Evaluating Public Programs with Close Substitutes: The Case of Head Start

Patrick Kline Christopher Walters

UC Berkeley and NBER, November 2016

James J. Heckman

Econ 312, Spring 2021

Motivation

- Many government programs provide services that can also be obtained via markets or other public organizations
 - "Substitution bias" in experiments (Heckman et al., 2000)
- Possible causal estimands of interest:
 - Effect of a program offer (ITT)
 - Effect relative to participants' next best alternative (LATE)
 - Effect relative to no program
- Which of these (if any) to use in policy evaluation?

The Case of Head Start

- Head Start (HS): Publicly-funded preschool for disadvantaged children. Largest public early childhood program in the US
- Many close public and private substitutes (state pre-K, private preschool)
- Literature evaluating impact of HS on test scores finds mixed results:
 - Observational studies based on sibling designs find large persistent impacts (Currie and Thomas, 1995; Garces et al., 2002; Deming, 2009)
 - Experimental evaluation based on lotteries, the Head Start Impact Study (HSIS), finds small impacts that fade out (Puma et al, 2010; Barnett, 2011)

Media Reaction

This Paper

Revisit HSIS results in view of wide availability of substitute preschools

Key facts:

- 1/3 of HSIS control group attended other preschools
 - Fraction increased after first year of experiment
- Most of these preschools were publicly funded

Cost-Benefit Analysis

 Basic cost-benefit analysis: would it pay off to admit an extra person into Head Start?

Cost-Benefit Analysis

- Basic cost-benefit analysis: would it pay off to admit an extra person into Head Start?
- Toy model: focus on a single benefit (earnings) and compare to impact on government budget
 - When market for preschool substitutes clears:
 - IV-LATE is policy-relevant benefit
 - But costs need to be adjusted for "fiscal externalities"
 - When substitutes are rationed: LATE is not enough

Cost-Benefit Analysis

- Basic cost-benefit analysis: would it pay off to admit an extra person into Head Start?
- Toy model: focus on a single benefit (earnings) and compare to impact on government budget
 - When market for preschool substitutes clears:
 - IV-LATE is policy-relevant benefit
 - But costs need to be adjusted for "fiscal externalities"
 - When substitutes are rationed: LATE is not enough
- Empirical analysis:
 - ullet PDV projected earnings impacts \sim HS enrollment costs
 - But accounting for public savings ⇒ Benefits > Costs
 - With rationing: Benefits ≫ Costs

Technology vs Market Structure

- Develop selection model parameterizing heterogeneity in effects of Head Start vs home care / other preschools
 - Identify using interactions of experimental status with household and site characteristics
 - Decompose LATE into "subLATE's" with respect to particular alternatives
 - Predict effects of changing selection into the program

Technology vs Market Structure

- Develop selection model parameterizing heterogeneity in effects of Head Start vs home care / other preschools
 - Identify using interactions of experimental status with household and site characteristics
 - Decompose LATE into "subLATE's" with respect to particular alternatives
 - Predict effects of changing selection into the program

Findings:

- Head Start and other preschools have roughly equivalent average impacts on test scores relative to home care
- "Reverse-Roy" selection: those with lowest gains most likely to participate
- Rate of return can be raised further by drawing in new populations

Outline

- The HSIS Experiment
 - Experimental Impacts
 - Characterizing Compliers
- Model
 - Scaling up randomly
 - Reforms to program features
- Cost-Benefit Estimates
- Selection Model
 - Identification
 - Estimation / Inference
- 6 Results
- 6 Concluding thoughts

Background on Head Start

- Enrolls one million 3- and 4- year-olds at a cost of \$8 billion per year
- Grants awarded to public, private non-profit, and for-profit organizations
- Eligibility: 100% of FPL, with some exceptions
- Competing center-based care programs are ubiquitous:
 - State preschool programs
 - TANF
 - Child Care Development Fund (CCDF)

The Head Start Impact Study

- 1998 Head Start reauthorization included a mandate to determine program's effects: resulted in the HSIS, a large-scale randomized trial
- Stratified random sample of Head Start centers
 - Baseline randomization in Fall 2002
 - Two age cohorts: 55% age 3, 45% age 4
- We focus on summary index of cognitive outcomes based upon average of PPVT and WJ III test scores
 - Normed to have mean zero, std dev. one in control group each year

	Non-offered mean	Offer differential	
Variable	(1)	(2)	
Black	0.298	0.010	_
		(0.010)	

Hispanic

Mother is high school dropout

Mother attended some college

Test language is not English

Income (fraction of FPL)*

Age 4 cohort

Baseline test scores

Joint p-value

0.298	
0.369	

0.397

0.281

0.239

0.896

0.451

0.012

Ν

Table 1: Descriptive Statistics

0.007

(0.010)

-0.029

(0.017)

0.017

(0.016)

0.016

(0.011)

0.000

(0.024)

-0.003

(0.012)

-0.009

0.268

3571

*Household income is missing for 19 percent of observations. Missing values are excluded in statistics for income.

By preschool choice

Other centers

(4)

0.353

0.354

0.322

0.342

0.223

0.983

0.567

0.106

598

No preschool

(5)

0.250

0.373

0.426

0.253

0.231

0.851

0.413

-0.040

930

Head Start

(3)

0.317

0.380

0.377

0.293

0.268

0.892

0.426

-0.001

2043

By offer status

	_	3-year-olds	4-year-olds (2)	Pooled (3)	3-year-olds (4)	4-year-olds (5)	Pooled (6)	-
Year 1	Ī	0.194	0.141	0.168	0.278	0.213	0.247	_
		(0.029)	(0.029)	(0.021)	(0.041)	(0.044)	(0.031)	
	N	1970	1601	3571	1970	1601	3571	

(0.024)

3176

0.245

(0.080)

1760

Instrumental variables

-0.022

(0.054)

1416

0.093

(0.049)

3176

	(1)	(2)	(3)	(+)	(3)	(0)
Year 1	0.194	0.141	0.168	0.278	0.213	0.247
	(0.029)	(0.029)	(0.021)	(0.041)	(0.044)	(0.031)

Table 2: Experimental Impacts on Test Scores

Intent-to-treat

-0.015

(0.037)

1416

Year 2

0.087

(0.029)

1760

Ν

			Offered			Other center		
		Head Start	Other centers	No preschool	Head Start	Other centers	No preschool	complier share
Cohort	Time period	(1)	(2)	(3)	(4)	(5)	(6)	(7)
3-year-olds	Year 1	0.851	0.058	0.092	0.147	0.256	0.597	0.282
	Year 2	0.657	0.262	0.081	0.494	0.379	0.127	0.719

0.122

0.386

0.492

4-year-olds

Year 1

0.787

0.114

Table 3: Preschool Choices by Year, Cohort, and Offer Status

		3-year-oras	4-year-olas	1 00100	J-y cui-oius	4-year-olas	1 oolea	
		(1)	(2)	(3)	(4)	(5)	(6)	
Year 1		0.194	0.141	0.168	0.278	0.213	0.247	Ì
		(0.029)	(0.029)	(0.021)	(0.041)	(0.044)	(0.031)	l
	N	1970	1601	3571	1970	1601	3571	١

(0.024)

3176

Pooled

Instrumental variables

4-year-olds

-0.022

(0.054)

1416

Pooled

0.093

(0.049)

3176

3-vear-olds

0.245

(0.080)

1760

Table 2: Experimental Impacts on Test Scores

Intent-to-treat

4-vear-olds

-0.015

(0.037)

1416

3-vear-olds

0.087

(0.029)

