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Abstract

This chapter focuses on two of the developments in panel data econometrics since the
Handbook chapter by Chamberlain (1984).

The first objective of this chapter 1s to provide a review of linear panel data
models with predetermined variables. We discuss the implications of assuming that
explanatory variables are predetermined as opposed to strictly exogenous in dynamic
structural equations with unobserved heterogeneity. We compare the identification from
moment conditions in each case, and the implications of alternative feedback schemes
for the time series properties of the errors. We next consider autoregressive error
component models under various auxiliary assumptions. There is a trade-off between
robustness and efficiency since assumptions of stationary initial conditions or time
series homoskedasticity can be very informative, but estimators are not robust to
their violation. We also discuss the identification problems that arise in models with
predetermined variables and multiple effects. Concerning inference in linear models
with predetermined variables, we discuss the form of optimal instruments, and the
sampling properties of GMM and LIML-analogue estimators drawing on Monte Carlo
results and asymptotic approximations.



A number of identification results for limited dependent variable models with fixed
effects and strictly exogenous variables are available in the literature, as well as some
results on consistent and asymptotically normal estimation of such models. There are
also some results available for models of this type including lags of the dependent
variable, although even less is known for nonlinear dynamic models. Reviewing the
recent work on discrete choice and selectivity models with fixed effects is the second
objective of this chapter. A feature of parametric limited dependent variable models
is their fragility to auxiliary distributional assumptions. This situation prompted the
development of a large literature dealing with semiparametric alternatives (reviewed
in Powell, 1994’s chapter). The work that we review in the second part of the chapter
is thus at the intersection of the panel data literature and that on cross-sectional
semiparametric limited dependent variable models.



1. Introduction

Panel data analysis is at the watershed of time series and cross-section econometrics.
While the identification of time series parameters traditionally relied on notions of
stationarity, predeterminedness and uncorrelated shocks, cross-sectional parameters
appealed to exogenous instrumental variables and random sampling for identification.
By combining the time series and cross-sectional dimensions, panel datasets have
enriched the set of possible identification arrangements, and forced economists to think
more carefully about the nature and sources of identification of parameters of potential

interest.



One strand of the literature found its original motivation in the desire of exploiting
panel data for controlling unobserved time-invariant heterogeneity in cross-sectional
models. Another strand was interested in panel data as a way to disentangle
components of variance and to estimate transition probabilities among states. Papers
in these two veins can be loosely associated with the early work on fixed and
random effects approaches, respectively. In the former, interest typically centers in
measuring the effect of regressors holding unobserved heterogeneity constant. In
the latter, the parameters of interest are those characterizing the distributions of the
error components. A third strand of the literature studied autoregressive models with
indtvidual effects, and more generally models with lagged dependent variables.

A sizeable part of the work in the first two traditions concentrated on models
with just strictly exogenous variables. This contrasts with the situation in time series
econometrics where the distinction between predetermined and strictly exogenous
variables has long been recognized as a fundamental on¢ in the specification of
empirical models.



The first objective of this chapter is to review recent work on linear panel data
models with predetermined variables. Lack of control of individual heterogeneity could
result in a spurious rejection of strict exogeneity, and so a definition of strict exogeneity
conditional on unobserved individual effects 1s a useful extension of the standard
concept to panel data (a major theme of Chamberlain, 1984’°s chapter). There are many
instances, however, in which for theoretical or empirical reasons one is concerned with
models exhibiting genuine lack of strict exogeneity after controlling for individual
heterogeneity.



The interaction between unobserved heterogeneity and predetermined regressors in
short panels — which are the typical ones in microeconometrics — poses identification
problems that are absent from both time series models and panel data models with
only strictly exogenous variables. In our review we shall see that for linear models it 1s
possible to accommodate techniques developed from the various strands in a common
framework within which their relative merits can be evaluated.

Much less is known for discrete choice, selectivity and other non-linear models of
interest in microeconometrics. A number of identification results for limited dependent
variable models with fixed effects and strictly exogenous variables are available in the
literature, as well as some results on consistent and asymptotically normal estimation of



such models. There are also some results available for models of this type including
lags of the dependent variable, although even less is known for nonlinear dynamic
models.

Reviewing the recent work on discrete choice and selectivity models with fixed
effects 1s the second objective of this chapter. A feature of parametric limited dependent
variable models is their fragility to auxiliary distributional assumptions. This situation
prompted the development of a large literature dealing with semiparametric alternatives
(reviewed in Powell, 1994 chapter). The work that we review in the second part of the
chapter is thus at the intersection of the panel data literature and that on cross-sectional
semiparametric limited dependent variable models.



Other interesting topics in panel data analysis which will not be covered in this
chapter include work on long T panel data models with heterogeneous dynamics or
unit roots [Pesaran and Smith (1995), Canova and Marcet (1995), Kao (1999), Phillips
and Moon (1999)], simulation-based random efiects approaches to the nonlinear
models [Hajivassiliou and McFadden (1990}, Keane (1993, 1994), Allenby and Rossi
(1999), and references therein], classical and Bayesian flexible estimators of error
component distributions [Horowitz and Markatou (1996), Chamberlain and Hirano
(1999), Geweke and Keane (2000)], other nonparametric and semiparametric panel
data models [Baltagi, Hidalgo and Li (1996), Li and Stengos (1996), Li and Hsiao
(1998) and Chen, Heckman and Vytlacil (1998)], and models from time series of
independent cross-sections [Deaton (1985), Moffitt (1993), Collado (1997)]. Some of
these topics as well as comprehensive reviews of the panel data literature are covered
in the text books by Hsiao (1986) and Baltagi (1995).



2. Linear models with predetermined variables: identification

In this section we discuss the identification of linear models with predetermined
variables in two different contexts. In Section 2.1 the interest is to 1dentify structural
parameters in models in which explanatory vanables are correlated with a time-
invariant individual effect, but they are either strictly exogenous or predetermined
relative to the time-varying errors. The second context, discussed in Section 2.2, is
the time series analysis of error component models with autoregressive errors under
various auxiliary assumptions. Section 2.3 discusses the use of stationarity restrictions
in regression models, and Section 2.4 considers the identification of models with
multiplicative or multiple individual effects.



2.1. Strict exogeneity, predeterminedness, and unobserved heterogeneity

We begin with a discussion of the implications of strict exogeneity for identification
of regression parameters controlling for unobserved heterogeneity, with the objective

of comparing this situation with that where the regressors are only predetermined
variables.



Static regression with a strictly exogenous variable. Let us consider a linear regression
for panel data including a fixed effect 7, and a time effect 6, with N individuals
observed T time periods, where T 1s small and N is large:

y,-,=ﬂxi,+5f+nf+uff (le,...,N;f=1,...,T). (1)

We assume that (y;; - - vir, X1 -+ Xi7, ;) 1S an 1id random vector with finite
second-order moments, while § and the time effects are treated as unknown parameters.
The variable x;; is said to be strictly exogenous in this model if it 1s uncorrelated with
past, present and future values of the disturbance v;;:

E*ilkl)=0 (t=1,...,T), )

where E* denotes a linear projection, and we use the superscript notation zi =

{
(zi1, ... ,zi) . First-differencing the conditions we obtain

E*(i—vig_nx))=0 (=2,..., 7). (3)



Since in the absence of any knowledge about #; the condition £*(v;1|x!) = 0 is not
informative about 3, the restrictions in first-differences are equivalent to those in levels.
Therefore, for fixed T the problem of cross-sectional identification of f is simply that
of a multivariate regression in first differences subject to cross-equation restrictions,

and f is identifiable with T > 2.
Specifically, letting E*(n;|x]) = A9 + A’x], the model can be written as
Vit = oy 'f*ﬁl'ﬂ -+ l’x;fr + £ Wlth E*(&‘t |xI-T) =( (f — 1, c ey T) (4)

where 11y, = Ay + 6,. This T equation system is equivalent to

Vi1t = g1 + ﬁxfl + l’xfr + & E*(ﬁn |x,-T) = (), (5)
Ay, = AS; + BAx; + Ag, E*(Ag|x))y=0 (=2,..., 7). (6)



In the absence of restrictions in A Equation (5) is uninformative about £, and as a
consequence asking under which conditions f is identified in Equation (4) is equivalent
to asking under which conditions f is identified in Equation (6)'.

' Lack of dependence between v;, and x/ could also be expressed in terms of conditional independence
in mean E(v,|x/)=0(t=1, ..., T). In the absence of any knowledge about 7, this is equivalent to the
(T — 1) conditional moment restrictions E(v; — vy,_y|x/) =0 (¢ =2, ..., T) which do not depend on
n; [Chamberlain (1992a}]. In the presentation for linear models, however, the use of linear projections
affords a straightforward discussion of identification, and in the context of estimation it allows us to
abstract from issues relating to optimal instruments and semiparametric asymptotic efficiency.



Partial adjustment with a strictly exogenous variable. In an alternative model, the effect
of a strictly exogenous x on y could be specified as a partial adjustment equation:

yft=ayi(r—l)+ﬁ0xf:+ﬁlxi(:—l)+5r+?7f+0f: i=1,...,N;t=2,...,T) (7)
together with
E*(ylx/)=0 @¢=2,..., 7). (8)

Note that assumption (8) does not restrict the serial correlation of v, so that lagged
y is an endogenous explanatory variable. In the equation in levels, y;_, will be
correlated with 7; by construction and may also be correlated with past, present and
future values of the errors v; since they may be autocorrelated in an unspecified
way. Likewise, the system 1n first differences 1s free from fixed effects and satifies
E*(Avg|x]) =0 (¢ =3,..., T), but Ay;, ) may still be correlated with Av;; for all
S.



Subject to a standard rank condition, «, f, 51 and the time effects will be identified
with 7 > 3, With T = 3 they are just identified since there are five orthogonality
conditions and five unknown parameters:

(1
.y

E (yin — ayi — Poxiz — P1xi1 — 02) = 0.
This simple example illustrates the potential for cross-sectional identification under
strict exogeneity. In effect, strict exogeneity of x permits the identification of the
dynamic effect of x on y and of lagged y on current y, in the presence of a fixed

effect and shocks that can be arbitrarily persistent over time [cf. Bhargava and Sargan
(1983), Chamberlain (1982a, 1984), Arellano (1990)].

