Cross Section Bias:

Age, Period and Cohort Effects

James J. Heckman
University of Chicago

Econ 312, Spring 2021

$$
\begin{array}{rr}
\ln W_{i}=\alpha_{0}+\alpha_{1} a_{i}+\alpha_{2} y \\
\uparrow & \uparrow \\
\text { age } & \text { year }
\end{array}
$$

Two Identities

$$
\begin{equation*}
e_{i}=a_{i}-s_{i} \quad \text { "experience" } \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
y=a_{i}+c_{i} \quad c_{i}=\text { birth year } \tag{2}
\end{equation*}
$$

- Solve out for c_{i} and a_{i} to get estimable combinations.
- Take the simpler case first:

$$
\begin{aligned}
\ln W(a, y, c) & =\beta_{0}+\underset{\text { (age) }}{\beta_{1} a_{i}}+\underset{\text { (year) }}{\beta_{2} y_{i}}+\underset{\text { (cohort) }}{\beta_{3} c_{i}}+u_{i} \\
y_{i} & =a_{i}+c_{i}
\end{aligned}
$$

where y_{1} is the current year, and c_{i} is the year of birth.

- Obviously, we get an exact linear dependence:

$$
\left(\beta_{0}, \beta_{1}, \beta_{2}, \beta_{3}\right)
$$

- Substitute $c_{i}=y_{i}-a_{i}$.

$$
\begin{aligned}
\ln W_{i} & =\alpha_{0}+\beta_{1} a_{i}+\beta_{2} y_{i}+\beta_{3}\left(y_{i}-a_{i}\right)+u_{i} \\
& =\alpha_{0}+\left(\beta_{1}-\beta_{3}\right) a_{i}+\left(\beta_{2}+\beta_{3}\right) y_{i}+u_{i}
\end{aligned}
$$

can identify only combinations of coefficients.

- In a cross section, y_{i} is the same for everyone. The intercept is

$$
\left[\alpha_{0}+\left(\beta_{2}+\beta_{3}\right) y_{i}\right]
$$

- We can estimate $\left(\beta_{1}-\beta_{3}\right)$: age minus cohort effect.
- If $\beta_{3}>0$, we underestimate true β_{1}.
- Will longitudinal data rescue us? - Not necessarily.
- With panels, y_{i} moves with time. Recall that $y_{i}=a_{i}+c_{i}$.
- So we still have exact linear dependence. This is true if we have dummy variables in place of continuous variables (verify). Panel data will rescue us - if we have no year effects.
- We acquire similar problems in models with nonlinear terms:

$$
\left.\begin{array}{c}
\qquad y=a+c \\
y^{2}=a^{2}+2 a c+c^{2} \\
a y=a^{2}+a c \\
c y=c a+c^{2}
\end{array}\right\} 3 \text { linear dependencies in these set-ups }
$$

- Thus when we write

$$
\begin{aligned}
\ln W= & \beta_{0}+\beta_{1} a+\beta_{2} y+\beta_{3} c+\beta_{4} a^{2}+\beta_{5} a c \\
& +\beta_{6} a y+\beta_{7} c y+\beta_{8} c^{2}+\beta_{9} y^{2}+u
\end{aligned}
$$

we cannot identify all of the parameters (only 3 second order parameters are estimable out of 6 total.

Theorem. In a model with interactions of order k with j variables and one linear restriction among the j variables, then of the $\binom{j+k-1}{k}$ coefficients of order k, only $\binom{j+k-2}{k}$ are estimable. (Heckman and Robb, in S. Feinberg and W. Mason, Age, Period and Cohort Effects: Beyond the Identification Problem, Springer, 1986). E.g. $k=2, j=3 ; 6$ coefficients and 3 are estimable, as in the preceding example.

Theorem. In a model with ℓ restrictions on the j variables, then $\binom{j+k-\ell-1}{k}$ kth order coefficients are estimable (Heckman and Robb, 1986).

