and Durlauf (2007) have proposed partial
identification approaches to social interactions which involve weak assump-
tions on unobservables. We consider two examples. The partial identifica-
tion arguments we develop are qualitatively different from those that typically
appear in the econometrics literature. The reason is that we do not estab-
lish probability bounds. Rather, we show how certain empirical observations
represent evidence of social interactions, even though parameter magnitudes
cannot be bounded. The approach we describe is theory-dependent in the
sense that it involves asking how the introduction of unobserved heterogeneity
into various models affects their properties. Put differently, we are concerned
with uncovering “footprints” of social interactions in heterogeneity-filled envi-
ronments using various theoretical models as the basis for the analysis.



Qur first example of a weak assumption is first order stochastic mono-
tonicity of group level unobservables. We assume that y, is measured so that
d > 0. We denote the conditional distribution of the unobservable given Vg as
Fa,ly,. Letting > denote first order stochastic dominance, and using > when
comparing vectors to mean that each element of one vector is greater than the
corresponding element of the other, we assume

If }'1:‘:: = }jg"q the‘n Fﬁgh‘g > Fﬂ-g;l}:g; , (65)

This assumption is sufficient to produce partial identification of social interac-
tions.



Theorem 10. Pattern reversals and partial identification of endogenous
social interactions. For the binary choice model with social interactions de-
scribed by equations (59)—(62) suppose that the distribution of fixed effects
exhibits first order stochastic dominance with respect to the contextual effects
as characterized by equation (65). If assumptions i)—iv) in theorem 8 hold and

Vo > yor @nd E(mygly,) < E(my|y, ). (66)

then it must be he case that J > 0 and J is large enough to produce multiple
equilibria.



The term “pattern reversals” refers to the case where the observed
characteristics of two groups suggest one ordering in their expected average
outcomes, while the opposite ordering in fact holds.*® This reversal of out-
comes with respect to fundamentals can occur for three reasons. One possi-
bility is that the observed outcome ordering is due to sampling error. This is
irrelevant to identification because of the analogy principle. The second rea-
son is that the unobserved group effects reverse the ordering that is implied
by dy,. This is ruled out, in an expectations sense, by the stochastic domi-
nance assumption. The only remaining reason for the pattern reversal is that
there are multiple equilibria associated with m, such that the low y, group has
coordinated on the high expected average outcome equilibrium whereas the
high y, group has not. This is why the theorem requires multiple equilibria.
To be clear, endogenous social interactions may be present when no pattern
reversal occurs. All that can be said is that a pattern reversal in the presence
of stochastic dominance in the sense of (66), is evidence of social interactions.

480f course, expected group values are not directly observed. Our identification analysis
replaces sample means with population means, following the analogy principle.



Our second example involves restricting the conditional density of the
unobserved group interactions given observed group characteristics, that is,
dFq,y,. via unimodality,

for all y,. dFq,y, is unimodal. (67)

This assumption is sufficient to verify



Theorem 11. Partial identification of endogenous social interactions when
the density of unobservables is unimodal. For the binary choice model with
social interactions described by equations (59)—(62), suppose that fixed effects

are added as characterized by equation (67). If assumptions i)—iv) in theorem
8 hold, then

i. if J =0, then dF )y, is unimodal;

ii. if J > 0 is large enough to produce multiple equilibria for the binary
choice model with social interactions, then dF,,,, is multimodal.



This result also is based on multiple equilibria. In this case, the multiple
equilibria produce the multimodality described in the theorem. Two observa-
tions should be made about this result. First, no analogous result exists for
the unconditional density of expected outcomes, dF,,, . The reason is that
integrating dF mely, OVEr Vg to produce dF,,, would not necessarily preserve
multimodality if it is present in the conditional density and, in contrast, may
spuriously produce it when it is absent from the conditional density. This fol-
lows from the nonlinear relationship between m, and y,. Second, multimodal-
ity is sufficient but not necessary for multiple equilibria in dF,y, as mixture

densities are not necessarily multimodal.*®

49See Lindsay (1995, p. 4-5) for a nice example of a unimodel two-part mixture.



v. self-selection

Self-selection for discrete choice models has generally been handled using in-
strumental variables methods. The concerns we articulate about this strategy
for the linear in means model apply to the discrete choice context as well. In
parallel to the case of group level unobservables, Brock and Durlauf (2007)

provide a number of partial identification results which hold under relatively
modest assumptions.



To do this, Brock and Durlauf (2007) treat the membership question
as the outcome of a matching problem and place some restrictions on the
equilibria that emerge from the matching. Matching is assumed to occur with
respect to an individual index A; and a group index T, defined as

AF' = CXj— & (68)
T, = dy,. (69)
In the context of peer effects in classrooms, A; may be thought of as student

ability and T, as teacher quality. For simplicity, the individual characteristics x;
are assumed to be measured so that ¢ > 0.



Individuals and groups are matched in the sense that higher group
quality is associated with higher individual quality. With respect to the equi-
librium matching process, Brock and Durlauf assume

For any pair of groups g and ¢, Ty > T, = Fapr, > Far,. (70)

This assumption is weaker than one which imposes strict assortative match-
ing between better groups and higher ability individuals; the latter is predicted
by models such as Becker (1973). The assumption is qualitatively consistent
with a range of payoff functions that relate groups and individuals, see Sat-
tinger (1993) for a survey of equilibrium matching problems. Note that (70)
places an implicit restriction on Fgy ieg. This assumption on matching leads to
theorem 12.



Theorem 12. Partial identification of endogenous social interactions un-
der assortative matching. For the binary choice model of social interac-
tions (59)—(62), assume assortative matching as described by (70). Then
E(mg|T,) > E(my|Ty).

This theorem is useful as it indicates how the presence of endogenous
social interactions may be inferred if 7, > T, yet E(m,|T,) < E(my|Ty ). This
can only occur, under the specification we have assumed, if group ¢ has coor-
dinated on an equilibrium expected average choice level other than the largest
of the possible equilibria associated with it while group ¢ has coordinated on
an equilibrium other than the lowest possible expected average choice level
among those it could have attained. The existence of multiple equilibria imme-
diately implies J > 0.



The use of assortative matching to facilitate identification may be ex-
tended to panel data. To do this, modify (68) and (69) so that A;, = k +
cxi +&ip and Ty = dy, + ey, and that (70) holds period by period. Brock and
Durlauf show:

Corollary 3. Equality of average outcomes with equal observable con-
textual effects. Assume that the binary choice model of social interactions
(59)—62) holds for all t with equilibrium at each date and assortative matching
as described by (70). If J = 0 or J > 0 but is sufficiently small that mg; is
unique, then yo = yor implies mg = mgy.



vi. beyond the binary choice model
a. multinomial choice

Little econometric work has been done on multinomial choice models with
social interactions; as far as we know the only contributions are Brock and
Durlauf (2002,2006) and Bayer and Timmins (2007). Nevertheless these mod-
els seem important in many contexts. We develop the analog to the binary
choice model and establish identification. Multinomial choice models with so-
cial interactions can exhibit multiple equilibria and bifurcations in parallel to
those found in binary choice models. Appendix 3 provides a brief discussion.



To formulate the model, we consider an environment in which each
member of a common group makes a choice [ from a common choice set with
L discrete possibilities, i.e. ();, = {0,..., L —1}. The same choices are as-
sumed to be available regardless of group. The common choice set assump-
tion is without loss of generality, since if agents face different choice sets, one
can always assume their union is the common set and then specify that certain
choices have payoff of —co for certain agents. Individual utility is defined as

Ifrm(f) =k + cx; + l.df_"lf‘lq -+ ‘IF;TQI —I—ﬁ_IE,‘; (?1)

Here p;?qf denotes agent i's expected value for the fraction of group g that

chooses [. This generalizes the preference structure of the binary choice
model to account for any number of choices. As before, 8 indexes the degree

of heterogeneity in the random payoff term &;;. We assume that these unob-
served utility terms are independent and identically distributed with a common
distribution function F.. In parallel to the binary choice case

F(SH|('}frw]r?rexm_v,m i € Q] — FE(EH)
and

forall i, j.g.h.k.l suchthatnotallofi = j.g = h.k = [ hold

F(Er'kgjfl(-"fm)meg- [ € 8 Ve (_-"ff:)neh-}?hjE -"i?) = Fs(_gik} : Fa(f:jf)



For this model, the probability that agent i makes a particular choice [ is the
probability that / produces the maximum payoff among all choices according
to (71). This amounts to the joint probability defined by

([ gio—&i < plk+cx; + d,f_"p’ﬁ + Jl.rﬁ?;;‘r \
— ko — coxi —doyg — J{)ﬁ?;;,ﬂ]
p .
gir-1 — &it < Pk + cix; +diyg + Jipiy,
\ —kp—1 —cp1xi—d—1yg = Ji-1Pj, 1))

Following an order-statistics argument®® the probability of choosing ! condi-
tional on a particular realization of g;; is

| I Fg(ﬁ(kf —+ cpx; + df}‘f + f”);;lfj —‘B(kj T CjX; T (J’j}‘f -+ ij)*;jqj) + Eﬂ)
J#l

which immediately implies that the unconditional probability of the choice [ is

Pigl = [ | I Fg(ﬁ(kf + CIX; + d."_rg + jf,”;;;]
Vo j#
_;S’“(J -+ {_‘j,a‘{f —+ dj_‘l,-‘lq -+ jjf):?w) —+ ET,‘;)(JFFS (?2)

S0Anderson, de Palma, and Thisse (1992, p. 36) provides a clean exposition.



