Cross Section Bias: Age, Period and Cohort Effects

James J. Heckman University of Chicago

Econ 312, Spring 2021

Two Identities

$$e_i = a_i - s_i$$
 "experience" (1)

$$y = a_i + c_i$$
 $c_i = birth year$ (2)

• Solve out for c_i and a_i to get estimable combinations.

• Take the simpler case first:

$$\ln W(a, y, c) = \beta_0 + \beta_1 a_i + \beta_2 y_i + \beta_3 c_i + u_i$$

$$y_i = a_i + c_i,$$

where y_1 is the current year, and c_i is the year of birth.

• Obviously, we get an exact linear dependence:

$$(\beta_0, \beta_1, \beta_2, \beta_3)$$

• Substitute $c_i = y_i - a_i$.

• In
$$W_i = \alpha_0 + \beta_1 a_i + \beta_2 y_i + \beta_3 (y_i - a_i) + u_i$$

= $\alpha_0 + (\beta_1 - \beta_3) a_i + (\beta_2 + \beta_3) y_i + u_i$

can identify only combinations of coefficients.

• In a cross section, y_i is the same for everyone. The intercept is

$$\left[\alpha_0 + \left(\beta_2 + \beta_3\right) y_i\right].$$

- We can estimate $(\beta_1 \beta_3)$: age minus cohort effect.
- If $\beta_3 > 0$, we underestimate true β_1 .
- Will longitudinal data rescue us? Not necessarily.
- With panels, y_i moves with time. Recall that $y_i = a_i + c_i$.
- So we still have exact linear dependence. This is true if we have dummy variables in place of continuous variables (verify). Panel data will rescue us — if we have no year effects.

• We acquire similar problems in models with nonlinear terms:

$$y = a + c$$

$$\left. \begin{array}{l} y^2 = a^2 + 2ac + c^2 \\ ay = a^2 + ac \\ cy = ca + c^2 \end{array} \right\}_{3 \text{ linear dependencies in these set-ups}} \right\}$$

Thus when we write

$$\ln W = \beta_0 + \beta_1 a + \beta_2 y + \beta_3 c + \beta_4 a^2 + \beta_5 a c + \beta_6 a y + \beta_7 c y + \beta_8 c^2 + \beta_9 y^2 + u,$$

we cannot identify all of the parameters (only 3 second order parameters are estimable out of 6 total.

Theorem. In a model with interactions of order k with j variables and one linear restriction among the j variables, then of the $\binom{j+k-1}{k}$ coefficients of order k, only $\binom{j+k-2}{k}$ are estimable. (Heckman and Robb, in S. Feinberg and W. Mason, *Age, Period and Cohort Effects: Beyond the Identification Problem*, Springer, 1986).

E.g. k = 2, j = 3; 6 coefficients and 3 are estimable, as in the preceding example.

Theorem. In a model with ℓ restrictions on the j variables, then $\binom{j+k-\ell-1}{k}$ kth order coefficients are estimable (Heckman and Robb, 1986).

Question: Generalize this analysis for the case of polychotomous variables for age period and cohort effects.

Return to the more general case. Substitute out for c_i and a_i, using (1) and (3):

$$\ln W_i = \alpha_0 + (\alpha_2 + \alpha_5)y + (\alpha_1 + \alpha_3 - \alpha_5)e_i + (\alpha_1 + \alpha_4 - \alpha_5)s_i + u_i.$$

- In a single cross section, y is the same for everyone. The intercept is then $\alpha_0 + (\alpha_2 + \alpha_5)y$, where y is year of cross section.
- Experience coefficient = α₁ + α₃ α₅ = α₃ + (α₁ α₅) if later vintages get higher skills, α₅ > 0 and downward bias (*e.g.* higher quality of schooling). If there is an aging effect (> 0, *e.g.* maturation) cannot separate. Produces upward bias for α₃.

Schooling Coefficient

•
$$\alpha_1 + \alpha_4 - \alpha_5 = \alpha_4 + (\alpha_1 - \alpha_5)$$

- Vintage (cohort) effects lead to downward bias.
- Age effects, upward bias.
- Observe that from the experience coefficient – schooling coefficient:

$$(\alpha_1 + \alpha_3 - \alpha_5) - (\alpha_1 + \alpha_4 - \alpha_5) = \alpha_3 - \alpha_4.$$

 Can estimate difference in "returns" to experience net of schooling.