E| (Ayiz — oAy — foAxz — fiAxp — Ady)] = 0. )




A related situation of economic interest arises in testing life-cycle models of
consumption or labor supply with habits [e.g., Bover (1991), or Becker, Grossman
and Murphy (1994)]. In these models the coefficient on the lagged dependent vaniable
i1s a parameter of central interest as it is intended to measure the extent of habits.
However, in the absence of an exogenous instrumental variable such a coefficient would
not be identified, since the effect of genuine habits could not be separated from serial
correlation in the unobservables.

As an illustration, let us consider the empirical model of cigarette consumption by
Becker, Grossman and Murphy (1994) for US state panel data. Their empirical analysis
1s based on the following equation:

Cit = 90:‘(:— 1) +/36C'i(r+ O+ YD+ N+ 0+ Uiy 1)s (10)

where ¢, and p;, denote, respectively, annual per capita cigarette consumption in packs
by state and average cigarette price per pack. Becker et al. are interested in testing



whether smoking is addictive by considering the response of cigarette consumption to
a change in cigarette prices.

The rationale for Equation (10) is provided by a model of addictive behavior in
which utility in period ¢ depends on cigarette consumption in ¢ and in ¢ — 1. Under
perfect certainty and quadratic utility, the equation can be obtained from the first-
order conditions of utility maximization. The degree of addiction is measured by 0,
which will be positive if smoking is addictive. The current price coefficient ¥ should be
negative by concavity of the utility, and 8 denotes the discount factor. With certainty,
the marginal utility of wealth is constant over time but not cross-sectionally. The state
specific intercept 7; is meant to capture such variation?. Finally, the &,’s represent
aggregate shocks, possibly correlated with prices, which are treated as period specific
parameters.



The errors v; s+ 1) capture unobserved life-cycle utility shifters, which are likely to
be senially correlated. Therefore, even in the absence of addiction (6 = 0) and serial
correlation in prices, we would expect ¢;; to be autocorrelated, and in particular to find
a non-zero effect of ¢; ;1) in a linear regression of ¢;; on ¢; 1), ¢; s+ 1) and p;;. Current
consumption depends on prices in all periods through the effects of past and future
consumption, but it 1s independent of past and future prices when ¢;(, -1y and ¢; ;4 1) are
held fixed. Thus, Becker et al.’s strategy is to identify 0, 8, and y from the assumption
that prices are strictly exogenous relative to the unobserved utility shift variables. The
required exogenous variation in prices comes from the variation in cigarette tax rates
across states and time, and agents are assumed to be able to anticipate future prices
without error.



Partial adjustment with a predetermined variable. The assumption that current values
of x are not influenced by past values of y and v is often unrealistic. We shall say that
x is predetermined in a model like Equation (7) 1f

E*(uylxt,y™HY=0 @¢=2,..., 7). (11)

That 1s, current shocks are uncorrelated with past values of y and with current
and past values of x, but feedback effects from lagged dependent variables (or lagged
errors) to current and future values of the explanatory variable are not ruled out.



Note that, in confrast with Equation (8), assumption (11) does restrict the serial
correlation of v. Specifically, it implies that the errors in first differences exhibit first-
order autocorrelation but are uncorrelated at all other lags:

E(AU,‘;AU;(;_J,')) = () _] > 1.

Examples of this situation include Euler equations for housechold consumption
[Zeldes (1989), Runkle (1991), Keane and Runkle (1992)], or for company investment

2 According to the theory y would also be state specific, since it is a function of the marginal utility of
wealth. Thus the model with constant price coefficient must be viewed as an approximate model.



[Bond and Meghir (1994)], in which variables in the agents’ information sets are
uncorrelated with current and future idiosyncratic shocks but not with past shocks,
together with the assumption that the empirical model’s errors are given by such
shocks.

Another example is the effect of children on female labour force participation
decisions. In this context, assuming that children are strictly exogenous 1s much
stronger than the assumption of predeterminedness, since it would require us to
maintain that labour supply plans have no effect on fertility decisions at any point
in the life cycle [Browning (1992, p. 1462)].



The implication of Equation (11) for errors in first differences is that
E*(i—vig-plxi "Ly =0 @¢=3,..., 7). (12)

As before, these restrictions are equivalent to those in levels since in the absence of
any knowledge about 7; the levels are not informative about the parameters’. Subject
to a rank condition, a, 3y, B; and the time effects will be identified with T > 3. With
T =3 they are just identified from the five orthogonality conditions:

(1)

E| i: (Ayiz — aAyin — PoAxiz — PirAxp — Ads)] = 0, (13)

\x2 /




It is of some interest to compare the situation in Equation (13) with that in
Equation (9). The two models are not nested since they only have four moment
restrictions in common, which in this example are not sufficient to identify the five
parameters. The model with a strictly exogenous x would become a special case of the
model with a predetermined x, only if in the former serial correlation were ruled out.
That 1s, if Equation (8) were replaced with:

E*wplx!,p " hY=0 (=2,..., 7). (14)



However, unlike in the predetermined case, lack of arbitrary serial correlation is not
an identification condition for the model with strict exogeneity.

In the predetermined case it is still possible to accommodate special forms of serial
correlation. For example, with 7 = 4 the parameters in the dynamic model are just
identified with E(Av;Av;,_;) = 0 for j > 2, which is consistent with a first-order

3 Orthogonality conditions of this type have been considered by Anderson and Hsiao (1981, 1982),
Griliches and Hausman (1986), Holtz-Eakin, Newey and Rosen (1988), and Arellano and Bond (1991)
amongst others.



moving average process for v. This is so because in such case there are still three
valid orthogonality restrictions: E( y;1Avis) = 0, E(xi1Avis) = 0, and E(xpAvis) = 0.
Uncorrelated errors arise as the result of theoretical predictions in a number of
environments (e.g., innovations in rational expectation models). However, even in the
absence of specific restrictions from theory, the nature of shocks in econometric models
is often less at odds with assumptions of no or limited autocorrelation than with the

absence of feedback in the explanatory variable processes®.



In the previous discussion we considered models for which the strict exogeneity
property was unaffected by serial correlation, and models with feedback from lagged
y or v to current values of x, but other situations are possible. For example, it may be
the case that the strict exogeneity condition (2) for model (1) is only satisfied as long as
errors are unpredictable. An illustration is the agricultural Cobb—Douglas production
function discussed by Chamberlain (1984), where y is log output, x is log labor, 7 is
soil quality, and v is rainfall. If # is known to farmers and they choose x to maximize
expected profits, x will be correlated with 7, but uncorrelated with v at all lags and
leads provided v is unpredictable from past rainfall. If rainfall in ¢ is predictable from
rainfall in # — 1, labour demand in ¢ will in general depend on v;(,_, [Chamberlain
(1984, pp. 1258-1259)].



Another situation of interest is a case where the model is (1) or (7) and we only
condition on x!. That is, instead of Equation (11) we have

E*(vz | 1) = 0. (15)

In this case serial correlation is not ruled out, and the partial adjustment model 1s
identifiable with 7 > 4, but Equation (15) rules out unspecified feedback from lagged y
to current x. As an example, suppose that v;, = {;; + &, is an Euler equation’s error given
by the sum of a serially correlated preference shifter £; and a white noise expectation
error &,. The v’s will be serially correlated and correlated with lagged consumption
variables y but not with lagged price variables x. Another example is an equation
Yii = Pxi + 1+ v, where vy, is white noise and x;, depends on yj,, _ ), but yj is measured
with an autocorrelated error independent of x and y* at all lags and leads.



Implications of uncorrelated effects. So far, we have assumed that all the observable
variables are correlated with the fixed effect. If a strictly exogenous x were known
to be uncorrelated with 7, the parameter § in the static regression (1) would be
identified from a single cross-section (7 = 1). However, in the dynamic regression the
lagged dependent variable would still be correlated with the effects by construction,
so knowledge of lack of correlation between x and 1 would add T orthogonality
conditions to the ones discussed above, but the parameters would still be identified

4 As an example, see related discussions on the specification of shocks in Q investment equations by
Hayashi and Inoue (1991), and Blundell, Bond, Devereux and Schiantarelli (1992).



only when T > 3°. The moment conditions for the partial adjustment model with
strictly exogenous x and uncorrelated effects can be written as

1
E[(x;r ) (Yie = Wi-1y—Poxie = Pixi¢-1y—0)1 =0 (=2,..., 7). (16)

A predetermined x could also be known to be uncorrelated with the fixed eftects if
feedback occurred from lagged errors but not from lagged y. To illustrate this point

suppose that the process for x 1s

Xit = PXir-1)+ YVic—1) + O + &, (17)



where ¢, v;; and 7; are mutually uncorrelated for all ¢ and s. In this example x is
uncorrelated with n when ¢ = 0. However, if v;,_) were replaced by y;-1) In
Equation (17), x and n will be correlated in general even with ¢ = 0. Knowledge of
lack of correlation between a predetermined x and 7 would also add T orthogonality
restrictions to the ones discussed above for such a case. The moment conditions for
the partial adjustment model with a predetermined x uncorrelated with the effects can
be written as

E[( 1 ) (yir = i -1y = Boxe = Bixice -1y — &) ] =0 (t=2,...,1),(18)

{
X

E[y7? (Avir — aAYie-1) — PoAxi = PrAxj o1y~ A&)] =0 (=3,..., T).



Again, the parameters in this case would only be identified when T > 3.

Relationship with statistical definitions. To conclude this discussion, it may be usetul
to relate our usage of strict exogeneity to statistical definitions. A (linear projection
based) statistical definition of strict exogeneity conditional on a fixed effect would
state that x is strictly exogenous relative to y given 71 if

E*(yffixfTa m) = E*(yielx;, m). (19)

This is equivalent to the statement that y does not Granger-cause x given 7 in the sense
that

E*(xi (t+ 1)'X§5J’f, 77:) = E*(xf(!+ ])|Xf, 77:) (20)



DT _ (Xi¢t+1ys - - - » Xi7) if we have

E*(yulxl, ) =Bxt+ 8x D £y, (21)

Namely, letting x? "

and

!