In equilibrium, the aggregate choice probabilities of this general multinomial
choice model are the solutions to

Pgl = [ [ | IFS(_,B(&'{; + crxi +diyg + J;pﬁqf]
N
—Bkj+ cjxi +dpyg +Jp5,;) +e)dF edF g (73)

Brock and Durlauf (2006) prove a general identification theorem for the muilti-
nomial choice model.



Theorem 13. Parametric identification for the multinomial choice model.
Let the true data generating process be given by (71)—(73) and assume that
F. is known. Under the normalization kg = 0, cog =0, dy =0, and J, = 0, if

i. the mapping defined by equation (73) is globally one-to-one,

ii. the joint support of x;,y, is not contained in a proper linear subspace
of RR—H‘;I

iii. the support of y, is not contained in a proper linear subspace of RS,
iv. no linear combination of elements of x; and y, is constant,

v. for each individual i, conditional on y,, x; is not contained in a proper
linear subspace of RR,

vi. none of the elements of y, has bounded support,

vil. for alll, pg; is not independent of g,

then the vector of model parameters (ky.ci,dy, Jy. ..., ki_1,cp—1.dp—1,J1—1) is
identified up to scale.



Bayer and Timmins (2007) study a variation of the multinomial choice
problem which focuses on choices across locations. They thus consider a
population that forms a single group. We omit the group index in describing
their model. In terms of the error structure, they set 5 = 1 in (71) and assume
that the error terms are double exponentially distributed,

u(ei < ) = exp(—exp(—BL +v)). (74)



In terms of preferences, they follow the industrial organization literature in al-
lowing for coefficient heterogeneity; their implementation of this heterogeneity
is the opposite of the formulation one finds for hierarchical models in that the
heterogeneity is determined by individual characteristics. In addition, they al-
low for unobserved choice-specific fixed effects. This produces choice-specific
payoffs

Vill) = dyzi + Jupi + &+ €ir
where

diyy = d + Dyx;, Jiyg = J+ Jix;

and & is an unobserved location-specific effect. Bayer and Timmins use the
functional form assumption (74) to construct instruments for estimation of this
model. Their approach is a variant of models that all fall under the approach
pioneered by Berry, Levinson, and Pakes (1995). An interesting aspect of
Bayer and Timmins’ work is that they focus on identification power that derives
from changes in substitution patterns in multinomial choice models.



b. duration models

A number of studies have sought evidence in dynamic contexts based on dura-
tion and optimal stopping problems. Brock and Durlauf (2001b) first discussed
this approach to modeling social interactions, albeit briefly. Sirakaya (2006)
studies recidivism under the assumption the individual hazard function for an
individual probationer depends on individual and neighborhood characteristics
as well as social interactions among probationers. She allows for two types of
social interactions: the mean hazard rate for probationer’s in i’'s neighborhood,
m,, and mean time to recidivate in the population, r,. These are estimated

over the entire sample, and so are not time varying. The hazard rate she
employs takes the functional form

Mig(1, Xj. Vg Mg, Tg) = £0(1) eXp(k + cx; + dy, + Jimg + Jorg),  (75)

where £y(1r) denotes the baseline hazard function. (Since the model is ex-
pressed in continuous time, ¢ is treated as an argument rather than a sub-
script.) Sirakaya addresses unobserved group effects by considering frailty
model variations of (75) which helps address issues of unobserved group ef-
fects. Probationers are assigned to neighborhoods, which eliminates issues of
self-selection. Sirakaya finds strong evidence that endogenous social interac-
tions effects matter.



c. uncovering social interactions via their effects on laws of large num-
bers and central limit theorems

When social interactions generate dependence across agent behaviors in a
group, their presence will have implications for the convergence rates of sam-
ple means and so will affect laws of large numbers and central limit theorems
associated with data sampled from the group. A number of authors have pro-
posed ways to exploit these effects in order to generate social interactions. A
neglected theoretical predecessor to this social interactions work is Jovanovic
(1987) who studies how interdependences could lead idiosyncratic shocks to
produce aggregate uncertainty.



One approach of this type is due to Glaeser, Sacerdote and Scheink-
man (1996). Their objective is to examine whether endogenous social interac-
tions contribute to cross-city variation in crime rates. One can interpret cities
as groups and code the crime/no crime choice as w; = 0 and w; = 1 respec-
tively, in order to preserve our binary choice notation. If one thinks of persons
across all cities as having a common probability p to commit a crime, then
the crime rate for the population of city ¢ will have an associated variance of
p(1—=p)/n,. On the other hand, the presence of social interactions may in-
crease this variance by introducing dependence across choices. To formalize
this intuition, Glaeser et al consider a model in which individuals are placed
on a line and indexed outwards from the origin, {0, =1, +2}, so that a city of
size n, = 2n 4 1 will have individuals ranging from —n to n. They propose
a stochastic process for choices in which individuals in a city come in three
types: type 0 individuals are always law abiding, type 1's are always criminals,
and the remaining type 2's mimic their predecessor in the order. The assign-
ment of types to locations on the line is i.i.d. They show that this model pro-
duces greater cross city variance in crime rates than the model without social
interactions. Specifically, the variance in the crime rate is p(1— p)(2 — ) /7n,,
where p is the probability that an individual with fixed behavior is a criminal,
(1 — p) is the probability that a fixed individual never commits a crime, and &
is the probability that an individual is a fixed type. Without social interactions,
m = 1; that is, everyone is either type 1 or type 2. The presence of a group
in the population that can be influenced raises the variance. They propose
independently estimating p, and testing for social interactions by comparing
the variance of cross-city crime rates with p(1 - p)/n,, that would result from
no social interaction.



de Paula and Tang (2010) provide a set for tests of social interac-
tions that may be interpreted as extensions of the Glaeser, Sacerdote and
Scheinkman approach to looking at the properties of sample moments. de
Paula and Tang consider binary choices in which the payoffs in (63) are modi-
fied to

Vi(l)=Vi(—-1) =k +cx; + J(x;) Z Wjg — &
j#i

There are several qualitative differences with (63). First, the endogenous so-
cial interactions parameter is allowed to depend on x;. The authors are inter-
ested in the case where the parameter is negative as well as positive. Second,
the endogenous effect depends on the number of agents making the choice,
not the average. Third, the while the idiosyncratic shocks are still assumed to
be conditionally independent, their distribution functions are modeled as F,,
so that each distribution function may depend on the individual's characteris-
tics. The information set for agents is assumed to be the same as in Brock and
Durlauf (2001a) and elsewhere, and so leads to a Bayes-Nash equilibrium of
the type we have studied.



de Paula and Tang argue that even with individual level data, this model
is not identified. They therefore propose to study cases where groups are
composed of individuals with identical x; values. This leads them to argue
that multiple equilibria in groups with a given x; = X can identify the sign of
J(x). When J(X) is positive, this is easy to see, since different groups will
have different expected average choice levels and so in the Glaeser et al.
sense produces excess intergroup variance in sample means. While this was
originally recognized in Brock and Durlauf (2001b), de Paula and Tang develop
the argument.



Further, de Paula and Tang argue that multiple equilibria can hold when
J(X) is negative. Their identification argument differs from our previous argu-
ments on how multiple equilibria facilitate identification. de Paula and Tang
shift their analysis from average choice to individual choices within a group.
They show how negative J(X) can mean that there is a negative correlation
among intragroup choices. The key to their analysis is that even though aggre-
gate quantities such as the expected average group choice may be constant,
there are multiple equilibria with respect to which agents choose 1 as opposed
to —1. This represents a new view of the informational content of multiple
equilibria. This approach does require individual level data, unlike Glaeser et
al. We conjecture that if one focuses on average group behavior, a negative
J(x) would lead to lower variance in the sample averages of group behavior
than would occur when social interactions are absent, so that the aggregate
approach of Glaeser et al. may be applied to test for social interactions for this
case as well.



Another approach to the identification of social interactions via quali-
tative features of sample moments was suggested in the context of financial
applications in an early paper by Brock (1993) and uses bifurcations around
certain parameter values of a type where the Law of Large Numbers and the
Central Limit Theorem break down as in, for example, the statistical mechan-
ics models of Amaro de Matos and Perez (1991) and Ellis (1985). The basic
idea of this second approach is to explore how strong dependence between
choices can lead to qualitative changes in the properties of the joint stochastic
process for a set of choices. These types of breakdowns occur in variations
of the binary choice model, and they have some surprising consequences. In
the linear in means model, it is natural to use the sample mean as an instru-
ment for individuals expectations. Since equilibrium requires that individuals’
beliefs are the correct first moment of the population distribution of choices,
this amounts to using the sample mean as an instrument for the population
mean. While this approach is well-justified in the linear in means model, it
creates an equilibrium selection bias in binary choice models. If gJ > 1, the
model has multiple equilibria. Brock and Durlauf (2001b, pp. 3364—7) show
that there is a function H : R — R which can be thought of as a potential
function. It has the property that if m is a local maximum of H(SJm), then
m is an equilibrium expectation. Nonetheless, as the population size grows,
lim,—0 me € argmax H(BJm). Generically, this set is a singleton, and so the
procedure of replacing the population mean with the sample mean in effect se-
lects one equilibrium, the equilibrium which globally maximizes m — H(SJm).