Heckman

- Observe that even if α₁=0 (no aging effect), still can't estimate these coefficients.
- Is the solution longitudinal data (observations n the same people over time)—or repeated cross section data (observations on the same population over time but sampling different persons)?
- If $\alpha_2 = 0$,(no year effects), we can estimated α_5 .
- Alternatively, for each c_i we can estimate α₁ + α₃, and hence we can estimate α₅.
- We also know $\alpha_1 + \alpha_4$. If $\alpha_1 = 0$, then α_3 , α_4 , α_5 identified.

• Observe the weakness in the procedure.

- If year effects are present, we have that there is no gain to going to longitudinal or repeated cross section data.
- We gain a parameter when we move to the panel or repeated cross sectional data.

Solutions in Literature

 Redefine vintage (cohort) e.g. vintage fixed over period of years (e.g. a cohort of Depression babies).

• Then In
$$W = (\alpha_0 + \alpha_5 c) + \alpha_1 a + \alpha_2 y + \alpha_3 e + \alpha_4 s + u$$
.

• In single cross section, c and y are fixed.

• Substitute for e:

$$e = a_i - s_i$$

Then

$$\ln W = [\alpha_0 + \alpha_5 c + \alpha_2 y] + (\alpha_1 + \alpha_3) a_i + (\alpha_4 - \alpha_3) s_i.$$

- We can estimate $\alpha_1 + \alpha_3$ and $\alpha_4 \alpha_3$, and thus $\alpha_1 + \alpha_4$.
- Successive time periods for the same vintage gives us α₂ directly [since c doesn't move].
- If no age effect , we get $\alpha_3, \alpha_4, \alpha_2$, and from successive vintage estimations, we get α_5 .

- 2 If we measure experience, $a_i \neq e_i + s_i$ (non-market breaks), we get break in linear dependence.
- Cost: better proxies may be endogenous.
- E.g. experience = cumulated hours.
- Results carry over in an obvious way to nonlinear models.

Example of Interpretive Pitfall

- 1 Johnson and Stafford (AER, 1974)
- Weiss and Lillard (JPE, 1979)
- Fact: Disparity in real wages between recent Ph.D. entrants and experienced workers rose in *physics* and *mathematics* in the late 60s and early 70s. Not observed in the *social sciences*.
- Why? Johnson-Safford story.
- Supplies of Ph.D.s enlarged by federal grants whil emand for scientific personnel declined. Wage rigidity at the top end motivated by specific human capital. Spot market / entrant market bears the brunt of the burden.

- Weiss & Lillard: "experience vintage" interaction (ec).
- Ignore age effect:

$$\ln W(e, c, s, y) = \varphi_0 + \varphi_1 e + \varphi_2 c + \varphi_3 y + \varphi_4 s + \varphi_5 e^2 + \varphi_6 c^2 + \varphi_7 e c + \varphi_8 e y + \varphi_9 c y + \varphi_{10} y^2$$

- Assume other powers and interactions are zero. Assume $\varphi_{10} = 0$.
- Johnson-Stafford: $\varphi_8 > 0$ or $\varphi_9 < 0$
- Weiss-Lillard: $\varphi_7 > 0$
- Recall that y = e + s + c.

- Weiss-Lillard ignore year effects.
- We get Weiss-Lillard by substituting for *y*:

$$\ln W(e, c, s) = \varphi_0 + (\varphi_1 + \varphi_3)e + (\varphi_3 + \varphi_4)s \\ + (\varphi_2 + \varphi_3)c + (\varphi_5 + \varphi_8)e^2 \\ + \varphi_8es + (\varphi_7 + \varphi_8 + \varphi_9)ec \\ + (\varphi_6 + \varphi_8)c^2$$

 Note that if φ₇ = 0 but φ₉ > 0, we get *ec* interaction, but it is "really" a year effect. If entry level wages fall relative to wages of experienced workers, the wage / experience profile is steeper in more recent cross-sections.

- Looking at social scientists where no interaction appears favors Johnson-Stafford.
- Moral: auxiliary evidence and theory break the identification problem.