E*(-xf (t+ l)lx:"sy:": 77:) = w;xf + ¢z J/’f + Gt iy (22)

it turns out that the restrictions &; = 0 and ¢, = 0 are equivalent. This result generalized
the well-known equivalence between strict exogeneity [Sims (1972)] and Granger’s

> Models with strictly exogenous variables uncorrelated with the effects were considered by Hausman
and Taylor (1981), Bhargava and Sargan (1983), Amemiya and MaCurdy (1986), Breusch, Mizon and
Schmidt (1989), Arellano (1993), and Arellano and Bover (1995).



non-causality [Granger (1969)]°. It was due to Chamberlain (1984), and motivated
the analysis in Holtz-Eakin, Newey and Rosen (1988), which was aimed at testing
such a property.

Here, however, we are using strict exogeneity relative to the errors of an econometric
model. Strict exogeneity itself, or the lack of it, may be a property of the model
suggested by theory. We used some simple models as illustrations, in the understanding
that the discussion would also apply to models that may include other features
like individual effects uncorrelated with errors, endogenous explanatory variables,
autocorrelation, or constraints in the parameters. Thus, in general strict exogeneity
relative to 2 model may or may not be testable, but if so we shall usually be able
to test it only in conjunction with other features of the model. In contrast with the
econometric concept, a statistical definition of strict exogeneity is model free, but
whether it is satisfied or not, may not necessarily be of relevance for the econometric
model of interest’.



As an illustration, let us consider a simple permanent-income model. The observ-
ables are non-durable expenditures c;,, current income w;;, and housing expenditure x;,.
The unobservables are permanent (w’) and transitory (&) income, and measurement
errors in non-durable (&;) and housing (g;) expenditures. The expenditure variables
are assumed to depend on permanent income only, and the unobservables are mutually
independent but can be serially correlated. With these assumptions we have

Wi = W{? + Ly, (23)
¢y = pwl + &y, (24)
Xip = }’Wff + Gir- (25)



Suppose that § is the parameter of interest. The relationship between ¢; and wy;
suggested by the theory is of the form

Cit = Wi + vi, (26)
where v; = &; — Be;. Since w; and v;; are contemporaneously correlated, w;, is an

endogenous explanatory variable in Equation (26). Moreover, since E*(v; |xlT ) =0, x;
is a strictly exogenous instrumental variable in Equation (26). At the same time, note



® If linear projections are replaced by conditional distributions, the equivalence does not hold and it turns
out that the definition of Sims is weaker than Granger’s definition. Conditional Granger non-causality
is equivalent to the stronger Sims’ condition given by f(y,|x7,¥~") = f(»x',»'~!) [Chamberlain
(1982b)1.

7 Unlike the linear predictor definition, a conditional independence definition of strict exogeneity given
an individual effect is not restrictive, in the sense that there always exists a random variable n such
that the condition is satisfied [Chamberlain (1984)]. This lack of identification result implies that a
conditional-independence test of strict exogeneity given an individual effect will necessarily be a joint
test involving a (semi) parametric specification of the conditional distribution.



that in general linear predictors of x given its past can be improved by adding lagged
values of ¢ and/or w (unless permanent income 1s white noise). Thus, the statistical
condition for Granger non-causality or strict exogeneity is not satisfied in this example.
A similar discussion could be conducted for a version of the model including fixed
effects.



2.2. Time series models with error components

The motivation in the previous discussion was the identification of regression responses
not contaminated from heterogeneity biases. Another leading motivation for using
panel data 1s the analysis of the time series properties of the observed data. Models
of this kind were discussed by Lillard and Willis (1978), MaCurdy (1982), Hall and
Mishkin (1982), Holtz-Eakin, Newey and Rosen (1988) and Abowd and Card (1989),
amongst others,



An important consideration is distinguishing unobserved heterogeneity from genuine
dynamics. For example, the exercises cited above are all concerned with the
time series properties of individual earnings for different reasons, including the
analysis of earnings mobility, testing the permanent income hypothesis, or estimating
intertemporal labour supply elasticities. However, how much dependence 1s measured
in the residuals of the earnings process depends crucially, not only on how much
heterogeneity 1s allowed into the process, but also on the auxiliary assumptions made in
the specification of the residual process, and assumptions about measurement errors.



One way of modelling dynamics is through moving average processes [e.g., Abowd
and Card (1989)]. These processes limit persistence to a fixed number of periods,
and imply linear moment restrictions in the autocovariance matrix of the data.
Autoregressive processes, on the other hand, imply nonlinear covariance restrictions
but provide instrumental-variable orthogonality conditions that are linear in the
autoregressive coefficients. Moreover, they are well suited to analyze the implications
for identification and inference of issues such as the stationarity of initial conditions,
homoskedasticity, and (near) unit roots.



Another convenient feature of autoregressive processes is that they can be regarded
as a special case of the regression models with predetermined variables discussed
above. This makes it possible to consider both types of problems in a common
framework, and facilitates the distinction between static responses with residual serial
correlation and dynamic responses®. Finally, autoregressive models are more easily
extended to limited-dependent-variable models.



In the next subsection we discuss the implications for identification of alternative
assumptions concerning a first-order autoregressive process with individual effects in
short panels.

8 In general, linear conditional models can be represented as data covariance matrix structures, but
typically they involve a larger paramecter space including many nuisance parameters, which are absent
from instrumental-variable orthogonality conditions.



2.2.1. The AR(1) process with fixed effects’®

Let us consider a random sample of individual time series of size T, { y7,i=1, ..., N},
with second-order moment matrix E(y! y!') = = {w,}. We assume that the joint
distribution of y! and the individual effect #; satisfies

y;‘;:ayi(g_l)'*‘nf‘l'ul'; (131,,N, t:2,,T) ld'(l, (27)

EXuy|yi " H=0 @¢=2,....7), (Al)

where E(n;) = y, E(v}) = o}, and Var(n) = o2. Notice that the assumption
does not rule out correlation between 7; and v;, nor the possibility of conditional
heteroskedasticity, since E(v7]y!™') need not coincide with ¢?. Equations (27) and
(Al) can be seen as a specialization of Equations (7) and (11). Thus, following the
discussion above, (A1) implies (7 — 2)(T — 1)/2 linear moment restrictions of the form

E[ ¥ 2(Ayy — aAyi-1)]1 = 0. (28)



These restrictions can also be represented as constraints on the elements of
£2. Multiplying Equation (27) by y;; for s < ¢ and taking expectations gives
Wy = AW -ns+cs, (=2,...,T; s=1,..., t—-1), where ¢, = E(y;n;). This means
that, given assumption Al, the T(T + 1)/2 different elements of £2 can be written as
functions of the 27" x 1 parameter vector 0 = (a,c1, ..., cr—1, @14, ..., Wrr) . Notice
that with 7 = 3 the parameters (@, ¢, ¢») are just identified as functions of the elements
of :

a = (wn —w) (w3 - wa)
Ci = ) — AWy
Cy = Wiy — Q).



The model based on Al is attractive because the identification of &, which mea-
sures persistence given unobserved heterogeneity, is based on minimal assumptions.
However, we may be willing to impose additional structure if this conforms to a priori
beliefs.

Lack of correlation between the effects and the errors. One possibility is to assume
that the errors v; are uncorrelated with the individual effect #; given y'~'. In a
structural context, this will often be a reasonable assumption if, for example, the v;; are
interpreted as innovations that are independent of variables in the agents’ information

® This section follows a similar discussion by Alonso-Borrego and Arellano (1999).



set. In such case, even if 7; is not observable to the econometrician, being time-
invariant it i1s likely to be known to the individual. This situation gives rise to the
following assumption

E*al 7™, m)=0 (t=2,...,T). (A1)

Note that in a short panel assumption Al’ is more restrictive than assumption Al.
Nevertheless, lack of correlation between v; and {yi¢-1y, ..., Yi¢-.y} implies lack
of correlation between v;; and 7; in the limit as ./ — oc. This will be so as long as

J
.1
17, = plim 7 Z (yf(r—j)—ayf(r—j-l))'
J — o0 j=1



Thus, for a process that started at —oo we would have orthogonality between 7; and
vy, and any correlation between individual effects and shocks will tend to vanish as ¢

INcreases.
- When T > 4, assumption A1’ implies the following additional 7' — 3 quadratic

moment restrictions that were considered by Ahn and Schmidt (1995):
E[(yi—iq-u)AVi¢-1)—0Ay;i¢-2))] =0 (@=4,...,T) (29)

In effect, we can write E[(y; — ayi¢— 1y — Ni)(Ayi¢—1) — CAyi-2))] = 0 and since
E(miAv;(;-1y) = 0 the result follows. Thus, Equation (29) also holds if Cov(#;,v;) 18
constant over /.



An alternative representation of the restrictions in Equation (29) 1s in terms of a
recursion of the coefficients ¢, introduced above. Multiplying Equation (27) by #; and
taking expectations gives ¢; = ac,; + @,(t =2, ..., T), where ¢ = E(n7) = v* + 07,
so that c¢;,..., cr can be written in terms of ¢; and ¢. This gives rise to a
covariance structure in which 2 depends on the (7 + 3) x 1 parameter vector
6 =(a,¢,c,, 0, ..., wrr). Notice that with 7 = 3 assumption A1’ does not imply
further restrictions in £2, with the result that o remains just identified. One can solve
for ¢ in terms of a, ¢, and c¢;:

¢ = (w32 — w21) — a(wy — wyy).



Time series homoskedasticity. If in addition to A1’ we assume that the marginal
variance of v;; 1s constant for all periods:

EWw)=0* (t=2,..., 1), (A2)
it turns out that
wﬂ=azw(t_])(f_])+¢+02+2aC3¢_] (t=2,, T).

