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Abstract

Frisch’s 1930 seminal lectures lay the fundamentals of econometric causality. A
century later, Frisch’s ideas remain the basis of causal thinking. Although little has
changed on the meaning of causality, the literature had major advances in expressing
and manipulating causal inquiries. Several causal frameworks translate causal concepts
into a mathematical language. However, the literature offers little guidance on which
framework is best suited to investigate a given causal model. We revisit the core
concepts of econometric causality and discuss the merits and limitations of several
causal frameworks. We employ popular models of policy evaluation to illustrate the
advantages and drawbacks of the frameworks. We show that the choice of causal
framework matters. The interpretation and scrutiny of a causal model are substantially
affected depending on the adopted causal framework.
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1 Introduction

A primary goal of econometric causality is to study the causal effect of an observed vari-

able, often called the treatment, on an outcome. Economists have long realized that the

co-movement between the treatment and the outcome is not sufficient to claim causation.

This understanding dates back to Yule (1895), who coined the maxim “correlation is not

causation”. A century later, Yule’s motto has become a mantra among economists and social

scientists.

Despite its popularity, econometric causality is seldom a central subject in the formation

of young economists. Causality is often conflated with the study of econometric models.

Causal effects are usually addressed as statistical properties of some models such as random-

ized controlled trials or the instrumental variable model. This generates some confusion as

statistical theory is void of causal concepts, and the fundamentals of causal inference apply to

any causal model Heckman (2005). Indeed, Econometric causality is based on counterfactual

concepts that are not well-defined in either statistics or probability theory.

The foundation of econometric causality stems from the seminal ideas of Frisch (1930),

who explains that the concept of causality lies outside the realm of standard statistic theory.

Its formalization requires a causal framework, that consists of additional mathematical ma-

chinery that enable the researcher to define and manipulate causal concepts. The literature

on causality offers several options of causal frameworks. For instance, a researcher may opt

to investigate a the nonparametric identification of a causal inquiry through a model defined

in terms of structural equations. Instead, he/she could employ the potential outcome frame-

work of Holland (1986), also known as Rubin-Holland causal model. The researcher could

use the hypothetical model approach of Heckman and Pinto (2012) or apply the do-calculus

of Pearl (2009a).

Causal frameworks can be broadly understood as alternative methods to formally express

Frisch’s original ideas on causality. Although they share the same causal concepts, the frame-



works differ substantially in terms of the complexity of their setup and the mechanics of their

analysis. The language of potential outcomes is the simplest and the most popular framework

among those cited. It describes a causal model by statistical independence relations between

potential (or counterfactual) counterpart of observed variables. Each nonparametric model

described by the language of potential outcomes can be equivalently expressed in terms of

structural equations. The hypothetical model (HM) framework and the do-calculus (DoC)

are built upon these structural equations. HM invokes an alternative (hypothetical) model

in which the treatment variable causing the outcome is exogenous. Identification is secured

by expressing the probability the outcome conditioned on the treatment of the hypothetical

model in terms of the observed data generated by the original model. DoC explores the fact

that the structural equations can be expressed as a Directed Acyclic Graph (DAG). The

method consists of several DAG-related rules that enables the researcher to investigate the

statistical relation among counterfactual variables. The method is complete, that is to say

that if a causal effect is identified, then it can be obtained by the iterative use of the DoC

rules (Shpitser and Pearl, 2006, Tian and Pearl, 2002b). The Settable Systems of White and

Chalak (2009) extends the DoC to include features of central interest to economists such as

optimization, equilibrium, and game theory.

The literature on causality offers little guidance on deciding which framework is most

suitable to investigate a causal model. This paper fills this gap by comparing the proper-

ties, benefits and drawbacks among causal frameworks. We revisit key principles of causal

inference and discuss how each causal framework embodies these principles. We clarify the

advantages that a more complex causal framework has when compared to a simpler ap-

proach. We illustrate cases where the additional complexity is justified and when it is not.

We compare the machinery of each causal framework when examining well-known econo-

metric models, such as matching, instrumental variable model, and the mediation model.

We also examine more complex settings that combine the features across these econometric

models. We investigate the merits of causal frameworks in terms of notational simplicity,
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tractability, intuition. We also discuss the spectrum of causal analysis empowered by each

framework.

Most importantly, we show that the choice of causal framework matters. Distinct causal

frameworks that are suitable to investigate the same causal model must arrive at the same

identification results. Nevertheless, this fact does not imply that the frameworks are equally

useful. Causal frameworks may substantially affect the interpretability of the causal model

and severely limit the sophistication of causal analysis. The choice of causal frameworks is

particularly critical when the researcher seeks to investigate model properties.

Section 2 recalls seminal ideas of causality made by early researches. Section 3 presents

the causal model. Section 4 describes several causal frameworks. Sections (5)–(7) illustrates

how the choice of causal languages influences the analysis of causal models that are com-

monly used by economists. Section (5) investigates the simple case of matching. Section (6)

investigates the instrumental variable model. Section (7) investigates more complex settings

such as the mediation model. Section (9) concludes.

2 Some Historical Background

A typical research activity in natural sciences consists of testing a theory using the controlled

environment of a laboratory. An empiricist accustomed to using controlled environments is

naturally inclined to define causality based on predictability. It sounds reasonable to state

that a causal law is established when it is possible to determine the later state of system of

variables based on its early onset.

It may come as a surprise that the notion of causality based on predictability is flawed.

The problem with this causal notion is not its deterministic nature, but its lack of direction-

ality. This issue is particularly relevant in physics. For instance, Newtonian equations of

gravitational interaction determines the relation between two bodies but does not establish

its causal direction. Earth mass attracts a falling apple as well as the falling fruit attracts the
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planet. Ampre’s law determines that a changing magnetic field induces an electric field and

vice versa. The law establishes an accurate equality but not a causal relation. This causal

dilemma was investigate by the influential paper “On the Notion of Cause” of Bertrand

Russell (1912), who denies the usefulness of any notion causality in physics.

The notion that predictability renders causality is clearly misguided. Yet, it is intuitive

to postulate that a controlled environment is an ideal setting to examine causality. The

assertion is correct. The key feature that renders causality in a controlled environment not

the predictability of an experiment, but rather the possibility to vary a single variable of

the system at the onset while holding others variables constant. Marshall (1890) proposes

a notion of causality that captures the selective variation of inputs variables. He uses the

term “ceteris paribus” to denote the causal effect of an input variable on an output variable

when holding all remaining inputs constant.