The selection of equilibrium by an estimator should appear to be quite trou-
bling. The argument has been made that different dynamical processes of
choice revision by individuals (such as best-response and learning dynamics)
select the potential-maximizing equilibrium.®! For the economist who is aware
of these results, the use of the sample mean as an instrument for beliefs in
binary choice models may be a virtue rather than a vice. One implication of
this selection effect is that estimates using the sample mean will behave dis-
continuously in the parameters of the model. The correspondence from model
parameters to global maxima of H is upper hemi-continuous but not continu-
ous — small changes in parameters can produce big changes in the location
of the global maximum (although not in the maximal value of H).



Brock and Durlauf (2006, section 2.3) extend this type of argument to
the multinomial case to show how a tiny change in the distribution /), of the
characteristics of group ¢ can cause a large change in the limiting value of
the fraction of group g choosing choice / among possible choices 0, .. ., L—1,
provided 5./ is greater than some critical value. This approach suggests that for
general social interactions structures a potential route to identification would
be to estimate the sum of absolute values of correlations among members
of a group, denote this S; and look for dates " where §; changes abruptly.
While it is possible that the stochastic structure of the generating processes
of unobservables and selection effects that have not been accounted for by
estimating a model of selection into groups, e.g. equation (39) could display
similar abrupt changes.



d. beyond Bayes-Nash equilibrium

Very recent work on discrete choice models of social interactions has focused
on relaxing equilbrium belief restrictions. One approach is due to Li and Lee
(2009) who employ an interesting data set on the 1996 Clinton versus Dole
Presidential election. In this data set individuals were asked about their own
intended vote and whether they thought their reference group members (where
the reference group was well defined in the data set) would vote for Clinton,
Dole, a third party candidate, or not vote at all; these data are trimmed to pro-
duce a binary choice between the two major party candidates. Using this data
on the beliefs of each respondent about the voting choices of his reference
group, Li and Lee compute a subjective expectation which they denote by p;,,
for each individual i, to play the role of u? in equation (62) above, and use it
to test the null hypothesis of equilibrium bellefs by the goodness of fit in the bi-
nary choice model with independent types and equilibrium beliefs, as opposed
to the subjective expectations they construct. Using maximum likelihood es-
timation methods, Li and Lee produce two interesting results in this part of
their paper. First, they show that estimation effectiveness (measured by the
size of the likelihood and in-sample and out-of-sample prediction results) of
the binary discrete choice model with social interactions is improved when the
subjective expectation data are used in place of the equilibrium beliefs version
of the model. Second, they reject the null hypothesis of rational expectations.
Incorporation of group level unobservables does not qualitatively affect these
findings.



6 Experimental Approaches

This section considers different approaches to the identification of social inter-
actions that involve various forms of experiments, ranging from the laboratory
experiments in which the analyst is free to specify much of the socioeconomic
environment to quasi-experiments in which a change in some environment
produces experimental-type conditions to social experiments in which a pol-
icy change is implemented in order to generate evidence of social interactions
effects.



I. laboratory experiments

Given the difficulties involved in identification of social interactions from non-
experimental data, laboratory experiments would seem to offer a promising
alternative for studying social interactions. It should be possible, for instance,
to create experimental designs such that %, does not lie in the span of the
elements of y,, thus achieving differentiation of contextual from endogenous
effects in the linear in means model. Unobserved group characteristics are es-
sentially a measurement problem. By controlling what group members know
about each other, and by defining the environment of the interaction, unob-
served group characteristics can be eliminated. Finally, group membership
can be explicitly controlled, which addresses the self-selection issues.



The trustor’s strategies are illustrated in figure 1. The only Nash equilibrium in
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Flgure 1: A Trust Game Figure 2: The Parameter Space

monetary payoffs is for the trustee to keep everything given to her, and for the
trustor to stay Out. We might imagine however, that trustors and trustees both
have utility functions exhibiting pro-social preferences. We suppose that the
trustees are of two types: Keepers care only about monetary payoffs, and so
keep all the money. Sharers are sufficiently motivated by fairness or reciprocity
that they return half of the proceeds. The probability that a given trustee is a
sharer is . This is a parameter known to the trustors but not to the econo-
metrician, who must estimate it. Trustors also come in types. The utility of
going In is the sum of the expected return, 150, and a utility of being altruistic
a. Thatis, u,(I) = 150 + a. The utility of Out is just the monetary reward,
u,(0) = 10 . The type distribution for trustors is uniform: a ~ U|0, A]. Trustors
and trustees are drawn independently from the appropriate type distributions
and are matched to play. The equilibrium of this game is simple to describe.



Sharers Share, and Keepers Keep. Trustors of type @ > 10— 150 pay In, while
trustors of type a < 10— 150 stay Out. The econometrician wants to estimate
the parameters of the type distributions, A and Q. The possible parameters
are (A, Q) € [0,10] x [0, 1]. Parameter values (A, Q) such that A + 150 > 10
are point-identified. This region is labeled in figure 2. For these parameter
values, the fraction of trustors who play In identifies A, and Q is identified by
the fraction of trustors who Share. For parameter values on the other side
of the boundary, all trustors stay Out, the trustees never get to choose, and
their type is never revealed. In this game, it is the action of trustors that allows
identification of the trustee type distribution parameter to be observed.



One advantage of the Bayesian framework is that it makes possible
inferences across games. For instance, Dufwenberg and Gneezy (2000) con-
sider a variant on the game of figure 1 where trustees can make any division
of 20 (rather than 30) should they get the move, and trustors can choose to
play In or Out, and receive x, which is varied across treatments. If it is as-
sumed that the type distributions are independent of x, then by changing the

treatment, any type distribution can be identified.



To this end, we suppose that trustors are motivated by three potential
considerations: The monetary return, conformance to a sharing norm, and
altruism. The utility function of a trustor who gives w, and receives w, from
the trustee is

¥
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The first term is the monetary payoff. The second term is the disutility of
non-conformity to a social norm 7, which is a feasible transfer. The third is
altruism, the utility of giving. A type for a trustor is a triple (.1.p), and the
type space is T, = R4 x [0, 10] x R4. A strategy for the trustor is a function
oo To— [0,10].



The trustee has the utility function of the form

=
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where the parameter quadruple (9, ¢, v, a) describes the trustee’s type. For
the utility function described in equation (76) the first term is the monetary
payoff, the second is conformity to a social norm, and the third creates a taste
for trustworthiness. Notice that the marginal utility of giving depends upon
what has been received.

We will simplify our analysis by imposing a constraint on the type space
for trustees, that the marginal utility of conformity is positive: ¢ > 0. Hence
utility can be renormalized so that ¢ = 1. The marginal utility of the transfer
w, for the trustee when the trustor transfers w, is then

U, (Wer ) = =0 — W + (7 +@)w, + .
where 9, ¥ and @ are population means, and
V= Wyl&q + S},) + &5

By construction, E(v) = 0 since the &'s are deviations from population means.
The type of a trustee is, given our normalization, the vector (a, y,6).



We suppose that individual trustees
can differ in their perception of what
the norm is, but this is not essential
for our analysis.®’ The type space
is defined by 1) non-negativity of the
utility parameters, 2) that it is not
the norm to give back more than the
gross return on the transfer from the
trustor, and 3) an a priori constraint
on the transfer w,, that it not exceed _
the amount of money the trustee has 300,

been alloted to divide: w, < 3w,.

Without loss of generality, ¥ + @ —  Figure 3: Type Space, T, = (.6, y)
o < 3, since behaviors of types with

y+ a—-06 > 3 are indistinguishable from that of types on the boundary,
w. = 3w,. Thus the type space for the trustees is

T,={(a.6.y) eRLX[0,3]:a+y—-§<3)

and trustee strategies are functions o : T, % [(}. l(}] such that o, (¢, w, ) < 3w,.

7 Perceptions of the norm come from the world external to the experiment. If we believed
that individuals completely internalized the experiment, then we could impose an additional
equilibrium condition on the norm. This belief, however, which we would require for observa-
tions of real social phenomena, is unnatural for the lab. Here is an example of how, by not
being able to control the frame, the laboratory setting introduces additional noise not present
in the world.



The specification of the Bayesian game is completed by specifying type
distributions p, and p,. on the type spaces 7, and T, respectively, for trustors
and trustees. Each individual trustor and trustee knows his own type, and
the distribution from which the other type is drawn. In this Bayesian game, the
type of the trustor is irrelevant to the trustee since the trustee sees the trustor’s
action when she must choose. The trustor, however, cannot be certain about
how much the trustee will return. The trustor will maximize expected utility,
where the expectation will be over the type of the trustee and the trustee strat-
egy function is known to him. The econometrician knows the structure of the
game, but sees only transfers w, and w,. The econometricians task is to esti-
mate the type distribution, thereby pinning down the relative importance of the
different motivations for the transfer of money in the population of experimental
subjects.



It is easy to see in this framework how identification problems arise.
First, suppose that the type distributions are such that all decisions are inte-
rior.®® The first order condition requires that u,(w,,w,) = 0, and so

We=—-0+ (Y +@)w, +v

and it is clear that while the marginal rate of substitution between monetary
reward and conformity can be identified from the trustee’s behavior, the social
norm and marginal rate of substitution between altruism or trustworthiness
and conformity cannot. One might argue that this is due to the excessive sim-
plicity of the structural assumptions. A more natural assumption might be to
assume that the norm is affine rather than linear. This introduces another pa-
rameter, and the consequence is that the marginal rate of substitution between
private return and conformity can no longer be identified either. Another pos-
sibility is to assume, for instance, that the norm is linear while trustworthiness
is quadratic. This is no less arbitrary than our linear assumption, and leads
to a mismatch between norm and equilibrium strategy which is in some sense
more severe than the present model, since the equilibrium strategy would be
quadratic in received transfers while the social norm is presumed to be linear.