This gives rise to a covariance structure in which €2 depends on five free parameters:
a, ¢, ci, wy;, 0%. This is a model of some interest since it is one in which the initial



conditions of the process are unrestricted (governed by the parameters ¢ and c;), but
the total number of free parameters does not increase with 7.

Mean stationarity of initial conditions. Other forms of additional structure that can
be imposed are mean or variance stationarity conditions. The following assumption,
which requires that the process started in the distant past, is a particularly useful mean
stationarity condition:

Cov(yft —Yi(t—1), 77:) =0 (t = 29 JRI T) (Bl)



Relative to assumption Al, assumption Bl adds the following (7 — 2) moment
restrictions on £2:

El(yi—wyig-0)Ai¢-n]=0 (¢=3,...,T), (30)

which were proposed by Arellano and Bover (1995). However, relative to assump-
tion Al’, assumption Bl only adds one moment restriction which can be written as
E[(yi3 — ayin)Ayin] = 0. In terms of the parameters ¢,, the implication of assumption B1
is that ¢; = --- = ¢y if we move from assumption Al, or that ¢; = ¢/(1 — a) if we
move from assumption Al’. This gives rise to a model in which £ depends on the
(T + 2) x 1 parameter vector 6 = (a, @, w1, ..., wrr). Notice that with T = 3, a is
overidentified under assumption B1. Now o will also satisfy

a = (wy — wy) (w3~ w3y).



It is of some interest to note that the combination of assumptions Al and Bl
produces the same model as that of A1’ and Bl. However, while Al’ implies
orthogonality conditions that are quadratic m a, Al or A1+Bl give rise to
linear instrumental-variable conditions [Ahn and Schmidt (1995)]. While A1 implied
the validity of lagged levels as instruments for equations in first-differences, Bl
additionally implies the validity of lagged first-differences as instruments for equations
in levels. The availability of instruments for levels equations may lead to the
identification of the effect of observable components of 17, (i.e., time-invariant
regressors), or to identifying unit roots, two points to which we shall return below.

The validity of assumption Bl depends on whether initial conditions at the start
of the sample are representative of the steady state behaviour of the model or not.
For example, for young workers or new firms initial conditions may be less related to
steady state conditions than for older ones.



Full stationarity. By combining Al’ with the homoskedasticity and the mean
stationarity assumptions, A2 and Bl, we obtain a model whose only nonstationary
feature is the variance of the initial observation, which would remain a free parameter.
For such a model w, = ?*w;_1o_n+0*+9(l+a)y(1—a)(t=2,...,T). A fully
stationary specification results from making the additional assumption:

¢ 0
(1-a? " (1-a)

This gives rise to a model in which £ only depends on the three parameters a, ¢,
and ¢°. Nevertheless, identification still requires 7 > 3, despite the fact that with

W = (BZ)



T =2, Q has three different coefficients. To see this, note that in their relationship to
a,¢, and 0? the equation for the second diagonal term is redundant:

e =05, +0; (t=1,2), wp=a(w-05,)+0;,,
where 07, = 0/(1 — a)* and 0f = 0%/(1 — @*). The intuition for this is that both

n; and y;(,-1) induce serial correlation on y;, but their separate effects can only be
distinguished if at least first and second order autocorrelations are observed.



Under full stationarity (assumptions Al, A2, Bl, and B2) it can be shown that

EAyi¢+pAyi) _ (1-0)
E[(Ayi)’] 2

This is a well-known expression for the bias of the least squares regression in first-
differences under homoskedasticity, which can be expressed as the orthogonality
conditions

E{Ayu[(2yig+ 1y =Y —Yig-1)— A1} =0 (t=2,..., T-1)



With 7 = 3 this implies that a would also satisfy

_ . —1
a=(wWn+w—2w,) [2(ws2 —w31)+ 011 — W]

2.2.2. Aggregate shocks

Under assumptions Al or Al’, the errors v;, are idiosyncratic shocks that are assumed
to have cross-sectional zero mean at each point in time. However, if v;, contains
aggregate shocks that are common to all individuals its cross-sectional mean will not
be zero in general. This suggests replacing Al with the assumption

E*(uyg|yi™H=6, (=2,...,7), (1)



which leads to an extension of the basic specification in which an intercept is allowed
to vary over time:

Vi = 8+ i1y + 1 + 0}, (32)
where v}, = vy — 0;. We can now set E(n;) = 0 without lack of generality, since
a nonzero mean would be subsumed in 0,. Again, formally Equation (32) is just a
specialization of Equations (7) and (11).

With fixed 7, this extension does not essentially alter the previous discussion
since the realized values of the shocks o, can be treated as unknown period specific



parameters. With 77 = 3, a, 0, and O3 are just identified from the three moment

conditions '°,

E(yin— 0 —ayn) = 0, (33)
E(yn— 03— ayn) = 0, (34)
Elyia(Ayis — Ad — aAyp)] = 0. (35)

In the presence of aggregate shocks the mean stationarity condition in assumption
B1 may still be satisfied, but it will be interpreted as an assumption of mean stationarity
conditional upon an aggregate effect (which may or may not be stationary), since
now E(Ay;) is not constant over f. The orthogonality conditions in Equation (30)
remain valid in this case with the addition of a time varying intercept. With 7 = 3,
assumption B1 adds to Equations (33-35) the orthogonality condition:

E[Ayix(yiz — 03 — ayi)] = 0. (36)



2.2.3. Identification and unit roots

If one 1s interested in the unit root hypothesis, the model needs to be specified under
both stable and unit roots environments. We begin by considering model (27) under
assumption Al as the stable root specification. As for the unit root specification, it is
natural to consider a random walk without drift. The model can be written as

Vit = i1+ (1 =) + v, (37)

where 1 denotes the steady state mean of the process when |a| < 1. Thus, when
a =1 we have

Yite = Yi-1) 1 Ui, (38)

so that heterogeneity only plays a role in the determination of the starting point of the
process. Note that in this model the covariance matrix of ( y;;, 1) 1s left unrestricted.



An alternative unit root specification would be a random walk with an individual
specific drift given by 7;:

Yie =Yia-1+ Wi + U, (39)

but this 1s a model with heterogeneous linear growth that would be more suited for
comparisons with stationary models that include individual trends.

10 Further discussion on models with time effects is contained in Crepon, Kramarz and Trognon (1997).



The main point to notice here is that in model (37) a is not identified from the
moments derived from assumption A1 when a = 1. This is so because in the unit
root case the lagged level will be uncorrelated with the current innovation, so that
Cov(yi¢—2),Ayi¢r—1)) = 0. As a result, the rank condition will not be satisfied for the
basic orthogonality conditions (28). In model (39) the rank condition is still satisfied
since Cov(yiq -2, Avi¢:-1y) # 0 due to the cross-sectional correlation induced by the
heterogeneity in shifts.

As noted by Arellano and Bover (1995), this problem does not arise when we
consider a stable root spectfication that in addition to assumption A1 satisfies the mean
stationarity assumption B1. The reason 1s that when « = 1 the moment conditions (30)
remain valid and the rank condition i1s satisfied since Cov(Ay;-1),Vi¢-1)) = 0.



2.2.4. The value of information with highly persistent data

The cross-sectional regression coefficient of y; on y;(,-1), P, can be expressed as a
function of the model’s parameters. For example, under full stationarity it can be shown
to be

Cov(ni, ¥i—-1)) (1-a)A?
Variey T Rr(—ayira ”° (40)

p=a+

where A = ¢,/ 0. Often, empirically p is near unity. For example, with firm employment
data, Alonso-Borrego and Arellano (1999) found p = 0.995, o = 0.8, and A = 2. Since
for any 0 < a < p there is a value of A such that p equals a pre-specified value,
in view of lack of identification of a from the basic moment conditions (28) when
a = 1, it 1s of interest to see how the information about & in these moment conditions
changes as T and a change for values of p close to one.



For the orthogonality conditions (28) the inverse of the semiparametric information
bound about o can be shown to be

-1
{ Y EGEYOE v E(YS vy, )} (41)

s=1

where the y are orthogonal deviations relative to (3,1, ..., yicr—1) ''. The expres-
sion 07 gives the lower bound on the asymptotic variance of any consistent estimator
of « based exclusively on the moments (28) when the process generating the data is
the fully stationary model [Chamberlain (1987)].

' That is, vii 1s given by y). = ¢ [y ~ (T —5— 1)_1(yf(s+]) + -+ Y-l (s=1,..., T —-2), where
c2 =(T —s—1)/(T —s) [cf., Arellano and Bover (1995), and discussion in the next section).



Table 1
Inverse information bound for a (07) when p = 0.99

T oy

(0, 9.9) 02,72) (05,400 (08, 1.4) (0.9, 0.7) (0.99, 0)
3 14.14 15.50 17.32 18.97 19.49 19.95
4 1.97 2.66 4.45 8.14 9.50 10.00
5 1.21 1.55 2.43 4.71 5.88 6.34
10 0.50 0.57 0.71 1.18 1.61 1.85
15 0.35 0.38 0.44 0.61 0.82 0.96
Asympt. ° 0.26 0.25 0.22 0.16 0.11 0.04

2 Values for different (a, A) pairs such that p = 0.99.
® Asymptotic standard deviation at T = 15, /(1 — a2)/15.




In Table 1 we have calculated values of o7 for various values of T and for different
pairs (a,A) such that p = 0.99'2. Also, the bottom row shows the time series
asymptotic standard deviation, evaluated at 7 = 15, for comparisons.

Table 1 shows that with p = 0.99 there is a very large difference in information
between 7 = 3 and T > 3. Moreover, for given T there is less information on «
the closer a is to p. Often, there will be little information on a with 7 = 3 and the
usual values of N. Additional information may be acquired from using some of the
assumptions discussed above. Particularly, large gains can be obtained from employing
mean stationarity assumptions, as suggested from Monte Carlo simulations reported
by Arellano and Bover (1995) and Blundell and Bond (1998).