Question: Generalize this analysis for the case of polychotomous variables for age period and cohort effects.

- Return to the more general case. Substitute out for c_{i} and a_{i}, using (1) and (3):

$$
\begin{aligned}
\ln W_{i}=\alpha_{0} & +\left(\alpha_{2}+\alpha_{5}\right) y+\left(\alpha_{1}+\alpha_{3}-\alpha_{5}\right) e_{i} \\
& +\left(\alpha_{1}+\alpha_{4}-\alpha_{5}\right) s_{i}+u_{i} .
\end{aligned}
$$

- In a single cross section, y is the same for everyone. The intercept is then $\alpha_{0}+\left(\alpha_{2}+\alpha_{5}\right) y$, where y is year of cross section.
- Experience coefficient $=\alpha_{1}+\alpha_{3}-\alpha_{5}=\alpha_{3}+\left(\alpha_{1}-\alpha_{5}\right)$ if later vintages get higher skills, $\alpha_{5}>0$ and downward bias (e.g. higher quality of schooling). If there is an aging effect (>0, e.g. maturation) cannot separate. Produces upward bias for α_{3}.

Schooling Coefficient

- $\alpha_{1}+\alpha_{4}-\alpha_{5}=\alpha_{4}+\left(\alpha_{1}-\alpha_{5}\right)$
- Vintage (cohort) effects lead to downward bias.
- Age effects, upward bias.
- Observe that from the experience coefficient - schooling coefficient:

$$
\left(\alpha_{1}+\alpha_{3}-\alpha_{5}\right)-\left(\alpha_{1}+\alpha_{4}-\alpha_{5}\right)=\alpha_{3}-\alpha_{4}
$$

- Can estimate difference in "returns" to experience net of schooling.
- Observe that even if $\alpha_{1}=0$ (no aging effect), still can't estimate these coefficients.
- Is the solution longitudinal data (observations n the same people over time) - or repeated cross section data (observations on the same population over time but sampling different persons)?
- If $\alpha_{2}=0$,(no year effects), we can estimated α_{5}.
- Alternatively, for each c_{i} we can estimate $\alpha_{1}+\alpha_{3}$, and hence we can estimate α_{5}.
- We also know $\alpha_{1}+\alpha_{4}$. If $\alpha_{1}=0$, then $\alpha_{3,} \alpha_{4,} \alpha_{5}$ identified.
- Observe the weakness in the procedure.
- If year effects are present, we have that there is no gain to going to longitudinal or repeated cross section data.
- We gain a parameter when we move to the panel or repeated cross sectional data.

Solutions in Literature

(1) Redefine vintage (cohort) e.g. vintage fixed over period of years (e.g. a cohort of Depression babies).

- Then $\ln W=\left(\alpha_{0}+\alpha_{5} c\right)+\alpha_{1} a+\alpha_{2} y+\alpha_{3} e+\alpha_{4} s+u$.
- In single cross section, c and y are fixed.
- Substitute for e :

$$
e=a_{i}-s_{i}
$$

- Then

$$
\ln W=\left[\alpha_{0}+\alpha_{5} c+\alpha_{2} y\right]+\left(\alpha_{1}+\alpha_{3}\right) a_{i}+\left(\alpha_{4}-\alpha_{3}\right) s_{i}
$$

- We can estimate $\alpha_{1}+\alpha_{3}$ and $\alpha_{4}-\alpha_{3}$, and thus $\alpha_{1}+\alpha_{4}$.
- Successive time periods for the same vintage gives us α_{2} directly [since c doesn't move].
- If no age effect, we get $\alpha_{3}, \alpha_{4}, \alpha_{2}$, and from successive vintage estimations, we get α_{5}.
(2) If we measure experience, $a_{i} \neq e_{i}+s_{i}$ (non-market breaks), we get break in linear dependence.
- Cost: better proxies may be endogenous.
- E.g. experience $=$ cumulated hours.
- Results carry over in an obvious way to nonlinear models.