Frisch (1930) made a substantial contribution to the notion of causality by refuting the

notion of physical or actual manipulation of input variables altogether. He explains that the

notion of causality must be necessarily defined in terms of a hypothetical instead of actual

manipulation of variables. He stated that “causality is in the mind”. By this, he meant:

“. . . we think of a cause as something imperative which exists in the exterior world. In my

opinion this is fundamentally wrong. If we strip the word cause of its animistic mystery, and leave

only the part that science can accept, nothing is left except a certain way of thinking, [T]he scientific

. . . problem of causality is essentially a problem regarding our way of thinking, not a problem

regarding the nature of the exterior world.” (Frisch 1930, p. 36, published 2011)

Frisch (1938) makes the case that causality has to be defined within a system of variables

governed autonomous functions. That is to say that functions that maintain their shape as

their inputs vary. Haavelmo (1944) formalized Frisch’s insight. He defined causal operations

that capture the fundamentals of econometric causality. Haavelmo introduced the causal

operation of fixing a variable, which entails causal concepts such as counterfactuals and

ceteris paribus.
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A causal model consists of a system of structural (autonomous) equations that determine

the causal relations among observed and unobserved variables. Counterfactual outcomes are

defined by a hypothetical experiment of fixing the value of one or some input variables that

are arguments of these equations. Causal effects are determined by a weighted difference

between counterfactuals.

Consider a simple example where an outcome Y is caused by observed inputs X1, X2 and

an unobserved variable U . According to of Haalvelmo’s rationale, these causal relations are

characterised by the structural equation Y = f(X1, X2, U). In the case of a linear model, we

have that

Y = β0 + β1X1 + β2X2 + U.

The counterfactual outcomes are defined by fixing the inputs of function f. The counter-

factual outcome Y when variables (X1, X2, U) are fixed at values (x1, x2, u) is given by

Y (x1, x2, u) = β0 + β1x1 + β2x2 + u. The causal effect of an unit increase in input X1 on

outcome Y is the expected difference between the counterfactual outcomes Y when X1 is

fixed to values x1 + 1 and x1. Ceteris Paribus means that the remaining inputs of Y, that is

X2 and U, are fixed at constant values. This setup generates the following effect:

Y (x1 + 1, x2, u)− Y (x1, x2, u)

= β0 + β1(x1 + 1) + β2x2 − (β0 + β1x1 + β2x2)

= β1(x1 + 1− x1) = β1

Suppose U has mean zero and is (mean) independent of (X1, X2). Then the conditional

expectation E(Y |X1 = x1, X2 = x2) is given by:

E(Y |X1 = x1, X2 = x2) = β0 + β1x1 + β2x2,

The conditional expectation E(Y |X1 = x1, X2 = x2) and the counterfactual outcome

Y (x1, x2, 0) are mathematically equivalente but conceptually different. The counterfactual

Y (x1, x2, 0) is a thought experiment that hypothetically fixes the values to the inputs of

outcome Y. It is a causal statement that takes into account the causal direction of a system
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of equations. It describes the outcome when input variables are fixed. On the other hand,

the conditional expectation E(Y |X1 = x1, X2 = x2) is a random variable that describes

the observed data. It is a statistical operation that depends on the joint probability the

variables. The expectation does not require nor impose any causal relation among observed

variables. The expectation E(X1|Y = y,X2 = x2) is well-defined, while the counterfactual

X(y, x2, 0) is not.

Heckman (2006) disentangles the econometric approach to causality into three tasks

displayed in Table 1. The first task uses scientific theory to determine a causal model.

The second task uses causal analysis to study the identification of causal effects. This task

requires a causal framework that enables to define and manipulate causal concepts. A causal

parameter is identified if it can expressed as a function of the observed variables of the causal

model. The last task is the estimation, which employs statistical theory to evaluate model

parameters using observed data. The evaluation of a causal parameters is not necessarily

contingent on a particular statistical method. This logical sequence of tasks is often blurred

when the parameter is defined by a statistical method such as the difference-in-difference

model or when proving the statistical consistency of an estimator.

Table 1: Tasks of the Econometric Approach to Causality

Task Description Requirements
1 Defining Causal Models A Scientific Theory

A Mathematical Framework
2 Identifying Causal Parameters Mathematical Analysis

from Known Population Connect Hypothetical Variation
Distribution Functions of Data with Data Generating Process

(Identification in the Population)
3 Estimating Parameters from Statistical Analysis

Real Data Estimation and Testing Theory

Our primary goal is to examine the second task of econometric analysis. Namely, examine

frameworks that enable to define and manipulate causal concepts. To this end, it is useful

to formally define a causal model.
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3 The Causal Model

The Structural Causam Model (SCM) dates back to Haavelmo (1944), who describes a

causal model characterised by a set T of observed and unobserved variables such that for

each variable Y ∈ T we have an associated autonomous (or structural) function fY and

an exogenous error term εY which are not observed.1 Arguments of the function fY are

the variables in T that cause Y. Without loss of generality, we can assume that terms are

statistically independent.2 All variables are defined in common probability space (I,F , P ).

A common goal in policy evaluations to evaluate the causal effect of the treatment T on

and outcome Y. The identification of causal effects can be broadly understood as methods to

control for unobserved confounding variables V that cause both T and Y. Consider a simple

model where an endogenous treatment T that causes an unobserved abilities A, and both

T,A cause the outcome Y. Agent’s unobserved variable V plays the role of a confounder

that generates selection bias. V causes both the treatment choice T and the unobserved

skill A. The model is displayed in the first column of Table 2 and it is not identified without

additional assumptions.

The second column of Table 2 displays the model as a Directed Acyclic Graph (DAG).3

Causal links are denoted by directed arrows, observed variables are displayed by squares and

unobserved variables by circles. The model is acyclic, i.e. non-recursive, because no causal

path leads a variable to cause itself. In this case, we can generate a series of conditional

independent relations using the Local Markov Condition (LMC) of Kiiveri et al. (1984). The

condition states that a variable is independent of its non-descendants condition its parents.

Parents of a variable Y are the argument of its function fY and non-descendants of Y

consists of variables that are not directly or indirectly caused by Y. The third column of

1Autonomy means deterministic functions that are “invariant” to changes in their arguments (Frisch.
1938). Hurwicz (1962) prefers the term “structural” to denote autonomous equations.

2This assumption comes without a loss of generality because any correlation structure among error terms
can be modeled by adding unobserved variables to the model. See (Heckman and Pinto, 2015a) for a
discussion.

3See Lauritzen (1996) for the theory of Bayesian Networks.
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Table 2: Causal Model, DAG Representation and Conditional Independence Relationships

Causal Model DAG Local Markov Conditions
V = fV (εV )

T Y

V A V ⊥⊥ ∅|∅
A = fA(T, V, εA) A ⊥⊥ ∅|(T, V )
T = fT (V, εT ) T ⊥⊥ ∅|V
Y = fY (T,A, εY ) Y ⊥⊥ V |(T,A)

Table 2 applies the LMC to each variable.