In making inferences about a we look for estimators whose sampling distribution
for large N can be approximated by N(«a, 07/N). However, there may be substantial
differences in the quality of the approximation for a given N, among different
estimators with the same asymptotic distribution. We shall return to these issues in
the section on estimation.



2.3. Using stationarity restrictions

Some of the lessons from the previous section on alternative restrictions in autoregres-

stve models are also applicable to regression models with predetermined (or strictly
exogenous) variables of the form:

Yie = O'wy + 1 + Uy, (42)
E*(vi|w)) =0,

12 Under stationarity 07 depends on @, A and T but is invariant to 0~



where, €.g., wi; = (¥i¢-1), Xir) . As before, the basic moments are E[w! ™' (Ay; — 6’ Aw;,)]
= (0. However, if E*(v;|w!, ;) = 0 holds, the parameter vector J also satisfies the Ahn—
Schmidt restrictions

E[(yie — ' wi)(Ayi—1)— OAw; s 1))] = 0. (43)

Moreover, if Cov(Aw;, 1;) = 0 the Arellano-Bover restrictions are satisfied, encom-

passing the previous ones !°:

E[Awi(y; — 6'wi)] = 0. (44)



Blundell and Bond (1999) use moment restrictions of this type in their empirical
analysis of Cobb—Douglas production functions using company panel data. They
find that the instruments available for the production function in first differences
are not very informative, due to the fact that the series on firm sales, capital and
employment are highly persistent. In contrast, the first-difference instruments for
production function errors in levels appear to be both valid and informative.

Sometimes the effect of time-invariant explanatory variables is of interest, a
parameter ¥, say, in a model of the form

Yie = gwfr + YZ; + 1 + Uy,



However, y cannot be identified from the basic moments because the time-invariant
regressor z; is absorbed by the individual effect. Thus, we could ask whether the
addition of orthogonality conditions involving errors in levels such as Equations (43)
or (44) may help to identify such parameters. Unfortunately, often it would be difficult
to argue that E(n,Aw;) = 0 without at the same time assuming that E(z;Aw;) = 0, 1n
which case changes in w;; would not help the identification of y. An example in which
the levels restrictions may be helpful 1s the following simple model for an evaluation
study due to Chamberlain (1993).



An evaluation of training example. Suppose that y) denotes earnings in the absence
of training, and that there is a common effect of training for all workers. Actual
earnings y; are observed fort=1,...,5s—1, s+ 1, ..., T. Training occurs in period s
(1 <s<T),sothaty, =y fort=1,..., s~ 1, and we wish to measure its effect on
earnings in subsequent periods, denoted by S, .1, ..., Br:

Vi=ya+Bd; (t=s+1,...,7T), | (45)

where d; is a dummy variable that equals 1 in the event of training. Morecover, we
assume

}’g = a}’?(;_ 1y * Wi + Vi, (46)

13" Strictly exogenous variables that had constant correlation with the individual effects were first
considered by Bhargava and Sargan (1983).



together with £ *(vz-,ly? (- l)) = 0 and Cov(Ay}, n;) = 0. We also assume that d; depends
on lagged earnings v, ..., ¥i(s-1) and 7;, but conditionally on these variables it 1s
randomly assigned. Then we have:

Yits+1) = 052}’5(5—1) + P 1d; + (1 + )0 + (Ui s+ 1) + Quys),

Vi=Wig-n+(B—af_)di+n+v, (=s+2,...,T)



From our previous discussion, the model implies the following orthogonality
conditions:

E[y;_Z(Ayﬁ__aAyf(f—l))]=O (t: 1:’--93_1)5 (47)

E{y Uyisin—(A+a+a®)yis—n+a(l+ @) yis_2—Bor1di]} =0, (48)

1 (1+a+a?) o’
ESyi |Vis+2)— d+0) yz'(s+1)+(1+a)yf(s-1)

i 2
= (ﬁf(s+2) _ ¢ z_l(i:t)a )ﬁi(s+l)) d;} } = 0.

E[Y! *(Ayu—aAyvig-n+A(B— 0B~ 1)d)] =0 (t=s+3,..., 7). (50)

(49)




The additional orthogonality conditions implied by mean stationarity are:

E:Ay;‘(rf1)()’:‘:_(1)71'(:—1))] =0 (@=1,...,s-1), (31)
E[AYi -1y (Yise 1y = @ Yiis—1)— B+ 1d1)] = 0, (52)
EAYis- (Y- ig-ny+(fr—af-1)d)] =0 (@E=s5+2,...,T) (33)

We would expect E(Ay;is-1yd;) <0, since there is evidence of a dip in the pretraining
earnings of participants [e.g., Ashenfelter and Card (1985)]. Thus, Equation (52)
can be expected to be more informative about f;,, than Equation (48). Moreover,
identification of f;,; from Equation (48) requires that s 2> 4, otherwise only changes
in f5; would be identified from Equations (47-50). In contrast, note that identification
of . from Equation (52) only requires s > 3.



2.4. Models with multiplicative effects

In the models we have considered so far, unobserved heterogeneity enters exclusively
through an additive individual specific intercept, while the other coefficients are
assumed to be homogeneous. Nevertheless, an alternative autoregressive process could,



for example, specify a homogeneous intercept and heterogeneity in the autoregressive
behaviour:

Vit = Y+ (0 + 0:)Vie—1) + Vir.

This is a potentially useful model if one is interested in allowing for agent specific
adjustment cost functions, as for example 1n labour demand models. If we assume
E(vy|y'~")=0 and y;, > 0, the transformed model,

—1 _ —1
YitYigp-1) = VJG‘(:—])"' a1 +U;=

where v}, = v;y;;_,), also has E(u};|y~') = 0. Thus, the average autoregressive
coefficient @ and the intercept Yy can be determined in a way similar to the linear
models from the moment conditions E(; +v}) = 0 and E(3'~?Av}) = 0. Note that in
this case, due to the nonlinearity, the argument requires the use of conditional mean
assumptions as opposed to linear projections.



Another example 1s an exponential regression of the form

E(yulxt,yi= 1, n) = exp( Bxi + 1).

This case derives its motivation from the literature on Poisson models for count data.
The exponential specification is chosen to ensure that the conditional mean 1s always
non-negative. With count data a log-linear regression is not a feasible alternative since
a fraction of the observations on y; will be zeroes.



A third example is a model where individual effects are interacted with time effects
given by

Vie = Bxis + 0,1 + Uy,

A model of this type may arise in the specification of unrestricted linear projections
as in Equations (21) and (22), or as a structural specification in which an aggregate
shock 0, is allowed to have individual-specific effects on y;; measured by ;.

Clearly, in such multiplicative cases first-differencing does not eliminate the
unobservable effects, but as in the heterogeneous autoregression above there are simple
alternative transformations that can be used to construct orthogonality conditions.



A transformation for multiplicative models. Generalizing the previous specifications
we have

ﬁ(WfTa Y) = g:(Wﬁ-‘, B)n; + vy, E(Uitlwﬁ) =0, (34)

where g;, = g;(w!, B) 1s a function of predetermined variables and unknown parameters
such that g; > 0 for all w! and B, and f;, = fi(w/,y) depends on endogenous and



predetermined variables, as well as possibly also on unknown parameters. Dividing by
g;; and first differencing the resulting equation, we obtain

fia-0— (' ga-0)fi = (55)

and
E@Wiwi=hH=0.

_ -1
where v}, = Vi - 1) — (85 8- 1))Vir.



Any function of w!~' will be uncorrelated with v}, and therefore can be used as an
instrument in the determination of the parameters 5 and y. This kind of transformation
has been suggested by Chamberlain (1992b) and Wooldridge (1997). Notice that its
use does not require us to condition on 7;. However, it does require g; to be a function
of predetermined variables as opposed to endogenous variables.

Multiple individual effects. We turn to consider models with more than one het-
erogeneous coefficient. Multiplicative random effects models with strictly exogenous
variables were considered by Chamberlain (1992a), who found the information bound
for a model with a multivariate individual effect. Chamberlain (1993) considered
the identification problems that arise in models with predetermined variables when
the individual effect 1s a vector with two or more components, and showed lack of
identification of ¢ in a model of the form

Yit = AYi@- 1) +ﬁixit + 1 + Vi, (56)
E@wulx',y " hY=0 (@=2,..., 7). (57)



As an illustration consider the case where x;; is a 0 — 1 binary variable. Smce

E(n:|x!, yT 1) is unrestricted, the only moments that are relevant for the identification

l

of a are
E(Ayy — Ay -l =Ly ) = E(Bidxalx, ',y 7%) (¢=3,..., T).

Letting w! = (x/,y!), the previous expression is equivalent to the following two
conditions:

E(Ayi — aAyi - w2 xi- 1y = 0) = E(Bi|w, %, xi0-1) = 0)

58
X Pr{x; = llwﬁdz, Xi(t—-1) = 0), %)

EAyy — 0Ayig- Wi 5 xig-ny = D= —E(BIW: ™%, xig—1y = 1)

59
«Pr( = O A xie =1 )

Clearly, if E(fBi[w! ™ ?,xi¢—1) = 0) and E(S;|w! 2, x;;-1y = 1) are unrestricted, and 7
is fixed, the autoregressive parameter @ cannot be identified from Equations (58) and
(59).



Let us consider some departures from model (56-57) under which a would be
potentially identifiable. Firstly, if x were a strictly exogenous variable, in the sense
that we replaced Equation (57) with the assumption E(v;|x!,y!~ ") = 0, @ could be
identifiable since

E(Ayi — aAy; - nlx], ¥ 7%, Axy, = 0) = 0. (60)

Secondly, if the intercept 17 were homogeneous, identification of a and 7 could result
from

E(yu—N—ia-nlwi ', x =0)=0. (61)

The previous discussion illustrates the fragility of the identification of dynamic
responses from short time series of heterogeneous cross-sectional populations.



If x; >0 in model (56-57), it may be useful to discuss the ability of transforma-
tion (55) to produce orthogonality conditions. In this regard, a crucial aspect of the
previous case 1s that while x;, is predetermined in the equation in levels, it becomes en-
dogenous in the equation in first differences, so that transformation (55) applied to the

first-difference equation does not lead to conditional moment restrictions. The problem
is that although E(Av;|x!~!,y!=2) = 0, in general E[(Ax;) 'Avy|x! 1,/ 2] = 0.



