IV Weights and Yitzhaki's Theorem

James J. Heckman University of Chicago

Econ 312, Spring 2021

Digression: Yitzhaki's theorem and extensions

Theorem 1

Assume
$$(Y, X)$$
 i.i.d. $E(|Y|) < \infty$ $E(|X|) < \infty$

$$\mu_Y = E(Y)$$
 $\mu_X = E(X)$

$$E(Y \mid X) = g(X)$$

Assume $g'(X)$ exists and $E(|g'(X)|) < \infty$.

Yitzhaki's theorem

Theorem 2 (cont.)

Then,

$$\frac{\operatorname{Cov}(Y,X)}{\operatorname{Var}(X)} = \int_{-\infty}^{\infty} g'(t) \,\omega(t) \,dt,$$

where

$$\omega(t) = \frac{1}{Var(X)} \int_{t}^{\infty} (x - \mu_{X}) f_{X}(x) dx$$
$$= \frac{1}{Var(X)} E(X - \mu_{X} \mid X > t) \Pr(X > t).$$

$$Y = \pi X + \eta,$$

$$\pi = \frac{\mathsf{Cov}(Y, X)}{\mathsf{Var}(X)}.$$

Heckman

Proof of Yitzhaki's theorem

Proof.

$$Cov(Y,X) = Cov(E(Y | X),X) = Cov(g(X),X)$$
$$= \int_{-\infty}^{\infty} g(t)(t - \mu_X) f_X(t) dt$$

where t is an argument of integration.

Integration by parts:

$$Cov(Y,X) = g(t) \int_{-\infty}^{t} (x - \mu_X) f_X(x) dx \Big|_{-\infty}^{\infty}$$

$$- \int_{-\infty}^{\infty} g'(t) \int_{-\infty}^{t} (x - \mu_X) f_X(x) dx dt$$

$$= \int_{-\infty}^{\infty} g'(t) \int_{t}^{\infty} (x - \mu_X) f_X(x) dx dt,$$
since $E(X - \mu_X) = 0$.

Heckman

Therefore,

$$\mathsf{Cov}(Y,X) = \int_{-\infty}^{\infty} g'(t) \, E\left(X - \mu_X \mid X > t\right) \mathsf{Pr}\left(X > t\right) \, dt.$$

· Result follows with

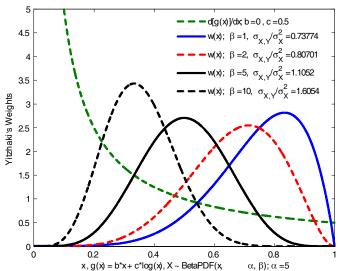
$$\omega(t) = \frac{1}{Var(X)} E(X - \mu_X \mid X > t) \Pr(X > t)$$

- Weights positive.
- Integrate to one (use integration by parts formula).
- = 0 when $t \to \infty$ and $t \to -\infty$.
- Weight reaches its peak at $t = \mu_X$, if f_X has density at $x = \mu_X$:

$$\frac{d}{dt} \int_{t}^{\infty} (x - \mu_X) f_X(x) dx dt = -(t - \mu_X) f_X(t)$$

$$= 0 \text{ at } t = \mu_X.$$

Yitzhaki's weights for $X \sim \text{BetaPDF}(x, \alpha, \beta)$



$$E(Y|X = x) = g(x) \Rightarrow \frac{Cov(X, Y)}{Var(X)} = \int_{-\infty}^{\infty} g'(t)w(t)dx$$

$$w(t) = \frac{1}{Var(X)}E(X|X > t) \cdot Pr(X > t)$$

$$\mathbf{X} \sim BetaPDF(x, \alpha, \beta) = \frac{x^{\alpha - 1}(1 - x)^{\beta - 1}}{B(\alpha, \beta)}; \ \alpha = 5;$$

$$\mathbf{g}(\mathbf{x}) = \mathbf{0.5} \cdot \mathbf{x} + \mathbf{0.5} \cdot \log(\mathbf{X})$$

Can apply Yitzhaki's analysis to the treatment effect model

$$Y = \alpha + \beta D + \varepsilon$$

• P(Z), the propensity score is the instrument:

$$E(Y \mid Z = z) = E(Y \mid P(Z) = p)$$

$$E(Y \mid P(Z) = p) = \alpha + E(\beta D \mid P(Z) = p)$$

$$= \alpha + E(\beta \mid D = 1, P(Z) = p) p$$

$$= \alpha + E(\beta \mid P(Z) > U_D, P(Z) = p) p$$

$$= \alpha + E(\beta \mid p > U_D) p$$

$$= \alpha + \underbrace{\int \beta \int_0^p f(\beta, u_D) du_D}_{g(p)}$$

- Derivative with respect to p is MTE.
- g'(p) = MTE and weights as before.