1760

N

Year 2

			Offered		Not offered			Other center
		Head Start	Other centers	No preschool	Head Start	Other centers	No preschool	complier share
Cohort	Time period	(1)	(2)	(3)	(4)	(5)	(6)	(7)
3-year-olds	Year 1	0.851	0.058	0.092	0.147	0.256	0.597	0.282
	Year 2	0.657	0.262	0.081	0.494	0.379	0.127	0.719

0.386

0.492

0.122

0.114

0.787

4-year-olds

Year 1

Table 3: Preschool Choices by Year, Cohort, and Offer Status

		3-year-olds	4-year-olds	Pooled	3-year-olds	4-year-olds	Pooled	
		(1)	(2)	(3)	(4)	(5)	(6)	
Year 1		0.194	0.141	0.168	0.278	0.213	0.247	
		(0.029)	(0.029)	(0.021)	(0.041)	(0.044)	(0.031)	
	N	1970	1601	3571	1970	1601	3571	

(0.024)

3176

0.245

(0.080)

1760

Year 1		0.194	0.141	0.168	0.278	0.213	0.247
		(0.029)	(0.029)	(0.021)	(0.041)	(0.044)	(0.031)
	N	1070	1601	2571	1970	1601	2571

Table 2: Experimental Impacts on Test Scores

Intent-to-treat

-0.015

(0.037)

1416

Year 2

N

0.087

(0.029)

1760

Instrumental variables

-0.022

(0.054)

1416

0.093

(0.049)

3176

	_	3-year-olds	4-year-olds	Pooled	3-year-olds	4-year-olds	Pooled
		(1)	(2)	(3)	(4)	(5)	(6)
Year 3	T	-0.010	0.054	0.019	-0.027	0.081	0.038
		(0.031)	(0.040)	(0.025)	(0.085)	(0.060)	(0.050)
-	N	1659	1336	2995	1659	1336	2995

Instrumental variables

0.110

(0.098)

1599

Table 2: Experimental Impacts on Test Scores

Intent-to-treat

0.038

(0.034)

1599

Ν

Year 4

1659 1336 2995 1659 1336

		3-year-olds	4-year-olds	Pooled	3-year-olds	4-year-olds	Pooled	
		(1)	(2)	(3)	(4)	(5)	(6)	
Year 3		-0.010	0.054	0.019	-0.027	0.081	0.038	
		(0.031)	(0.040)	(0.025)	(0.085)	(0.060)	(0.050)	
	NΤ	1650	1226	2005	1650	1226	2005	

Instrumental variables

0.110

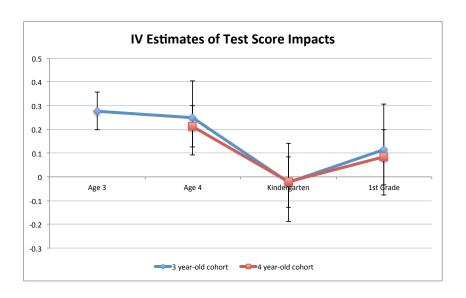
(0.098)

1599

Table 2: Experimental Impacts on Test Scores

Intent-to-treat

0.038


(0.034)

1599

Ν

Year 4

100		0.010	0.00.	0.017	0.027	0.001	0.050
		(0.031)	(0.040)	(0.025)	(0.085)	(0.060)	(0.050)
	N	1659	1336	2995	1659	1336	2995

- How does the presence of substitute preschools affect interpretation of the IV results?
- Care environment abbreviations:
 - h Head Start,
 - c other preschool center
 - *n* no preschool (home care)
- $D_i(z): \{0,1\} \to \{h,c,n\}$ gives child *i*'s care environment as a function of experimental offer status z
- Revealed preference restriction on behavioral response to offer:

$$D_i(1) \neq D_i(0) \implies D_i(1) = h$$

$$D_i(1) \neq D_i(0) \implies D_i(1) = h$$

Five "compliance groups" of children:

- **1** *c*-compliers: $D_i(1) = h$, $D_i(0) = c$
- ② *n*-compliers: $D_i(1) = h$, $D_i(0) = n$
- **3** c-never takers: $D_i(1) = D_i(0) = c$
- *n*-never takers: $D_i(1) = D_i(0) = n$
- \bullet always takers: $D_i(1) = D_i(0) = h$

• Potential test scores under each alternative: $\{Y_i(h), Y_i(c), Y_i(n)\}$

- Potential test scores under each alternative: $\{Y_i(h), Y_i(c), Y_i(n)\}$
- IV identifies a weighted average of effects on n- and c- compliers:

$$LATE_h = E\left[Y_i(h) - Y_i(D_i(0))|D_i(1) = h, D_i(0) \neq h\right]$$

= $S_c LATE_{ch} + (1 - S_c) LATE_{nh}$

where $LATE_{ch}$ and $LATE_{nh}$ are "subLATEs" measuring effects relative to specific alternative care environments

- Potential test scores under each alternative: $\{Y_i(h), Y_i(c), Y_i(n)\}$
- IV identifies a weighted average of effects on n- and c- compliers:

$$LATE_h = E[Y_i(h) - Y_i(D_i(0))|D_i(1) = h, D_i(0) \neq h]$$
$$= S_c LATE_{ch} + (1 - S_c)LATE_{nh}$$

where $LATE_{ch}$ and $LATE_{nh}$ are "subLATEs" measuring effects relative to specific alternative care environments

• Weighting term S_c is the share of compliers drawn from other preschools:

$$S_c = \frac{P(D_i(1) = h, D_i(0) = c)}{P(D_i(1) = h, D_i(0) \neq h)}$$

Fraction complying from other preschools

Wald estimator of compliance share:

$$S_c = -\frac{E\left[1\{D_i = c\} | Z_i = 1\right] - E\left[1\{D_i = c\} | Z_i = 0\right]}{E\left[1\{D_i = h\} | Z_i = 1\right] - E\left[1\{D_i = h\} | Z_i = 0\right]}$$

		Offered		Not offered			Other center	
		Head Start	Other centers	No preschool	Head Start	Other centers	No preschool	complier share
Cohort	Time period	(1)	(2)	(3)	(4)	(5)	(6)	(7)
3-year-olds	Year 1	0.851	0.058	0.092	0.147	0.256	0.597	0.282
	Year 2	0.657	0.262	0.081	0.494	0.379	0.127	0.719

0.122

0.386

0.492

0.410

4-year-olds

Year 1

0.787

0.114

Table 3: Preschool Choices by Year, Cohort, and Offer Status

		Offered		Not offered			Other center	
		Head Start	Other centers	No preschool	Head Start	Other centers	No preschool	complier share
Cohort	Time period	(1)	(2)	(3)	(4)	(5)	(6)	(7)
3-year-olds	Year 1	0.851	0.058	0.092	0.147	0.256	0.597	0.282
	Year 2	0.657	0.262	0.081	0 494	0 379	0 127	0.719

0.122

0.386

0.492

4-year-olds

Year 1

0.787

0.114

Table 3: Preschool Choices by Year, Cohort, and Offer Status

			Other centers attended
	Head Start	Other centers	by $c \rightarrow h$ compliers
Largest funding source	(1)	(2)	(3)
Head Start	0.842	0.027	0.038

0.011

0.004

0.013

0.022

0.000

0.105

Parent fees

Child and adult care food program

State pre-K program

Child care subsidies

Other funding or support

No funding or support

Missing

Table 3: Funding Sources

0.153

0.026

0.182

0.097

0.118

0.003

0.394

0.191

0.019

0.155

0.107

0.113

0.001

	Head Start	Other centers	by $c \rightarrow h$ compliers
Largest funding source	(1)	(2)	(3)
Head Start	0.842	0.027	0.038