S8The set of parameters for which this will be true has a non-empty interior. We do not
derive it here, but it is worth noting that sufficient conditions involve both trustor and trustee
parameters, since if w, = 0, then of necessity w, = 0.



The trustee’s behavior does not exhaust the possibilities for identifica-
tion. The trustor knows the parameter values that the econometrician does
not, and they are payoff-relevant for the trustor’s decision. This, unfortunately,
does not help. The trustor's optimal strategy is

p-1l+y+a
(o m +1
(recall that we have assumed that we are in a region of T, x T, where the right-
hand side is positive), and no additional information is revealed that allows for
distinguishing @ from ¥. It is possible however, that variation in the initial stakes
provided to the trustor and the rate of return on the transfer to the trustee could
lead to additional identifying restrictions on the distributions of both trustor and
trustee type distributions.




Ii. quasi-experiments

Other authors have focused on changes in group composition whose purpose
was not to study social interactions but whose structure is potentially informa-
tive of their presence. One well-cited example is Angrist and Lang (2004),
which focuses on Boston's Metropolitan Council for Educational Opportuni-
ties (METCO).>® This is a voluntary desegregation program that involves en-
rolling underprivileged inner city children in suburban public schools. Angrist
and Lang (2004) show that the receiving school districts, which have higher
mean academic performance than the sending ones, do experience a mean
decrease due to the program. However, they also show that the interactions
are merely compositional in that there is little evidence of statistically signifi-
cant interactions of METCO students on their non-METCO classmates. Their
analysis with micro-data from one receiving district (Brookline, Massachusetts)
generally confirms this finding, but also produces some evidence of negative
interactions on minority students in the receiving district. Since METCO is a
voluntary program for both sides and thus involves self-selection both at the
individual and at the receiving end, at best it can be thought of as uncovering
treatment on the treated, which does not translate naturally into claims about
social interactions per se for reasons we will discuss in detail below in the next
subsection.

**Another prominent study of this type is Sacerdote (2001). See Durlauf and loannides
(2010) for some assessment of its information content with respect to social interactions.



lii. Moving to Opportunity

There exists one intervention in group formation that has been implemented on
a large scale in order to understand social interactions. Interest in understand-
ing the effects of poor neighborhoods on their residents led the Department
of Housing and Urban Development to implement the Moving to Opportunity
(MTO) demonstration in Baltimore, Boston, Chicago, Los Angeles and New
York, starting in 1994.5% The program provided housing vouchers to a ran-
domly selected group of families from among residents of high-poverty public
housing projects. Within this subsidized group, families in turn were randomly
allocated between two subgroups: one which received unrestricted vouch-
ers; and another which received vouchers that could only be used in census
tracts with poverty rates below 10% (these users are termed the experimental
group). Members of the experimental group also received relocation counsel-

ing. The presence of both unrestricted and restricted voucher recipients is a
nice feature of the demonstration.



600ne reason why HUD implemented the MTO demonstration was that there was a prior
program in the Chicago area that had found large effects from moves from inner city pub-
lic housing to more affluent suburbs of the city. The Gautreaux program, named after the
lead plaintiff in a law suit against the Chicago Housing Authority dating from 1967, led to the
movement of some public housing families in Chicago to other parts of the city whereas other
families moved to nearby suburbs. Sociologist James Rosenbaum is responsible for the con-
struction of data sets of the families that participated in the Gautreaux program and initiated
use of these data to study neighborhood effects. Rosenbaum (1995) is a good overview of
Gautreaux findings, which found that families who moved to suburbs exceeded those who
stayed in Chicago for a broad range of socioeconomic outcomes. For example, the percent-
age of college attendees among children who families moved to suburbs was 54% whereas
the percentage for children whose families moved to other locations in Chicago was 21%;
when one considers only 4-year colleges the attendance rates are 27% and 4% respectively.
As Rosenbaum and other students of the Gautreaux data are well aware, there are prob-
lems with the data that delimit how informative they are with respect to social interactions.
Information about families who moved to suburbs and then returned to the city is missing, so
comparisons of city and suburban families at the time the data were collected suffers from
self-selection problems. Self-selection was also present in the initial set of families who par-
ticipated in the program, as the program was restricted to families that had good track records
of public housing upkeep. MTO was explicitly designed to avoid these problems.



7 Suggestions for future directions

In this section we suggest some new directions we regard as promising in
developing a full econometrics of social interactions.



i. measurement

The empirical literature on social interactions suffers from serious measure-
ment problems. This is a first important area that needs new econometric
work. Here we follow the discussion in Durlauf and loannides (2010). Eco-
nomic theory does not dictate the appropriate empirical measures of contex-
tual variables that a researcher ought to use. As a result, one for example
finds Bertrand, Luttmer, and Mullainathan (2000) using the product of wel-
fare usage and own-ethnic group intensity to explain individual welfare usage,
whereas Aizer and Currie (2004) use the utilization rate of an individual’s lan-
guage group to measure social interactions on public prenatal-care utilization.
Similarly, the empirical literature does not typically consider how social vari-
ables should interact with individual decisions, so that linearity assumptions
are too often employed without reflection. If the reason why utilization of social
services depends on the usage of others is because of information transmis-
sion, as argued by Bertrand et al., then it is unclear why the percentage of
users is the appropriate variable, as opposed to some nonlinear transforma-
tion, as presumably one only needs one neighbor to provide the information.
While considering this type of problem in studying social interactions in mar-
riage markets, Drewianka (2003) argues that a higher marriage rate in a com-
munity may reduce the propensity of unmarried people to marry as a higher
rate hampers search.



ii. social interactions and prices

Most social interactions work has ignored the informational content of prices
for group membership. For example, social interactions of residential neigh-
borhoods will be reflected in housing prices, via standard hedonic price ar-
guments. Nesheim (2002) is a pioneering advance in this regard, social in-
teraction effects, measured as averages of parental characteristics, can be
extracted from housing prices using hedonic pricing methods. Implementation
of Nesheim’s approach is facilitated when assumptions are made to allow an
explicit solution for the hedonic price in terms of neighborhood characteris-
tics; see loannides (2008) for a very straightforward way of doing this. So far,
Nesheim’'s methods have not received the empirical attention they warrant.
Bayer, Ferreira, and McMillan (2007) report some nonstructural hedonic re-
gressions of housing prices on neighborhood characteristics. See also Bayer
and Ross (2009) who propose using neighborhood prices to construct a con-
trol function to proxy for unobserved neighborhood characteristics.



liil. group characteristics as evidence of social interactions

Another dimension along which endogenous group formation can be used to
provide evidence of social interactions is the equilibrium distribution of types
across groups. The informational content of this distribution was first recog-
nized in the context of racial discrimination in Becker (1971). Becker showed
that taste-based discrimination may not manifest itself in black white wage dif-
ferences but rather in segregation of a subset of firms. Analogous reasoning
applies in social interactions contexts. Models such as Bénabou (1993, 1996)
and Durlauf (1996a,b) emphasize how social interactions can produce strat-
ification of neighborhoods by income; work such as Epple and Sieg (1999)
and Calabrese, Epple, Romer, and Sieg (2006) show how these types of ef-
fects can be incorporated into sophisticated models of locational choice; the
latter paper is of particular interest since social interactions are essential to
the analysis. Yet another context where group compositions are informative
about interactions concerns assortative matching, where as discussed above,
following Becker (1973), supermodularity in production functions can produce
efficient stratification of firms by ability. In general, the tight relationship be-
tween supermodularity and stratification (see Durlauf and Seshadri (2003) and
Prat (2002) for examples of a tight supermodularity/stratification link for payoft
functions other than those studied by Becker as well as for some caveats) has
been underutilized as a strategy for uncovering social interactions. We believe
that group composition represents a potentially powerful source of evidence
on social interactions.



iv. joint modeling of group memberships and behaviors

Our discussion of prices and group characteristics as sources of information
on social interactions suggests yet another direction for new research: the joint
modeling of group memberships and behavioral choices as facets of a general
decision problem. Brock and Durlauf (2006) give an example of this perspec-
tive using a logit framework; we borrow heavily from their original presentation.
The basic idea of this approach is to model individuals as making joint choices
of group memberships, ¢ € {0,...G — 1}, and behaviors, [ € {0,...LL. — 1}. Group
choices are denoted as ¢; while w; continues to denote the behavioral choice.
This joint decision is sequential as groups are chosen first and then behaviors
are chosen once groups form; this particular sequencing renders the model
mathematically equivalent to a standard nested logit model (Ben Akiva (1973)
and McFadden (1978)) with the exception of the presence of endogenous so-
cial interactions.



The sequential logit structure ensures that choice probabilities at both
stages have a multinomial logit probability structure. Defining h;, = k; +cjx; +
diy,, the behavioral choices conditional on a group choice g will be defined by
the probabilities

expBhig +Jp5,)
p(wig = 1|(hirg- P, )20 ) g ilg

) | (77)
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Group choices reflect the fact that choices in the stage will produce utility in
the fashion of our original multinomial choice model. This is operationalized
by making the group choice probabilities depend on the expected utility of
the choice w; will produce in the second stage. Letting 6; = g code for the
choice of group by individual i, these choices are also assumed to exhibit a
logit structure:

) = : (78)

where 5z denotes the heterogeneity parameter for the unobservable shocks
associated with group choices and

Ziy = E max (hijg + H Plig + €itg)| (hitg: P, )iZ0 |



Implicit in equation (78) is the existence of unobservable location-specific utility
terms that are irrelevant with respect to the utility of a choice once the group
is formed. A standard result is that®®

E: 1'11?}{(!?,-;,3 +Hp, + i) ‘ (Pitg, f)fflq):;:_[!l —

il
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Equation (79), together with equations (77) and (78) produce a joint probability
description of group memberships and behaviors
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As is well known, the compatibility of the nested logit structure (80) with an
explicit utility maximization problem requires conditions on the parameters.®4
One condition that ensures compatibility with a well posed maximization prob-
lem is B < S (McFadden, 1978, pp.86—7). This condition requires that the
dispersion of random payoff terms across groups is greater than the disper-
sion in random payoff terms across behavioral choices within a group. We
close the model with the equilibrium condition: For all i, / and g, p‘;ﬂ}g = Dlg,
which links the choices at the two levels.