A non-parametric causal model is equivalently described by its structural equations, its

DAG or the relationships generated by the LMC. Note that LMC generates no indepen-

dence relationship for V,A or T . So the model is characterized by a single independence

relationship, that is, Y ⊥⊥ V |(T,A).4

Fixing is a primary concept used to define counterfactuals. It is a causal exercise that

hypothetically assigns values to inputs of autonomous equation. The counterfactual abilities

A when the treatment is fixed at a value t ∈ supp(T ) is given by A(t) ≡ fA(t, V, εA) while

the counterfactual outcome is given by Y (t) ≡ fY (t, A(t), V, εY ). is obtained by fixing the

input T of the outcome function to a value t ∈ supp(T ). The average Causal Effects of T

on Y when T is fixed at t, t′ is ATE = E(Y (t) − Y (t′)). The independence of error terms

εV , εA, εT , εY implies that Y (t) ⊥⊥ T |V. 5

4The Graphoid Axioms of Dawid (1976) may generate additional conditional independence relations.
These consist of six rules that apply for any disjoint sets of variables X,W,Z, Y ⊆ T :

Weak Union: X ⊥⊥ (W,Y )|Z ⇒ X ⊥⊥ Y |(W,Z).

Contraction: X ⊥⊥W |(Y, Z) and X ⊥⊥ Y |Z ⇒ X ⊥⊥ (W,Y )|Z.
Intersection: X ⊥⊥W |(Y, Z) and X ⊥⊥ Y |(W,Z)⇒ X ⊥⊥ (W,Y )|Z

Symmetry: X ⊥⊥ Y |Z ⇒ Y ⊥⊥ X|Z.
Decomposition: X ⊥⊥ (W,Y )|Z ⇒ X ⊥⊥ Y |Z.

Redundancy: X ⊥⊥ Y |X.

5Note that if the error terms are mutually independent than (εY , εA) ⊥⊥ εT |εV holds, and in particular,
(εY , εA) ⊥⊥ εT |V holds. This implies that the relationship fY (t, fA(t, V, εA), εY ) ⊥⊥ fT (V, εT )|V also holds,
which means that Y (t) ⊥⊥ T |V.
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Fixing T does not affect the distribution of V, while statistical conditioning does.6 Indeed,

conditioning is a statistical operator that lacks directionality and affects the distribution of

all correlated variables. Fixing, on the other hand, is a causal operator that embodies causal

direction of a model and only affects the distribution of the variables caused by the input

being fixed.

The lack of directionality in standard statistical and probability theory generates some

confusion.7 Causal concepts such as fixing are not well-defined. This fact foments several

causal frameworks that seek to make statistics and probability to converse with causality.

We discuss some of these frameworks next.

4 Causal Frameworks

The Language of Potential Outcomes

The most commonly used causal framework is the language of potential outcomes (PO),

which is also called the Rubin-Holland causal model (Holland, 1986). The method does not

employ structural equations. It describes a causal model by stating statistically independence

relationships among counterfactuals of observed variables.

The PO framework typically described in terms of the unit of analysis ı ∈ I that usually

represents an economic agent. The common setup relies on three observed variables: baseline

variables X, a treatment T, and an outcome Y. Xi, Ti, Yi stand for realizations of agent ı.

Yi(t) is the unobserved potential outcome Y for agent i when the treatment T takes the

value t and the causal effect of a change in the treatment status from t′ to t for unit i is

6For instance, the factorization of the joint distribution of the variables of the model under when con-
ditioning on X is given by P (Y, V,A|T = t) = P (Y |A, V, T = t)P (A|V, T = t)P (V |T = t), while the joint
distribution under fixing is given by P (Y, V,A|T fixed at t) = P (Y |V, T = t)P (A|V, T = t)P (V ).

7See Pearl (2009b) and Spirtes et al. (2000) for discussions.
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Yı(t)− Yı(t
′). The observed outcome is given by:

Yi =
∑

t∈supp(T )

Yi(t) · 1[Ti = t] ≡ Yi(Ti),

where supp(T ) denotes the support of the treatment and 1[·] is the standard indicator func-

tion. The model characterized by independence relationships among counterfactuals of ob-

served variables. For example, if the unobserved confounding variable V of the model in Ta-

ble 2 where replaced by the observed baseline variable X, we would have that Y (t) ⊥⊥ T |X.

This is often called the matching or exogeneity assumption.

Imbens (2019) lists several reasons why the PO language is a popular policy evaluation

framework. The PO assumptions can include monotonicity and shape restrictions are easily

assessed and implemented in economic contexts. The method allows for heterogeneity in

treatment effects and it lends itself to traditional economic models, such as supply and

demand settings, where non-causal and causal variables are distinctive. The method is

particularly suitable for identification strategies generally analyze causal model that stem

from a small pool of variables, which have been exhaustively analyzed.

The PO framework is lauded for its simplicity and has been widely implemented in psy-

chology, sociology, and economics. PO simplicity is beneficial when studying simple models

such as the Randomized Control Trials or causal models that invoke the matching assump-

tion. We show that its simplicity however becomes a hindrance when examining more com-

plex models. A primary drawback of the PO framework is that the model is defined only in

terms of observed variables. The lack of unobserved variables poses substantial limitations

when examining identification assumptions of the instrumental variable model. Most impor-

tant, the framework does not explicitly states structural equations. This drastically reduces

the interpretation of the causal relations among variables. We illustrate this fact using the

mediation model.

The Hypothetical Model Framework

Heckman and Pinto (2015b) provides a framework that permits to examine causal con-
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Table 3: Associated Hypothetical Model

Hypothetical Model DAG Local Markov Conditions

V = fV (εV )

T Y

V A

T̃

V ⊥⊥ T̃
T̃ = fT̃ (εT̃ ) T̃ ⊥⊥ (T,A, V )

A = fA(T̃ , V, εA) A ⊥⊥ T |(V, T̃ )

T = fT (V, εT ) T ⊥⊥ T̃ |V
Y = fY (T,A, εY ) Y ⊥⊥ (V, T )|(T̃ , A)

cepts using standard probability theory. It is inspired by the seminal ideas of Frisch (2010)

and Haavelmo (1944). The framework invokes the same structural equations of the causal

model. It copes with the causal operator of fixing by generating a hypothetical model that

replaces the variable we ought to fix by an exogenous hypothetical variable. The hypothetical

model defined in this fashion has a desired property of independence of the input aim to fix.

Consider the causal model in Table 2. In the language of Heckman and Pinto (2015b),

this represents the empirical model that generates the observed distribution of the data. The

hypothetical model used to examine the causal effect of treatment T is characterised by four

properties:

1. It uses the same autonomous functions fV , fA, fT , fY of the empirical model.

2. It uses the same error terms εV , εA, εT , εY of the empirical model.

3. It appends a variable T̃ which is exogenous, that is to say that it is not caused by any
variable of the system.

4. It replaces the T -input of the skill equation and the outcome equation by the hypo-
thetical variable T̃ .

Standard statistical tools apply to both the empirical and hypothetical models. Table 3

display the hypothetical model using structural equations, a DAG and via the LMCs.