Example of Interpretive Pitfall

(1) Johnson and Stafford (AER, 1974)
(2) Weiss and Lillard (JPE, 1979)

- Fact: Disparity in real wages between recent Ph.D. entrants and experienced workers rose in physics and mathematics in the late 60 s and early 70 s . Not observed in the social sciences.
- Why? - Johnson-Safford story.
- Supplies of Ph.D.s enlarged by federal grants whil emand for scientific personnel declined. Wage rigidity at the top end motivated by specific human capital. Spot market / entrant market bears the brunt of the burden.
- Weiss \& Lillard: "experience-vintage" interaction (ec).
- Ignore age effect:

$$
\begin{aligned}
\ln W(e, c, s, y)= & \varphi_{0}+\varphi_{1} e+\varphi_{2} c+\varphi_{3} y+\varphi_{4} s \\
& +\varphi_{5} e^{2}+\varphi_{6} c^{2}+\varphi_{7} e c \\
& +\varphi_{8} e y+\varphi_{9} c y+\varphi_{10} y^{2}
\end{aligned}
$$

- Assume other powers and interactions are zero. Assume $\varphi_{10}=0$.
- Johnson-Stafford: $\varphi_{8}>0$ or $\varphi_{9}<0$
- Weiss-Lillard: $\varphi_{7}>0$
- Recall that $y=e+s+c$.

- Weiss-Lillard ignore year effects.
- We get Weiss-Lillard by substituting for y :

$$
\begin{aligned}
\ln W(e, c, s)= & \varphi_{0}+\left(\varphi_{1}+\varphi_{3}\right) e+\left(\varphi_{3}+\varphi_{4}\right) s \\
& +\left(\varphi_{2}+\varphi_{3}\right) c+\left(\varphi_{5}+\varphi_{8}\right) e^{2} \\
& +\varphi_{8} e s+\left(\varphi_{7}+\varphi_{8}+\varphi_{9}\right) e c \\
& +\left(\varphi_{6}+\varphi_{8}\right) c^{2}
\end{aligned}
$$

- Note that if $\varphi_{7}=0$ but $\varphi_{9}>0$, we get ec interaction, but it is "really" a year effect. If entry level wages fall relative to wages of experienced workers, the wage / experience profile is steeper in more recent cross-sections.
- Looking at social scientists where no interaction appears favors Johnson-Stafford.
- Moral: auxiliary evidence and theory break the identification problem.

Cohort vs. Cross-Section Internal Rate of Return

- Take a cohort rate of return.
(1) $Y_{a, c}^{h}$ is the earnings of a high school graduate of cohort c at age a.
(2) $Y_{a, c}^{d}$ is the earnings of a droupout of cohort c at age a.
(3) $\rho_{c}=I R R_{c}$ (cohort internal rate of return).

4

$$
\sum_{a=0}^{A} \frac{Y_{a, c}^{h}-Y_{a, c}^{d}}{\left(1+\rho_{c}\right)^{d}}=0
$$

- The cross-section consists of a set of member of different cohorts.
- Start with $c=1$ as the youngest age group and proceed.
- At a point in time, we have $a=0 \Longrightarrow c=1 ; c+a=t$.
- The cross-section internal rate of return is

$$
\sum_{a=0}^{A} \frac{\left(Y_{a, 1-a}^{h}-Y_{a, 1-a}^{d}\right)}{\left(1+\rho_{t}\right)^{a}}=0,
$$

where $A+1$ is the maximum age in the population.

- When can $\rho_{c}=\rho_{t}$?
- This can occur if the environment is stationary.
- With steady growth in differentials, it cannot help explain $\rho_{c}=\rho_{t}$.
- The case

$$
\begin{align*}
\Delta_{a, c}^{h, d} & =Y_{a, c}^{h}-Y_{a, c}^{d} \tag{3}\\
\Delta_{a, c+j}^{h, d} & =\left(\Delta_{a, c}^{h, d}\right)(1+g)^{j}
\end{align*}
$$

will not work.