®3See, for example, Anderson, de Palma, and Thisse (1992, p. 46).
64See McFadden (1978) and Bérsch-Supan (1990).



v. transition dynamics versus steady-state behavior

A final research direction we believe can prove to be important concerns the
use of transitional behavior to uncover social interactions. The linear in means
and discrete choice models look at steady state behaviors in the sense that
these systems, including their dynamic analogs, conceptualize the data as
drawn from their associated invariant measures. While the duration models
we describe, especially that of de Paula (2009), focus on transitions in a popu-
lation, there has yet to be much systematic exploration of the evidence on so-
cial interactions that may be found in transitional dynamics versus steady state
behavior. By analogy, the steady state distribution of disease rates across lo-
cations in a region will not speak to the contagion mechanism for the disease
in the way that would data on the transition of the disease across locations.



Brock and Durlauf (2010) provide an example of how transition dynam-
ics can produce evidence of social interactions. They consider a population of
perfect foresight actors who, in continuous time, are deciding whether to adopt
a new technology. The cost of the new technology is falling over time. The
payoff to adoption is the present discounted value of payoff from the time of
adoption. The payoff to adoption is increasing in the fraction of the population
that has adopted. Agents are indexed by a scalar x, in which the payoff func-
tion is strictly increasing. Data are restricted to ¢(7), the adoption curve for
the technology, i.e. the fraction of the population that has adopted as of time ¢,
and fy, the cross sectional density of x . Brock and Durlauf consider the case
where the distribution of types among adopters at each ¢ is unknown as well
as the case where the distribution of types among adopters is known at each ¢.



From the perspective of steady state behavior, there is nothing that
can be learned about social interactions; the steady state data will consist
of an adoption rate for the population as well as a cutoff value x such that
agents with x; < x have not adopted while other agents have adopted. Such
an observation is fully consistent with individual payoffs being independent
of the adoption decisions of others. However, the full adoption curve, which
represents the transition dynamics for the steady state adoption rate, can be
informative about social interactions. For example, even if f, is unobservable,
¢(t) can be informative about social interactions. Brock and Durlauf show that
if one is willing to assume that f, contains some mass points, discontinuities
in g¢(r) can only occur because of endogenous social interactions. This does
not follow because of multiple equilibria as occurred in the partial identification
results under primary choice. Rather it follows from the fact that since higher
x types who have not yet adopted always have a greater incentive to adopt
than lower x types, even though the population fraction of the lower x types is
larger, self-consistent bunching can occur at particular r values; intuitively, at
these jump points the lowest x will meet the first order condition for adoption
with equality whereas all others do not.%°

5The possibility that social interactions could induce discontinuity in adoption curves was
first recognized in a relatively neglected paper by Cabral (1990). Differences in the economic
environments studied by Cabral and Brock and Durlauf are discussed in the latter. That said
Cabral has priority in discovering the qualitative finding.



Brock and Durlauf (2010) also consider a case where x is a vector
consisting of an observed variable x; and an unobserved variable x,. For
conditional adoption curves ¢(r|x;), social interactions can produce pattern
reversals where lower x; types adopt before higher x; types. A condition such
as stochastic dominance of the conditional density of x; given x; is needed
for this type of observation to represent evidence of social interactions. As
such, the Brock and Durlauf results are another example of how delineation of
a complete economic environment can allow for partial identification of social
interactions under what appear to be modest assumptions. Arguments of their
type can be taken further, as is done in Young (2010), which we discuss next.



Vi. microfoundations

A final area that warrants far more research is the microfoundations of social
interactions. In the econometrics literature, contextual and endogenous social
interactions are defined in terms of types of variables rather than via particular
mechanisms. This can delimit the utility of the models we have, for example,
if the particular mechanisms have different policy implications. Put differently,
the current generation of social interactions models focuses on a relatively
crude division of social interactions between factors that are predetermined
and those that are contemporaneous; while one can rationalize this division
as structural, this is only true by assumption; work in evolutionary game the-
ory, for example, has a much more subtle view of how endogenous interac-
tions arise. Young (2010) is an important next step in the social interactions
research program as it explicitly studies the different empirical implications
of alternate social interactions mechanisms. Young derives implications for
aggregate behavior by considering where the social interaction comes from.
Behavioral economists may be interested in individual behaviors for their own
sake, but Young demonstrates here that particular features of the process gen-
erating the social interaction determine aggregate behavior, and it raises the
prospect that microeconomic and behavioral hypotheses about where social
interactions come from may be identifiable from aggregate data.



Young writes on identification of types of social interactions in diffusion
processes from a theoretical perspective. He examines different diffusion mod-
els in a rather general large-population setting. The different explanations, in-
ertia, contagion, social influence and social learning, are sets of assumptions
about individual behaviors. The outcome of the analysis is a set of distinct
properties of the diffusion curve, a system aggregate, an emergent property of
the system.®® Inertia is the hypothesis that individuals learn privately, but delay
in making their decision. He supposes that each individual i in the (continuum)
population can be characterized by a switch rate, 1;, which is independent of
the numbers and identities of those who have already switched. Young shows
that no matter the distribution of the A;, the adoption curve must be concave.
Contagion is a process wherein a given individual adopts when she sees an
instance of the innovation, or hears about it. Perhaps the most famous model
of this kind is the Bass (1969) model of new product adoption. In these mod-
els the instantaneous rate at which an individual adopts will depend upon the
size of the pool of current adopters. Adoption curves derived from contagion
models will be S-shaped, and under some reasonable assumptions, it must
decelerate when the pool of adopters exceeds 1/2 the population. Social in-
fluence models are threshold models. Each individual has a threshold r;. If
the adopting pool contains fraction r; of the population, then individual i will
adopt. Under some mild assumptions, the adoption process either initially de-
celerates or it accelerates at a super-exponential rate over some time interval.

®¢Emergent properties of dynamical systems are properties or structural features that occur
on scales of aggregation or temporal scales which are different from those of the rules defining

the system. See Blume and Durlauf (2001) for discussion of emergence in socioeconomic
environments



8 Conclusions

As this chapter has demonstrated, a wide range of identification strategies for

uncovering empirical evidence of social interactions are available to empirical
workers. These approaches range across linear and nonlinear models, cross-

section and time series data, and involve a remarkably broad range of portfo-
lios of assumptions. The existing set of identification results thus does not lend
itself to any straightforward summary. Rather, the body of arguments we have
described represent different approaches to producing evidence of social in-
teractions at two levels. First, under “ideal” assumptions with respect to unob-
served heterogeneity, identification questions revolve around the disentangling
of types of social interaction effects: contextual versus endogenous. Second,
under more realistic specifications of unobserved heterogeneity, i.e. grouped
individual-level heterogeneity as emerges from endogenous group formation
and group-level heterogeneity that is not related to social interactions, iden-
tification involves the question of whether any evidence may be adduced for
social interactions, let alone whether the specific type of social interaction is
recoverable from the observed data.



One way to understand the many methods we have described is that
they represent points along an “assumptions/possibilities” frontier. As is true
throughout economics, there is a tradeoff between the strength of assump-
tions made prior to empirical analysis and the precision of the empirical claims
that follow. And the types of assumptions we have described, whether they
represent restrictions on the probability structure of unobservable stochastic
processes or substantive assumptions about individual behavior, can never be
expected to hold literally. This should not jaundice the consumers of empir-
ical work on social interactions any more than it should affect consumers of
other types of empirical social science. Scientific progress, arises from the
interaction of a priori beliefs, data and logical reasoning. We therefore re-
gard the interplay of economic theory, econometrics and empirical work as all
necessary ingredients in understanding the social determinants of individual
behavior.



It is no disparagement, therefore, to the science of Human Na-
ture, that those of its general propositions which descend suffi-
ciently into detail to serve as a foundation for predicting phenom-
ena in the concrete, are for the most part only approximately true.
But in order to give a genuinely scientific character to the study,
it is indispensable that these approximate generalizations, which
in themselves would only amount to the lowest kind of empirical
laws, should be connected deductively with the laws of nature

from which they result; should be resolved into the properties of
the causes on which the phenomena depend. In other words, the
science of Human Nature may be said to exist, in proportion as
the approximate truths, which compose a practical knowledge of
mankind, can be exhibited as corollaries from the universal laws
of human nature on which they rest; whereby the proper limits
of those approximate truths would be shown, and we should be
enabled to deduce others for any new state of circumstances, in
anticipation of specific experiences.
John Stuart Mill, A System of Logic (1859)%

57 Collected Works of John Stuart Mill, J. Robson ed. Indianapolis: Liberty Fund Press.
Book VI, chapter iii, section 2, pp. 847-848.