The primary motivation for introducing the hypothetical model is to make statistics

converse with causality. Although the causal operation of fixing is outside statistical realm,

fixing translates to standard statistical conditioning in the hypothetical model. Formally,

let Pe, Ee be the probability and expectation for the empirical model and Ph, Eh for the
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hypothetical model. The probability (or expectation) of the counterfactual outcome in the

empirical model is equal to the probability (or expectation) of the outcome conditioned on

the hypothetical variable in the hypothetical model. For any set of variables W ⊂ T and

any set Y ⊂ supp(Y ), we have that:

Pe(Y (t) ∈ Y|W ) = Eh(Y ∈ Y|T̃ = t,W ) and Ee(Y (t)|W ) = Eh(Y |T̃ = t|W ), (1)

In the example of Table 3, we have that Ee(Y (t)) = Eh(Y |T̃ = t) as well as Ee(Y (t)|A) =

Eh(Y |T̃ = t, A) and Ee(Y (t)|V ) = Eh(Y |T̃ = t, V ).

The hypothetical model is an abstract model derived from the original model that gen-

erates data. Causal parameters are defined as conditional probabilities in the hypothetical

model Ph are said to be identified if they can be expressed in terms of the probabilities of

observed data generated by the empirical model Pe. Thus identification analysis requires

us to connect the hypothetical and the empirical models. Two rules suffice for the study of

identification. For any disjoint set of variables Y,W in T we have that:

Y ⊥⊥ T̃ |(T,W )⇒ Ph(Y |T̃ , T = t′,W ) = Pe(Y |T = t′,W ) (2)

Y ⊥⊥ T |(T̃ ,W )⇒ Ph(Y |T̃ = t, T,W ) = Pe(Y |T = t,W ) (3)

Rules (2)–(3) state that we can migrate from the hypothetical model to the empirical model

whenever we have independence conditions that employ the treatment T and the hypothetical

treatment T̃ , that is, Y ⊥⊥ T̃ |(T,W ) or Y ⊥⊥ T |(T̃ ,W ). Consider the example of Table 3.

The independence relations A ⊥⊥ T |(V, T̃ ) (from the LMC of A) and Y ⊥⊥ T |(A, V, T̃ ) (from

the LMC of A) imply Y ⊥⊥ T |(T̃ , V ).8 According to (3), we have that Eh(Y |T̃ = t, V ) =

Ee(Y |T = t, V ), which is equivalent to stating Ee(Y (t)|V ) = Ee(Y |T = t, V ).

The hypothetical model appends a substantial machinery to the original causal model. A

natural question is whether this additional structure is justified to examine the identification

of a causal model. The simple answer is that the hypothetical model is useful when examining

for causal models that are more complex than our leading example. Section 7 investigates the

8Due to the Graphoid Axiom called contraction.
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mediation model and illustrate how the hypothetical framework can substantially simplify

the identification analysis.

A notable benefit of the hypothetical model is to clarify the concept of causality. The

framework is intuitive. It clearly disentangle each of the tasks of causal analysis in Table 1.

Scientific knowledge is necessary o define the causal model. Causal effects are assessed using

the hypothetical model, which is an abstraction of the causal model that generates data.

The hypothetical model formalizes Frisch motto “Causality is in the Mind”. Finally, the

identification of causal effects require us to connect the hypothetical model that characterise

causal effects with the empirical model that generates the observed data.

The do-Calculus

The do-calculus of Pearl (2009b) is a powerful framework that uses a graphical approach

to examine causality. Its name stems from using the term do(X) = x for fixing a variable

X at a value x ∈ supp(X). The method consists of rules that uses Directed Acyclic Graphs

manipulations to investigate if causal effects are identified.9 The starting point of the do-

calculus is a causal model represented by a DAG. The method consists of three rules. Each

rule combines a graphical condition and a conditional independence relation that, when

satisfied, imply a probability equality. Some notation is necessary to explain these rules.

Let G denotes a DAG that represents the causal model and X,W,Z denote sets of

variables in T . Let Z(W ) be the variables in Z that do not directly or indirectly cause W.

Let GX̄ denotes the DAG that deletes all causal arrows arriving at X in the original DAG

G. GZ is the DAG that deletes all causal arrows emerging from Z. GX,Z deletes all arrows

arriving at X and emerging from Z. GX,Z(W ) deletes all arrows arriving at X in addition

to arrows arriving at Z(W ), namely, arriving at variables in Z that are not ancestors of W.

Now let X, Y, Z,W be any disjoint sets of variables in T . In this notation, the three rules of

9For a recent book on the graphical approach to causality, see Peters et al. (2017), and for related works on
causal discovery, see Glamour et al. (2014), Heckman and Pinto (2015a), Hoyer et al. (2009), and Lopez-Paz
et al. (2017).
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the do-calculus are then can be stated as:

1. if Y ⊥⊥ Z|(X,W ) holds in GX , then P (Y |do(X), Z,W ) = P (Y |do(X),W ),

2. if Y ⊥⊥ Z|(X,W ) holds in GX,Z , then P (Y |do(X), do(Z),W ) = P (Y |do(X), Z,W ),

3. if Y ⊥⊥ Z|(X,W ) holds in GX,Z(W ), then P (Y |do(X), do(Z),W ) = P (Y |do(X),W ),

where X,W denote disjoint sets of variables in T . The process of checking if a causal effect

is identified requires the reiterative use of these rules.

Consider applying the do-calculus in our leading example of Table 2 to show that Y (t) ⊥⊥

T |V holds. In the notation of the do-calculus, the statement is expressed as P (Y |do(T ), V ) =

P (Y |T, V ). Rule 2 is the best candidate to prove the equality. It is useful to rewrite Rule 2 by

setting variable X to nil, Z to T, and W to V. Under this transformations, Rule 2 is restated

as: if Y ⊥⊥ T |V holds in GT , then P (Y |do(T ), V ) = P (Y |T, V ). Table 4 display the DAG GT

and its associated LMC for each of the variables. The LMC for T in the DAG GT generates

T ⊥⊥ (Y,A)|V. Therefore the modified Rule 2 above implies that P (Y |do(T ), V ) = P (Y |T, V )

holds as intended.

Table 4: DAG for the do-calculus

DAG GT LMC

T Y

V A V ⊥⊥ ∅|∅
A ⊥⊥ T |V

T ⊥⊥ (Y,A)|V
Y ⊥⊥ V |(T,A)

A great feet of the do-calculus is that it is complete. This means that the iterative use of

the rules of the do-calculus will always deliver the an identification equation in the case of an

identified counterfactual outcome or it will indicate if the causal parameter is not identified.

The do-calculus differs from the hypothetical framework in several aspects. The first

difference is conceptual, do-calculus employ DAG manipulations that lie outside standard
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probability theory while the hypothetical framework refrains from using machinery outside

probability theory.

Another difference is that the hypothetical framework targets causal links while the

do-calculus focus on variables. Specifically, the hypothetical framework introduces a new

variable T̃ that can replace one, several or all the T -inputs of the model. The do-calculus

fix the variable T itself which comprises all the T -inputs.

