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• Consider how to solve P3 forecasting a new policy never
previously experienced.

• Suppose we want to forecast demand for a new good. We
observe consumption data on old goods x1...xI . (Each good
could represent a transportation mode, for example, or an
occupation choice.)

• Assume people choose a good that yields highest utility. When
we have a new good, we need a way of putting it on a basis
with the old.

• Earliest literature on discrete choice was developed in
psychometrics where researchers were concerned with modeling
choice behavior (Thurstone).

• These are also models of counterfactual utilities.
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Two dominant modeling approaches

(i) Luce Model (1953) ⇐⇒ McFadden Conditional logit model

(ii) Thurstone-Quandt Model (1929, 1930s). (Multivariate
probit/normal model)

(iii) We start with parametric models but will relax, principles are
general

(iv) At the same time, some specifications are widely used and you
should know them
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Two Basic Frameworks

(i) GEV models
• Includes conditional logit
• widely used in economics
• easy to compute
• identifiability of parameters understood
• very restrictive substitution possibilities among goods
• restrictive heterogeneity
• imposes arbitrary preference shocks

(ii) Quandt-Thurstone Model
• very general substitution possibilities
• allows for more general forms of heterogeneity
• more difficult to compute
• identifiability less easily established
• does not necessarily rely on preference shocks
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Luce Model/McFadden Conditional Logit Model

• References: Manski and McFadden, Chapter 5 (posted on
McFadden’s website), Yellot paper

• Notation:
• X : universe of objects of choice
• S : universe of attributes of persons
• B: feasible choice set (x ∈ B ⊆ X )
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Luce Model/McFadden Conditional Logit Model

• Behavior rule mapping attributes into choices: h

h (B , S) = x

• We might assume that there is a distribution of choice rules.

• h might be random because

(a) in observation we lose some information governing choices
(unobserved characteristics of choice and person)

(b) there can be random variation in choices due to unmeasured
psychological factors

(c) the arrival of information ex ante vs ex post

• Define P(x |S ,B) = Pr {hεH 3 h (S ,B) = x}
• Probability that an individual drawn randomly from the

population with attributes S and alternative set B chooses x .
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Luce Axioms

• Maintain some restrictions on P (x |S ,B) and derive
implications for the functional form of P .

• Axiom #1: “Independence of Irrelevant Alternatives”

x , y ∈ B s ∈ S

P (x |s, {xy})
P (y |s, {xy})

=
P (x |s,B)

P (y |s,B)
B = larger choice set
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Luce Axioms

• Example: Suppose choice is career decision and individual is
choosing to be
• an economist (E )
• a fireman (F )
• a policeman (P)

Pr (E |s, {EF})
Pr (F |s, {EF})

=
Pr (E |s, {EFP})
Pr (F |s, {EFP})

←−
would think that introducing
3rd alternative might increase
ratio
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Luce Axioms

• Another example: Red bus-Blue bus

• Choices:
• take car C
• red bus RB
• blue bus BB
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Luce Axioms

• Axiom #2

Pr(y |s,B) > 0 ∀y ∈ B (i.e. eliminate 0 probability choices)
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Implications of above axioms

• Define Pxy = P(x |s, {xy})
• Assume Pxx = 1

2

P (y |s,B) =
Pyx

Pxy
P (x |s,B) by IIA axiom∑

y∈B

P (y |s,B) = 1 =⇒ P (x |s,B) =
1∑

y∈B
Pyx

Pxy
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Implications of above axioms

• Furthermore,

P (y |s,B) =
Pyz

Pzy
P (z |s,B)

P (x |s,B) =
Pxz

Pzx
P (z |s,B)

P (y |s,B) =
Pyx

Pxy
P (x |s,B)

Pyx

Pxy
=

P (y |s,B)

P (x |s,B)
=

Pyz

Pzy

Pxz

Pzx
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Implications of above axioms

• Define

ṽ (s, x , z) = ln

(
Pxz

Pzx

)
ṽ (s, y , z) = ln

(
Pyz

Pzy

)
=⇒ Pyx

Pxy
=

e ṽ(s,y ,z)

e ṽ(s,x ,z)
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• Axiom #3: Separability Assumption

ṽ(s, x , z) = v(s, x)− v(s, z) ←−
v(s, z) can be interpreted as a
utility indicator of
representative tastes

• Then

P(x |s,B) =
1∑

y∈B
Pyx

Pxy

=
1∑

y∈B
ev(s,y)−v(s,z)

ev(s,x)−v(s,z)

P(x |s,B) =
ev(s,x)∑
y∈B ev(s,y)

←− Get logistic from
from Luce Axioms

• Now link model to familiar models in economics.

• Marshak (1959) established link between Luce Model and random utility
models (Rum’s).
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Random Utility Models: Thurstone (1927, 1930s)

• Assume utility from choosing alternative j is

uj = v (s, xj) + ε(s, xj)

• v (s, xj)is a nonstochastic function and ε(s, xj) is stochastic,
reflecting idiosyncratic tastes.
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Random Utility Models: Thurstone (1927, 1930s)

• Pr(j is maximal in set B) = Pr (u(s, xj) ≥ u(s, xl)) ∀l 6= j

= Pr (v(s, xj) + ε(s, xj) ≥ v(s, xl) + ε(s, xl)) ∀l 6= j

= Pr (v(s, xj)− v(s, xl) ≥ ε(s, xl)− ε(s, xj)) ∀l 6= j
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• Specify a cdf F (ε1, ..., εN)

• Then

Pr(vj − vl ≥ εl − εj ∀l 6= j)

= Pr(vj − vl + εj ≥ εl ∀l 6= j)

=

∫ ∞
−∞

Fj( vj − v1 + εj , ..., vj − vj−1 + εj , εj , ..., vj − vJ + εj)dεj

(Prove)
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• If ε is iid, then

F (ε1, ..., εn) =
n∏

i=1

Fi(εi)
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• So Pr(vj − vl ≥ εl − εj ∀l 6= j)

∫ ∞
−∞

 n∏
i=1
i 6=j

Fi(vj − vi + εj)

 fj(εj)dεj
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Binary Example (N = 2)

P(1 | s,B) =

∫ ∞
−∞

∫ v1−v2+ε1

−∞
f1(ε1, ε2) dε1 dε2

• If ε1, ε2 are normal then ε1 − ε2 is normal, so
Pr(v1 − v2 ≥ ε1 − ε2) is normal.

• If ε1, ε2 are Weibull then ε1 − ε2 is logistic

ε ∼ Weibull =⇒ Pr(ε < c) = e−e
−c+α
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• Also called double exponential” or “Type I extreme value”

• ε Weibull

Pr(v1 + ε1 > v2 + ε2) = Pr(v1 − v2 > ε2 − ε1)

= Ω(v1 − v2) =
ev1−v2

1 + ev1−v2
=

ev1

ev1 + ev2
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• Result: Assuming that the errors follow a Weibull distribution
yields same logit model derived from the Luce Axioms.

• This link was established by Marshak (1959)

• Turns out that Weibull is sufficient but not necessary.

• Some other distributions for ε generate a logit.

• Yellot (1977) showed that if we require “invariance under
uniform expansions of the choice set” then only double
exponential gives logit.

• Example: Suppose choice set is {coffee, tea, mild}, then
“invariance” requires that probabilities stay the same if we
double the choice set (i.e., 2 coffees, 2 teas, 2 milks).

• This is a form of homotheticity.
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Some Important Properties of the Weibull

• Developed 1928 (Fisher & Tippet showed it’s one of 3 possible
limiting distributions for the maximum of a sequence of random
variables)

• Closed under maximization (i.e. max of n Weibulls is a Weibull)

Pr(max
i

εi ≤ c) =
∏
i

e−e
−(c+αi )

= e
−
∑
i

e−ceαi

= e
−e−c∑

i

eαi

= e−e
−c+ln

∑
i

eαi
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• Difference between two Weibulls is a logit

• Under Luce axioms (on R.U.M. with Weibull assumption)

Pr(j | s,B) =
ev(s,xj )∑N
l=1 e

v(s,xl )

• Now reconsider the forecasting problem, Problem P3:

• Let xj =set of characteristics associated with choice j

• Usually, it is assumed that v(s, xj) = θ(s)′xj
• This is a matter of convenience, not at all essential here

• Need to know functional form of V

• Dependence of θ on s reflects fact that individuals differ in
their evaluation of characteristics.
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• Get

Pr(j | s,B) =
eθ(s)′xj∑N
l=1 e

θ(s)′xl
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• Likelihood

max
θ(s)

N∏
i=1

 [eθ(s)x1]D1i

N∑
i=1

eθ(s)xi


 [eθ(s)x2]D1i

N∑
i=1

eθ(s)xi

 . . .