Under uniformity,

$$\frac{\partial E(Y \mid P(Z) = p)}{\partial p} = E(Y_1 - Y_0 \mid U_D = u_D)$$
$$= \Delta^{MTE}(u_D).$$

- More generally, it is LIV = $\frac{\partial E(Y|P(Z)=p)}{\partial p}$.
- Yitzhaki's result does not rely on uniformity; true of any regression of Y on P.
- Estimates a weighted net effect.
- The expression can be generalized.
- It produces Heckman-Vytlacil weights.

The Heckman-Vytlacil weight as a Yitzhaki weight

Consider a general function of Z, J(Z).

Proof.

$$Cov(J(Z), Y) = E(Y \cdot \widetilde{J}) = E(E(Y \mid Z) \cdot \widetilde{J}(Z))$$

$$= E(E(Y \mid P(Z)) \cdot \widetilde{J}(Z))$$

$$= E(g(P(Z)) \cdot \widetilde{J}(Z)).$$

$$\widetilde{J} = J(Z) - E(J(Z) \mid P(Z) \ge u_D),$$

$$E(Y \mid P(Z)) = g(P(Z)).$$

$$Cov(J(Z), Y) = \int_{0}^{1} \int_{\underline{J}}^{\overline{J}} g(u_{D}) \widetilde{j} f_{P,J}(u_{D}, j) dj du_{D}$$
$$= \int_{0}^{1} g(u_{D}) \int_{J}^{\overline{J}} \widetilde{j} f_{P,J}(u_{D}, j) dj du_{D}.$$

Use integration by parts:

$$\begin{aligned} &\operatorname{Cov}\left(J\left(Z\right),Y\right) \\ &= g\left(u_{D}\right) \int_{0}^{u_{D}} \int_{\underline{J}}^{\overline{J}} \widetilde{j} f_{P,J}\left(p,j\right) \, \mathrm{d}j \mathrm{d}p \bigg|_{0}^{1} \\ &- \int_{0}^{1} g'\left(u_{D}\right) \int_{0}^{u_{D}} \int_{\underline{J}}^{\overline{J}} \widetilde{j} f_{P,J}\left(p,j\right) \, \mathrm{d}j \mathrm{d}p \mathrm{d}u_{D} \\ &= \int_{0}^{1} g'\left(u_{D}\right) \int_{u_{D}}^{1} \int_{\underline{J}}^{\overline{J}} \widetilde{j} f_{P,J}\left(p,j\right) \, \mathrm{d}j \mathrm{d}p \mathrm{d}u_{D} \\ &= \int_{0}^{1} g'\left(u_{D}\right) E\left(\widetilde{J}(Z) \mid P\left(Z\right) \geq u_{D}\right) \Pr\left(P\left(Z\right) \geq u_{D}\right) \, \mathrm{d}u_{D}. \end{aligned}$$

Heckman

Thus:

$$g'(u_D) = \frac{\partial E(Y \mid P(Z) = p)}{\partial P(Z)} \bigg|_{p=u_D} = \Delta^{\mathsf{MTE}}(u_D).$$

 Under our assumptions the Yitzhaki weights and ours are equivalent.

$$\operatorname{Cov}(J(Z), Y) \qquad (1)$$

$$= \int_0^1 \Delta^{\mathsf{MTE}}(u_D) E(J(Z) - E(J(Z)) | P(Z) \ge u_D) \operatorname{Pr}(P(Z) \ge u_D) du_D.$$

• Using (1),

$$Cov(J(Z), Y) = E(Y \cdot \tilde{J}) = E(E(Y \mid Z) \cdot \tilde{J}(Z))$$
$$= E(E(Y \mid P(Z)) \cdot \tilde{J}(Z))$$
$$= E(g(P(Z)) \cdot \tilde{J}(Z)).$$

- The third equality follows from index sufficiency and $\tilde{J} = J(Z) E(J(Z) \mid P(Z) \ge u_D)$, where $E(Y \mid P(Z)) = g(P(Z))$.
- Writing out the expectation and assuming that J(Z) and P(Z) are continuous random variables with joint density $f_{P,J}$ and that J(Z) has support $[\underline{J}, \overline{J}]$,

$$Cov(J(Z), Y) = \int_{0}^{1} \int_{\underline{J}}^{\overline{J}} g(u_{D}) \tilde{j} f_{P,J}(u_{D}, j) \, \mathrm{d}j \mathrm{d}u_{D}$$
$$= \int_{0}^{1} g(u_{D}) \int_{J}^{\overline{J}} \tilde{j} f_{P,J}(u_{D}, j) \, \mathrm{d}j \mathrm{d}u_{D}.$$