0.011

0.004

0.013

0.022

0.000

0.105

Parent fees

Child and adult care food program

State pre-K program

Child care subsidies

Other funding or support

No funding or support

Missing

Table 3: Funding Sources

0.153

0.026

0.182

0.097

0.118

0.003

0.394

Other centers attended

0.191

0.019

0.155

0.107

0.113

0.001

Largest funding source	(1)	(2)	(3)
Head Start	0.842	0.027	0.038
Parent fees	0.004	0.153	0.191
Child and adult care food program	0.011	0.026	0.019

Table 3: Funding Sources

Other centers

0.118

0.003

0.394

Head Start

0.022

0.000

0.105

Other centers attended

by $c \rightarrow h$ compliers

0.155

0.107

0.113

0.001

0.375

Child and adult care food program	0.011	0.026	1
State pre-K program	0.004	0.182	
Child care subsidies	0.013	0.097	

Other funding or support

No funding or support

Missing

Table 3: Funding Sources

			Other centers attended
	Head Start	Other centers	by $c \rightarrow h$ compliers
Largest funding source	(1)	(2)	(3)
Head Start	0.842	0.027	0.038
Parent fees	0.004	0.153	0.191
Child and adult care food program	0.011	0.026	0.019
State pre-K program	0.004	0.182	0.155
Child care subsidies	0.013	0.097	0.107
Other funding or support	0.022	0.118	0.113
No funding or support	0.000	0.003	0.001
Missing	0.105	0.394	0.375

Benefits and Costs of Head Start

Benefits

Increased earnings

Benefits

Increased earnings

Tuition / time savings for parents

Reductions in crime

Health improvements

Benefits

Increased earnings

Tuition / time savings for parents

Reductions in crime

Health improvements

Net Costs

Administrative costs

Benefits

Increased earnings

Tuition / time savings for parents

Reductions in crime

Health improvements

Net Costs

Administrative costs

Reduced funding of competing preschool programs

Extra tax revenue from more productive children

Benefits

Increased earnings

Tuition / time savings for parents

Reductions in crime

Health improvements

Net Costs

Administrative costs

Reduced funding of competing preschool programs

Extra tax revenue from more productive children

Extra tax revenue from parents Table

Reduced participation in transfer programs

Savings from reduced grade repetition / Special Ed

Standard approach (CEA, 2015)

Table 1: Summary of Cost-Benefit Studies

	Tulsa Full-	Tulsa	Oklahoma		
	Day	Half-Day	& Georgia	Head	Perry
	Preschool	Preschool	Preschool	Start	Preschool
Year children entered program	2005	2005	1995/98	2002	1962
Value of earnings gains per child	\$27,897	\$16,683	\$24,094	\$14,459	\$92,020
Value of total benefits per child					\$180,257 ^t
Cost of program per child	\$9,118	\$4,559	\$4,086	\$9,173	\$20,948
Net benefit per child	\$18,779	\$12,124	\$20,008	\$5,286	\$159,309 ^t
Benefit to cost ratio (earnings only)	3.06	3.66	5.90	1.58ª	4.39
Benefit to cost ratio (all benefits)	_	-	_	_	8.60 ^b
Study	Bartik	Bartik	Cascio	Duncan	Heckman
	et al.	et al.	et al.	et al.	et al.
	(2012)	(2012)	(2013)	(2010)	(2010b)

A Model of Head Start Enrollment

- Continuum of applicant households on unit interval
- ullet Government rations access to HS (ex-ante) with offers Z_i
 - Randomly assigned with probability $\delta \equiv P\left(Z_i=1\right)$
- Competing preschools not rationed (will relax later)

A Model of Head Start Enrollment

- Continuum of applicant households on unit interval
- ullet Government rations access to HS (ex-ante) with offers Z_i
 - ullet Randomly assigned with probability $\delta \equiv P\left(Z_i=1
 ight)$
- Competing preschools not rationed (will relax later)
- Utilities: $\{U_i(h,z), U_i(c), U_i(n)\}$ where:

$$U_i(h,1) \geq U_i(h,0)$$

ullet Preferred alternative as function of offer status $z\in\{0,1\}$:

$$D_{i}(z) = \underset{d \in \{h,c,n\}}{\operatorname{arg max}} U_{i}(d,z)$$

Choices:

$$D_i = D_i(1) Z_i + D_i(0) (1 - Z_i)$$

Benefits and Costs

After-tax lifetime income of cohort:

$$(1-\tau)pE[Y_i]$$

- $Y_i = \sum_{d \in \{n,c,h\}} Y_i(d) \mathbb{1}[D_i(Z_i) = d]$ is realized test score
- p is the market price of human capital
- ullet au is the tax rate for Head Start-eligible children

Benefits and Costs

After-tax lifetime income of cohort:

$$(1-\tau)pE[Y_i]$$

- $Y_i = \sum_{d \in \{n,c,h\}} Y_i(d) \mathbb{1}[D_i(Z_i) = d]$ is realized test score
- p is the market price of human capital
- ullet au is the tax rate for Head Start-eligible children

Net Costs:

$$C \equiv \underbrace{\phi_h P(D_i = h) + \phi_c P(D_i = c)}_{\text{Costs}} - \underbrace{\left(\underbrace{R + \tau p E\left[Y_i\right]}_{\text{Revenue}}\right)}_{\text{Revenue}}$$

where (ϕ_h, ϕ_c) are costs of enrollment in HS / other preschool

Increasing offer probability

Marginal effect of a change in rationing probability δ on test scores:

$$\frac{dE\left[Y_{i}\right]}{d\delta} = LATE_{h} \cdot P\left(D_{i}\left(1\right) = h, D_{i}\left(0\right) \neq h\right)$$

$$LATE_{h} \equiv E\left[Y_{i}\left(h\right) - Y_{i}\left(D_{i}\left(0\right)\right) \middle| D_{i}\left(1\right) = h, D_{i}\left(0\right) \neq h\right]$$

Increasing offer probability

Marginal effect of a change in rationing probability δ on test scores:

$$\frac{dE\left[Y_{i}\right]}{d\delta} = LATE_{h} \cdot P\left(D_{i}\left(1\right) = h, D_{i}\left(0\right) \neq h\right)$$

$$LATE_{h} \equiv E\left[Y_{i}\left(h\right) - Y_{i}\left(D_{i}\left(0\right)\right) \middle| D_{i}\left(1\right) = h, D_{i}\left(0\right) \neq h\right]$$

Result: "micro" $LATE_h \Rightarrow$ market-level effect of changing aggregate offer probs

Increasing offer probability

Marginal effect of a change in rationing probability δ on test scores:

$$\frac{dE\left[Y_{i}\right]}{d\delta} = LATE_{h} \cdot P\left(D_{i}\left(1\right) = h, D_{i}\left(0\right) \neq h\right)$$

$$LATE_{h} \equiv E\left[Y_{i}\left(h\right) - Y_{i}\left(D_{i}\left(0\right)\right) \middle| D_{i}\left(1\right) = h, D_{i}\left(0\right) \neq h\right]$$

Result: "micro" $LATE_h \Rightarrow$ market-level effect of changing aggregate offer probs

Marginal effect on budget:

$$\frac{dC}{d\delta} = \underbrace{\begin{pmatrix} \phi_h & - & \phi_c S_c & - & \tau p LATE_h \\ \text{direct cost substitution} & \text{tax revenue} \end{pmatrix}}_{\text{number of compliers}}$$

Marginal Value of Public Funds

 The marginal value of public funds (MVPF) is the ratio of impacts on household welfare and the government budget (Mayshar, 1990; Hendren, 2014):

$$MVPF_{\delta} = \frac{(1-\tau)pLATE_h}{\phi_h - \phi_c S_c - \tau pLATE_h}$$

 MVPF gives the value of an extra dollar spent on Head Start net of fiscal externalities

Quantifies the magnitude of "leaks" in Okun's bucket

Program Scale: Lessons

$$MVPF_{\delta} = \frac{(1 - \tau)pLATE_{h}}{\phi_{h} - \phi_{c}S_{c} - \tau pLATE_{h}}$$

MVPF depends on:

- Test score impact LATE_h
 - Note: "subLATEs" not directly relevant
- ullet Share of students drawn from competing programs, \mathcal{S}_c
- \bullet Costs of Head Start and competing programs: $\phi_{\it h}$ and $\phi_{\it c}$
- Conversion factor p
- Tax rate τ

What if competing schools are rationed?