 [eθ(s)xN ]DNi

N∑
i=1

eθ(s)Xi


• This assumes independence across the N observations
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• If a new good has different values of the same set of
characteristics, get probabilities by

B ′ = {B ,N + 1}

P(N + 1 | B ′, s) =
eθ(s)′xN+1∑N+1
l=1 eθ(s)′xl

• Here N is the number of goods
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Debreu (1960) criticism of Luce Model

• “Red Bus - Blue Bus Problem”

• Suppose N + 1th alternative is identical to the first

Pr(choose 1 or N + 1 | s,B ′) =
2eθ(s)′xN+1∑N+1
l=1 eθ(s)′xl

• =⇒ Introduction of identical good changes probability of riding
a bus.
• not an attractive result
• comes from need to make iid assumption on new alternative

Why?
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Debreu (1960) criticism of Luce Model: Some Alternative Assumptions

1 Could let vi = ln(θ(s)′xi)

Pr(j | s,B) =
θ(s)′xj∑N+1
l=1 θ(s)′xl

If we also imposed
∑N

l=1 θ(s)′xl = 1, we would get linear
probability model but this could violate IIA.
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Debreu (1960) criticism of Luce Model: Some Alternative Assumptions

1 Could consider model of form

Pr(j | s,B) =
eθ

j (s)x i∑N
l=1 e

θl (s)xl

but here we have lost our forecasting ability (cannot predict
demand for a new good).

2 This is called the multinomial logit model in statistics

3 Universal Logit Model

Pr(i | s, x1, ..., xN) =
eϕi (x1,...,xN)β(s)∑N
l=1 e

ϕl (x1,...,xN)β(s)

Here we lose IIA and forecasting (Bernstein Polynomial
Expansion).
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Criteria for a good PCS

More General Models

1 Goal: We want a probabilistic choice model that

1 has a flexible functional form
2 is computationally practical
3 allows for flexibility in representing substitution patterns

among choices
4 is consistent with a random utility model (RUM) =⇒ has a

structural interpretation
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How do you verify that a candidate PCS is consistent with a RUM?

1 Goal:

(a) Either start with a R.U.M.

ui = v(s, x i ) + ε(s, x i )

and solve integral for

Pr(ui > ul , ∀l 6= i) = Pr(i = arg max
l

(
v l + εl

)
)

or
(b) start with a candidate PCS and verify that it is consistent with

a R.U.M. (easier)

2 McFadden provides sufficient conditions

3 See discussion of Daley-Zachary-Williams theorem
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Link to Airum Models

Heckman CDCT Pt I, May 5, 2021 3:51pm 33 / 161



Daly-Zachary-Williams Theorem

• Daly-Zachary (1976) and Williams (1977) provide a set of
conditions that makes it easy to derive a PCS from a RUM with
a class of models (“generalized extreme value” (GEV) models)

• Define G : G (Y1, . . . ,YJ)

• If G satisfies the following

1 nonnegative defined on Y1, . . . ,YJ ≥ 0
2 homogeneous degree one in its arguments
3 lim

Yi→∞
G (Y1, . . . ,Yi , . . . ,YJ)→∞, ∀i = 1, . . . , J

•

∂kG

∂Y1 · · · ∂Yk
is

nonnegative if k odd
nonpositive if even

(1)
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• Then for a R.U.M. with ui = vi + εi and

F (ε1, . . . , εJ) = exp
{
−G

(
e−ε1 , . . . , e−εJ

)}
• This cdf has Weibull marginals but allows for more dependence

among ε’s.

• The PCS is given by

Pi =
∂ lnG

∂vi
=

eviGi (ev1 , . . . , evJ )

G (ev1 , . . . , evJ )

• Note: McFadden shows that under certain conditions on the
form of the indirect utility function (satisfies AIRUM form), the
DZW result can be seen as a form of Roy’s identity.
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• Let’s apply this result

cdf F (ε1, . . . , εJ) = e−e
−ε1 · · · e−e−εJ ←− product of iid

Weibulls

= e−
∑J

j=1 e
−εj

• Can verify that G (ev1 , . . . , evJ ) =
∑J

j=1 e
vi satisfies DZW

conditions

P(j) =
∂ lnG

∂vi
=

evj∑J
l=1 e

vl
= conditional logit model (CLM)
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• Another GEV model

• Nested logit model (addresses to a limited extent the IIA
criticism)

• Let

G (ev1 , . . . , evJ ) =
M∑

m=1

am

∑
i∈Bm

e
vi

1−σm

1−σm

• σm like an elasticity of substitution.
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• Idea: divide goods into branches

• First choose branch, then good within branch

car
bus

red

blue

• Will allow for correlation between errors (this is role of σ))

•

Bm ⊆ {1, . . . , J}⋃
m=1

Bm = B

is a single branch—need not have all choices on all branches
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• Note: if σ = 0, get usual MNL form

• Calculate equation for

pi =
∂ lnG

∂vi
=

∂ ln

[∑m
m=1 am

[∑
i∈Bm

e
vi

1−σm

]1−σm
]

∂vi

=

∑
m3 i∈Bm

am

(
e

vi
1−σm

)[∑
i∈Bm

e
vi

1−σm

]−σm [∑
i∈Bm

e
vi

1−σm

]−1 [∑
i∈Bm

e
vi

1−σm

]
∑m

m=1 am

[∑
i∈Bm

e
vi

1−σm

]1−σm

=
m∑

m=1

P(i | Bm)P(Bm)
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• Where

P(i | Bm) =
e

vi
1−σm∑

i∈Bm
e

vi
1−σm

if i ∈ Bm, 0 otherwise

P(Bm) =
am
[∑

i∈Bm
e

vi
1−σm

]1−σm

∑m
m=1 am

[∑
i∈Bm

e
vi

1−σm

]1−σm

• Note: If P(Bm) = 1 get logit form

• Nested logit requires that analyst make choices about nesting
structure

• Problem: Prove this
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• How does nested logit solve red bus/blue bus problem?

• Suppose

G = Y1 +

[
Y

1
1−σ

2 + Y
1

1−σ
3

]1−σ

Yi = evi
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P (1 | {123}) =
∂ lnG

∂vi
=

ev1

ev1 +
[
e

v2
1−σ + e

v3
1−σ

]1−σ

P (2 | {123}) =
∂ lnG

∂vi
=

e
v2

1−σ

[
e

v2
1−σ + e

v3
1−σ

]−σ
ev1 +

[
e

v2
1−σ + e

v3
1−σ

]1−σ
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• As v3 → −∞

P(1 | {123}) =
ev1

ev1 + ev2
(get logistic)
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What Role Does σ Play?

• σ is the degree of substitutability parameter

• Recall
F (ε1, ε2, ε3) = exp{−G (e−ε1 , e−ε2 , e−ε3)}

• Here

σ =
cov(ε2, ε3)
√
var ε2 var ε3

= correlation coefficient

• Thus we require −1 ≤ σ ≤ 1, but turns out we also need to
require σ > 0 for DZW conditions to be satisfied. This is
unfortunate because it does not allow ε’s to be negatively
correlated.
• Can show that

lim
σ→1

P (1 | {123}) =
ev1

ev1 + max(ev2 , ev3)
(L’Hôpital’s Rule)
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• If v2 = v3, then

P (2 | {123}) =
e

v2
1−σ

[
2e

v2
1−σ

]−σ
ev1 +

[
2e

v2
1−σ

]1−σ

= 2−σ
ev2

ev1 + (ev2) (21−σ)

lim
σ→1

= 2−1 ev2

ev1 + ev2
when v1 = v2

↗ introduce 3rd identical alternative and cut the probability of choosing 2 in half

• Solves red-bus/blue-bus problem

• Probability cut in half with two identical alternatives
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car

red bus

blue bus

• σ is a measure of similarity between red and blue bus.