- With constant growth, g cannot explain $\rho_{t}=\rho_{c}(!)$:

$$
c=0,1 \quad t=a+c .
$$

- Consider a model with 2 cohorts, focus on cohort $c=0 . \rho_{c}$ is the root of

$$
0=Y_{0,0}^{h}-Y_{0,0}^{d}+\frac{Y_{1,0}^{h}-Y_{1,0}^{d}}{1+\rho_{c}} .
$$

- Cross-section at $t=1$, when cohort c enters, is

$$
0=Y_{0,0}^{h}-Y_{0,0}^{d}+\frac{Y_{1,-1}^{h}-Y_{1,-1}^{d}}{1+\rho_{t}} \text { text. }
$$

- In general, $\rho_{c} \neq \rho_{t}$. More generally, for cohort \bar{c}, the benchmark cohort, $\rho_{\bar{c}}$ is the IRR that solves

$$
\sum_{a=0}^{A} \frac{\left(Y_{a, \bar{c}}^{h}-Y_{a, \bar{c}}^{d}\right)}{\left(1+\rho_{\bar{c}}\right)^{a}}=0 .
$$

- Cross section in year $t=\bar{c}$ produces the equation

$$
\sum_{a=0}^{A} \frac{\left(Y_{a, \bar{c}-a}^{h}-Y_{a, \bar{c}-a^{d}}\right)}{\left(1+\rho_{t}\right)^{a}}=0,
$$

where ρ_{t} is the root.

- If growth rates across cohorts are benchmarked against \bar{c}, we obtain

$$
\begin{aligned}
\sum_{a=0}^{A} \frac{\left(Y_{a, \bar{c}}^{h}-Y_{a, \bar{c}}^{d}\right)(1+g)^{-a}}{\left(1+\rho_{t}\right)^{a}} & =0 \\
\sum_{a=0}^{A} \frac{\left(Y_{a, \bar{c}}^{h}-Y_{a, \bar{c}}^{d}\right)}{\left[\left(1+\rho_{t}\right)(1+g)\right]^{a}} & =0
\end{aligned}
$$

so clearly $\rho_{t}<\rho_{c}$.

- Suppose that there are no cohort effects but that there are smooth time effects, say, $1+\varphi$.
- Then the cohort rate of return is calculated as the root of the following equation in which the choice of a cohort \bar{c} as a benchmark is innocuous:

$$
\sum_{a=0}^{A} \frac{\left(Y_{a, \bar{c}}^{h}-Y_{a, \bar{c}}^{d}\right)(1+\varphi)^{a}}{\left(1+\rho_{\bar{c}}\right)^{a}}=0
$$

- The cross-section rate at time $t=\bar{c}$ is

$$
\sum_{a=0}^{A} \frac{\left(Y_{a, \bar{c}}^{h}-Y_{a, \bar{c}}^{d}\right)}{\left(1+\rho_{t}\right)^{a}}=0, \quad t=\bar{c},
$$

where clearly if $\varphi>0$, then $\rho_{\bar{c}}>\rho_{t}$.

- Better notation - distinguish outcomes at age a, cohort c, period t :

$$
\begin{gathered}
Y_{a, c, t}^{h} ; Y_{a, c, t}^{d} \\
\Delta_{a, c, t}^{h, d}=Y_{a, c, t}^{h}-Y_{a, c, t}^{d} .
\end{gathered}
$$

- No cohort effects means $Y_{a, c, t}^{j}=Y_{a,-, t}^{j} \forall c$. "-" sets the argument to a constant.