A limitation of the do calculus is that it is hermetic in the sense that it is based on rules

that only apply to nonparametric models that can be expressed by a DAG. The identification

stems from the causal relationship among the variables in a model. The do-calculus is not

intended to examine identification assumptions based on functional form restrictions such

as monotonicity conditions, which attains to the form of structural functions instead of the

causal relationship among variables.

5 The Matching Assumption

The most common identification approach is to invoke the matching assumption. It states

that the treatment choice T is independent of counterfactual outcomes Y (t) when condition-

ing on observed matching variables X, that is, Y (t) ⊥⊥ T |X.10 The matching assumption

solves the problem of selection bias comparing (matching) individuals with different treat-

ment statuses that share the same values of baseline characteristics X. The average causal

effect of a binary treatment T ∈ {t0, t1} is identified by a weighted average of the conditional

10In the language of Bayesian Networks of Pearl (2009a), it is said that X d-separates Y (t) and T.
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difference in means between treated and control participants across the values of X :11

E(Y (t1)− Y (t0)) =

∫ (
E(Y (t1)|T = t1, X = x)− E(Y (t0)|T = t0, X = x)

)
dFX(x) (4)

=

∫ (
E(Y |T = t1, X = x)− E(Y |T = t0, X = x)

)
dFX(x) (5)

Our leading example in Table 2 helps to interpret the matching assumption. Unobserved

variable V plays the role of a matching variable. Thus, a natural interpretation of the

matching assumption is that the analyst observes a sufficiently rich set of baseline variables

X that cause Y and T that justify ignoring any remaining unobserved confounders V. The

matching assumption is justified in the case of randomized controlled trials. Variables X are

those used in the randomization protocol and the assumption is assured by the design of the

experiment. On the other hand, the matching assumption is easily criticized in observational

studies (Heckman, 2008; Heckman and Navarro, 2004).

The matching assumption is usually invoked within the PO framework, which suppresses

structural equations. This limitation incites misleading conclusions regarding matching vari-

ables Rubin (2008); Shrier (2008). The simplest causal model that generates the matching

assumption is the one in which X causes T, Y and T causes Y. This induces the researcher

to conclude that the greater the number of matching variables, the greater credibility the

matching assumption. This assessment is wrong.12 Table 5 illustrate a causal model where

conditioning on pre-program variables X induces bias while conditioning on post-treatment

variable K renders Y (t) ⊥⊥ T |K.

The propensity score matching is a celebrated result for the binary choice models. Let

P (X) ≡ P (T = t1|X);T ∈ {t0, t1} be the propensity score, that is, the probability of being

treated given X. Rosenbaum and Rubin (1983) show that if the matching assumption holds

11Heckman et al. (1998) investigate several estimation methods that invoke the matching assumption.
They incorporated additive separability between observable and unobservable variables as well as exogeneity
conditions that isolate outcomes and treatment participation into the matching framework. Additionally,
they compare various types of estimation methods to show that kernel-based matching and propensity score
matching have similar treatment of the variance of the resulting estimator.

12See Pearl (2009c) and Greenland et al. (1999) for examples of causal models where augmenting the set
of matching variables generates bias.
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Table 5: Associated Hypothetical Model

Causal Model DAG Independence Relationships

V = fV (εV )

V

T

W X

K U

Y

J

J = fJ(εJ)
W = fW (εW )
V = fV (εV ) Y (t) ⊥⊥ T |K
T = fT (V,W, εT ) Y (t) �⊥⊥ T |X
K = fK(T, V, εK) Y (t) �⊥⊥ T |(K,X)
U = fU (K, εU )
X = fK(W,J, εX)
Y = fY (T,K,U, J, εY )

for matching variables X, it must also holds for the propensity score P (X) :

Y (t) ⊥⊥ T |X ⇒ Y (t) ⊥⊥ T |P (X). (6)

The major benefit of (6) is to reduce the dimensionality of matching variables X.

Rosenbaum and Rubin (1983) describe the matching model using PO and derive (6) using

a statistical rationale. It is useful to examine the model using the language of structural

equations. The left-side of the Table 6 presents the matching model where X causes T. The

propensity score is a sufficient statistic that fully characterises the distribution of a binary

treatment T . In terms of causal relations, it means that P (X) causes T and is the only

parent of the treatment T. The right-side of the Table 6 displays the propensity score model.

The independence relationship Y (t) ⊥⊥ T |P now arises from the causal relation among the

variables. Using the same DAG, it is easy to see that Rosenbaum and Rubin (1983) result

extends to any sufficient statistics that fully characterise the distribution of T, such as the

λ-parameter in the case of a poison distribution. It is easy to prove that Y (t) ⊥⊥ T |P would

also hold if an exogenous variable (observed or not) were to cause P or T.
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Table 6: The Matching Model and The Propensity Score Matching Model

The Matching Causal Model The Propensity Score Model

T Y

X A

T

P X A

Y

Y (t) ⊥⊥ T |X Y (t) ⊥⊥ T |P (X)

6 Instrumental Variable Model

The instrumental variable (IV) model is a more credible alternative to the matching assump-

tion. The IV model is typically described in terms of the PO framework. The simplest model

consists of three observed variables: an instrumental variable Z that causes a treatment T,

which in turn causes an outcome Y.

The IV model is characterised by three core properties. The exclusion restriction states

that Z only causes outcome Y through T. Notationally, we have that Yi(t, z) = Yi(t, z
′) for

all agents i ∈ I. The IV relevance states that Z is not statistically independent of T, that

is Z �⊥⊥ T. The exogeneity condition states that Z is statistically independent of the choice

and outcome counterfactuals: Z ⊥⊥ (Y (t), T (z)).

The core properties of the IV model are not sufficient to identify causal effects. Ac-

cording to the do-calculus, the model is not identified. However, a vast literature exists on

the additional assumptions to secure identification of the IV model. These identifications

assumptions stem from restrictions on the support, distribution or functional form of the

model variables. These type of restrictions are outside the realm investigated the do-calculus,

which focus only on the causal direction among model variables.

A popular identification assumption in the PO framework is the monotonicity condition

of Imbens and Angrist (1994). The assumption applies to the case of a binary treatment
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T ∈ {0, 1} and states that a change in the instrument may induce agents to change their

treatment choice towards the same direction. Notationally, for any z, z′ ∈ supp(Z), we have

that:

Ti(z) ≥ Ti(z
′)∀i ∈ I or Ti(z) ≤ Ti(z

′)∀i ∈ I (7)

In the case of a binary instrumental variable Z ∈ {z0, z1}, the monotonicity (7) secures the

identification of the Local Average Treatment Effect (LATE), which is the causa effect for

those who switch their choice as the instrument changes: LATE = E(Y (1)− Y (0)|T (z1) 6=

T (z0)).

The PO framework is intuitive, simple and parsimonious. Unfortunately, it offers limited

tools to further explore the properties of the IV model. Its main drawback is that it does not

explicitly defines an unobserved confounding variable that renders the treatment endogenous.