• When σ close to one, the conditional choice probability selects
with high probability the alternative.
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We Can Expand Logit to Accommodate Multiple Nesting
Levels

G =
Q∑

q=1

aq

∑
m∈Qq

am

[∑
i∈Bm

y
1

1−σm
i

]1−σm
 3 levels
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• Example: Two Choices

1 Neighborhood (m)
2 Transportation mode (t)
3 P(m): choice of neighborhood
4 P(i | Bm): probability of choosing i th mode, given

neighborhood m
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1 Not all modes available in all neighborhoods

Pm,t =
e

v(m,t)
1−σm

[∑Tm

t=1 e
v(m,t)
1−σm

]−σm
∑m

j=1

[∑Tj

t=1 e
v(m,t)
1−σm

]1−σm

Pt|m =
e

v(m,t)
1−σm∑Tm

t=1 e
v(m,t)
1−σm

Pm =

[∑Tm

t=1 e
v(m,t)
1−σm

]1−σm

∑m
j=1

[∑Tj

t=1 e
v(m,t)
1−σm

]1−σm = P(Bm)
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• Standard type of utility function that people might use

v(m, t) = z ′tγ + x ′mtβ + y ′mα
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• z ′t is transportation mode characteristics, x ′mt is interactions and
y ′m is neighborhood characteristics.

• Then

Pt|m =
e

(z′tγ+x′mtβ)
1−σm[∑Tm

t=1 e
(z′tγ+x′mtβ)

1−σm

]

Pm =

ey
′
mα

[∑Tm

t=1 e
(z′tγ+x′mtβ)

1−σm

]1−σm

∑m
j=1 e

y ′mα

[∑Tm

t=1 e
(z′tγ+x′mtβ)

1−σj

]1−σj
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• Estimation (in two steps) (see Amemiya, Chapter 9)

• Let

Im =
Tm∑
t=1

e
(z′tγ+x′mtβ)

1−σm
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1 Within each neighborhood, get γ̂
1−σm and β̂

1−σm by logit

2 Form Îm

3 Then estimate by MLE

ey
′
mα+(1−σm) ln Îm∑m

j=1 e
y ′mα+(1−σj ) ln Îj

get α̂, σ̂m

• Assume σm = σj ∀j ,m or at least need some restrictions across
multiple neighborhoods?

• Note: Îm is an estimated regressor (“Durbin problem”)

• Need to correct standard errors
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Multinomial Probit Models

1 Also known as:

1 Thurstone Model V (1929; 1930)
2 Thurstone-Quandt Model
3 Developed by Domencich-McFadden (1978) (on reading list)

ui = vi + ηi i = 1, ..., J

vi = Ziβ (linear in parameters form)

ui = Ziβ + ηi

MNL MNP
(i)β fixed (i)β random coefficient β ∼ N

(
β̄,Σβ

)
(ii)ηi iid (ii)β independent of η η ∼ (0,Ση),

• Allow gen. forms of correlation between errors

• Digression →
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Digression

Random Coefficient Model

Y = β + U

β,X ,U are all iid mutually independent random variables.
Suppose

β ⊥⊥ (X ,U) E (β) = β̄ <∞
X ⊥⊥ (β,U)

E (Y |X )

=X β̄ + X (β − β̄) + U︸ ︷︷ ︸
error term
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Digression, Continued

OLS identifies β̄ under rank condition.

E (X (β − β̄) + U) = 0

For observation i :

var(Xi(β − ¯beta) + Ui) = X ′i
∑

β Xi + σ2
U .

Notice i . Regress squarely OLS residuals (W = Y − X β̂) on
quadratic terms in Xi .

Prove it can be used to identify σ2
U and

∑
β.
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ui = Zi β̄ + Zi

(
β − β̄

)
+ ηi

• (β − β̄) = ε and Zi

(
β − β̄

)
+ ηi is a composite heteroskedastic

error term.

• β random = taste heterogeneity,

• ηi can interpret as unobserved attributes of goods

• Main advantage of MNP over MNL is that it allows for general
error covariance structure.

• Note: To make computation easier, users sometimes set
Σβ = 0 (fixed coefficient version)
• allowing for β random
• permits random taste variation

• allows for possibility that different persons value 2
characteristics differently
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How do we solve the forecasting problem?

• Suppose that we have 2 goods and add a 3rd

Pr (1 chosen) = Pr
(
u1 − u2 ≥ 0

)
= Pr 1

((
Z 1 − Z 2

)
β̄ ≥ ω2 − ω1

)
• Define η1, η2, η3 as random choice specific shocks independent

of Z 1,Z 2 and Z 3.

• (β − β̄) arises from variability in slope coefficients.
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• Define:

ω1 = Z 1
(
β − β̄

)
+ η1, ω2 = Z 2

(
β − β̄

)
+ η2

=

∫ (Z1−Z2)β̄

[σ11+σ22−2σ12+(Z2−Z1)Σβ(Z2−Z1)′]
1/2

−∞

1√
2π

e−t/2dt

• Pr(1 chosen).

• Now add a 3rd good

u3 = Z 3β̄ + Z 3
(
β − β̄

)
+ η3.
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• Problem: η3 comes out of the blue: We don’t know
correlation of η3 with other errors.
• Suppose that η3 = 0 (i.e. only preference slope heterogeneity).

Then

Pr (1 chosen) =

∫ a

−∞

∫ b

−∞
B.V .N. dt1dt2

when a =

(
Z 1 − Z 2

)
β̄[

σ11 + σ22 − 2σ12 + (Z 2 − Z 1) Σβ (Z 2 − Z 1)′
]1/2

and b =

(
Z 1 − Z 3

)
β̄[

σ11 + (Z 3 − Z 1) Σβ (Z 3 − Z 1)′
]1/2

• We could also solve the forecasting problem if we make an
assumption like η2 = η3.

• We solve red-bus//blue-bus problem if η2 = η1 = 0 and
z3 = z2.
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Pr (1 chosen) = Pr
(
u1 − u2 ≥ 0, u1 − u3 ≥ 0

)
• but u1 − u2 ≥ 0 ∧ u1 − u3 ≥ 0 are the same event.

• ∴adding a third choice does not change the choice of 1.

Heckman CDCT Pt I, May 5, 2021 3:51pm 61 / 161



Estimation Methods for MNP Models

• Models tend to be difficult to estimate because of high
dimensional integrals.

• Integrals need to be evaluated at each stage of estimating the
likelihood.

• Simulation provides a means of estimating Pij = Pr (ichooses j)
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Computation and Estimation

Link to Appendix

Heckman CDCT Pt I, May 5, 2021 3:51pm 63 / 161



Appendix
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Airum Models
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Notes on McFadden Chapter/Integrating Discrete Continuous (see
Heckman, 1974b, 1978, change notation)

• Notation:
• I : enumeration of discrete alternatives
• x : divisible goods
• w : attributes of discrete choices
• r : price of x
• qi : price of good i
• y : income
• y : rx + qi
• ũ: x̃ × ω × I → [0, 1] utility

• Define indirect utility function

v(y − q, r ,wi , i , ũ) = max
x

ũ (x ,wi , i | rx ≤ y − qi)

• Maximize out over continuous goods so we are left with
discrete goods
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Assumptions

• We assume v has usual properties of an indirect utility function

• Continuous, twice differentiable, homogeneous degree 0 in
(y , q − r), quasiconcave in r , dv

d(y−q)
> 0)

• Then get

x(y − q, r ,wi , i ; ũ) =
−∂v
∂r
∂v
∂y

. (Roy’s Identity)
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Assumptions

• For discrete alternative, we also get something like Roy’s
Identity

δj = D(j | B , s; ũ) =

−∂v∗
∂qj
∂v∗

∂y

where

v ∗(y − qB , r ,wR ,B ; ũ) = max
i∈B

v(y − qi , r ,wi , i ; ũ)