The parameters a, § = E(f), and ¥y = E(nl) could be identifiable if x were a

strictly exogenous variable such that E(vy|x],»/~!) = 0 (¢t = 2, ..., T), for in this

case the transformed error vj; = (Ax;) 'Av, would satisfy E[v}; le ,¥17%] = 0 and
E[Aut|x],y! 73] = 0. Therefore, the following moment conditions would hold:

Ay Ayig- 1}) (Ayi(t~ ) Ay:’(:az)) . 3]
E _ i _ Ty =0, 62
[(Axir Axi (r—1) Axir Axi(z“— 1) Vi ( )
Ay, Ayii-1) -
E _ _ 63
(ijf Axn‘ ﬁ ( )
E[ (A(yfr/xfr) _ A(yf(t—l)/x:' (1 — 1)))
A(1/x;) A1 - 1y) (64)
C (A(yf(tl)/xir) ~ A(yi(tZ)/xf(rl))) Tt 3} ~ 0
A(1/x;) A(1/xi - 1)) Y ’

A(yirxi)  A(Yiq-1y/%i)
¢ - R A 65
(A(l/xn) ’ A(1/x;) v)=0 (65)



A similar result would be satisfied if x; in Equation (56) were replaced by
a predetermined regressor that remained predetermined in the equation in first
difterences like x;( ). The result 1s that transformation (55) could be sequentially
applied to models with predetermined variables and multiple individual effects, and
still produce orthogonality conditions, as long as 7 is sufficiently large, and the



transformed model resulting from the last but one application of the transformation
still has the general form (54) (i.e., no functions of endogenous variables are multiplied
by individual specific parameters).

A heterogeneous AR(1) model. As another example, consider a heterogeneous
AR(1) model for a 0 — 1 binary indicator y;:

Yie = i+ Yig-1)+ Ui,y (66)
E(onl ¥ ") =0,

and let us examine the (lack of) identification of the expected autoregressive
parameter E(«;) and the expected intercept E(n;). With 7 = 3, the only moment that
is relevant for the identification of E(q;) 1s

E(Ayi|yi) = E(aAyi|yi),



which 1s equivalent to the following two conditions:

E(Ayi|yin =0)=E(a;|yiy = 0,y2 = D) Pr(yn = 1|y; = 0), (67)
E(Ayi|yn = 1)=~E(04|yn = L,yi2 = 0)Pr(yn = 0|y = 1). (68)
Therefore, only E(o;|yi1 = 0,y = 1) and E(o;| yi1 = 1,y = 0) are identified. The

expected value of ¢; for those whose value of y does not change from period 1 to
period 2 is not identified, and hence E(«;) 1s not identified either.



Similarly, for 7 > 3 we have

EAviulyi > yic-2 = 0) = E(@y; 7, %it-2=0, yic-1y = 1)
X Pr(yie-1) = llyf_B,yf(¢~2) = 0),
—E(a,-lyf‘?’,y;(;_z) =1 Yi¢-1y=0)
X Pr(yi¢-1 = Olyg_3syt(t—2) = 1).

Il

EAyilyi 3 yie-n = 1)

Note that E(e|y! 3, yi¢-2 = J, Yig-1y = Jj) for j = 0,1 is also identified provided
E(o;|y' "2, yi¢—2 = j) is identified on the basis of the first 7 — 1 observations.
The conclusion is that all conditional expectations of «; are identified except

E(ailyn= - =yir-ny=1)and E(ei|yq = - =yiar-1) =0).



Concerning 7;, note that since E(n;|y! 1) = E(] |y~ — yviar-nE(a|yI =),
expectations of the form E(n; yI.T’Z, yicr-1; = 0) are all identified. Moreover,
E(m|yI %, yiar-1) = 1) is identified provided E(o;|y! =%, yi(r-1y = 1) is identified.
Thus, all conditional expectations of 7; are identified except E(m;|yi1 = -+ = Yir-1)
= 1).

Note that if Pr(y;; = -+ =y;ir-1y =Jj) forj = 0,1 tends to zero as T increases,
E(a;) and E(5;) will be identified as T — o0, but they may be seriously undendentified

for very small values of 7.



3. Linear models with predetermined variables: estimation

3.1. GMM estimation

Consider a model for panel data with sequential moment restrictions given by

Vie =x, B +uwy (¢=1,...,T;i=1,...,N),

69
Ujp =N + Uy, E*(Ur‘r |Zf) =0 (69)

where x; 1s a k X 1 vector of possibly endogenous variables, z;, 1s a p x 1 vector
of instrumental variables, which may include current values of x;; and lagged values
of y;, and x;, and z! = (z],, ..., z/,)'. Observations across individuals are assumed to

be independent and identically distributed. Alternatively, we can write the system of
T equations for individual i as

yl. = ‘XIﬂO + ul.’ (70)

where y; = (yit, ..., vir)s Xi = (xy, .., xi7), and w; = (u;y, ..., ir)'.



We saw that this model implies instrumental-variable orthogonality restrictions for
the model in first-differences. In fact, the restrictions can be expressed using any
(T — 1) x T upper-triangular transformation matrix K of rank (7 — 1), such that Kt = 0,
where ¢ 1s a T x 1 vector of ones. Note that the first-difference operator is an example.
We then have

E(Z/Ku;) =0, (71)

where Z; is a block-diagonal matrix whose zth block is given by z!. An optimal
GMM estimator of 3, based on Equation (71) is given by

B=(M, AM)" M AM., (72)

where M, = (va | Z K Xl-), M., = (va_ | ZIK yf), and A4 is a consistent estimate

of the inverse of E(Z'Ku;u/K’Z;) up to a scalar. Under “classical” errors (that
is, under conditional homoskedasticity E(v: |z!) = 07, and lack of autocorrelation

E(ivi+jy |20 7) =0 for j > 0), a “one-step” choice of 4 is optimal:

N -1
Ac = (Z z;KK’Z,-) . (73)

i=1



Alternatively, the standard *“‘two-step” robust choice is
-1
(Z Z!Kwu, K Z,-) , (74)
i=1

where u; = y; — X;B 1s a vector of residuals evaluated at some preliminary consistent
estimate ﬁ



Given identification, B is consistent and asymptotically normal as N — oo for fixed
T [Hansen (1982)]. In addition, for either choice of 4, provided the conditions under

which they are optimal choices are satisfied, the asymptotic variance of 8 is

Var(B)r = {EQX/K'Z)EZ/K wulK'Z)] E(ZIK X))}, (75)

which is invariant to XK. Under classical errors this becomes '

Var(B)e = 0*{EWX/K'Z)EZ/KK'Z)1 ' E(ZIK X))}



Moreover, as shown by Arellano and Bover (1995), a GMM estimator of the form
given in Equations (72) and (73) or (74), is invariant to the choice of K provided K
satisfies the required conditions [see also Schmidt, Ahn and Wyhowski (1992)].

As in common with other GMM estimation problems, the minimized estimation
criterion provides an asymptotic chi-squared test statistic of the overidentifying
restrictions. A two-step Sargan test statistic 1s given by

i=1

N N
SR = [Z(‘y" ’_AXI'ﬁR),K’ZEjI Ag [Z Z;K(yi ‘_X’HBR)} - X%q—k)s (76)

=1

where S is the two-step GMM estimator 1



Orthogonal deviations. An alternative transformation to first differencing, which
is very useful in the context of models with predetermined variables, 1s forward
orthogonal deviations:

. 1
Uy = Cr (Uir — (T___r)(uf(r+l) + - uir)| (77)

where ¢? = (T - t)/(T — t + 1) [Arellano and Bover (1995)]. That is, to each of the
first (7' — 1) observations we subtract the mean of the remaining future observations
available in the sample. The weighting ¢, is introduced to equalize the variances of the
transformed errors. A closely related transformation was used by Hayash1 and Sims
(1983) for time series models.



Unlike first differencing, which introduces a moving average structure in the
error term, orthogonal deviations preserve lack of correlation among the transtformed
errors if the original ones are not autocorrelated and have constant variance. Indeed,

'4 Under classical errors, additional moment restrictions would be available, with the result that a
smaller asymptotic variance could be achieved. The expression above simply particularizes the asymptotic
variance to a situation where additional properties occur in the population but are not used in estimation.

15 Similarly, letting G and S be, respectively, a consistent estimate of ¢ and the one-step estimator,

the one-step Sargan statistic is given by Si- = 52 [Z{.‘L (i —X,-BC)’K’ZI-} Ac [2;";1 ZIK(y; - XiBc )].



orthogonal deviations can be regarded as the result of doing first differences to
eliminate fixed effects plus a GLS transformation to remove the serial correlation
induced by differencing.

The choice of K that produces this transformation is the forward orthogonal
deviations operator A = diag[(T — 1)/T, ..., 1/2]V?4", where

(1T T -1 (T -1 T -1 (T -1
0 1 —(T—Z)“l —(T—Z)_] _(T_z)—l _(T_z)_l

A+ : . : : : :
0 0 0 1 12 -2
\0 0 0 - 0 1 1




It can be verified by direct multiplication that A4’ = I;r_yand 4’4 = It — /T = Q,
which 1s the within-group operator. Thus, the OLS regression of y;, on x;, will give
the within-group estimator, which is the conventional estimator in static models with
strictly exogenous variables. Finally, since O = K'(KK') 'K, also A = (K K')"V?K for
any upper-triangular X.

A useful computational feature of orthogonal deviations, specially so when T is not
a very small number, is that one-step estimators can be obtained as a matrix-weighted
average of cross-sectional IV estimators:

-1

71 — 1
B - (ZX,* ’zf(zf’zf)lzf’&*) S X722 2yt (78)

r=1 (=1

where X;* = (x1/, ..., x3 Y, ¥y =3}, ..o yn) s and Z, = (27, ...,z ).