The lack of a confounder prevents the further investigation of the model. It does not precludes

the identification of causal effect, but substantially confines its interpretation, comprehension

and manipulation.

We now describe the same IV model as a SCM. The treatment is endogenous, that is to

say that there exists a confounding variable represented by an unobserved random vector V

that causes T and Y. The instrument is exogenous, which implies that Z ⊥⊥ V . The simplest

causal model using IV is described in Table 8.

Table 7: Instrumental variable Model

Causal Model DAG LMC Counterfactuals

V = fV (εV )
V

T YZ

V ⊥⊥ Z
Z = fZ(εZ) Z ⊥⊥ V
T = fT (Z, V, εT ) T ⊥⊥ −|(Z,V ) T (z) = fT (z, V, εT )
Y = fY (T,V , εY ) Y ⊥⊥ Z|(T,V ) Y (t) = fY (t, V, εY )

The core IV properties arise as consequence of the causal model itself. The exclusion
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restriction Yi(t, z) = Yi(t, z
′) holds because Z does not directly cause Y. The IV relevance

Z �⊥⊥ T holds as Z causes T and the exogeneity condition Z ⊥⊥ (Y (t), T (z)) is a consequence

of the independence of error terms.

Heckman and Pinto (2018) discuss the identification of the IV model with multiple treat-

ments T ∈ {t1, ..., tNT
} and and categorical instrument Z ∈ {z1, ..., zNZ

. A central variable in

their analysis is the response variable S = [T (z1), ..., T (zNZ
)], which stands for unobserved

vector of counterfactual choices across all values in the support of the instrument. The

response variable is a function only of the confounding variable V as T (z) = fT (z,V , εT ).

Thus it does not add any additional information to the model. Nevertheless, S helps to

understand the identification problem. The vectors s ∈ supp(S) that S can take are called

response-types.

Table 8: Instrumental variable Model with a Response Variable

Causal Model DAG LMC Counterfactuals

V = fV (εV )
VS

T YZ

V ⊥⊥ Z
S = fS(V ) S ⊥⊥ Z|V
Z = fZ(εZ) Z ⊥⊥ V
T = fT (Z, V, εT ) T ⊥⊥ −|(Z,V ) T (z) = fT (z, V, εT )
Y = fY (T,V , εY ) Y ⊥⊥ Z|(T,V ) Y (t) = fY (t, V, εY )

Given S, the treatment choice T depends on Z, which is independent of Y (t). Therefore,

we have that Y (t) ⊥⊥ T |S holds. The response variable S can be understood as a balancing

score for V , namely, a coarse transformation of V that maintains the matching property

Y (t) ⊥⊥ T |V . In essence, the identification inquiry consists in evaluating counterfactual

outcome means E(Y (t)|S = s); s ∈ supp(S) from observed outcome means E(Y |T = t, Z =

z); z ∈ supp(Z). An identification problem arises because, without additional assumptions, as

the total number of vectors s ∈ supp(S) grows exponentially in NZ , that is | supp(S)| = NNZ
T ,

while the number of observed outcome mean grows linearly NT ·NZ .
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Table 9: Instrumental variable Model under Monotonicity

Causal Model DAG LMC

V = fV (εV )

VU

T YP (Z)Z

V ⊥⊥ Z
U = fU(V ) ∼ Uni[0, 1] U ⊥⊥ Z|V
Z = fZ(εZ) P (Z) ⊥⊥ V |Z
P (Z) = P (T = t1|Z) Z ⊥⊥ V
T = 1[P (Z) ≥ U ] T ⊥⊥ V |(P (Z), U)
Y = fY (T,V , εY ) Y ⊥⊥ Z|(T,V )

The identification of counterfactual outcomes require assumptions that limit the number

of possible response-types. Consider the case of a binary choice T ∈ {0, 1} where | supp(Z)| =

NZ . There are NZ outcome means E(Y |T = 0, Z = z); z ∈ supp(Z) for the choice T = 0.

However, the total number of possible response-types that contain the choice 0 is N2
Z−1. The

monotonicity assumption 7 enables to eliminate response-types such that the final number

of response-types that contain the choice 0 is precisely NZ . The model is just identified.

Vytlacil (2002) has shown that the monotonicity (7) is equivalent to stating that the

treatment choice T ∈ {0, 1} is governed by a separable equation on Z and V , that is T =

1[φ(Z) ≥ ξ(V )]. This separable equation can be conveniently restated as T = 1[P (Z) ≥ U ]

where P (Z) is the propensity score and U = Fξ(V )(ξ(V )). Moreover, for absolutely continuous

variable V , U has a uniform density in [0, 1], that is U ∼ Uni[0, 1]. The final causal model

is presented in Table 9. In summary, the binary choice IV model under monotonicity can be

equivalently expressed by the causal model of Table 9.

Heckman and Vytlacil (2005) term the causal model in Table 9 as the Generalized Roy

Model. The model delivers far more information than the IV assumption of the PO frame-

work without cost of generality. This is possible because the structural model explicitly

defines an unobserved variable V , which, in turn, enables restating the monotonicity criteria

in terms of the confounding variable. This renders the unobserved variable U, and the sepa-

rability condition. Variable U is particularly useful as it entails a range of novel parameters
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Table 10: Some Causal Parameters as Weighted Average the MTE

Causal Parameters MTE Representation Weights

ATE = E(Y (t1)− Y (t0) =
∫ 1

0 MTE(p)WATE(p)dp WATE(p) = 1

TT = E(Y (t1)− Y (t0)|T = t1) =
∫ 1

0 MTE(p)W TT (p)dp W TT (p) = 1−FP (p)∫ 1
0

(
1−FP (t)

)
dt

TUT = E(Y (t1)− Y (t0)|T = t0) =
∫ 1

0 ∆MTE(p)W TUT (p)dp W TUT (p) = FP (p)∫ 1
0

(
1−FP (t)

)
dt

TSLS = Cov(Y,Z)
Cov(T,Z) =

∫ 1
0 MTE(p)W TSLS(p)dp W TSLS(p) =

∫ 1
p

(
t−E(P )

)
dFP (t)∫ 1

0

(
t−E(P )

)2
dFP (t)

LATE = E(Y |Z=z1)−E(Y |Z=z0)
P (z1)−P (z0) =

∫ P (z1)
P (z0) MTE(p)WLATE(p)dp WLATE(p) = 1

P (z1)−P (z0)

that cannot be studied within the PO framework.

Heckman and Vytlacil (2005) define the marginal treatment effect MTE(p) = E(Y (1)−

Y (0)|U = p), which stands for the causal effect of T on Y for the share of the population

that is indifferent among treatment statuses when U is equal to a value p ∈ [0, 1]. A primary

contribution of Heckman and Vytlacil (2005) is to show that a range of causal parameters can

be expressed as a weighted average of the MTE. A few of those are presented in Table 10.