δj =

{
1
0

if j ∈ B vj ≥ vk ∀k
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• If IU assumptions satisfied, can write relationship between the
probability of choosing ji and the utility function as

P(j | B , s) = Eu|sD(j | B , s; ũ)

• We seek sufficient conditions on preferences u such that we can
integrate out over characteristics and come up with probabilities

• McFadden Shows that v takes AIRUM form

v(y − q, r ,wi , i ; ũ) =
y − q − α(r ,wi , i , ũ)

β(r)

where y > q + α α, β homogeneous of degree one wrt r
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• Then

v = Eu|s max
i∈B

v(y − qi , r ,wi , i ; ũ)

=
1

β(r)

[
y + max

i∈B

(
Eu|s (−qi − α(r ,w , i ; ũ))

)]
and

P(j) = Eu|sD(j | B , s) =
− ∂v
∂qj
∂v
∂y

• v is a utility function yielding the PCS

• Demand distribution can be analyzed as if it were generated by
a population with common tastes, with each representative
consumer having fractional consumption rates for the discrete
alternative.
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• Let

G̃ (qB , r ,wB ,B , s) = Eu|s max
i∈B

[−qi − α(r ,wB , i ; ũ)] (∗)

“Social surplus function”

• Then

P(j | B , s) =
−∂G̃ (qB , r ,wB ,B , s)

∂qj
(∗∗)

under SS conditions given in Mcfadden’s chapter

• I.e., choice probabilities given by the gradient of the SS
function.
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Return to main text
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Problem of Identification and Normalization in the MNP Model

• Reference: David Bunch (1979), “Estimability In the
Multinominal Probit Model” in Transportation Research

• Domencich and McFadden

• Let

Z β̄ =

 Z1 · β̄
...

ZJ · β̄

 η̃ =

 η1
...
ηJ

 J alternatives
K characteristics
β random β ∼ N (β,Σβ)

(2)
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Problem of Identification and Normalization in the MNP Model

• Pr (alternative j selected):

= Pr (uj > ui) ∀i 6= j

=

∞∫
uj=−∞

uj∫
ui=−∞

uj∫
uJ=−∞

Φ (u | Vµ,Σµ) duJdulduj

where Φ (u | Vµ,Σµ) is pdf

(Φ is J-dimensional MVN density with mean Vµ,Σµ)

• Note: Unlike the MVL, no closed form expression for the
integral.
• The integrals often evaluated using simulation methods (we will

work an example).
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How many parameters are there?

• β̄: K parameters

• Σβ: K × K symmetric matrix K2−K
2

+ K = K(K+1)
2

• Ση: J(J+1)
2

• Note: When a person chooses j , all we know is relative utility,
not absolute utility.

• This suggests that not all parameters in the model will be
identified.

• Requires normalizations.
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Digression on Identification

• What does it mean to say a parameter is not identified in a
model?

• Model with one parameterization is observationally equivalent
to another model with a different parameterization
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Digression on Identification

• Example: Binary Probit Model (fixed β)

Pr (D = 1 | Z ) = Pr (v1 + ε1 > v2 + ε2)

= Pr (xβ + ε1 > x2β + ε2)

= Pr ((x1 − x2) β > ε2 − ε1)

= Pr

(
(x1 − x2) β

σ
>
ε2 − ε1

σ

)
= Φ

(
x̃β

σ

)
x̄ = x1 − x2

• Φ
(
x̃β
σ

)
is observationally equivalent to Φ

(
x̃β∗

σ∗

)
for β

σ
= β∗

σ∗ .
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• β not separably identified relative to σ but ratio is identified:

Φ

(
x̃β

σ

)
= Φ

(
x̃β∗

σ∗

)
Φ−1 · Φ

(
x̃β

σ

)
= Φ−1Φ

(
x̃β∗

σ∗

)
⇒ β

σ
=
β∗

σ∗

• Set {b : b = β · δ, δ any positive scalar} is identified (say “β is
identified up to scale and sign is identified”).
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Identification in the MVP model

Pr (j selected | Vµ,Σµ) = Pr (ui − uj < 0 ∀i 6= j)

Define ∆j =


1 0 .. −1 .. 0
0 1 .. −1 .. 0
: : :
0 .. .. −1 0 1


(J−1)×J

(contrast matrix)

∆j ũ =

 u′ − uj

:
uJ − uj


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Identification in the MVP model

Pr (j selected | Vµ,Σµ) = Pr (∆j ũ < 0 | Vµ,Σµ)

= Φ (0 | VZ ,ΣZ )

• Where

1 VZ is the mean of ∆j ũ = ∆j Z̃ β̄
2 ΣZ is the variance of ∆j Z̃ΣβZ̃

′∆′j + ∆jΣη∆′j
3 VZ is (J − 1)× 1
4 ΣZ : (J − 1)× (J − 1)

• We reduce dimensions of the integral by one.
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• This says that all of the information exists in the contrasts.

• Can’t identify all the components because we only observe the
contrasts.

• Now define ∆̃j as ∆j with Jth column removed and choose J
as the reference alternative with corresponding ∆J .

• Then can verify that

∆j = ∆̃j ·∆J
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• For example, with three goods:(
1 −1
0 −1

)
×
(

1 0 −1
0 1 1

)
=

(
1 −1 0
0 −1 1

)
• ∆̃j , (j = 2, ∆J , (J = 3, ∆j , (j = 2, 3rd column

included)

3rd column

removed)

reference alt.)
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• Therefore, we can write

VZ = ∆j Z̃ β̄

ΣZ = ∆j Z̃ΣβZ̃
′∆′j + ∆̃j∆JΣη∆′J∆̃′j

• where CJ = ∆JΣη∆′J and (J − 1)× (J − 1) has
(J−1)2−(J−1)

2
+ (J + 1) parameters = J(J−1)

2
total.

• Since original model can always be expressed in terms of a
model with (β,Σβ,CJ) , it follows that some of the parameters
in the original model are not identified.
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How many parameters not identified?

• Original model:

K +
K (K + 1)

2
+

J (J + 1)

2
• Now:

K +
K (K + 1)

2
+

J (J − 1)

2
,

J2 + J − (J2 − J)

2
= J not identified

• Turns out that one additional parameter not identified.
• Total: J + 1
• Note: Evaluation of Φ (0 | kvZ , k2ΣZ ) k > 0 gives same result

as evaluating Φ (0 | vZ ,ΣZ ) can eliminate one more parameter
by suitable choice of k .
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Illustration

J = 3 Ση =

 σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33


C2 = ∆2Ση∆′2 =

(
1 −1 0
0 −1 1

)
· Ση

(
1 −1 0
0 −1 1

)′
=

(
σ11 −2σ21 +σ22, σ21 −σ31 −σ32 +σ22

σ21 −σ31 −σ32 +σ22, σ33 −2σ31 +σ22

)
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Illustration

C2 = ∆̃2∆3Ση∆′3∆′2 =

(
1 −1
0 −1

)
·(

σ11 −2σ21 +σ33, σ21 −σ31 −σ32 +σ33

σ21 −σ31 −σ32 +σ33 σ22 −2σ32 σ33

)
·(

1 0
−1 −1

)
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Normalization Approach of Albreit, Lerman, and Manski (1978)

• Note: Need J + 1 restrictions on VCV matrix.