- Suppose total number of competing pre-school slots is fixed
 - Now c-compliers spawn $n \to c$ compliers as someone takes abandoned slot
- MVPF becomes:

$$MVPF_{\delta,rat} = \frac{(1-\tau)p\left(LATE_h + S_cLATE_{nc}\right)}{\phi_h - \tau p\left(LATE_h + S_cLATE_{nc}\right)}$$

- Takeaway:
 - LATE_{nc} not directly identified by experiment
 - But chances are that ignoring rationing leads to conservative assessment (will estimate later)

Program Features

 Suppose there is a Head Start program feature f that is valued by households but has no effect on potential outcomes:

$$\tilde{U}(h, Z_i, f) = U(h, Z_i) + f$$

- Example: Improvements in transportation services (Executive Order 13330)
- With large enough increases in f:
 - Never takers become compliers
 - Compliers become always takers

MVPF for Program Features

MVPF for reforms to program features:

$$MVPF_f = \frac{(1- au)
ho MTE_h(f)}{\phi_h(f)(1+\eta) - \phi_c \overrightarrow{S}_c(f) - au
ho MTE_h(f)}$$

where:

$$MTE_h(f) = MTE_{ch}(f)\overrightarrow{S}_c(f) + MTE_{nh}(f)\left(1 - \overrightarrow{S}_c(f)\right),$$

$$MTE_{ch}(f) = E\left[Y_i(h) - Y_i(c)|U_i(h, Z_i, f) = U_i(c) > U_i(n)\right],$$

$$\overrightarrow{S}_c(f) = P\left(U_i(c) > U_i(n)|U_i(h, Z_i, f) = \max\{U_i(c), U_i(n)\}\right),$$

MVPF for Program Features

MVPF for reforms to program features:

$$MVPF_f = \frac{(1-\tau)pMTE_h(f)}{\phi_h(f)(1+\eta) - \phi_c \overrightarrow{S}_c(f) - \tau pMTE_h(f)}$$

where:

$$MTE_{h}(f) = MTE_{ch}(f)\overrightarrow{S}_{c}(f) + MTE_{nh}(f)\left(1 - \overrightarrow{S}_{c}(f)\right),$$

$$MTE_{ch}(f) = E\left[Y_{i}(h) - Y_{i}(c)|U_{i}(h, Z_{i}, f) = U_{i}(c) > U_{i}(n)\right],$$

$$\overrightarrow{S}_{c}(f) = P\left(U_{i}(c) > U_{i}(n)|U_{i}(h, Z_{i}, f) = \max\left\{U_{i}(c), U_{i}(n)\right\}\right),$$

$$\eta = \frac{d \log \phi_h(f)/df}{d \log P(D_i = h)/df} \text{ (cost elasticity of enrollment)}$$

Cost-benefit Analysis

• Next use our estimates to conduct cost/benefit analysis associated with change in δ (random scaling up)

Cost-benefit Analysis

- Next use our estimates to conduct cost/benefit analysis associated with change in δ (random scaling up)
- Focus on 1st-year scores:
 - Most precise estimates
 - Chetty et al. (2011) find that these best predict long-run gains

Cost-benefit Analysis

- Next use our estimates to conduct cost/benefit analysis associated with change in δ (random scaling up)
- Focus on 1st-year scores:
 - Most precise estimates
 - Chetty et al. (2011) find that these best predict long-run gains
- Projected earnings effects:
 - Chetty et al. (2011): 1 s.d. increase in scores \rightarrow 13% increase in earnings
 - Other literature estimates: 10% or larger (Table A3)
 - ullet To be conservative, baseline calibration uses 10%
 - Sensitivity analysis: breakeven conversion factor s.t. MVPF = 1

Study	(1)	(2)	(5)	(1)	(5)
Chetty et al. (CFHSSY, 2011)	Tennessee STAR	0.024	0.003	-	0.131
	(1 s.d. of class quality, kindergarten)				
	OLS with controls	1.0	0.18	-	0.18
	(kindergarten)				
Chetty, Friedman, Rockoff (2014)	Teacher value-added	0.13	0.013	-	0.103

Table A3: Estimates of Test Score and Earnings Impacts

Test score effect Log earnings

(std. dev.)

(2)

1.0

1.0

1.0

0.787

0.980

1.0

effect

(3)

0.12

0.189

0.286

0.136

Log wage

effect

(4)

0.121

0.169

0.104

Ratio: wages or

earnings/test scores

(5)

0.12

0.121

0.169

0.240

0.292

0.104

(1 s.d. of teacher VA, grades 3-8) OLS with controls

(grades 3-8)

OLS with controls

(males, ages 14-22) OLS with controls

(females, ages 14-22)

Perry Preschool Project

(males, age 4) Perry Preschool Project

(females, age 4)

OLS with controls

(males, ages 18-19)

Intervention

(1)

Study

Heckman, Stixrud, Urzua (2006)

Heckman et al. (HMPSY, 2010)

Lindqvist and Vestman (2011)

Parameter	Description	Value	Source
(1)	(2)	(3)	(4)
	Panel A. Parameter values		
p	Effect of a 1 SD increase in test scores on earnings	$0.1\bar{e}$	Table A3
e_{US}	US average present discounted value of lifetime earnings at age 3.4	\$438,000	Chetty et al. 2011 with 3% discount rate

e_{US}	US average present discounted value of lifetime earnings at age 3.4	\$438,000	Chetty et al. 2011 with 3% discount rate
e_{parent}/e_{US}	Average earnings of Head Start parents relative to US average	0.46	Head Start Program Facts

Table 6: Benefits and Costs of Head Start

- 03	0	,	
e_{parent}/e_{US}	Average earnings of Head Start parents relative to US average	0.46	Head Start Program Facts
IGE	Intergenerational income elasticity	0.40	Lee and Solon 2009

 $LATE_h$

e_{parent}/e_{US}	Average earnings of Head Start parents relative to US average	0.46	Head Start Program Facts
IGE	Intergenerational income elasticity	0.40	Lee and Solon 2009
ō	A C. II. 1 Ct. 1 Ct. 1 Ct. 1	62.42.202	[1 (1 · /·)ICF]

IGE	Intergenerational income elasticity	0.40	Lee and Solon 2009
\bar{e}	Average present discounted value of lifetime earnings for Head Start applicant:	\$343,392	$[1 - (1 - e_{parent}/e_{US})IGE]e_{US}$

IGE	Intergenerational income elasticity	0.40	Lee and Solon 2009
\bar{e}	Average present discounted value of lifetime earnings for Head Start applicant:	\$343,392	$[1 - (1 - e_{parent}/e_{US})IGE]e_{US}$