A1 Derivation and analysis of equilibria in the
linear in means model



i. structure

The linear-in-means model can be derived simply as the unique Bayes-Nash
equilibrium of a game in which each individual's choice is determined by a
private benefit and a conformity benefit. Not surprisingly, the utility functions
are quadratic, and the conformity benefit is modeled as linearly decreasing in
the quadratic deviation of an individual's choice from the average behavior of
all other players. Individuals belong to a common group g of size n,. Group
membership is exogenous. An individual’s realized utility depends upon his
own choice and the choices of others. Preferences are expected utility, and
are of the form

2

> &
i(Wig, W_ig) = Giwig — == — 5 E((wjg — D_j)*) (81)
where @_jp = (n,—1)7! 2. jzi Wjg Is the average choice of the others in g. The

individual marginal benefit 6;, can be linearly decomposed as follows:

Oig = Xo +X1xi + X2y, + & + [ (82)

where x; and ¢; are observable and unobservable individual characteristics
and y, is a vector of observable group characteristics and f, is a group charac-
teristic observable to all individuals in the group but unobservable to the econo-
metrician. The determination of individual choices is a game of incomplete in-
formation, since each individual, and only that individual, observes &;. (Group
characteristics unobservable to individual group members are irrelevant to
choices as this model exhibits certainty equivalence in individual choices.)



The & elements are i.i.d. draws from a distribution on the real line R with
mean 0. For expositional purposes it will be useful to write 6;, = v; 4+ v, + &
where y, = Xo + X2y, + f; is the internally (to the actors) observable group
contribution to the marginal utility of w;, and y; = Xx;, the externally (to the
econometrician) observable contribution to marginal utility of an individual's
characteristics.



ii. existence of equilibrium

In a Bayes-Nash equilibrium, each individual maximizes expected utility, taking
the expectation on @_;, with respect to his belief distribution, and all belief
distributions will be correct. The first-order condition for individual i is

Yo + Vi + & — ¢lwig — E_ig) — wig = 0,

and so
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This equation justifies (6) when there is no group level unobservable and (30)
when there is such an unobservable, since the coefficients in (6) and (30) are
proportional to those in (83), assuming that an equilibrium exists. Notice that
the shock in (83), (¢ + 1)~!&;, has a variance that is affected by the strength
of the conformity parameter.



We find an equilibrium by positing a functional form with undetermined
coefficients, and then solving for the coefficients to make the beliefs correct. It
will be convenient to define y_j; = (ng—1)7" 2 j;; v; to be the mean observ-
able type component in the population. This is simply a sample mean. We
suppose that for each individual j,

Wijg :ﬂijE—I—B]fjﬂ—C?_jf—l—DEj—l—F (84)

We derive consistency of beliefs by assuming all individuals other than indi-
vidual i are choosing according to this functional form, computing the best
response for individual i, seeing that it is of this linear form, and then solv-
ing for the coefficient values such that A through F are common through the
entire population. We compute the best response simply by deriving an ex-
pression for @_;, by substituting from equation (84) into equation (83). After
some algebra one can show that the coefficients in (84) must fulfill
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Solving these equations gives the values of the undetermined coefficients.
Thus
ng—1+¢ ¢(n,—1) |

R < . - Y- o, 85
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When the population size is large, this is approximately

I ¢ 1
VYT T e

(86)

where ¥, is the group-level average of y;.°® Recalling the definitions of the y

terms,
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where X, is the group mean of the individual characteristics. This expression
corresponds to the reduced form equation (11) in the text when there is no
group-level unobservable. Extending the model in this and a variety of other
ways to match the other specifications discussed in section 3 is straightfor-
ward.

*8Note that ¥, is different from y,, which is the direct group marginal utility contribution for
an individual's choice.



lii. uniqueness of Bayes-Nash equilibrium

A strategy for player i is a map fi(yq.Vi. Y-ig. &) = R, where y_i, = (y;)jzi-
The preceding section demonstrates the existence of a symmetric Bayes-Nash
equilibrium with linear strategies. Discrete-choice models of social interaction
are replete with multiple equilibria, so one might believe that multiple equilibria
may arise here as well. This is not the case.

Theorem A.1. Uniqueness of equilibrium in the linear in means model.
The Bayes Nash equilibrium strategy for the model (81) and (82), and defined
by (83), is unigue.



Proof. Equation (83) implies that (f], ..., j;:‘g) is a symmetric Bayes Nash-
equilibrium if and only if for all /,
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I (Yg Yis V-ig- &i) = m(}’g +vyit+ei)+
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Let B; denote the set of measurable functions f; : (ye. Vi, Y-ie. &) +— w; and let
B denote the product of the B;. Define the operator T : B — B such that
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A strategy profile (f}...., 1) is a (not necessarily symmetric) Bayes-Nash

equilibrium if and only if it is a fixed point of 7. A straightforward calculation
shows that T is a contraction mapping. At any point (y,. ¥, ... Ynggs €i),
¢ |

(TP~ (Tl = o= ; E(fi(Ves Vi Y-jor )

~E(2;(¥e- Vi Y=jer €))) ‘
&
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Since T is a contraction, it has a unique fixed point, and so equilibrium is
unique. O



A2 Proof of theorems 3, 4, 5 and 7 on social net-
works

For exclusive averaging Bramoullé, Djebbari, and Fortin (2009) have already
proven that if the network is the union of groups, then I, A and A? are linearly
dependent if and only if groups are all the same size. They also have shown
that if the network is transitive and contains no groups, then A% = 0. All we
need to show is that linear dependence implies transitivity, and that transitivity
implies that the network is the union of weakly connected components each
of which either has A> = 0 or is a group. For inclusive averaging we simply
replicate the entire program.

We begin with an elaboration of theorem 4 which does not depend on
how the weighted adjacency matrix is assembled. The proof of this theorem,
when combined with theorem 2, implies theorem 4 in the text. Theorem 2
states that the failure of identification implies that 7, A and A2 are linearly de-
pendent. Theorem A.2 implies that if these matrices are linearly dependent,
then the network must be transitive. If the network is both transitive and undi-
rected, it must consist of the union of groups, as stated in the theorem.



Theorem A.2. Characterization of networks admitting non-identification.
Let (V, E) be a network with a weighted adjacency matrix A such that (I — JA)
is invertible for all values of J. Suppose that 1ol + 11A + 1A = 0 for some A
weights not all zero.

i. If 1, = 0, the network is totally disconnected.

ii. If 1, # 0, and 1; = 0, with exclusive averaging, the network is the union
of isolates and of pairs {i, j} such that each i is connected only to his
j and each j only to her i. With inclusive averaging, A = I and the
network is totally disconnected.

ii. If 1> # 0 and A1 # 0, the network is transitive.



In all three cases, the network is transitive.

Proof of theorem A.2. It follows from theorem 2.i that if the hypothesis of theo-
rem 4 is true, there are scalars Ag, A, and A», not all 0, such that 1/ + ;A +
1A% = 0. Now we turn to theorem A.2. If 1, = 0, then Aol + 1A = 0. If there
are hodes i and j # i such that a;; # 0, then 4; = 0, and so 1o = 0, which is a
contradiction. Thus if 1, = 0, the matrix A is diagonal. The network is totally
disconnected (and, in particular, transitive).

If 1, # 0, there are scalars yo and y; such that A> = yol 4+ y1A. f
y1 = 0, then A = yol. Since the row sums of A and A? are both 1, y = 1 and
A? = 1. If (i,k) € E and (k, j) € E, then j = i. If not, [A%];; > O for j # i. For
exclusive averaging, a;; > 0 if and only if there is a j such that a;; and a; are
both positive. There can be no isolates since for all i, a;; = 0 while [AE]:‘:‘ > (.
This social network is a collection of marriages; groups of size 2. Suppose
now that averaging is inclusive. Since A> = I, A~! = A. For general matrices,
A need not be the identity matrix, but for these matrices it must be. To see this,
take the k'th unit vector ¢,. Then Ae; = a, the k'th column vector of A. Then
Aa; = A%ep = e;. Thus 2. jaijajx is 1fori = kand 0 forall i # j. From the
last claim it follows that a;z = 0 since agx > 0 and all terms of the matrix are
non-negative. Since aj; = 0, ax; = 0 or the first inequality fails to hold. This
works for all i # k, so A is a diagonal matrix, and since the row sums are 1, it
follows that A = 1.



If 12 # 0and y; # 0, then for nodes i # j, [A%];; = y1a;;. If there is path
of length 2 from nodes i to j, then [AE],-_; > 0, and hence a;; > 0, so (i, j) € E
and the network is transitive.

Suppose that the network is undirected. and suppose that there is a
path from i to j. Transitivity implies that (i, j) € E, so (j,i) € E and thus i
and j are in the same strongly connected component. If j influences i, then i
influences . O

We now turn to the proof of theorem 3. The remainder of this appendix ex-
plores the case where A, # 0 and A; # 0. To proceed we need some facts
about transitive graphs. (These can be found in many graph theory texts and
the proofs are nearly immediate.) The vertex set V of any graph (V, E) can be
written as the union of disjoint strongly connected components (V. E, ).



Lemma A.1. If (V. E) is transitive, then

i. If(i,j) € E forsomeie€V,andjeVy,, thenforalli €V, and j’ € V,,
(i, j) € E.

ii. The relation V, > V), iff (i,j) € E forsome i € V, and j € V; and
V, # V}, is transitive and asymmetric.