• Fix J parameters by setting last row and last column of Ση to 0

• Fix scale by constraining diagonal elements of Ση so that trace
Σε
J

equals variance of a standard Weibull. (To compare
estimates with MNL and independent probit)
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Variety of Simulation Methods

• Simulated method of moments

• Method of simulated scores

• Simulated maximum likelihood

References:

• Lerman and Manski (1981), Structural Analysis (online at
McFadden’s website)

• McFadden (1989), Econometrica

• Ruud (1982), Journal of Econometrics

• Hajivassilon and McFadden (1990)

• Hajivassilon and Ruud (Ch. 20), Handbook of Econometrics

• Stern (1992), Econometrica

• Stern (1997), Survey in JEL

• Bayesian MCMC (Chib et al. on reading list)
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Early Simulation Method: “Crude Frequency Method”

Model

uj = Zjβ + ηj with β fixed, ηj ∼ N (0,Ω) , J choices

Pij = prob i chooses j

Yij = 1 if i chooses j , 0 else

L =
N∏
i=1

J∏
j=1

(Pij)
Yij

logL =
N∑
i=1

J∑
j=1

Yij logPij
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Simulation Algorithm

(i) For given β,Ω generate Monte Carlo draws (R of them)

ur
j , j = 1...J , r = 1...R

(ii) Let P̃k = 1
R

R∑
r=1

1(ur
k = max{ur

1, ..., u
r
J}) where P̃k is a

“frequency simulator” of Pr (k chosen; β,Ω)

(iii) Maximize
N∑
i=1

log P̃ik over alternative values for β,Ω
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• Note: Lerman and Manski found that this procedure performs
poorly and requires a large number of draws, particularly when
P is close to 0 or 1.

var

(
1

R

∑
1 (·)

)
=

1

R2

R∑
i=1

var1 (·) with var1 (·) at true values

• McFadden (1989) provided some key insights into how to
improve the simulation method. He showed that simulation is
viable even for a small number of draws provided that:

(a) an unbiased simulator is used
(b) functions to be simulated appear linearly in the conditions

defining the estimator
(c) same set of random draws is used to simulate the model at

different parameter values

• Note: Condition (b) is violated for crude frequency method
which had log P̃ik
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Simulated Method of Moments (McFadden, Econometrica, 1989)

uij = Zijβ = Zij β̄ + Zijεi β = β̄ + εi

(earlier model with only preference heterogeneity)

Pij (γ) = P (i chooses j | wi , γ) (wi are regressors)

• Define Yij = 1 if i chooses j , Yij = 0 otherwise.

logL =
1

N0

N∑
i=1

J∑
j=1

Yij lnPij (γ) N0 = NJ

∂ logL
∂γ

=
1

N0

N∑
i=1

J∑
j=1

Yij

[ ∂Pij

∂γ

Pij (γ)

]
= 0 (3)
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Simulated Method of Moments (McFadden, Econometrica, 1989)

√
N0(γ̂MLE − γ0) ∼ N

(
0, I−1

f

)
Îf =

1

N0

N∑
i=1

[
J∑

j=1

Yij

[ ∂Pij

∂γ

Pij (γ)

]] J∑
j=1

Yij

[ ∂Pij

∂γ

Pij (γ)

]′ .
(outer product of score vector)
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• Now use the fact that
∑J

j=1 Pij (γ) = 1

⇒
J∑

j=1

∂Pij

∂γ
= 0 ⇒

J∑
j=1

∂Pij

∂γ

Pij
Pij = 0

• Rewrite 3 as

1

N0

N∑
i=1

J∑
j=1

(Yij − Pij)

∂Pij

∂γ

Pij
= 0

• Note: E (Yij) = Pij .
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• Letting εij = Yij − Pij , and Zij =
∂Pij
∂γ

Pij
, we have

1

N0

N∑
i=1

J∑
j=1

εijZij =

∂Pij

∂γ

Pij

• like a moment condition using Zij as the instrument but so far
Pij still a J − 1 dimensional intergral.
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Simulation Algorithm

• Model
uij = Zij β̄ + Zij · εi J choices, K characteristics
uij : 1× 1 Zij : 1× K β̄ : K × 1
Zij : 1× K εi : K × 1

• Rewrite as
ũi = Z̃i β̄ + Z̃iΓẽi where ΓΓ′ = Σε (Cholesky decomposition),
ẽi ∼ N (0, Ik) , εi = Γẽi
ũi : J × 1 Z̃i : J × K β̄ : K × 1

Z̃i : J × K Γ : K × X ẽi : K × 1
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• Step (i). Generate ẽi for each i such that ẽi are iid across
persons and distributed N (0, Ik) . In total, generate

N (sample size) · K (vector length) · R

(number of Monte Carlo draws)

• Step (ii). Fix matrix Γ and obtain
ηij = ZijΓẽi , where Zij : 1× K ; Γ : K × K ; ẽi is K × 1 .

• Form vector


Zi1Γẽi
Zi2Γẽi

...
ZiJΓẽi

 for each person.
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• Step (iii). Fix β̄ and generate

ũij = Zij β̄ + ηij ∀i .
• Step (iv). Find relative frequency that ith person chooses

alternative j across Monte Carlo draws

P̃ij (γ) =
1

R

R∑
r=1

1 (ũij > ũim; ∀m 6= j)

• where P̃ij (γ) is the “simulator” for Pij (γ) . Stack to get P̃i (γ) .
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• Step (v). To get P̃i (γ) for different values of γ, repeat steps
(ii) through (iv) using the same r.v.’s ẽi generated in step (i).

• Step (vi). Define

wij =

∂Pij (γ)

∂γ

Pij

• and wij as corresponding stacked vector simulator for wij can be
obtained by a numerical derivative

∂Pij (γ)

∂γ
=

Pij (γ + hlm)− Pij (γ − hlm)

2h

where m = 1...J , lm = vector with 1 in mth place.
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Solve Moment Condition

• Apply Gauss-Newton Method, iterate to convergence

γ1 = γ0 + { 1

N

∑
wi (γ) {yi − P̃i (γ0)}{yi − P̃i (γ0)}−1

· 1

N

N∑
i=1

wi (γ0) {yi − P̃i (γ0) }
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Solve Moment Condition

Digression on Gauss-Newton

• Suppose problem is

S = min
β

1

N

N∑
i=1

[yi − fi (β)]2 (nonlinear least squares).

fi (β) = fi
(
β̂1

)
+
∂fi
∂β

∣∣∣∣
β1

(
β − β̂1

)
+ ...

by Taylor expansion around initial guess β̂1

= fi
(
β̂1

)
+
∂f

∂β

∣∣∣∣
β̂1

(
β − β̂1

)
+ ...

(terms ignored)
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• Substitution gives

min
β

1

N

N∑
i=1

[yi − fi
(
β̂1

)
− ∂f

∂β

∣∣∣∣
β̂1

(
β − β̂1

)
]2

• Solve for β̂2 to get

β̂2 = β1 +

[
N∑
i=1

∂fi
∂β

∣∣∣∣
β̂1

∂fi
∂β

∣∣∣∣′
β̂1

]−1

∂S

∂β

∣∣∣∣
β̂1

• Repeat until convergence (problem if matrix is singular).

Heckman CDCT Pt I, May 5, 2021 3:51pm 102 / 161



Disadvantages of Simulation Methods

1 P̃ij is not smooth due to indicator function (causes difficulties
in deriving asymptotic distribution; need to use methods
developed by Pakes and Pollard (1989) for nondifferentiable
functions). Smoothed SMOM methods developed by Stern,
Hajivassiliou, and Ruud.

2 P̃ij cannot be 0 (causes problems in denominator when close to
0)

3 Simulating small Pij may require large number of draws
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Disadvantages of Simulation Methods

• Refinement: “Smoothed Simulated Method of Moments”
replaces indicator with a smooth function (Stern (1992),
Econometrica). ∫

instead of

P̃ij (γ) =
1

R

R∑
r=1

R (Φ (ũij − ũim))
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How does simulation affect the asymptotic distribution?

• Without simulation get

√
η (γ̂mme − γ0) ∼ N

(
0,

[
p lim
N→∞

1

N

∑
wi (yi − Pi)

′ w ′i

]−1
)

• with simulation, the variance is slightly hgher due to simulation
error

√
n (γ̂msm − γ0) ∼ N

(
0,plim

N→∞ C−1{1 +
1

η
}
)
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How does simulation affect the asymptotic distribution?

• where

C = − 1

N

N∑
i=1

wi (yi − Pi) (yi − Pi)
′ wi ′

• as N →∞, √
η (γmsm − γ) ∼ N (0,C−1) .

• Note: Method does not require that number of draws go to
infinity.
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Choice-Based Sampling (See Heckman in New Palgrave)

• Reference:
• Chs. 1-2 of Manski and McFadden volume
• Manski and Lerman (1978 Econometrica)
• Amemiya

• Examples:

1. Suppose we gather data on transportation mode choice at the

• train station
• subway station
• car checkpoints (toll booths etc.)
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• We observe characteristics on populations conditioned on the
choice that they made (this type of sampling commonly arises)

2. Evaluating effects of a social program; have data on
particpants and non-participants; usually participants
oversampled relative to frequency in the population.