An illustration: female labour force participation and fertility. We illustrate
the previous issues with reference to an empirical relationship between female
participation and fertility, discussing a simplified version of the results reported by
Carrasco (1998) for a linear probability model '°.

A sample from PSID for 19861989 is used. The data consists of 1442 women aged
1855 in 1986, that are either married or cohabiting. The left-hand side variable is a
binary indicator of participation in year ¢. Fertility is also a dummy variable, which
takes the value one if the age of the youngest child in # + 1 is 1. The equation also
includes an indicator of whether the woman has a child aged 2—6. The equations
estimated in levels also include a constant, age, race, and education dummies (not
reported).



In this sample it i1s observed that women with two children of the same sex have
a significantly higher probability of having a third child. Thus, the sex of the first
two children is used as an instrument for fertility, which is treated as an endogenous

16 We thank Raquel Carrasco for allowing us to draw freely on her dataset and models.



Table 2
Linear probability models of female labour force participation®® (N = 1442, 1986-1989)

Variable OLS 2SLS°© WITHIN GMM ¢ GMM®
Fertility -0.15 ~1.01 -0.06 -0.08 ~0.13
(8.2) (2.1) (3.8) (2.8) (2.2)
Kids 2-6 —0.08 ~0.24 0.001 ~0.005 ~0.09
(5.2) (2.6) (0.04) (0.4) (2.7)
Sargan test 48.0 (22) 18.0 (10)
ml 19.0 5.7 -10.0 ~10.0 ~10.0
m2 16.0 12.0 ~1.7 -1.7 ~1.6

Models including lagged participation

Fertility —0.09 -0.33 —0.06 ~-0.09 —0.14
(5.2) (1.3) (3.7) (3.1) (2.2)

Kids 2-6 —-0.02 —0.07 —0.000 -0.02 -0.10
(2.1) (1.3) (0.00) (1.1) (3.5)

Lagged participation 0.63 0.61 0.03 0.36 0.29
(42.0) (30.0) (1.7) (8.3) (6.3)

Sargan 51.0 (27) 25.0 (15)

ml -7.0 -5.4 -13.0 -14.0 -13.0
m2 3.1 2.8 -1.3 1.5 1.2

¢ Heteroskedasticity robust ¢-ratios shown in parentheses.

? GMM IVs in bottom panel also include lags of participation up to £ — 2.

¢ External instrument: previous children of same sex.

4 1Vs: all lags and leads of “kids 2-6” and “same sex” variables (strictly exogenous).
¢ IVs: lags of “kids 2—6” and “same sex” up to 7 — 1 (predetermined).



variable. The presence of a child aged 26 is the result of past fertility decisions,
and so 1t should be treated as a predetermined variable [see Carrasco (1998) for a
comprehensive discussion, and additional estimates of linear and nonlinear models].

Table 2 reports the results for two versions of the model with and without lagged
participation as a regressor, using DPD [Arellano and Bond (1988)]. The last column
presents GMM estimates in orthogonal deviations that treat fertility as endogenous,
and the “kids 2—6” and “same sex” indicators as predetermined variables. The table
also reports the results from other methods of estimation for comparisons.

There i1s a large gap between the OLS and 2SLS measured effects of fertility,
possibly due to measurement errors. Both OLS and 2SLS neglect unobserved
heterogeneity, despite evidence from the serial correlation statistics m1 and m2 of
persistent positive autocorrelation in the residuals in levels. Note that we would expect
the “same sex” instrumental variable to be correlated with the fixed effect. The reason



1s that it will be a predictor of preferences for children, given that the sample includes
women with less than two children.

The within-groups estimator controls for unobserved heterogeneity, but in doing
so we would expect it to introduce biases due to lack of strict exogeneity of the
explanatory variables. The GMM estimates in column 4 deal with the endogeneity of
fertility and control for fixed effects, but treat the “kids 2—6” and “‘same sex” variables
as strictly exogenous. This results in a smaller effect of fertility on participation
(in absolute value) than the one obtained in column 5 treating the variables as
predetermined. The hypothesis of strict exogeneity of these two vanables is rejected
at the 5 percent level from the difference in the Sargan statistics in both panels.
(Both GMM estimates are “one-step”, but all test statistics reported are robust to
heteroskedasticity.)



Finally, note that the m1 and m2 statistics (which are asymptotically distributed as
a N(0, 1) under the null of no autocorrelation) have been calculated from residuals in
first differences for the within-groups and GMM estimates. So if the errors in levels
were uncorrelated, we would expect m1 to be significant, but not m2, as is the case
here [cf., Arellano and Bond (1991)].

Levels and differences estimators. The GMM estimator proposed by Arellano and
Bover (1995) combined the basic moments (71) with E(Azu;,) =0 (¢ =2,..., T).
Using their notation, the full set of orthogonality conditions can be written in compact
form as

+f/ —
i 1] Y
E(Z''Hu)=0 (79)

where Z! is a block diagonal matrix with blocks Z; as above, and Z, = diag (Az),,
.., Azlp). H is the 2(T — 1) x T selection matrix H = (K',I’y, where I, =(0:17_)).
With these changes in notation, the form of the estimator is similar to that in
Equation (72).



As before, a robust choice of 4 is provided by the inverse of an unrestricted
estimate of the variance matrix of the moments N Zi\f: (ZT Hu,u,H'Z. However,
this can be a poor estimate of the population moments if N is not sufficiently large
relative to 7, which may have an adverse effect on the finite sample properties of
the GMM estimator. Unfortunately, in this case an efficient one-step estimator under
restrictive assumptions does not exist. Intuitively, since some of the instruments for
the equations in levels are not valid for those in differences, and conversely, not all
the covariance terms between the two sets of moments will be zero.



3.2. Efficient estimation under conditional mean independence

If lack of correlation between v;, and z! 1s replaced by an assumption of conditional
independence in mean E(v;|z)) = 0, the model implies additional orthogonality
restrictions. This 1s so because v;; will be uncorrelated not only with the conditioning



variables z; but also with functions of them. Chamberlain (1992b) derived the semi-
parametric efficiency bound for this model. Hahn (1997) showed that a GMM estimator
based on an increasing set of instruments as N tends to infinity would achieve the
semiparametric efficiency bound. Hahn discussed the rate of growth of the number of
instruments for the case of Fourier series and polynomial series.

Note that the asymptotic bound for the model based on E(v; |z}) = 0 will be in
general different from that of E(v;; | z}, n;) = 0, whose implications for linear projections
were discussed in the previous section.



Similarly, the bound for a version of the model with levels and differences
restrictions based on conditional mean independence assumptions cannot be obtained
either as an application of Chamberlain’s results. The reason is that the addition of the
level’s conditions breaks the sequential moment structure of the problem.

Let us now consider the form of the information bound and the optimal instruments
for model (69) together with the conditional mean assumption E(v;|z}) = 0. Since
E(n;|z!') is unrestricted, all the information about 3 is contained in E(v;, — v; t+1)|20) =
Ofore=1,..., T 1.



For a single period the information bound is Jy, = E(d;, d},/ w;) where d;, = E(x;—
Xi¢+ 1|2ty and @y = E[(Uir — v; ¢+ 1y)° | 2'] [ef., Chamberlain (1987)]. Thus, for a single
period the optimal instrument is m;, = d;, / w,, in the sense that under suitable regularity
conditions the statistic

N N LN
i - (z: M) (z - Ayf(m)) |
i=1

i=1



satisfies VN By - B 4 N(,J;'). If the errors were conditionally serially
uncorrelated, the total information would be the sum of the information bounds
for each period. So Chamberlain (1992b) proposed the following recursive forward
transformation of the first-differenced errors:

Oi(T—1y = Ui(T—1) — UiT»
Ois = (Ui — U (z+1))
_ El(v; _Uf(t+l))5i(z‘+l)|z§+l]~

U.
~7 £+ 1 i(z+1)
E@ ¢ ylzi™)

E[©u v a7 P, (80)
_. e > i(t+2)
E(U- )|Zt+ )

it+2)1 <

JE—

El(vir —vi e+ 1))51(T—1)|Z,T_1]5
- ~2 T_l I(T-l))
E(U:'(T*l)|zi )

fort =T —2,..., 1. The interest in this transformation is that it satisfies the same
conditional moment restrictions as the original errors in first-differences, namely

E(@:|2) =0, (81)



but additionally it satisfies by construction the lack of dependence requirement:
E@ybigiplziy=0forj=1,...,T—t—1. (82)
Therefore, in terms of the transformed errors the information bound can be written

ds

r—1
Jo="Y E(did;/dy), (83)

=1



where Eﬁ = E(%y|z)) and @, = E(7 |z!). The variables %; and j, denote
the corresponding transformations to the first-differences of x; and y; fuch that
Dy = Pi — X/, B. Thus, the optimal instruments for all periods are m; = d;;/ w;,, in
the sense that under suitable regularity conditions the statistic

N T-1 LI VAR |
— iyl ""f i
ﬁ o E Mit X}y E it Yit
i

i=1 t=1

3

satisfies VN(B — ) 4 N(0,J; ).



If the v;’s are conditionally homoskedastic and serially uncorrelated, so that
E(v;|Z) = 0% and E(Usi0; ¢+ 7 [zf ™y =0 for j > 0, it can be easily verified that the &;,’s
blow down to ordinary forward orthogonal deviations as defined in Equation (77):

. 1 | 1
Ujy = Ujy — (T t)(05(5+1}+°--+057) = C_U; for ¢t = T—l, ce e, 1.

In such case m;, = ¢,0°E(x}; |z!) so that

N T-1 LA VR
(ZZE("HZ)X ) (ZZE(x?;!zﬁ)yE‘;), (84)

i=1 ¢ i=1 =1

and

1 T -
= — ZE[E(x” |Z)E G [2)] (85)



If we further assume that the conditional expectations E(x};|z;) are linear, then

ZE(x:;z”)[E(J N E(zxy), (86)

t=1

which coincides with the inverse of the asymptotic covariance matrix of the simple
IV estimator given in Equation (78) under the stated assumptions. Note that the



assumptions of conditional homoskedasticity, lack of serial correlation, and linearity
of E(x};|z;) would imply further conditional moment restrictions that may lower the
information bound for 5. Here, we merely particularize the bound for 8 based on
E(vi|z!) = 0 to the case where the additional restrictions happen to occur in the
population but are not used in the calculation of the bound.