$ar{e}$	Average present discounted value of lifetime earnings for Head Start applicants	\$343,392	$[1 - (1 - e_{parent}/e_{US})IGE]e_{US}$
$0.1\bar{e}$	Effect of a 1 SD increase in test scores on earnings of Head Start applicants	\$34,339	

0.247

HSIS

Local Average Treatment Effect

Table 6: Benefits and Costs of Head Start				
Parameter	Description	Value	Source	
(1)	(2)	(3)	(4)	
S_c	Share of Head Start population drawn from other preschools	0.34	HSIS	
ϕ_h	Marginal cost of enrollment in Head Start	\$8,000	Head Start program facts	

Marginal cost of enrollment in Head Start ϕ_h Marginal cost of enrollment in other preschools ϕ_c

\$8,000

Naïve assumption: $\phi_c = 0$

Pessimistic assumption: $\phi_c = 0.5\phi_h$

Preferred assumption: $\phi_c = 0.75 \phi_h$

\$0

\$4,000 \$6,000

1 didiiiotoi	Description	raide	Source
(1)	(2)	(3)	(4)
NMB	Marginal benefit to Head Start population net of taxes	\$5,513	$(1 - \tau)pLATE_h$
MFC	Marginal fiscal cost of Head Start enrollment	\$5,031	$\phi_h - \phi_c S_c - \tau p LATE_h$, naïve assumption
		\$3,671	Pessimistic assumption
		\$2,991	Preferred assumption
MVPF	Marginal value of public funds	1.10 (0.22) p-value = 0.1	NMB/MFC (s.e.), naïve assumption
		Breakeven $p/\bar{e}=0.09~(0.01)$	
		1.50 (0.34) p-value = 0.00	Pessimistic assumption
		Breakeven $p/\bar{e} = 0.08$ (0.01)	
		1.84 (0.47)	Preferred assumption
		p-value = 0.00	-
		Breakeven $p/\bar{e} = 0.07 \ (0.01)$	

Table 6: Benefits and Costs of Head Start

Value

Source

Parameter

Description

Unfinished Business

- Are Head Start and competing programs equivalent technologies?
 - Decompose LATE_h into "subLATEs" for compliers drawn from c and n
- Can we boost effectiveness by targeting new populations?
 - Evaluate reforms that change the complier mix
- Answering these questions requires additional assumptions

Possible Approaches to Estimating SubLATEs

- Use $Z_i \times X_i$ interactions as additional instruments (Kling et al., 2007)
 - Requires strong restrictions on effect heterogeneity (Kirkeboen et al., 2014; Hull, 2014)
- Parametric assumption on distributions within compliance groups ("principal stratification," Feller et al. 2014)
 - Allows deconvolution of complier mix into components
 - Conditions on realized selection patterns no predictions for effects of structural reforms
- Selection model
 - Semiparametric restriction on unselected potential outcome distributions
 - "Connect the dots" between identified distributions to interpolate/extrapolate

Choice Model

Alternative specific indirect utilities:

$$U_{i}(h, Z_{i}) = \psi_{h}(X_{i}, Z_{i}) + v_{ih},$$

$$U_{i}(c) = \psi_{c}(X_{i}) + v_{ic},$$

$$U_{i}(n) = 0$$

- Monotonicity: $\psi_h(x,1) \ge \psi_h(x,0)$
- Selection errors (v_{ih}, v_{ic}) : unobserved tastes and constraints (e.g. accessibility) influencing participation
- Multinomial probit specification of errors:

$$(v_{ih}, v_{ic}) | X_i, Z_i \sim N \left(0, \begin{bmatrix} 1 & \rho(X_i) \\ \rho(X_i) & 1 \end{bmatrix}\right)$$

Potential Outcomes

Model for potential outcome CEFs:

$$E[Y_i(d)|X_i, Z_i, v_{ih}, v_{ic}] = \mu_d(X_i) + \gamma_{dh}v_{ih} + \gamma_{dc}v_{ic}$$

- $\{\gamma_{dh}, \gamma_{dc}\}$ terms capture selection on unobservables
- Possible selection patterns:
 - $\gamma_{hh} = -\gamma_{nh}$ (selection on gains)
 - $\{\gamma_{\mathit{dh}}\} = \gamma_{\mathit{h}}$ (selection on levels)
 - $\gamma_{hh} < \gamma_{nh}$ ("reverse Roy" selection)

Control Function Representation

By iterated expectations:

$$E[Y_i|X_i, Z_i, D_i = d] = \mu_d(X_i) + E[\gamma_{dh}v_{ih} + \gamma_{dc}v_{ic}|X_i, Z_i, D_i = d]$$

$$= \mu_d(X_i) + \gamma_{dh}\lambda_h(X_i, Z_i, d) + \gamma_{dc}\lambda_c(X_i, Z_i, d)$$

- Control function terms $\lambda_d(X_i, Z_i, D_i)$ analogous to inverse Mills terms in standard Heckman (1979) setting Review
 - Involve evaluation of bivariate normal CDFs/PDFs (formulas provided in paper)

Identification

Effect of an offer on selected outcome mean:

$$E[Y_i|X_i = x, Z_i = 1, D_i = d] - E[Y_i|X_i = x, Z_i = 0, D_i = d]$$

$$= \gamma_{dh} [\lambda_h(x, 1, d) - \lambda_h(x, 0, d)] + \gamma_{dc} [\lambda_c(x, 1, d) - \lambda_c(x, 0, d)]$$

- With two points of support x and x', we have two equations in two unknowns
- Rank condition: CF differences not linearly dependent across x groups
 - Regression based test for under-identification
- Additional support points yield over-identification
 - Score test of separability

Lessons

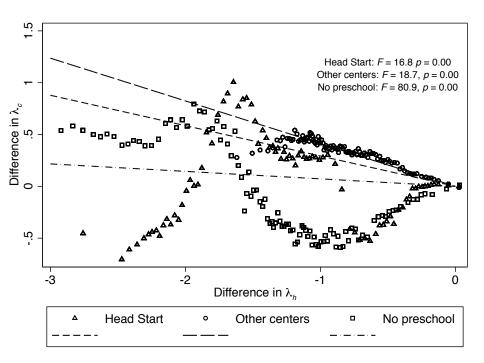
- Functional forms for mean utilities, correlation, and mean outcomes not essential
 - Can fully saturate and retain identification
- Key restriction is additive separability between observables and unobservables
 - Selection on unobservables must work "the same way" for different values of X_i
 - e.g. can't have Roy selection in some groups and "reverse Roy" in others
- $\{\gamma_{dh},\gamma_{dc}\}$ terms measure how gaps between compliance group means vary with strength of compliance response

Parameterization

- Linear approximations to mean utilities $\psi_h(X, Z)$, $\psi_c(X)$, $\tanh^{-1} \rho(X) = \frac{1}{2} \log \left(\frac{1 + \rho(X)}{1 \rho(X)} \right)$, and $\mu_d(X)$
- Key covariates interact with offer/enter correlation in the choice model, and interact with care alternative in the outcome model
 - Baseline test score, home language, mother's education, age cohort,
 Head Start center quality rating, transportation services, income
 - Previous studies find substantial heterogeneity on these dimensions in the HSIS (Bitler et al. 2014, Bloom and Weiland 2015, Walters 2015)
- Also substantial variation in treatment effects and substitution patterns across the hundreds of HSIS experimental sites (Walters 2015)
- But difficult to work with individual sites since samples are very small incidental parameters problem