Pure Time Effects

- Take cohort $c=0$ at time t :

$$
\sum_{a=0}^{A} \frac{\left(Y_{a, 0, t+a}^{h}-Y_{a, 0, t+a}^{d}\right)}{\left(1+\rho_{c}\right)^{a}}=0
$$

- Cross section at $t=0$ for $c=0$:

$$
\sum_{a=0}^{A} \frac{\left(Y_{a,-a, t}^{h}-Y_{a,-a, t}^{d}\right)}{\left(1+\rho_{t}\right)^{a}}=0, \quad t=0
$$

- No time effects means $Y_{a, c, t}^{j}=Y_{a, c,-}^{j} \forall t$.
- A model with pure cohort effects and no time effects writes, for cohort \bar{c},

$$
\sum_{a=0}^{A} \frac{\left(Y_{a, \bar{c},-}^{h}-Y_{a, \bar{c},-}^{d}\right)}{\left(1+\rho_{\bar{c}}\right)^{a}}=0
$$

- This defines a cohort rate of return.
- The cross-section at time $t=\bar{c}$ writes

$$
\sum_{a=0}^{A} \frac{\left(Y_{a, \bar{c}, \bar{c}+a}^{h}-Y_{a, \bar{c}, \bar{c}+a}^{d}\right)(1+g)^{\bar{c}}}{\left(1+\rho_{\bar{c}}\right)^{a}}=0
$$

- So if $g>0$, then $\rho_{\bar{c}}>\rho_{t}(t=\bar{c})$.
- A model with pure time effects $(1+\varphi)$ writes, for time $t=\bar{c}$, the cohort return for entry cohort \bar{c} as

$$
\sum_{a=0}^{A} \frac{\left(Y_{a, \bar{c}, \bar{c}+a}^{h}-Y_{a, \bar{c}, \bar{c}+a}^{d}\right)(1+g)^{\bar{c}}}{\left(1+\rho_{\bar{c}}\right)^{a}}=0 \text { text. }
$$

- Benchmarking on the $c=0$ cohort,

$$
\sum_{a=0}^{A} \frac{\left(Y_{a, \bar{c}, \bar{c}}^{h}-Y_{a, \bar{c}, \bar{c}}^{d}(1+\varphi)^{a}(1+g)^{\bar{c}}\right.}{\left(1+\rho_{\bar{c}}\right)^{a}}=0 .
$$

- The cross-section return at time \bar{c} is

$$
\sum_{a=0}^{A} \frac{\left(Y_{a, \bar{c}-a, \bar{c}}^{h}-Y_{a, \bar{c}-a, \bar{c}}^{d}\right)}{\left(1+\rho_{t}\right)^{a}}=0
$$

where $Y_{a, \bar{c}-a, \bar{c}}^{h}=Y_{a, c^{*}, \bar{c}}^{h}$ for all $c^{*}, t=\bar{c}$, if there are only pure time effects.

- Suppose we have both time and cohort effects. Then we have that the cross-section is

$$
\sum_{a=0}^{A} \frac{\left(Y_{a, \bar{c}-a, \bar{c}}^{h}-Y_{a, \bar{c}-, \bar{c}}^{d}\right)}{\left(1+\rho_{t}\right)^{a}}=0 .
$$

- These can be written at time $t=\bar{c}$ as

$$
\sum_{a=0}^{A} \frac{\left(Y_{a, \bar{c}, \bar{c}}^{h}-Y_{a, \bar{c}, \bar{c}}^{d}\right)(1+g)^{\bar{c}-a}}{\left(1+\rho_{t}\right)^{a}}=0 .
$$

- Thus, if the cohort rate $(1+g)^{\bar{c}-a}=(1+\varphi)^{a}(1+g)^{\bar{c}}$ for all \bar{c}, we can get the result.
- This requires that

$$
1+g=\frac{1}{1+\varphi} \Rightarrow g=\frac{-\varphi}{1+\varphi} .
$$

- This seems to characterize the IRR for high school vs. dropouts. Cohort growth rate factor is the inverse of the time rate.