It is worth remembering that the binary IV model described by the PO and SCM frame-

works is equivalent. Although IV model share the same assumptions in both frameworks, the

power of analysis generated by switching from the PO framework to SCM equations cannot

be overstated. The MTE enables a far richer analysis of the IV properties. It also enables

various extension of the original IV model. For instance, Brinch et al. (2017); Mogstad and

Torgovitsky (2018) overcome the limitation of categorical IVs by extrapolating the MTE

while Mogstad et al. (2018) use the MTE machinery to study sharp bounds of causal pa-

rameters under similar settings.

7 Examining the Mediation Model

The mediation model seeks to decompose the effect of the treatment on the outcome into

sub-components associated to the treatment effects on intermediate variables. It enables the
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researcher to study the sources of the treatment effects. The mediation model goes beyond

the study of “effect of a cause”, as it examines the “causes of the effect” (Gelman and Imbens,

2013).

The mediation model stems from three main observed variables: a treatment T that

causes a mediator M and an outcome Y that is caused by both T and M. The goal is to

identify and quantify each of these causal relations. We suppress baseline variables X for

sake of notational simplicity. All analysis can be understood as conditioned on X.

There are three counterfactuals of interest: Y (t,m) is the counterfactual outcome when

T,M are fixed at (t,m) ∈ supp(T )×supp(M), M(t) is the counterfactual mediator when T is

fixed at t ∈ supp(T ) and Y (t,M(t′)) which stands for the the counterfactual outcome when

T is fixed at t and the mediator is fixed to the counterfactual variable M(t′). Y (t,M(t′))

enables us to disentangle the total effect of the treatment on the outcome into the direct

and indirect effects. The average total effect for the case of binary treatment T ∈ {t0, t1}

is given by E(Y (t1) − Y (t0)). The direct effect, DE(t) = E(Y (t1,M(t)) − Y (t0,M(t))),

accounts for the effect of the treatment while keeping the mediator fixed. The indirect

effect, IE(t) = E(Y (t,M(t1)) − Y (t,M(t0))), is the effect of the treatment that operates

through the mediator.

Table 11 presents a general mediation model. V denotes an unobserved confounding

variable that causes T,M, Y. U is an unobserved post-treatment variable that causes M,Y. It

can be understood as an unobserved mediator. Table 12 illustrates the DAGs corresponding

to the direct, indirect and total effects using the hypothetical framework.
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Table 11: General Mediation Model

Causal Model DAG
V = fV (εV )

V

MT Y

U
T = fT (V , εT )
U = fU(T,V , εU)
M = fM(T,U ,V , εM)
Y = fY (M,U ,V , εY )

Table 12: Hypothetical Models for Direct, Indirect and Total Effects

Direct Effect Indirect Effect Total Effect

VT̃

MT Y

U VT̃

MT Y

U VT̃

MT Y

U

A large literature in PO invoke the Sequential Ignorability Assumption of Imai et al.

(2010) to identify the direct and indirect effects f the mediation model. The assumption is

displayed in (8).13 (
Y (t′,m),M(t),

)
⊥⊥ T, (8)

Y (t′,m) ⊥⊥M(t)|T, (9)

It is easy to show that, under Sequential Ignorability (8)–(9), the distributions of counterfac-

tual variables are identified by P (Y (t,m)) = P (Y |T = t,M = m) and P (M(t)) = P (M |T =

t) and thereby the mediating causal effects can be expressed as:

DE(t) =

∫ (
E(Y |T = t1,M = m)− E(Y |T = t0,M = m)

)
dFM |T=t(m) (10)

IE(t) =

∫
E(Y |T = t,M = m)dFM |T=t1(m)−

∫
E(Y |T = t,M = m)dFM |T=t0(m). (11)

Assumptions (8)-(9) are rather strong. The first independence relationship is a matching-

type assumption stating that the treatment is as good as random. The second relationship

13See Imai et al. (2011) for a comprehensive discussion on the Assumption (8).
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assumes no confounders between Y and M. Assumption (8) would arise if the treatment T

were randomly assigned. Assumption (9), on the other hand, does not arise even when T

and M are a fully randomized. None of those assumptions are testable.

Table 13 compares the DAGs of the general causal model and the causal model induced by

the sequential ignorability (8). The assumptions eliminates the unobserved variable V and

implies that U does not cause M. Otherwise stated, sequential ignorability (8) assumes that

there are no confounding variables and that given a treatment T , all unobserved mediators

are independent of the observed mediator M.

Table 13: General Mediation Model

General Mediation Model Sequential Ignorability

V

MT Y

U

MT Y

U

Finding palatable assumptions that identify the mediation model is not a simple task.

The advent of an instrumental variable helps. The mediator model can arise from a standard

IV model. A typical empirical setting of an IV model consists of a treatment, an instrumental

variable and multiple outcomes. An intermediate outcome can play the role of a mediator

variable that causes a final outcome.

Table 16 presents the general mediation model with a categorical instrumental vari-

able Z. The DAG displays the unobserved response-variable S that plays the role of a

balancing score for the unobserved confounding variable V . As mentioned, the inclusion

of response-variable S does not incur in loss of generality. The sub-model generated by

variables Z, T,S,V ,M consists on the same IV model displayed in Table 8. Thus the IV

properties Z ⊥⊥ (M(t), T (z)) and T ⊥⊥M(t)|S hold. The sub-model generated by variables

Z, T,S,V , Y is also an IV model where properties Z ⊥⊥ (Y (t), T (z)) and T ⊥⊥ Y (t)|S hold.
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Indeed, M and Y can be interpreted as outcomes of a standard IV model and Z can be used

to identify the causal effect of T on M and the total effect of T on Y. The main challenge to

identify mediation effects if to identify the causal effect of M on Y.

Table 14: General Mediation Model with IV

Structural Equations General DAG with IV
V = fV (εV )

VS

MTZ Y

UZ = fZ(εZ)
S = fS(V ) = [T (z1), ..., T (zNZ

)]′

T = fT (S, Z)
U = fU(T,V , εU)
M = fM(T,U ,V , εM)
Y = fY (M,U ,V , εY )

Yamamoto (2013) proposes an interesting solution to identify mediation effects using

instrumental variables. He investigates the mediation model with a binary treatment and

a binary instrument. He uses the PO framework to offer an identification assumption that

combines the sequential ignorability (8) with LATE analysis of Imbens and Angrist (1994).

Let T ∈ {0, 1} and S = [T (z0), T (z1)]′ be the response variable. The response-type sc =

[0, 1]′ denotes the compliers, who chose treatment assigned to z1 and control otherwise.

Yamamoto (2013) invokes an identification assumption termed local average causal mediation

effects (LACME). In our notation, his assumption can be stated as:

(Y (t,m),M(t′)) ⊥⊥ T |(S = sc), (12)

Y (t,m) ⊥⊥M(t′)|(T,S = sc). (13)

Assumptions (12)–(13) differ from (8)-(9) only by conditioning on S. Assumption (12) is

an extension of the IV-model property Y (t) ⊥⊥ T |S. Yamamoto (2013) shows that the

monotonicity assumption (7) identifies the direct and indirect mediation effects for compliers.