• Distinguish between exogenous stratification and endogenous
stratification, the latter of which is choice-based. (But a special
type of endogenous stratification)

• Oversampling in high population areas (as is commonly done to
reduce sampling costs or to increase representation of some
groups) could be exogenous stratification (depending on
phenomenon being studied).
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Notation:

• Let Pi = P (i | Z ) in a random sample P∗i in a choice-based
sample (CBS)
• Under CBS, sampling is assumed to be random within i

partitions of the data

P (Z | i) = P∗ (Z | i) but P (Z ) 6= P∗ (Z )

• Suppose that we want to recover P (i | Z ) from choice-based
data
• We observe

P∗ (i | Z ) (assume Z are discrete conditioning cells)

P∗ (Z )

P∗ (i)

Frequency weights :

P∗ (Z | i) = P (Z | i) (key assumption)
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By Bayes’ Rule

P (A,B) =
P (A,B)

P (B)
=

P (B | A) · P (A)

P (B)

P∗ (i | Z ) =
P∗ (Z | i) · P∗ (i)

P∗ (Z )

P (i | Z ) =
P (Z | i) · P (i)

P (Z )
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By Bayes’ Rule

P (i | Z ) =

[
P∗(i |Z)·P∗(Z)

P∗(i)

]
P (i)

P (Z )

P (Z ) =
∑
j

P (Z | j)P (i)

P (Z | j) = P∗ (Z | j)

P∗ (Z | j) =
P∗ (j | Z ) · P∗ (Z )

P∗ (j)

P (i | Z ) =

P∗(i |Z)P∗(Z)
P∗(i)

P (i)∑
j
P∗(j |Z)P∗(Z)

P∗(j)
P (j)

=
P∗ (i | Z ) P(i)

P∗(i)∑
j P
∗ (j | Z ) P(j)

P∗(j)
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• To recover P (i | Z ) from choice-based sampled data, you need
to know P (j) , P∗ (j) ∀j . P∗ (j) can be estimated from sample,

but P (j) requires outside information. Need weights P(i)
P∗(i)

.

• Note: Problem set asks you to consider how CBS biases the
coefficients and intercept in a logit model. (Can show that bias
only in the constant)
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Application and Extension: Berry, Levinsohn, and Pakes (1995)

• Develop equilibrium model and estimation techniques for
analyzing demand and supply in differentiated product markets

• Use to study automobile industry

• Goal is to estimate parameters of both the demand and cost
functions incorporating own and cross price elasticities and
elasticities with respect to product attributes (car horse power,
MPG, air conditioning, size,...) using only aggregate product
level data supplemented with data on consumer characteristic
distributions (income distribution from CBS)

• Want to allow for flexible substitution patterns
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Key assumptions

(i) joint distribution of observed and unobserved product and
consumer characteristics

(ii) price taking for consumers, Nash eq assumptions on producers
in oligopolistic, differentiated products market.
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Notation

• ζ : individual characteristics

x (observed)
ξ (unobserved)
p (price)

: product characteristics

uij = u (ζi , pj , xj , θ) : utility if person i chooses j

(Cobb-Douglas assumption here)

j = 0, 1, ..., J

0 = not purchasing any
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Notation

• Define

Aj = {ζ : uij (ζ, pj , xj , ξj ; θ) ≥ u (ζ, pr , xr , ξr ; 0) r = 0, ..., J} ,

• the set of ζ that induces choice of good j . This is defined over
individual characteristics which may be observed or unobserved.
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Market Share

sj (p, x , ξ; θ) =

∫
ζεAj

f (ζ) dζ; (s is vector of market shares)

• Special functional form:

uij = u (ζi , pj , xj , ξj ; θ) = xjβ − αpj + ξj + εij = δj + εij
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Market Share

• δj = xjβ − αpj + ξj = mean utility from good j

• ξ̄j is mean across consumers of unobserved component of utility

• εij are the only elements representing consumer characteristics

• Special Case:

ξj = 0 (no unobserved characteristic)

εij iid over i , j , independent of xj

• Then share

sj =

∫ ∞
−∞

Πq 6=jF (δj − δq + ε) f (ε) dε

• Unidimensional integral; has closed form solution under extreme
value.
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Why is assumption that utility is additively separable and iid in consumer
and product characteristics highly restrictive?

(a) Implies that all substitution effects depend only on the δs (since
there is a unique vector of market shares associated with each δ
vector). Therefore, conditional on market shares, substitution
patterns don’t depend on characteristics of the product.
Example: if Mercedes and Yugo have some market share then
they must have the same δs and some cross derivative with
respect to any 3rd car (BMW).

∂si
∂pk

=

∫
Πq 6=kF (δk − δq + ε)F ′ (δk − δq + ε)

∂δk
∂pk

f (ε) dε

(same if δs same)
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Why is assumption that utility is additively separable and iid in consumer
and product characteristics highly restrictive?

(b) Two products with same market share have same own price
derivatives (not good because you expect product markup to
depend on more than market share)

(b) Also assumes that individuals value product characteristics in
same way (no preference heterogeneity)
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Alternative Model (Random Coefficients Versions)

uij = xj β̄ − αpj + ξj +
∑
k

σkxjkνik + εij

βk = β̄k + σkνk

E (νik) = 1

• Could still assume εij has iid extreme value.
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Model Actually Used

• Impose alternative functional form assumption because they
want to incorporate prior info on distribution of relevant
consumer characteristics and on interactions between consumer
and product characteristics.

uij = (y − pj)
α G (xi , ξj , νi) e

ε(i ,j)

• Assume G is log linear

ũij = log uij = α log (yi − pj) + xj β̄ + ξj +
∑
k

σkxjkνik + εij
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Model Actually Used

• No good utility:

= α log yi + ξ0 + σ0νio + εio

• Note: Prices are likely to be correlated with unobserved
product attributes, ξ, which leads to an endogeneity problem.
(ξ may represent things like style, prestige, reputation, etc.)

quantity demanded, qj = Msj (x , ξ, p; θ) (share)

• ξ enters nonlinearly, so we need to use some transformation to
be able to apply instrumental variables (Principle of
Replacement Function).
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Cost Side

• Multiproduct firms 1, . . . ,F . Each produces subset τF of J
possible products. Cost of producing good assumed to be
independent of output levels and log linear in vector of cost
characteristics (Wj , ωj) .

lnmcj = Wjγ + ωj ⇒ Πf =
∑
j∈τF

(pj −mcj)msj (p, x , ξ; θ)

Nash Assumption
• Firm chooses prices that maximize profit taking as given

attributes of its products and the prices and attributes of its
competitor’s products. Pj satisfies

sj (p, x , ξ; θ) +
∑
rετF

(pr −mcr )
∂sr (p, x , ξ; θ)

∂pj
= 0
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Cost Side

• Define

∆jr =

{ −∂sr
∂pj

0

}
if r and j produced by same firm

⇒ s (p, x , ξ; θ)−∆ (p, x , ξ; θ) [p −mc] = 0

⇒ p = mc + ∆ (p, x , ξ; θ)−1 s (p, x , ξ; θ) (market)
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• Market term depends on parameters of demand system and on
equilibrium price vector

p = mc + ∆ (p, x , ξ; θ)−1 s (p, x , ξ; θ)

• Mark-up depends only on the parameters of the demand system
and equilibrium price vector.

• Since p is a function of w , b (p, x , ξ; θ) also a function of ω
(unobs cost determinants)

• Let

lnmcj = Wjγ + ωj

⇒ p exp {W γ + ω}+ b (p, x , ξ; θ)

ln (p − b (p, x , ξ, θ)) = W γ + ω (pricing equation)
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Estimation

• Need instruments for both demand and pricing equations. i.e.
need variables correlated with (x , ω) uncorrelated with ξ and ω.
Let

Z = (X ,W ) (p, q not included in Z )

• Assume

E (ξj | Zj) = E (ωj | Z ) = 0

E ((ξj , ωj) (ξj , ωj) | Z ) = Ω (Zj) (finite almost every Zj)

• Note that demand for any product is a function of
characteristics of all products, so don’t have any exclusion
restrictions.
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Data

• J vectors (xj , ωj , pj , qj)

• n : number of households sampled

• sn : vector of sampled market shares

• Assume that a true θ0 population abides by models.