3.3. Finite sample properties of GMM and alternative estimators

For sufficiently large N, the sampling distribution of the GMM estimators discussed
above can be approximated by a normal distribution. However, the quality of the
approximation for a given sample size may vary greatly depending on the quality
of the instruments used. Since the number of instruments increases with 7', many
overidentifying restrictions tend to be available even for moderate values of T', although
the quality of these instruments 1s often poor.

Monte Carlo results on the finite sample properties of GMM estimators for panel
data models with predetermined variables have been reported by Arellano and Bond
(1991), Kiviet (1995), Ziliak (1997), Blundell and Bond (1998) and Alonso-Borrego
and Arellano (1999), amongst others. A conclusion in common to these studies is that
GMM estimators that use the full set of moments available for errors in first-differences
can be severely biased, specially when the instruments are weak and the number of
moments is large relative to the cross-sectional sample size.



From the literature on the finite sample properties of simultaneous equations
estimators, we know that the effect of weak instruments on the distributions of 2SLS
and LIML differs substantially, in spite of the fact that both estimators have the
same asymptotic distribution. While LIML 1s approximately median unbiased, 2SLS
is biased towards OLS, and in the case of lack of identification in the population it
converges to a random variable with the OLS probability limit as its central value.
In contrast, LIML has no moments, and as a result its distribution has thicker tails
than that of 2SLS and a higher probability of outliers [cf., Phillips (1983)]. Anderson,
Kunitomo and Sawa (1982) carried out numerical comparisons of the distributions of
the two estimators, and concluded that LIML was to be strongly preferred to 2SLS,
specially in cases with a large number of instruments.



LIML analogue estimators. 1t is thus of interest to consider LIML analogues for our
models, and compare their finite sample properties with those of GMM estimators.

Following Alonso-Borrego and Arellano (1999), a non-robust LIML analogue ﬁumu
minimizes a criterion of the form

(3 X" BYM(y" ~X"P)
¢ -
DB —XB)

where starred variables denote orthogonal deviations, y* = (y{’, ..., ¥¥/), X* = (X},
LXY,Z=(Z],...,Z,),and M = Z(Z'Z) 'Z'. The resulting estimator is

(87)

BL]ML] — (X*!MX* _EX*IX*)—I(X*fMy* . @X*Iy*), (88)



where /¢ is the minimum eigenvalue of the matrix W*M W*(W* W*)!, and W* =
(¥, X7).

The estimator in Equation (88) is algebraically similar to an ordinary single-
equation LIML estimator provided the model is in orthogonal deviations. This is so
in spite of having a system of equations, due to the fact that the errors in orthogonal
deviations of different equations are serially uncorrelated and homoskedastic under
classical assumptions. However, the non-robust LIML analogue does not correspond
to any meaningful maximum likelihood estimator (for example, it does not exploit
the homoskedasticity restrictions). It 1s only a “LIML’ estimator in the sense of
the instrumental-variable interpretation given by Sargan (1958) to the original LIML
estimator, and generalized to robust contexts by Hansen, Heaton and Yaron (1996).



The robust L-IML analogue BUMLz, or continuously updated GMM estimator in the
terminology of Hansen et al. (1996), minimizes a criterion of the form

N

-1
k(B = ~X"P)Z (sz’u?(ﬁ)u;*(ﬁ)'zf) Z'(y* - X"P), (89)

i=1

where u(f) = y’ — X*[. Note that LIML2, unlike LIML1, does not solve a

standard minimum eigenvalue problem, and requires the use of numerical optimization
methods !”.



In contrast to GMM, the LIML estimators are invariant to normalization. Hillier
(1990) showed that the alternative normalization rules adopted by LIML and 2SLS
were at the root of their different sampling properties. He also showed that a
symmetrically normalized 2SLS estimator had similar properties to those of LIML.
Alonso-Borrego and Arellano (1999) considered symmetrically normalized GMM
(SNM) estimators for panel data, and compared them with ordinary GMM and LIML
analogues by mean of simulations. The main advantage of robust SNM over robust
LIML is computational, since the former solves a minimum eigenvalue problem while
the latter does not. It also avoids potential problems of non-convergence with LIML?2,
as reported by Alonso-Borrego and Arellano (1999).



The Monte Carlo results and the empirical illustrations for autoregressive models
reported by Alonso-Borrego and Arellano (1999) showed that GMM estimates can
exhibit large biases when the instruments are poor, while the symmetrically normalized
estimators (LIML and SNM) remained essentially unbiased. However, LIML and SNM
always had a larger interquartile range than GMM, although the differences were small
except in the almost unidentified cases. |

'7 Other one-step methods that achieve the same asymptotic efficiency as robust GMM or LIML
estimators are the empirical likelihood [Back and Brown (1993), Qin and Lawless (1994) and Imbens
(1997)] and exponential tilting estimators [Imbens, Spady and Johnson (1998)]. Nevertheless, little is
known as yet on the relative merits of these estimators in panel data models, concerning computational
aspects and their finite sample properties.



3.4. Approximating the distributions of GMM and LIML for AR(1) models when the
number of moments is large

Within-groups estimators of autoregressive models, and more generally of models with
predetermined varnables, are known to be consistent as 7 tends to infinity, but are
inconsistent for fixed 7 and large N [cf., Nickell (1981), Anderson and Hsiao (1981)].
On the other hand, the estimators reviewed above are consistent for fixed T but the
number of orthogonality conditions increases with 7. In panels in which the value of
T 1s not negligible relative to N (such as the PSID household incomes panel in the
US, or the balance sheet-based company panels that are available in many countries),
the knowledge of the asymptotic behaviour of the estimators as both 7 and N tend to
infinity may be useful in assessing alternative methods.



Alvarez and Arellano (1998) obtained the asymptotic properties of within-groups
(WGQG), one-step GMM, and non-robust LIML for a first-order autoregressive model
when both N and T tend to infinity. Hahn (1998) also obtained the asymptotic
properties of WG under more general conditions. The main results can be summarized
in the following proposition.



Proposition 1. Let y; = ayio_1) + W + vy, with vy|y'"',n ~ iidN(0,d?),
(t=1,...,T) and yo|n ~ N[n/(1 — @), 0*/(1 — a?)]. Also let n; ~ i.i.d.N(0, 0,?).
Then, as both N and T tend to infinity, provided T/N — ¢, 0 < ¢ < 2, within-groups,
GMM1, and LIMLI are consistent for a. Moreover,

\/]W -EGMMl — (a - %(1 + (1))] 4, N(O, ] — az), (90)
VNT _&L.MU —~ (a— (2N1— T)(l + a))} <4, N(0,1-a?). (91)

Also, provided N/T> — 0:

VNT [a‘wg — (a - %(1 + a)ﬂ 4, N(0,1 - a?). (92)



Proof: See Alvarez and Arellano (1998) .

The consistency result contrasts with those available for the structural equation setting,
where 2SLS is inconsistent when the ratio of number of instruments to sample size
tends to a positive constant [cf., Kunitomo (1980), Morimune (1983), Bekker (1994)].
Here the number of instruments, which is given by 7'(T — 1)/2, increases very fast
and yet consistency 1s obtamned. The intuition for this result 1s that in our context as

'8 Here, for notational convenience, we assume that y;, is also observed, so that the effective number
of time series observations will be 7 + 1.



T tends to infinity the “simultaneity bias” tends to zero, and so closeness of GMMI1
or LIML1 to OLS in orthogonal deviations (ie. within-groups) becomes a desirable
property.

Note that when 7/N — 0 the fixed T results for GMMI1 and LIMLI1 remain
valid, but within-groups, although consistent, has an asymptotic bias in its asymptotic
distribution (which would only disappear if N/T — 0). However, when 7/N tends to a
positive constant, within-groups, GMMI1 and LIMLI1 exhibit negative biases in their
asymptotic distributions. The condition that ¢ > 2 is not restrictive since GMMI1 and
LIML1 are only well defined for (7 — 1)/N < 1. Thus, for T < N the GMMI bias is

always smaller than the within-groups bias, and the LIML1 bias is smaller than the
other two.



Another interesting feature is that the three estimators are asymptotically efficient in
the sense of attaining the same asymptotic variance as the within-groups estimator as
T — oo. However, Alvarez and Arellano (1998) show that the standard formulae for
fixed T estimated variances of GMMI1 and LIML1, which depend on the variance of
the fixed effect, remain consistent estimates of the asymptotic variances as 7 — oo.

These results provide some theoretical support for LIML1 over GMMI1. They also
illustrate the usefulness of understanding the properties of panel data estimators as
the time series mformation accumulates, even for moderate values of 7: 1n a fixed
T framework, GMM1 and LIMLI1 are asymptotically equivalent, but as 7T increases
LIMLI1 has a smaller asymptotic bias than GMM].



The crude GMM estimator in first differences. Alvarez and Arellano (1998) also show
that the crude GMM estimator (CIV) that neglects the autocorrelation in the first
differenced errors (1e., one-step GMM 1n first-differences with weight matrix equal
to (Z'Z)™") is inconsistent as T/N — ¢ > 0, despite being consistent for fixed 7. The
result is:

~ (1+a) c
derv 5 = (2—(1 +a)(2—c)/2>' ©3)

The intuition for this result is that the “simultaneity bias” of OLS in first differences
(unlike the one for orthogonal deviations) does not tend to zero as 7 — oo.
Thus, for fixed 7 the IV estimators in orthogonal deviations and first differences
are both consistent, whereas as 7 increases the former remains consistent but the
latter 1s inconsistent. Moreover, notice that the bias may be qualitatively relevant.
Standard fixed-7 large-N GMM theory would just describe the CIV estimator as being
asymptotically less efficient than GMMI1 as a consequence of using a non-optimal
choice of weighting matrix.