Yamamoto (2013) is best understood as a clever combination of the sequential ignorability

assumption with the PO properties of the IV model. It is relatively easy to comprehend the
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rationale of merging two PO assumptions. It is much harder to figure out the causal relations

implied by merging these assumptions. The task of assessing the causal model generated

by assumptions (12)–(13) is not trivial. The difficulty in translating PO assumptions into

causal relation between model variables impairs our ability to judge the plausibility of the

assumptions.

Table 15 compares the general mediation model with IV with the mediation model in-

duced by assumptions (12)–(13). The key property of the mediation model generated by

(12)–(13) is that the response variable S plays the role of the unobserved confounding vari-

able for the causal relation between Y and M. Otherwise stated, S subsumes the role of V

and U and becomes a matching variable for the causal relation M → Y. The assumptions

prevent V to cause M,Y and imply that S directly causes M,Y. Although we can assume

that S causes T without loss of generality, there is no justification for S to cause M and Y.

Table 15: General Mediation Model under LACME Assumption

General DAG with IV DAG under LACME

VS

MTZ Y

U VS

MTZ Y

U

The second DAG in Table 15 illustrates the danger of seeking identification strategies

using the PO framework. Namely, the PO framework relies on independence assumptions

instead of causal relations. The framework can induce the researcher to generate assumptions

that are statistically sound but often hard to be interpreted. These assumptions can easily

induce a causal model that is seldom justifiable.

Dippel et al. (2020) investigate whether it is possible to identify mediation effects amongst

outcomes in a standard IV model without revoking the endogeneity of the treatment with

respect to intermediate and final outcomes. They show that mediation effects can be iden-

29



tified when the IV model is partially confounded, i.e. the unobserved confounding variables

that cause the treatment and the intermediate outcome are independent of the confounders

that cause the intermediate and final outcomes. Their model is displayed in Table ??.

Table 16: Partially Confounded Mediation Model

Structural Equations DAG
Z = fZ(εZ)

VT

T M Y

U

Z

VY
VT = fVT (εVT )
VY = fVY (εVY )
Z = fZ(εZ)
T = fT (Z, VT )
U = fU(T, εU)
M = fM(T, VT , VY , εM)
Y = fY (M,U, VY , εY )

The partially confounded model preserves the endogenous properties of the IV model.

That is to say that T remains endogenous with respect to Y,M and M is endogenous with

respect to Y. Standard properties of the instrumental variable imply that Z ⊥⊥ (Y (t),M(t))

holds. The novel condition generated by the model is Z ⊥⊥ Y (m)|T. In other words, the

instrumental variable Z can be used to identify the causal effect of M on Y when conditioning

on T. While Z ⊥⊥ Y (m)|T holds, Z ⊥⊥ Y (m) does not. The relationship arises from the

fact that T is caused by both Z and VT . The unobserved confounder VT and the observed

instrument Z are unconditionally statistically independent. However, conditioning on T

induces a correlation between Z and VT , though VT causes M and does not (directly) cause

Y. Therefore, conditioned on T, Z affects M (via VT ) and does not affect Y by any channel

other than M.

The partially confounded splits the unobserved counfounding variable V into two statis-

tically independent variables: VT that causes T,M ; and VY that causes M,Y. The model

does not broadly applies to IV settings with multiple outcomes. Dippel et al. (2020) clarify

the type of empirical settings that justify the use of the model and those which do not.
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8 Beyond Mediation

[Not Finished Yet]

9 Conclusion

This paper presents the key concepts regarding econometric causality and discusses the ben-

efits and limitations of several causal frameworks. This paper clarifies that causal inference

is based on three distinguish tasks: the adoption of a causal model, the identification anal-

ysis and the estimation of causal parameters. It revisits the seminal ideas of Frisch (1930);

Haavelmo (1944) who describe a causal model by a system of autonomous equations. Coun-

terfactuals are generated by fixing, which is a causal operator that assigns values to the

inputs of structural equations associated to the variable. Fixing is a primary concept in

causal analysis as it embodies the concept of causal direction.

Fixing is ill-defined in standard probability theory, which lacks directionality. This fact

motivates the existence of several causal frameworks that combine causal concepts with

probability and statistics. This paper uses popular causal models in the literature of policy

evaluation to compare the benefits and drawbacks of causal frameworks.

A popular framework is the language of potential outcomes (PO), also known as the

Rubin-Holland model. The framework suppresses the structural equations of the underlying

causal model that generates the distribution of observed variables. Instead, the framework

simply describes the properties of the causal model in terms of statistical independence rela-

tionships among the counterfactuals of observed variables. The trade-off between simplicity

and accuracy poses a few limitations on causal analysis. The lack of structural equations

harms the interpretation of the underlying causal models that justifies the identification

assumptions commonly invoked in the PO framework. Lack of structural equations can gen-

erated misguided conclusions regarding the underlying causal model. We illustrate this fact
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using the matching assumption.

Another drawback of the framework is that it does not assess unobserved variables.

Counterfactual outcomes are only based on observed variables. This fact poses a great

limitation in advancing the understanding of a causal model. We clarify this fact using the

instrumental variable model. We also show that recovering the underlying causal model

based on a set of independence relationship is a complex task. The PO framework invokes

independence relationships that often obscures strong causal assumptions that would be

clearly understood if the causal model were described by structural equations.

The hypothetical framework copes with the concept of fixing by generating a hypothet-

ical model where the treatment variable has de desired property of being exogenous. The

framework clearly formalises the key concepts of causal inference. It makes probability con-

verse with causality as the causal operator of fixing becomes the statistical conditioning in

the hypothetical model. It also makes a clear distinction between the definition of causal

parameters and its identification from observed data.

The gain in clarity of the hypothetical framework comes at a cost of additional structure.

The framework not only invokes the structural equations that describe a causal model, but

generates an additional (hypothetical) model that stems from the empirical causal model

that generates the observed data. The framework requires rules that connect hypothetical

an empirical models. We illustrate that this additional structure is justified when examining

causal models with a complex causal relation among observed and unobserved variables.

The do-calculus requires definition of new graphical/statistical rules outside of standard

probability theory. These are not needed when the hypothetical model is used, which leads

to a simpler and less cumbersome approach. We illustrate this fact e limitations of the

do-calculus in analyzing the instrumental variable model. It is identified under standard

conditions. It is not identified using the do-calculus.

Pearl’s framework cannot accommodate the fundamentally non-recursive simultaneous

equations model. The hypothetical model readily accommodates an analysis of causality
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in the simultaneous equations model. The framework of simultaneous equations is fun-

damentally non-recursive and falls outside of the framework of Bayesian causal nets and

DAGs. The rigorous definition of causality in a variety of models including the simultaneous

equations framework and the identification of causal parameters, are central and enduring

contributions of Haavelmo (1944).
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