• Decision Rules

• sn converges to s0 (multinomial)

• √n (sn − s0) = Op(1)
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• Assume we could calculate

{εj (θ, s, p0) , ωj (θ, s, p0)}Jj=1

for alternative values of θ

• They show that any choice of

(a) observed vector of market shares, s
(b) distribution of consumer characteristics, P
(c) parameter of model

• implies a unique sequence of estimates for the two unobserved
characteristics

ξj(θ, s,P), ωj (θ, s,P)
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• Then any function of Z must be uncorrelated with the vector{
ξ
(
θ, s0,P0

)
, ω
(
θ, s0,P0

)}J
j=1

when θ = θ0

• Can use GMM

• Note: Conditional moment restriction implies infinite number of
unconditional restrictions

min
1

J

∑
Hj (Z )

(
ξj (θ, s0,P0)
wj (θ, s0,P0)

)
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Compuation in Logit Case

• Logit εij is Weibull.

δj = xjβ − αpj + εj

uij = xjβ − αpj + εj + εij

sj (p, x , ε) =
eδj

1 +
∑J

j=1 e
δj

δj = ln sj − ln s0, j = 1, . . . , J

εj = ln sj − ln s0 − xjβ + αpj

• See paper for more details.
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Generalized Method of Moments (GMM)

References:
• Hansen (1982), Econometrica
• Hansen and Singleton (1982,1988)
• Also known as “minimum distance estimators”
• Suppose that we have some data {xt} t = 1...T and we want

to test hypotheses about E (xt = µ) .
• How do we proceed? By a CLT

1√
T

T∑
t=1

(xt − µ) ∼ N (O,V0)

V0 = E
(
(xt − µ) (xt − µ)′

)
if xt iid

= lim
t→∞

E

(
1√
T
v
∑
t

(xt − µ)
1√
T

(xt − µ)′
)

(general case)
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• We can decompose V0 = QDQ ′ where
QQ ′ = I , Q−1 = Q1, D = matrix of eigenvalues

V0 = QD1/2D1/2Q ′

Q ′V0Q = D1/2D1/2

D−1/2Q ′V0QD
−1/2 = I

• under rule H0,[
1√
T

∑
t

(xt − µ0)

]′
V−1

0

[
1√
T

∑
(xt − u0)

]

=

[
1√
T

∑
t

(xt − µ0)

]′
QD−1/2D−1/2Q ′[

1√
T

∑
t

(xt − µ0)

]
∼ X 2 (n)

Heckman CDCT Pt I, May 5, 2021 3:51pm 133 / 161



• where n is the number of moment conditions.

• How does test statistic behave under alternative? (µ 6= µ0)

• should get large
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• Write as

[
1√
T

∑
t

(xt − µ0)

]′
V−1

0

[
1√
T

∑
t

(xt − µ0)

]
(4)

=

[
1√
T

∑
t

(xt − µ0)

]′
V−1

0

[
1√
T

∑
t

(xt − µ0)

]
+

2√
T

∑
t

(µ− µ0)′ V−1
0

1√
T

∑
t

(xt − µ) + ...

+
1√
T

∑
t

(µ− µ0)′ V−1
0

1√
T

∑
t

(µ− µ0) (5)

• last term * is 0(T ) .

λ = T (µ− µ0)′ V−1
0 (µ− µ0) is the noncentrality parameter

Heckman CDCT Pt I, May 5, 2021 3:51pm 135 / 161



• Problems:

(i) Vo is not known a priori.

• Estimate VT −→ V0

• In the setting, use sample covariance matrix.

• In general setting, approximate limit by finite T

(i) µ not known

• Suppose we want to test µ = ϕ (β)
ϕ specified
β unknown
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• Can estimate by min-x2 estimation.

min
β∈B

[
1√
T

∑
(xt − ϕ (β))

]′
V−1
T

[
1√
T

∑
(xt − ϕ (β))

]
∼x2 (n − k)

k =dimension of β

n =number of moments

• Note: Searching over k dimensions, you lose one degree of
freedom (will show next).
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• Find distribution theory for β̂ :
Q: This is a M-estimator, so how do you proceed?
• FOC

√
T
∂ϕ

∂β

∣∣∣∣′
β̂T

V−1
T

1√
T

[
xt − ϕ

(
β̂T

)]
= 0

• Taylor expand ϕ
(
β̂T

)
around ϕ

(
β̂0

)
ϕ
(
β̂T

)
= ϕ

(
β̂0

)
+
∂ϕ

∂β

∣∣∣∣
β̂∗

(
β̂T − β0

)
β∗ between β0, β̂T

• get

√
T
∂ϕ

∂β

∣∣∣∣′
β̂T

V−1
T

1√
T

∑
t

[
xt − ϕ (β0)− ∂ϕ

∂β

∣∣∣∣
β̂∗

(
β̂T − β0

)]
= 0
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• Rearrange to solve for
(
β̂T − β0

)

+

[
√
T
∂ϕ

∂β

∣∣∣∣′
β̂T

V−1
T

∂ϕ

∂β

∣∣∣∣
β̂∗

](
β̂T − β0

) T√
T

=
√
T
∂ϕ

∂β

∣∣∣∣′
β̂T

V−1
T

1√
T

∑
t

xt − ϕ
(
β̂T

)

if
∂ϕ

∂β

∣∣∣∣′
β̂T

→ D0 (Convergence of random function)

VT → V0

∂ϕ

∂β

∣∣∣∣
β̂∗
→ D0
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• Apply CLT to 1√
T

∑
t

xt − ϕ
(
β̂T

)
∼ N (0,V0)

• Then
√
T
(
β̂T − β0

)
∼ N

(
0,
(
D ′0V

−1
0 D0

)−1 (
D ′0V

−1
0 D0

)−1′
)
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• Why is the limiting distribution χ2 (n − k)?

• Write

1√
T

∑
t

xt−ϕ
(
β̂T

)
=

1√
T

∑
t

(xt − µ0)+
1√
T

∑
t

(
µ0 − ϕ

(
β̂T

))
• Recall, we had

ϕ
(
β̂T

)
= ϕ (β0) +

∂ϕ

∂β

∣∣∣∣
β̂∗

(6)
(
∂ϕ

∂β

∣∣∣∣′
β̂T

V−1
T

∂ϕ

∂β

∣∣∣∣
β̂∗

)−1

· ∂ϕ
∂β

∣∣∣∣
β̂T

· V−1
T

1√
T

∑
t

(xt − µ0)


definition of

√
T
(
β̂T − β0

)
derived easier. (7)
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• Note that the second term (6) is a linear combination of the
first.

⇒ 1√
T

∑
t

xt − ϕ
(
β̂T

)
= B

1√
T

∑
t

(xt − µ0)

• where B = I − ∂ϕ
∂β

∣∣∣
β0

[
∂ϕ
∂β

∣∣∣′
β0

V−1
0

∂ϕ
∂β

∣∣∣
β0

]−1
∂ϕ
∂β

∣∣∣′
β0
V−1

0 = B0

Note that
∂ϕ

∂β

∣∣∣∣′
β0

V−1
0 B0 = 0
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• This tells us that certain linear combinations of B will give a
degerate distribution (along k dimensions)

• This needs to be taken into account when testing.

• Recall that we had V0 = QDQ ′

QQ ′ = I V−1
0 = QD−1/2D−1/2Q ′

D−1/2Q ′
1√
T

∑
t

xt − ϕ
(
β̂T

)
= D−1/2Q ′B

1√
T

∑
t

(xt − µ0)

• where

D−1/2Q′B =D−1/2Q′ − D−1/2Q′ ·
∂ϕ

∂β

∣∣∣∣
β̂T

[
∂ϕ

∂β

∣∣∣∣′
β̂T

QD−1/2D−1/2Q′
∂ϕ

∂β

∣∣∣∣
β̂T

]−1
∂ϕ

∂β

∣∣∣∣′
β0

QD−1/2D−1/2Q′

=
(
I − A

(
A′A

)−1
)
D−1/2Q′ (idempotent matrix MA)
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• Thus

D−1/2Q ′
1√
T

∑
t

xt − ϕ
(
β̂T

)
= MA · D−1/2 · Q ′ · 1√

T

∑
t

(xt − µ0)

• This matrix MA accounts for the fact that we performed the
minimization over β
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How is distribution theory affected?