Site Group Fixed Effects

- To leverage variation in market shares across sites, we use a group fixed effects approach (Bonhomme and Manresa 2015; Saggio 2012)
- Constrains sites to belong to one of K discrete categories
 - K selected using Bayesian Information Criterion (BIC)
 - Site group indicators included in X
- MATLAB code available on our websites (mnpgfe routine)


Estimation / Inference

- Two-step procedure a la Heckman (1979)
- First step: estimate multinomial probit using GHK algorithm
 - Models with site groups alternate between assigning groups and maximizing likelihood
- Second step: use probit estimates to build control functions,

$$\left\{ \hat{\lambda}_{dh}\left(X_{i},Z_{i},D_{i}\right),\hat{\lambda}_{dc}\left(X_{i},Z_{i},D_{i}\right)\right\}$$

- Include CFs as additional regressors in second step regression of outcomes on covariates in each choice group
- Bootstrap for inference

	One endogenous variable		idogenous riables
	Head Start	Head Start	Other centers
Instruments	(1)	(2)	(3)
Offer	0.247	-	-
(1 instrument)	(0.031)		
Offer x covariates	0.241	0.384	0.419
(9 instruments)	(0.030)	(0.127)	(0.359)
First-stage F	276.2	17.7	1.8
Overid. p-value	0.007	0	.006
Offer x sites	0.210	0.213	0.008
(183 instruments)	(0.026)	(0.039)	(0.095)
First-stage F	215.1	90.0	2.7
Overid. p-value	0.002	0	.002
Offer x site groups	0.229	0.265	0.110
(6 instruments)	(0.029)	(0.056)	(0.146)
First-stage F	1,015.2	339.1	32.6
Overid. p-value	0.077	0	.050
Offer x covariates and	0.229	0.302	0.225
offer x site groups (14 instruments)	(0.029)	(0.054)	(0.134)
First-stage F	340.2	121.2	13.3
Overid. p-value	0.012	0	.010

Panel A. Head Start participation

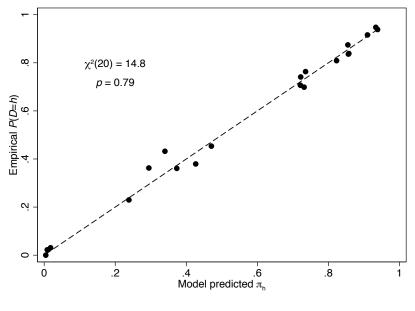


Figure A.I. Multinomial Probit Model Fit

Panel B. Substitute preschool participation

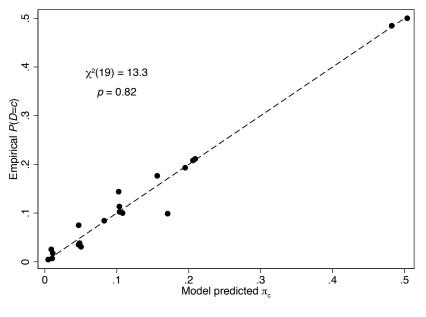


Figure A.I. Multinomial Probit Model Fit

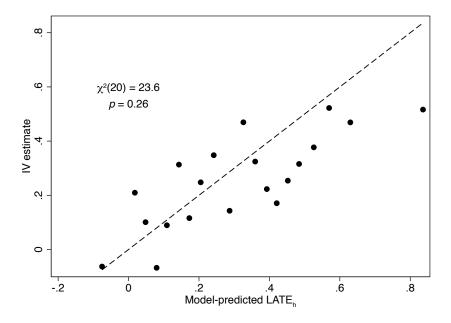


Figure A.III. Model-predicted *LATE*_h vs. IV estimates

Table VII. Selection-corrected Estimates of Preschool Effect			
	Least squares		
	No controls	Covariates	
	(1)	(2)	
Head Start	0.202	0.218	
	(0.037)	(0.022)	
Other preschools	0.262	0.151	
	(0.052)	(0.035)	
λ_h	-	-	

Head Start $\times \lambda_h$

Other preschools $\times \lambda_h$

 λ_c

Head Start $\times \lambda_c$

Other preschools $\times \lambda_c$

P-value: Additive separability

Table VII. Selection-corrected Estimates of Preschool Effects Control function Covariates Site groups Full model (3) (4) (5) Head Start 0.470 0.483 0.380 (0.117)(0.121)(0.101)Other preschools 0.183 0.065 0.109 (0.269)(0.991)(0.253)

λ_h	0.015 (0.053)	0.004 (0.063)	0.019 (0.053)	
Head Start $\times \lambda_h$	-0.167 (0.080)	-0.137 (0.126)	-0.158 (0.091)	
Other preschools $x \lambda_h$	-0.030 (0.109)	-0.047 (0.366)	0.000 (0.115)	
λ_c	-0.333 (0.203)	-0.174 (0.187)	-0.293 (0.115)	
Head Start $\times \lambda_c$	0.224 (0.306)	0.065 (0.453)	0.131 (0.172)	

(0.248)

0.261

0.440

(0.926)

0.452

0.486

(0.197)

0.349

Other preschools $x \lambda_c$

P-value: Additive separability

Table VII. Selection-corrected Estimates of Preschool Effects Control function Covariates Full model Site groups (3) (4) (5) Head Start 0.483 0.380 0.470 (0.117)(0.121)(0.101)Other preschools 0.183 0.065 0.109 (0.269)(0.991)(0.253) λ_h 0.015 0.004 0.019

r_h	(0.053)	(0.063)	(0.053)
Head Start $\times \lambda_h$	-0.167	-0.137	-0.158
	(0.080)	(0.126)	(0.091)
Other preschools $\times \lambda_h$	-0.030	-0.047	0.000
	(0.109)	(0.366)	(0.115)
λ_c	-0.333	-0.174	-0.293
	(0.203)	(0.187)	(0.115)
Head Start $\times \lambda_c$	0.224	0.065	0.131
	(0.306)	(0.453)	(0.172)
Other preschools $\times \lambda_c$	0.488	0.440	0.486
	(0.248)	(0.926)	(0.197)

0.452

0.349

P-value: Additive separability

 Covariates
 Site groups
 Full model

 (3)
 (4)
 (5)

 Head Start
 0.483
 0.380
 0.470

 (0.117)
 (0.121)
 (0.101)

(0.269)

0.015

(0.053)

-0.167

(0.080)

-0.030

(0.109)

-0.333

(0.203)

0.224

(0.306)

0.488

(0.248)

Other preschools

 λ_h

Head Start $\times \lambda_h$

Other preschools $\times \lambda_h$

 λ_c

Head Start $\times \lambda_c$

Other preschools $\times \lambda_c$

Table VII. Selection-corrected Estimates of Preschool Effects

Control function

0.065

(0.991)

0.004

(0.063)

-0.137

(0.126)

-0.047

(0.366)

-0.174

(0.187)

0.065

(0.453)

0.440

(0.926)

0.109

(0.253)

0.019

(0.053)

-0.158

(0.091)

0.000

(0.115)

-0.293

(0.115)

0.131

(0.172)

0.486

(0.197)

	Covariates (3)	Site groups (4)	Full model (5)
Head Start	0.483	0.380	0.470
	(0.117)	(0.121)	(0.101)
Other preschools	0.183	0.065	0.109
	(0.269)	(0.991)	(0.253)

(0.053)

-0.167

(0.080)

-0.030

(0.109)

-0.333

(0.203)

0.224

(0.306)

0.488

(0.248)