Assume without loss of generality that the graph contains a single
weakly connected component. We can do this because each weakly con-
nected component corresponds to a block of the block-diagonal matrix A, and
the powers of A are linearly dependent if and only if the powers of each diag-
onal block are too. The facts about transitive networks imply that the matrix A
has the following structure:

(A £a-8a AH{? Ly AR:? e )
0 Agp.gh Agpge
0 0
A= :
O 0 Aft‘ L
0 0 0




Matrix A, ,, is of size [V, |x |V, | With exclusive averaging, each matrix on
the diagonal has Os on its diagonal, and is strictly positive off it. With inclusive
averaging, diagonal entries are not 0. If a block A, _, has only 0 blocks to
its right, there must be a non-zero block above. Finally, for each i, j and k,
ajj = ai, and the row sums are 1.

Proof of theorem 3.
Lemma A.2. Assume exclusive averaging. If (V.E) is a group, then [A%]; =
(V= 1)/|V|* fori = j, [A%];i = ([V|=2)/|V|* for j # i, and

, 1 V] -2

AT = I
V-1 *

v (87)

Conversely, if yo and vy, are both greater than 0, then (V. FE) is a group and
equation (87) holds.



Proof of lemma A.2. “If” is a calculation. For the other direction, suppose the
two coefficients are positive. Then [Aﬁ]ﬁ = vyp for all i since a;; = 0. Suppose
(V.E) is not a group. There must be a strongly connected component V;,
which is minimal with respect to >, and another strongly connected component
V, such that V, > V},. Members of V;, connect only to themselves, and so the
cardinality of V;, must exceed 1, orelse yy = 0. Fori € V, and j€ Vp,

Vel = 1]

(IVgl = 1+ Vil + m)?
" ]

A% =

[ ]H |Vh| —1

[A%]ii =

where m is the number of nodes outside of V;, members of V, are connected to.
Both of these numbers must equal yg, and so ([V,|—1)(|Vy| = 1) = (|V,| =1+
Vil — 1 +m+ 1)%, which is impossible. Thus (V. E) is a group, and equation
(87) follows. O

Now we identify the structure for the remaining case, which has y; > 0
and yo = 0. Note that for a directed bipartite network, A% = 0.



Lemma A.3. Assume exclusive averaging. y; > 0 and yo = 0 if and only if
(V, E) is a directed bipartite network.

Proof of Lemma A.3. The row sums of A are 1; hence so are the row sums
of A%2. Thus y; = 1 and A®> = A. Since A% = A, [A%]; = 0 for all i, and so
no one is strongly connected to anyone else. That is, each component is a
singleton. Next we show that there are no chains of length three or more. That
is, if (i, j) isin E, there is no k such that (j,k) € E. Suppose there is a such
a k. Without loss of generality we can take & to be a minimum with respect
to the ordering >. Let n; denote the number of nodes influencing j, and let n;
denote the number of additional nodes which influence i. One can write down
the relevant rows and columns of the matrix A and see that the relevant pieces
are

o 0 L/ (ni+n;) U/ (ni+nj) --e - 00 1/n; ---

(, 0 0 0 )

where the first column of O’s belongs to i, the next to j and the next to k, the

three rows belona to i. / and k. respectivelv. and the k row is all 0's. Precedina
entries of all three rows are 0. Without loss of generality we can take these to

be the last three rows of the matrix. Multiplying,
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soyr = 1/njand 0 = l/nﬁ, a contradiction. O



Now we repeat the same exercise for inclusive averaging. Again, as-
sume (V, E) is weakly connected.

Lemma A.4. Assume inclusive averaging. If (V. E) is a group, then A*> = A,
yi=landyy=0.IfA>=Aand A # 0, then (V. E) is a group.

Proof of Lemma A.4. If (V.E) is a group, then all elements of A are identical
and the row sum is 1. Thus A> = A, and so forth.

Suppose that A% # 0 and that (V,E) is not a group. Let V;, denote a
strongly connected component which is minimal with respect to >, and let V,,
denote a connected component such that V,, > V. Let m denote the number
of nodes not in V}, to which members of V,, are connected. Then fori € V, and
J € Vb,

| -
= ;; = A‘; =s ——
Va4 Vel +m 0 A%

|Vl |
= T
(IVal + Vel +m)> [Vl + V| +m

which implies |V,| = 0, a contradiction. O



Lemma A.5. If 1, £0, (V,E) is a group.

Proof of lemma A.5. If (V, E) is not a group, each strongly connected compo-
nent is of size 1. If not, and both i and j are in the same component, then

Yo+ viai = [A%y = [A%]; = niajj = yiai. (88)

Since a;; # 0, yo = 0 and y; = | and so A is a group, which is impossible.
If so, suppose that {;} is minimal with respect to > and that {i} > {;}. Let m
denote the number of other nodes that influence i. Then

: ] | |
]fj_ (_2—|—m)3+2‘|‘”’*’- Yo+ 2+ m

and would imply O = 1/(2 + m) which is impossible. O



To complete the proof of theorem 3, note that if (V.FE) is the union
of groups and the powers of A are dependent, then the groups must be the
same size. Bramoullé et al. prove this for exclusive averaging, and the proof
for inclusive averaging proceeds the same way. O

Proof of theorem 5. It suffices to prove the theorem for the open and dense
set of matrices S| which are strictly positive. Then 1, # 0, so write A®> =
v1A 4+ vol. We need to prove the claim of the theorem for the set S| of matrices
that can be written this way. The set S, is semi-algebraic and closed. It suffices
to show that S /5 is dense.

Consider a matrix A in §, and denote its square by B. Consider matri-
ces of the form A(e) whose i, j elementis a;| + & for i = j and 4;; otherwise.
Then

B(g)11 = by 4 2ap1& + €%,

)
B(g)1j=>byjtaje forj+1,
B(e)yy = by +ae fori# 1,
B(g)ij = b;i; otherwise.



Suppose that B(<) is in S for all small . Computing.

Y1 = (b +axe)/a
Yo = b2 —yiaz.

Then the equation B(&)11 = y1A(&)11 + Yo is a linear (not quadratic) equation
in £. A necessary condition for linear dependence of the powers of A(&) for
more than 1 value of ¢ is that the coefficient on ¢ is zero. This happens only

for a set of A-matrices S- of codimension at least 1. Hence for all but at most
one small enough &, A(e) ¢ §,/5,. Since S, is nowhere dense, this proves

the theorem. O



Proof of theorem 7. Letm = F(c.d.J.v); M is the matrix of reduced form co-
efficients. Our goal is to see how they map back to the structural parameters.
We will prove the theorem for n, odd and equal to 2K + 1. The proof for even
n, is similar.

By hypothesis, I — JA(y) is non-singular. Thus

M = (1-JA()) (eI +dA())
— (1= JA(y)) (¢ +dl —dI + dA(y)) (89)
= (c+d)(I- JA(y)_)_I —dl

and so ]
dl +M = (c+d)(I-JA(y)) . (90)

which verifies that dI + M is non-singular if ¢ +d # 0.



In view of equation (57) which defines A(y),

(1-JA(y)), =1

and
I—-JA
_( M), _Jy,
1= 1a00),
(I—jA(ﬂ)m _ _ (.I_“m(ﬂ)lﬁ’ﬂ _
(_f—mm)m (I—JA[}*))]R,
Now define

M=1{M: forsome (c.d.J.y)e P, F(c.d.J.y) = M}
Mgy = {M : for some (c,y) € R*x 0,1), F(c,d, J,y) =

M}



These are, respectively, the sets of all possible reduced form matrices and
those reduced forms consistent with a particular parameter pair of structural
parameters (d, J).

Equation (90) then requires the following: If M € M ;, then

(dl + M)y #0

and
-1
1+ M

_(_f )lj — Jy. (91)

(a1 +M)

» -1
(fﬂ—FM)H _ (_fjf+‘w)1ﬁ’+| _ (92)
(a1 + M) (ar+n)

We will use this fact to show that for a given reduced form matrix M € M there
are at most 2(ny — 1) possible values of (d.J) pairs consistent with equa-
tion (92). We will show that each of these (d.J/) pairs is consistent with a
unique (c,y) pair, which proves the theorem.



Under our assumed model specification, M is symmetric. Thus it has

real eigenvalues Aq,..., Ay, and is diagonalizable by a unitary matrix P. Fur-
thermore, for any scalar d, dI + M is diagonalized by the same matrix P, and
has Eigenvalues d + A;..... d + A,,,. Consequently,
1
r({H-J] ? U
0 0
(dl + M) = p! i P.
|
\ 0 0 T dF Ty, )

The i, j'th entriy of the matrix product on the right is

) ! |
i+ M) = iy 2w | [0,

for any d which is not the negative of an eigenvalue of M (which would make
dl + M singular). We now ask, for which values of d can equation (92) be

satisfied? Define ¢;;(d) = 2k pitpij | 1121 (d + Ar). Equation (92) implies that

d13(d)  ¢rald)
d12(d)  d13(d)

and so
2

pld) = ¢13(d)” — dr1a(d)di2(d) = 0.