• Have a quadratic form in normal r.v’s with idempotent matrix

ex. ε̂ · ε̂ = ε′Mxε Mx = I − x (x ′x)
−1

x ′

• Me facts
(i) Theorem

• Let Y ∼ N
(
θ, σ2In

)
and let P be a symmetric matrix of rank γ

• Then Q = (Y−B)′P(Y−B)
σ2 ∼ x2

r iff p2 = p (i.e. P idempotent)
• See Seber, p.37

(ii) if Qi ∼ X 2
ri

i = 1, 2 r1 > r2 and Q = Q1 − Q2 is
independent of Q2, then Q ∼ X 2

r1−r2

• Apply these results to

ε̂′ε̂

σ2
=
ε′Mxε

σ2
∼ x2 (rank Mx)
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• Rank of an idempotent matrix is equal to its trace and

tr (A) =
n∑

i=1

λi λi eigenvalues (8)

for idempotent matrix, eigenvalues are all 0 or 1.

• (note rank = #non-zero eigenvalues for idempotent eigenvalues
all 0 or 1)
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rank
(
I − x (x ′x)

−1
x ′
)

=rank (I )− rank
(
x (x ′x)

−1
x ′
)

where rank (I ) =n

rank
(
x (x ′x)

−1
x ′
)

=trace
(
x ′x (x ′x)

−1
)

sincetr (AB) = tr (BA)

=trace (Ik)

rank
(
I − x (x ′x)

−1
x ′
)

= nk
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• Thus, by same reasoning limiting distribution of

[
1√
T

∑
t

xt − ϕ
(
β̂T

)]
V−1
T

[
1√
T

∑
t

xt − ϕ
(
β̂T

)]
∼ x2 (n − k) = rank (A)

• We preserve x2 but lose degrees of freedom in estimating β.

• In case where n = k (just identified case)

• we can estimate β but have no degrees of freedom left to
perform the test.

• Would GMM provide a method fo estimating β if we used a
weighting matrix other than V−1

T ?

• Why not replace V−1
0 by w0?
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min
β∈B

1√
T

∑
t

(
xt − ϕ

(
β̂T

))′
w0

1√
T

∑
t

xt − ϕ (β)

• Could choose w0 = I (avoid need to estimate weighting matrix)

• Result: Asymptotic covariance is altered and asymptotic

distribution of criterion is different, but 1√
T

∑
t

(
xt − ϕ

(
β̂T

))
will still be normal.
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• What is the advantage of focusing on minimum x2estimation?
• Choosing w0 = V−1

0 gives smallest covariance matrix. Get most
efficient estimator for β and most powerful test of restrictions.
• Show this: Show

(D ′0w0D0)−1 (D ′0w0V
−1
0 w0D0

) (
D ′0w0D

−1
0

)−1− (D ′0V0D0)−1 is
P.S.D
• where (D ′0w0D0)−1 (D ′0w0V

−1
0 w0D0

) (
D ′0w0D

−1
0

)−1
is the

covariance matrix for
√
T
(
β̂T − β0

)
when general weighting

matrix is used.
• Equivalent to showing

(
D0V

−1
0 D0

)
− (D ′0w0D0)

(
D ′0w0V

−1
0 w0D0

)−1
(D ′0w0D0)

is P.S.D

Show that it can be written as a quadratic form
• Take any vector α
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α′
[
D ′V−1

0 D0 − (D ′0W0D0) (D ′0W0V0W0D0)
−1

(D ′0W0D0)
]
α

=α′D ′0V
−1/2
0

[
I − V

′1/2
0 W0D0

(
D ′0W0V

1/2
0 · Y 1/2

0 W0D0

)−1

D ′0W0V
1/2
0

]
Y
−1/2
0 D0α

=α′D ′0V
−1/2
0

[
I − Ṽ

(
Ṽ ′Ṽ

)−1

Ṽ ′
]
V−1/2D0α ≥ 0 (= 0 if W0 = V−1

0 )

• Therefore W0 = V−1
0 is the optimal choice for the weighting

matrix.
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Many standard estimators can be interpreted as GMM estimators

• Some examples:

(1) OLS

yt = xtβ + ut E (utxt) = 0 ⇒ E ((yt − xtβ) xt) = 0

min
β∈B

(
1√
T

∑
t

(yt − xtβ) xt

)′
V−1
T

(
1√
T

∑
t

(yt − xtβ) xt

)

• where yt is the estimator for E (xtutu
′
tx
′
t) for idd

case = σ2E (xtx
′
t) if homoskedastic.
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(2) Instrumental Variables

yt = xtβ + ut

E (utxt) 6= 0

E (utzt) = 0

E (xtzt) 6= 0

β̂T = arg min
β∈B

(
1√
T

∑
(yt − xtβ)Zt

)′
V−1
T

1√
T

∑
(yt − xtβ)

where VT = Ê (ztutu
′
tz
′
t) in idd case
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• Estimator for

lim
T→∞

E

(
1√
T

∑
t

ztut

(
1√
T

∑
zsus

)′)
(time series case)

• Suppose

E (utu
′
t | zt) = σ2I

• then

W0 = σ2E (ztz
′
t)

• Can verify that 2SLS and GMM give same estimator
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β̂2SLS =
(
x ′z (z ′z)

−1
z ′x
)−1 (

x ′z (z ′z)
−1

z ′y
)

• Note: In first stage regress x on Z

x̂ = z (z ′z)
−1

z ′x

ŷ = z (z ′z)
−1

z ′y

var
(
β̂2SLS

)
=
[
E (xizi )E (ziz

′
i )
−1

E (zixi )
]−1

E (xizi )E (ziz
′
i )
−1

E (ziuiu
′
i z
′
i )

· E (ziz
′
i )
−1

E (xizi )
′
[
E (xizi )E (ziz

′
i )
−1

E (zixi )
]−1

• Under GMM
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var
(
β̂GMM

)
=

(
D0V

−1
0 D0

)−1
(when W0 = V−1

0 )

D0 =
∂ϕ

∂β
|β0= p lim

1
n

∑
xiz

′

i = E (xiz
′
i )

W0 =
(
σ2
)−1

E (ziz
′
i )
−1
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In the presense of heterskedastocity, weighting matrix would be different
(and 2SLS and GMM not the same)

W0 = E (z ′uu′z)
−1

= E (z ′E (uu′ | z) z)
−1

= E (z ′vz)
−1

• with panel data could have

E (uu′ | z) =


v1 0 · · · 0

v2 · · ·
. . . 0

0 vT

 = y

• allow for correlation over time for given individual, but iid
across individuals.
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Nonlinear least squares

yt = ϕ (xt , β) + ut E (utϕ (xt ; β)) = 0

min
β∈B

[
1√
T

∑
(yt − ϕ (xt ; β))ϕ (xt ; β)

]
V−1
T

[
1√
T

∑
(yt − ϕ (xt ; β))ϕ (xt ; β)

]
• General Method of Moments

min
β∈B

∑
t

ft (β)′ V−1
0

[∑
t

ft (β)

]
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Nonlinear least squares

• where

1√
T

∑
ft (β0) → N (O,V0)

1√
T

∑
ft → Eft

• In general, ft is a random function.
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• Suppose we want to estimate β 5× 1 and we have 6 potential
instruments. Can we test validity of the instruments? What if
we have 5 instruments? If we assume E (εi | xi) = 0 instead of
E (εixi) = 0 (i. e. conditional instead of unconditional) then
have infinite number of moment conditions.

E (εi f (xi)) = E (E (εi | xi) f (xi)) = 0 any f (xi)

• How to optimally choose which moment conditions to use is
current area of research. How might you use GMM to check if
a variable is normally distributed?
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Return to main text
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