0.261

 λ_h

Head Start $\times \lambda_h$

Other preschools $\times \lambda_h$

 λ_c

Head Start $\times \lambda_c$

Other preschools $\times \lambda_c$

P-value: Additive separability

Table VII. Selection-corrected Estimates of Preschool Effects

Control function

0.004

(0.063)

-0.137

(0.126)

-0.047

(0.366)

-0.174

(0.187)

0.065

(0.453)

0.440

(0.926)

0.452

0.019

(0.053)

-0.158

(0.091)

0.000

(0.115)

-0.293

(0.115)

0.131

(0.172)

0.486

(0.197)

0.349

Parameter	
$LATE_h$	

LATE nh

LATE ch

Table VIII. Treatment Effects for Subpopulations

Covariates

(2)

0.261

(0.032)

0.386

(0.143)

0.023

(0.251)

IV

(1)

0.247

(0.031)

Control function

Full model

(4)

0.214

(0.042)

0.370

(0.088)

-0.093

(0.154)

Sites

(3)

0.190

(0.076)

0.341

(0.219)

-0.122

(0.469)

Parameter

Lowest predicted quintile:

LATE h

 $LATE_h$ with fixed S_c

Highest predicted quintile: LATE_h

 $LATE_h$ with fixed S_c

1 4
(1)

 $\mathbf{I}\mathbf{V}$

Table VIII. Treatment Effects for Subpopulations

Covariates

(2)

0.095

(0.061)

0.125

(0.060)

0.402

(0.042)

0.364

(0.056)

Control function

Full model

(4)

0.027

(0.067)

0.130

(0.119)

0.472

(0.079)

0.350

(0.126)

Sites

(3)

0.114

(0.112)

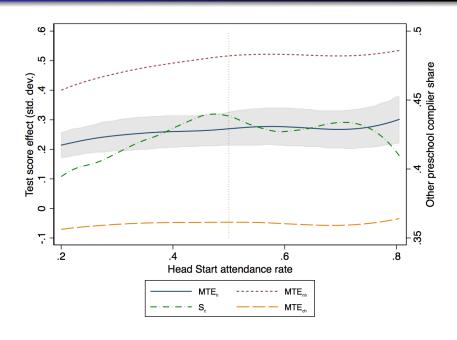
0.125

(0.434)

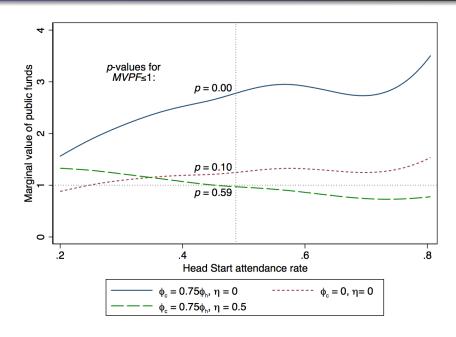
0.249

(0.173)

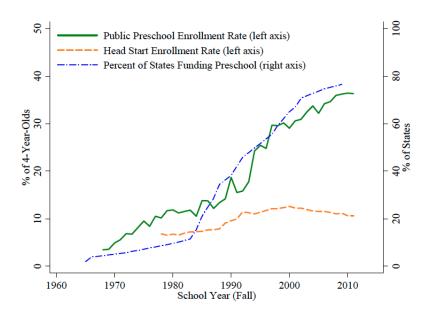
0.289

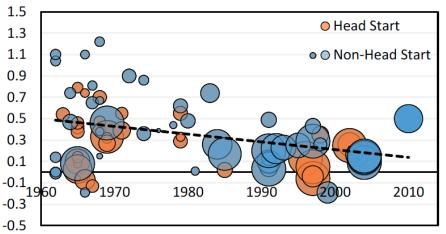

(1.049)

	One endogenous variable		idogenous riables
	Head Start	Head Start	Other centers
Instruments	(1)	(2)	(3)
Offer	0.247	-	-
(1 instrument)	(0.031)		
Offer x covariates	0.241	0.384	0.419
(9 instruments)	(0.030)	(0.127)	(0.359)
First-stage F	276.2	17.7	1.8
Overid. p-value	0.007	0	.006
Offer x sites	0.210	0.213	0.008
(183 instruments)	(0.026)	(0.039)	(0.095)
First-stage F	215.1	90.0	2.7
Overid. p-value	0.002	0	.002
Offer x site groups	0.229	0.265	0.110
(6 instruments)	(0.029)	(0.056)	(0.146)
First-stage F	1,015.2	339.1	32.6
Overid. p-value	0.077	0	.050
Offer x covariates and	0.229	0.302	0.225
offer x site groups (14 instruments)	(0.029)	(0.054)	(0.134)
First-stage F	340.2	121.2	13.3
Overid. p-value	0.012	0	.010


Reforms to Program Features

- Next, we evaluate returns to "structural" reforms that target new populations by increasing attractiveness of Head Start
- Use the model to predict $MTE_{ch}(f)$, $MTE_{nh}(f)$ and $\vec{S}_c(f)$


Marginal effects on test scores and program substitution


Marginal Cost-Benefit Scenarios

Cascio and Schanzenbach (2013)

Average effect size in standard deviations

Source: Duncan and Magnuson (2013); Weiland and Yoshikawa (2013).

Note: Circle sizes reflect the inverse of the squared study-level standard error. 74 of 83 studies showed positive effects, and CEA estimates that roughly 60 percent of estimates were statistically significant at the 10 percent level.

Conclusion: Going forward...

$$MVPF_{\delta} = \frac{(1- au)pLATE_{h}}{\phi_{h} - \phi_{c}S_{c} - au pLATE_{h}}$$

Conclusion: Going forward...

$$MVPF_{\delta} = \frac{(1-\tau)pLATE_{h}}{\phi_{h} - \phi_{c}S_{c} - \tau pLATE_{h}}$$

Our estimates suggest that as $S_c \rightarrow 1$:

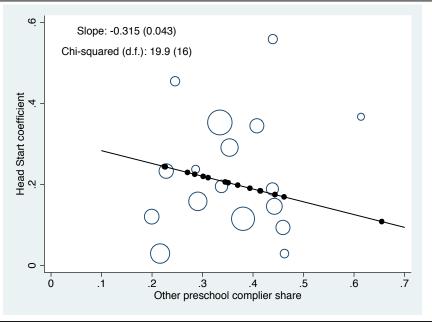
$$(1- au)$$
pLATE $_h o 0$ $\phi_h-\phi_c S_c- au$ pLATE $_h o \phi_h-\phi_c$

Conclusion: Going forward...

$$MVPF_{\delta} = \frac{(1-\tau)pLATE_{h}}{\phi_{h} - \phi_{c}S_{c} - \tau pLATE_{h}}$$

Our estimates suggest that as $S_c \rightarrow 1$:

$$(1- au)$$
pLATE $_h o 0$ $\phi_h-\phi_c S_c- au$ pLATE $_h o \phi_h-\phi_c$


Perhaps then we should expect that:

$$MVPF_{\delta} \rightarrow 0$$
?