Cohort vs. Cross-Section Internal Rate of Return

- Take a cohort rate of return.
 - Y^h_{a,c} is the earnings of a high school graduate of cohort c at age a.
 - 2 $Y_{a,c}^d$ is the earnings of a droupout of cohort c at age a.
 - **3** $\rho_c = IRR_c$ (cohort internal rate of return).

$$\sum_{a=0}^{A} \frac{Y_{a,c}^{h} - Y_{a,c}^{d}}{(1 + \rho_{c})^{a}} = 0.$$

4

- The cross-section consists of a set of member of different cohorts.
- Start with *c* = 1 as the youngest age group and proceed.
- At a point in time, we have $a = 0 \Longrightarrow c = 1$; c + a = t..
- The cross-section internal rate of return is

$$\sum_{a=0}^{A}rac{\left(Y_{a,1-a}^{h}-Y_{a,1-a}^{d}
ight)}{\left(1+
ho_{t}
ight)^{a}}=0,$$

where A + 1 is the maximum age in the population.

• When can
$$\rho_c = \rho_t$$
?

- This can occur if the environment is stationary.
- With steady growth in differentials, it cannot help explain $\rho_c = \rho_t$.
- The case

$$\Delta_{a,c}^{h,d} = Y_{a,c}^{h} - Y_{a,c}^{d}$$

$$\Delta_{a,c+j}^{h,d} = (\Delta_{a,c}^{h,d}) (1+g)^{j}$$
(3)

will not work.

• With constant growth, g cannot explain $\rho_t = \rho_c$ (!):

$$c=0,1$$
 $t=a+c.$

• Consider a model with 2 cohorts, focus on cohort c = 0. ρ_c is the root of

$$0 = Y^h_{0,0} - Y^d_{0,0} + rac{Y^h_{1,0} - Y^d_{1,0}}{1 +
ho_c}$$

• Cross-section at t = 1, when cohort c enters, is

$$0 = Y_{0,0}^h - Y_{0,0}^d + \frac{Y_{1,-1}^h - Y_{1,-1}^d}{1 + \rho_t} text.$$

In general, ρ_c ≠ ρ_t. More generally, for cohort c̄, the benchmark cohort, ρ_{c̄} is the IRR that solves

$$\sum_{a=0}^{A} \frac{\left(Y_{a,\bar{c}}^{h} - Y_{a,\bar{c}}^{d}\right)}{\left(1 + \rho_{\bar{c}}\right)^{a}} = 0.$$

• Cross section in year $t = \overline{c}$ produces the equation

$$\sum_{a=0}^{A} \frac{\left(Y_{a,\bar{c}-a}^{h}-Y_{a,\bar{c}-}a^{d}\right)}{\left(1+\rho_{t}\right)^{a}}=0,$$

where ρ_t is the root.

If growth rates across cohorts are benchmarked against c

, we obtain

$$\sum_{a=0}^{A} \frac{\left(Y_{a,\bar{c}}^{h} - Y_{a,\bar{c}}^{d}\right) \left(1+g\right)^{-a}}{\left(1+\rho_{t}\right)^{a}} = 0$$
$$\sum_{a=0}^{A} \frac{\left(Y_{a,\bar{c}}^{h} - Y_{a,\bar{c}}^{d}\right)}{\left[\left(1+\rho_{t}\right) \left(1+g\right)\right]^{a}} = 0,$$

so clearly
$$\rho_t < \rho_c$$
.

- Suppose that there are no cohort effects but that there are smooth time effects, say, $1 + \varphi$.
- Then the cohort rate of return is calculated as the root of the following equation in which the choice of a cohort c
 as a benchmark is innocuous:

$$\sum_{a=0}^{A} \frac{\left(Y_{a,\bar{c}}^{h} - Y_{a,\bar{c}}^{d}\right) \left(1 + \varphi\right)^{a}}{\left(1 + \rho_{\bar{c}}\right)^{a}} = 0$$

• The cross-section rate at time $t = \bar{c}$ is

$$\sum_{a=0}^{A}rac{\left(Y_{a,ar{c}}^{h}-Y_{a,ar{c}}^{d}
ight)}{\left(1+
ho_{t}
ight)^{a}}=0,\qquad t=ar{c},$$

where clearly if $\varphi > 0$, then $\rho_{\bar{c}} > \rho_t$.