Then p(d) is a polynomial of degree at most 2(ny — 1). The dependence of the
polynomial on the terms p;; is the link between the reduced form coefficients
and the structural parameters. To see that it is not identically 0, suppose that
M =F(c.,d,J',y"). From equation (89), it follows that the value of the deriva-
tive of the matrix dI + M atd = d’is (¢’ +d’')*(I - J’A(¥"))?. From this fact, a
calculation shows that if neither v/ nor J” are 0, and ¢ +d’ # 0, then p’(d’') =
0 only for the solutions to a polynomial equation in ¥ and J which is not iden-
tically 0. Thus p’(d") # 0 only on a lower-dimensional set C of (¢’.d"..J",y").
Thatis, for M e M’ = {M : for some (c,d,J,y) e P/C, Flc,d,J,y) = M},

Off of this set, for any d sufficiently near to but not equal to d’, p(d”") # 0.
Thus for M ¢ M’ = {M : forsome (c.d.J.y) € P/C, F(c.d,J,y) = M},
p(d) = 0 has at most 2(n, — 1) solutions. For each d which is a root of
p(d), —(dl +M)7,/ — (dI + M);] = J; (equation (91)). The ratio of any
other pair of adjacent entries of the (dI + M)~! matrix determines y,. Finally,
cq Solves (I —A(yd))(df + M) —dl = cl for c. Suppose, then, that M =
F(c'.d'.J'.y) for (¢’.d".J',y') € P/C. If a parameter vector (¢”".d",.J",y")
Is not such that " is a root of p(d), or that ¢, J”, and ¥ do not equal
the corresponding c;4, J; and y,, then (¢”.d”.J"”,.vy") is not observationally
equivalent to (¢’.d",J",y"). If ¥y = 0, then neither d nor J can be identified. In
this case M = cI. Conversely, it M = ¢'I, from (90) either / = 0 and d = 0 or
y = 0. From equation (58), if / = 0 and M = ¢’I, then eithery = 0ord =0
as well, and ¢’ = c. O



A3 Equilibrium Properties of Discrete Choice
Models with Social Interactions

This appendix describes some aspects of the group-level equilibria for dis-
crete choice models of social interactions. The models we discuss are similar
in structure to the quantal response equilibria first developed by McKelvey and
Palfrey (1995). The social interactions and quantal response equilibria litera-
tures have evolved independently; as is true for other cases of parallel devel-
opment that we have noted, each literature would benefit from integration with
the other.



i. basic structure of the binary choice model with social in-
teractions

We first outline the theoretical properties of the binary choice model with social
interactions for a single group g, following Brock and Durlauf (2001a). As in
the text, choices are coded so that w; € {—1,1}. Define h; = k + cx; + dy,.
From the perspective of the equilibrium of the group, contextual effects act in
a way analogous to a constant term, an observation that is used in the proof
of theorem 4 on identification. The utility function for a given choice is

J 5
Vilwig) = hiwig — 3 E((wip — @—ig)”) +nilwig) (93)

where @_j, = (I—1)7! 2. jzi Wjg and ni(wig ) is a choice-specific random utility

term. In parallel to the linear in means model, there is a penalty for expected
square deviations of i's choice from the mean choices of others. Since {ufe = 1,

_ 2 —
({u,-x,;. — {U_ff)“ — j(uf'fw_,'f —

¥

(1+a2,,).

M|
b |~



The second term on the right is independent of w;,, and so the utility function
of equation (93) yields the same behaviors as

Vilwig) = hiwig + Jm,-gmf;, + ni(wie)
where mf, = (I - 1) X 121 Ewigl Fi. It is immediate that
Vi(l) = Vi(=1) = 2hi 4+ 2Jm}, — & (94)

where g; = ni(—1) —n;i(1). This justifies equation (59). As the group size
grows large, mfg will become independent of i.



ii. equilibria under logit models of social interactions

To illustrate the qualitative properties of the binary choice model with social
interactions, following Brock and Durlauf (2001a), we maintain the i.i.d. error
assumptions (60) and (61) and further assume a functional form for F:
B |

I +exp (—f2)

e(z

that is, the individual-specific utility terms errors are negative exponentially
distributed. The parameter S indexes the degree of unobserved heterogeneity.
A larger g implies less heterogeneity in the sense that the probability mass of
F.(z) is more concentrated towards the origin.

This functional form, when combined with equation (94), produces the
canonical logistic density for equilibrium choices

exp (Bhiwiy + pImgwiq)
exp (Bhiwi, + Imywi, ) + exp (—;ii’h,-f:,ur-g — BImywi, ) '

pwiglhi,mg) = (95)



From equation (95) it is immediate that the expected value of agent i's choice
IS

exp (Bhiwig + BImywis ) — exp (—=Lhiwis — PImgwig)
exp (Bhiwie + Imgwi, ) + exp (=phiwi, — fImewi,)  (96)
= tanh (Sh; + pBJm,) .

E(wiglhi,mg) =

The expected group mean is simply the unweighted average of (96) across i.
Letting dF}), denote the empirical density of /; within group g, m;, is implicitly
defined by

m, = [ tanh (Bh + BJm,)dFy, .

To understand the properties of the equilibrium, we consider the baseline case
in the literature in which h; is constant, that is, for all i, h; = h, so that the equi-
librium expected average choice levels are described by a functional equation.
(No closed form solution exists.)

m, = tanh (Bh + Jm,) . (97)



Brock and Durlauf (2001a) characterize the properties of solutions to equation
(97), which we summarize as

Theorem A.3. Equilibria in the logistic version of the binary choice model

with social interactions.
I. If pJ < 1, equation (97) has a unique solution.

ii. If 3J > 1, then there exists a nondecreasing and positive function h(J)

of 5J such that
i. the equilibrium solution to equation (97) is unique if |h| > h(BJ);
and

ii. there exist three equilibrium solutions to equation (97) if |h| <
h(BJ). One equilibrum has the same sign as h.



The intuition for the theorem is straightforward. fJ < 1 means that the
endogenous social interaction effect is too weak to generate multiple equilib-
ria. Notice that strength of the interaction effect is not determined by J, the
endogenous effect parameter, in isolation, but is multiplied by the measure for
heterogeneity. Why would a small value of § work against the existence of
multiple equilibria? A small 5 implies fatter tails for the unobserved hetero-
geneity density. By symmetry of this density, fat tails means a relatively large
fraction of the population will, in expectation, have their choices determined
by their heterogeneity draws. This leaves too small a fraction whose behavior
can exhibit multiple equilibria via self-consistent bunching; the utility differen-
tial between the choices is insufficiently affected by the range of possible m,
values once the tail draws are accounted for. In contrast, 8/ > 1 means that
the endogenous social utility payoff is large enough relative to the symmetri-
cally distributed heterogeneity, then multiple expected average choice levels
are possible, if || < h(AJ). Why is this second condition needed? If the com-
mon private incentive i has sufficient magnitude, it will determine a sufficiently
large fraction of choices so that self-consistent bunching is not possible. Again,

greater heterogeneity reinforces this effect. Notice that qualitative changes in
the number of equilibria for this model occur in neighborhoods of the value 1
for gJ and h(BJ) for h. These are bifurcation thresholds.



Blume and Durlauf (2003) extend this theorem by considering a dy-
namic analog of the binary choice model with social interactions. Their anal-
ysis focuses on the stability of the rational expectations equilibria associated
with (97). For a dynamic analog of the model we have outlined, one can show
the population spends most of its time in the vicinity of the equilibrium that
maximizes average utility in the group, which is the equilibrium whose mean
choice has the same sign as h.



lii. generalizations of the binary choice model

The properties of this model generalize to a number of interesting related
structures. For example, one can analyze the general preference specifica-
tion

Vi(l) =Vi(=1) = hi + Jm, — B g

where F is is an arbitrary probability distribution function for the unobserv-
able individual-level £ heterogeneity. Retaining the i.i.d. error assumptions
(60) and (61) and focusing on the case where / is constant, Brock and Durlauf
(2006) prove that a close analog to theorem A.3 holds for this general binary
choice model. Two changes occur when the logit function form assumption is
dropped. First, the necessary condition for multiple equilibria takes the form
pJ > T, where the threshold T cannot be determined without specification
of F.. In other words, some threshold for 5/ always exists that can produce
multiple equilibria. Second, for part ii.b, the threshold result for multiple equi-
libria states that at least three equilibria exist. The more precise structure of
theorem A.3 derives from the specific functional form found in equation (97).
The qualitative features of the theorem do not.



The qualitative properties of the theorem also extend to local interac-
tions environments, i.e. contexts where individuals are arrayed in some social
space and only interact with their suitably defined neighbors. One version of a

local interactions model is studied in Blume (1993). An expectational version
of his model can be represented by

Vi(1)=Vi(=1) = hi+J ) E(wj,)—e;
li=jl=1

where E(wj,) is the equilibrium expectation of w;, conditional on the values
of h; across the population. If we impose the assumption that for all i, h; = A,
then it is immediate that equation (97) continues to characterize the symmet-
ric equilibrium average choice levels in the population. It is obvious that other
interactions structures can do the same. The similar aggregate properties for
different interactions specifications is itself known as the property of univer-
sality, which in social interactions contexts means that there exist dimensions
along which the qualitative properties of the models do not depend on the de-
tails of the interaction structure. The reader should consult loannides (2006)
for extensions of these types of models to more complex interactions struc-
tures.



iv. multinomial choice models with social interactions

Multiple equilibria and bifurcations are not unique to the binary choice context.
Brock and Durlauf (2006) show that theorem A.3 is a special case of

Theorem A.4. Multiple equilibria in the multinomial logit model with so-
cial interactions. Suppose that individual choices are characterized by equa-
tions (71), (72), and (73). Assume that h;y = k for alli and I. If 5J > L, there
will exist at least three self-consistent choice probabilities.

The dependence of the threshold on the number of choices L is intu-
itive. The larger the number of choices, under independence of g;; across /,
the greater the probability that one of the draws will dominate the agent’s
choice, which reduces the fraction of agents whose behavior can exhibit self-
consistent bunching. Brock and Durlauf (2006) additionally provide analogous
results for general density functions for g;;. As in the binary choice case the re-
sults are less precise. This theorem and its generalization in Brock and Durlauf
(2006) explain various simulation results in Bayer and Timmens (2005).
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