 Using an integration by parts argument as in Yitzhaki (1989) and as summarized in Heckman, Urzua, Vytlacil (2006), we obtain

$$\begin{aligned} &\operatorname{Cov}\left(J\left(Z\right),Y\right) \\ &= g\left(u_{D}\right) \int_{0}^{u_{D}} \int_{\underline{J}}^{\overline{J}} \tilde{j} f_{P,J}\left(p,j\right) \, \mathrm{d}j \mathrm{d}p \Bigg|_{0}^{1} \\ &- \int_{0}^{1} g'\left(u_{D}\right) \int_{0}^{u_{D}} \int_{\underline{J}}^{\overline{J}} \tilde{j} f_{P,J}\left(p,j\right) \, \, \mathrm{d}j \mathrm{d}p \mathrm{d}u_{D} \\ &= \int_{0}^{1} g'\left(u_{D}\right) \int_{u_{D}}^{1} \int_{\underline{J}}^{\overline{J}} \tilde{j} f_{P,J}\left(p,j\right) \, \mathrm{d}j \mathrm{d}p \mathrm{d}u_{D} \\ &= \int_{0}^{1} g'\left(u_{D}\right) E\left(\tilde{J}(Z) \mid P\left(Z\right) \geq u_{D}\right) \Pr\left(P\left(Z\right) \geq u_{D}\right) \, \mathrm{d}u_{D}, \end{aligned}$$

which is then exactly the expression given in (1), where

$$g'(u_D) = \frac{\partial E(Y \mid P(Z) = p)}{\partial P(Z)} \bigg|_{p=u_D} = \Delta^{\mathsf{MTE}}(u_D).$$
The UNIVERSITY OF CHICAGO

Separable choice model

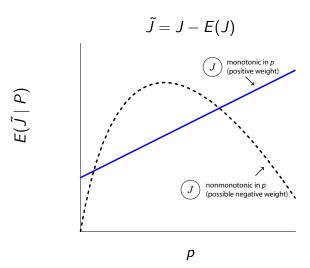
$$\Delta_J^{IV} = \int_0^1 \Delta^{MTE} \left(u_D \right) \, \omega_{IV}^J \left(u_D \right) \, du_D \tag{2}$$

$$\omega_{IV}^{J}(u_D) = \frac{E\left(J(Z) - \overline{J}(Z) \mid P(Z) > u_D\right) \Pr\left(P(Z) > u_D\right)}{\operatorname{Cov}\left(J(Z), D\right)}.$$
 (3)

J(Z) and P(Z) do not have to be continuous random variables.

Functional forms of P(Z) and J(Z) are general.

- Dependence between J(Z) and P(Z) gives shape and sign to the weights.
- If J(Z) = P(Z), then weights obviously non-negative.
- If $E(J(Z) \bar{J}(Z) \mid P(Z) \ge u_D)$ not monotonic in u_D , weights can be negative.



Therefore, with positive (or negative) regression, can get negative IV weight.

When J(Z) = P(Z), weight (3) follows from Yitzhaki (1989).

- He considers a regression function $E(Y \mid P(Z) = p)$.
- Linear regression of Y on P identifies

$$\beta_{Y,P} = \int_{0}^{1} \left[\frac{\partial E(Y \mid P(Z) = p)}{\partial p} \right] \omega(p) dp,$$

$$\omega(p) = \frac{\int_{P}^{1} (t - E(P)) dF_{P}(t)}{Var(P)}.$$

- This is the weight (3) when *P* is the instrument.
- This expression **does not** require uniformity or monotonicity for the model; consistent with 2-way flows.

Understanding the structure of the IV weights

Recapitulate:

$$\Delta_{\text{IV}}^{J} = \int \Delta^{\text{MTE}}(u_D) \, \omega_{\text{IV}}^{J}(u_D) \, du_D$$

$$\omega_{\text{IV}}^{J}(u_D) = \frac{\int (j - E(J(Z))) \int_{u_D}^{1} f_{J,P}(j,t) \, dt \, dj}{Cov(J(Z),D)}$$
(4)

- The weights are always positive if J(Z) is monotonic in the scalar Z.
- In this case J(Z) and P(Z) have the same distribution and $f_{J,P}(j,t)$ collapses to a single distribution.

- The possibility of negative weights arises when J(Z) is not a monotonic function of P(Z).
- It can also arise when there are two or more instruments, and the analyst computes estimates with only one instrument or a combination of the Z instruments that is not a monotonic fuction of P(Z) so that J(Z) and P(Z) are not perfectly dependent.

- The weights can be constructed from data on (J, P, D).
- Data on (J(Z), P(Z)) pairs and (J(Z), D) pairs (for each X value) are all that is required.