 Better notation — distinguish outcomes at age a, cohort c, period t:

$$\begin{array}{rcl} Y^h_{a,c,t}; \ Y^d_{a,c,t} \\ \Delta^{h,d}_{a,c,t} &=& Y^h_{a,c,t} - Y^d_{a,c,t}. \end{array}$$

No cohort effects means Y^j_{a,c,t} = Y^j_{a,-,t} ∀c. "−" sets the argument to a constant.

Pure Time Effects

• Take cohort *c* = 0 at time *t*:

$$\sum_{a=0}^{A} \frac{\left(Y_{a,0,t+a}^{h} - Y_{a,0,t+a}^{d}\right)}{\left(1 + \rho_{c}\right)^{a}} = 0$$

• Cross section at t = 0 for c = 0:

$$\sum_{a=0}^{A} \frac{\left(Y_{a,-a,t}^{h} - Y_{a,-a,t}^{d}\right)}{\left(1 + \rho_{t}\right)^{a}} = 0, \qquad t = 0$$

• No time effects means $Y_{a,c,t}^j = Y_{a,c,-}^j \ \forall t$.

$$\sum_{a=0}^{A} \frac{\left(Y_{a,\bar{c},-}^{h} - Y_{a,\bar{c},-}^{d}\right)}{\left(1 + \rho_{\bar{c}}\right)^{a}} = 0.$$

- This defines a cohort rate of return.
- The cross-section at time $t = \overline{c}$ writes

$$\sum_{a=0}^{A} \frac{\left(Y_{a,\bar{c},\bar{c}+a}^{h}-Y_{a,\bar{c},\bar{c}+a}^{d}\right)\left(1+g\right)^{\bar{c}}}{\left(1+\rho_{\bar{c}}\right)^{a}}=0.$$

• So if
$$g > 0$$
, then $\rho_{\bar{c}} > \rho_t$ $(t = \bar{c})$.

A model with pure time effects (1 + φ) writes, for time t = c̄, the cohort return for entry cohort c̄ as

$$\sum_{a=0}^{A} \frac{\left(Y_{a,\bar{c},\bar{c}+a}^{h}-Y_{a,\bar{c},\bar{c}+a}^{d}\right)\left(1+g\right)^{\bar{c}}}{\left(1+\rho_{\bar{c}}\right)^{a}}=0 text.$$

• Benchmarking on the c = 0 cohort,

$$\sum_{a=0}^{A} \frac{\left(Y_{a,\bar{c},\bar{c}}^{h}-Y_{a,\bar{c},\bar{c}}^{d}\right)\left(1+\varphi\right)^{a}\left(1+g\right)^{\bar{c}}}{\left(1+\rho_{\bar{c}}\right)^{a}}=0.$$

• The cross-section return at time \bar{c} is

$$\sum_{a=0}^{A} \frac{\left(Y_{a,\bar{c}-a,\bar{c}}^{h}-Y_{a,\bar{c}-a,\bar{c}}^{d}\right)}{\left(1+\rho_{t}\right)^{a}}=0,$$

where $Y^h_{a,\bar{c}-a,\bar{c}} = Y^h_{a,c^*,\bar{c}}$ for all c^* , $t = \bar{c}$, if there are only pure time effects.

• Suppose we have both time and cohort effects. Then we have that the cross-section is

$$\sum_{a=0}^{A} \frac{\left(Y_{a,\bar{c}-a,\bar{c}}^{h}-Y_{a,\bar{c}-a,\bar{c}}^{d}\right)}{\left(1+\rho_{t}\right)^{a}}=0.$$

• These can be written at time $t = \bar{c}$ as

$$\sum_{a=0}^{A} \frac{\left(Y_{a,\bar{c},\bar{c}}^{h}-Y_{a,\bar{c},\bar{c}}^{d}\right)\left(1+g\right)^{\bar{c}-a}}{\left(1+\rho_{t}\right)^{a}}=0.$$

• Thus, if the cohort rate $(1+g)^{\overline{c}-a} = (1+\varphi)^a (1+g)^{\overline{c}}$ for all \overline{c} , we can get the result.

• This requires that

$$1+g=rac{1}{1+arphi}\Rightarrow g=rac{-arphi}{1+arphi}.$$

• This seems to characterize the IRR for high school vs. dropouts. Cohort growth rate factor is the inverse of the time rate.