Depends critically on cost side: $\phi_h - \phi_c$

Figure 1: Complier Shares and Head Start Effects

Transportation provided

Fraction of staff with bachelor's degree

Fraction of staff with teaching license

Center director experience

Student/staff ratio

Full day service

More than three home visits per year

Quality index	

Ν

Table 4: Characteristics of Head Start and Competing Preschool Centers

Other centers

(2)

0.453

0.383

0.527

0.260

12.2

8.24

0.735

0.073

366

Head Start

(1)

0.702

0.629

0.345

0.113

18.2

6.80

0.637

0.192

1848

Other centers attended

by $c \rightarrow h$ compliers (3)

0.446

0.324

0.491

0.247

12.6

8.54

0.698

0.072

Head Start Other centers by c - h compliers

(1) (2) (3)

0.260

12.2

8.24

0.735

0.073

366

0.491

0.247

12.6

8.54

0.698

0.072

Table 4: Characteristics of Head Start and Competing Preschool Centers

Quality index	0.702	0.453	0.446
Transportation provided	0.629	0.383	0.324

0.345

0.113

18.2

6.80

0.637

0.192

1848

Ν

Fraction of staff with bachelor's degree

Fraction of staff with teaching license

Center director experience

Student/staff ratio

Full day service

More than three home visits per year

Quality index

Transportation provided

Fraction of staff with bachelor's degree

Fraction of staff with teaching license

Center director experience

Student/staff ratio

Full day service

More than three home visits per year

Table 4: Characteristics of Head Start and Competing Preschool Centers

Other centers

(2)

0.453

0.383

0.527

0.260

12.2

8.24

0.735

0.073

366

Head Start

(1)

0.702

0.629

0.345

0.113

18.2

6.80

0.637

0.192

1848

Ν

Other centers attended

by $c \rightarrow h$ compliers

(3)

0.446

0.324

0.491

0.247

12.6

8.54

0.698

0.072

Transportation provided

Fraction of staff with bachelor's degree Fraction of staff with teaching license

Center director experience

Student/staff ratio

Full day service

More than three home visits per year

Oualit	y index	

Table 4: Characteristics of Head Start and Competing Preschool Centers

Other centers

(2)

0.453

0.383

0.527

0.260

12.2

8.24

0.735

0.073

366

Head Start

(1)

0.702

0.629

0.345

0.113

18.2

6.80

0.637

0.192

1848

N

Other centers attended

by $c \rightarrow h$ compliers

(3)

0.446

0.324

0.491

0.247

12.6

8.54

0.698

0.072

Table A1: Characteristics of Head Start Centers Attended by Always Takers

	Experimental center	Attended center
	(1)	(2)
Transportation provided	0.421	0.458
Quality index	0.701	0.687
Fraction of staff with bachelor's degree	0.304	0.321
Fraction of staff with teaching license	0.084	0.099
Center director experience	19.08	18.24
Student/staff ratio	6.73	6.96
Full day service	0.750	0.715
More than three home visits per year	0.112	0.110
N	112	
n-value	0.31	8

Notes: This table reports characteristics of Head Start centers for children assigned to the HSIS control group who attended Head Start. Column (1) shows characteristics of the centers of random assignment for these children, while column (2) shows characteristics of the centers they attended. The *p*-value is from a test of the hypothesis that all mean center charteristics are the same. The sample excludes children with missing values for either characteristics of the center of random assignment or the center attended.

No Parental Labor Supply Response

|--|

ruote 112. Effects of Material Eurof Supply			
	Full-time	Full- or part-time	
	(1)	(2)	
Offer effect	0.020	-0.005	
	(0.018)	(0.019)	
Mean of dep. var.	0.334	0.501	
N		3314	
NT - 11			

Back

Notes: This table reports coefficients from regressions of measures of maternal labor supply in Spring 2003 on the Head Start offer indicator. Column (1) displays effects on the probability of working full-time, while column (2) shows effects on the probability of working full- or part-time. Children with missing values for maternal employment are excluded. All models use inverse probability weights and control for baseline covariates. Standard errors are clustered at the Head Start center level.

• Suppose utility is over consumption (q) and leisure (\overline{I}) :

$$u\left(q,\overline{l}\right)$$

• Suppose utility is over consumption (q) and leisure (\bar{I}) :

$$u\left(q,\overline{l}\right)$$

 Budget constraint for adult with human capital y, non-labor income m, and time endowment T is:

$$q = (1 - \tau) py (T - \overline{l}) + m$$

 $\equiv \tilde{y} (T - \overline{l}) + m$

where p gives "market price" of human capital.

• Suppose utility is over consumption (q) and leisure (\bar{I}) :

$$u(q, \bar{l})$$

 Budget constraint for adult with human capital y, non-labor income m, and time endowment T is:

$$q = (1 - \tau) py (T - \overline{l}) + m$$

 $\equiv \tilde{y} (T - \overline{l}) + m$

where p gives "market price" of human capital.

• Define "excess expenditure" function:

$$e\left(\tilde{y},ar{u}
ight)\equiv\min\left\{q+ ilde{y}ar{l}- ilde{y}\,T:\;u\left(q,ar{l}
ight)\geqar{u}
ight\}$$

• Suppose utility is over consumption (q) and leisure (\overline{I}) :

$$u(q, \bar{l})$$

 Budget constraint for adult with human capital y, non-labor income m, and time endowment T is:

$$q = (1 - \tau) py (T - \overline{l}) + m$$

 $\equiv \tilde{y} (T - \overline{l}) + m$

where p gives "market price" of human capital.

• Define "excess expenditure" function:

$$e\left(\tilde{y},\bar{u}\right)\equiv\min\left\{q+\tilde{y}\bar{l}-\tilde{y}T:\;u\left(q,\bar{l}\right)\geq\bar{u}\right\}$$

• Compensated (Hicksian) labor supply schedule:

$$I_{c}^{*}\left(\tilde{\mathbf{y}},\bar{\mathbf{u}}\right)=-rac{\partial}{\partial\tilde{\mathbf{y}}}e\left(\tilde{\mathbf{y}},\bar{\mathbf{u}}\right)$$

Dollar value of treatment effect

• Compensating variation $CV(\Delta)$ gives dollar value of Head Start test score impact Δ :

$$CV\left(\Delta\right)\equiv e\left(\tilde{y},u_{0}
ight)-e\left(\tilde{y}+\left(1- au\right)p\Delta,u_{0}
ight)$$

where $u_0 \equiv V(\tilde{y})$ is utility when untreated.

Dollar value of treatment effect

• Compensating variation $CV\left(\Delta\right)$ gives dollar value of Head Start test score impact Δ :

$$CV(\Delta) \equiv e(\tilde{y}, u_0) - e(\tilde{y} + (1 - \tau)p\Delta, u_0)$$

where $u_0 \equiv V(\tilde{y})$ is utility when untreated.

Differentiate wrt Δ to get:

$$CV'(\Delta) = (1-\tau) p I_c^* (\tilde{y} + (1-\tau) p \Delta, u_0)$$

 Small human capital impacts valued ignoring labor supply response (Envelope theorem):

$$CV'(0) = (1-\tau) pl_c^*(\tilde{y}, u_0)$$

Dollar value of treatment effect

• Compensating variation $CV(\Delta)$ gives dollar value of Head Start test score impact Δ :

$$CV(\Delta) \equiv e(\tilde{y}, u_0) - e(\tilde{y} + (1 - \tau) p\Delta, u_0)$$

where $u_0 \equiv V(\tilde{y})$ is utility when untreated.

• Differentiate wrt Δ to get:

$$CV'(\Delta) = (1-\tau) p I_c^* (\tilde{y} + (1-\tau) p \Delta, u_0)$$

 Small human capital impacts valued ignoring labor supply response (Envelope theorem):

$$CV'(0) = (1-\tau) \operatorname{pl}_{c}^{*}(\tilde{y}, u_{0})$$

• Contrast with observed earnings impacts:

$$DE(\Delta) \equiv (\tilde{y} + (1 - \tau) p\Delta) I^* (\tilde{y} + (1 - \tau) p\Delta, m) - \tilde{y}I^* (\tilde{y}, m)$$
$$DE'(0) = (1 - \tau) pI^* (\tilde{y}, m) (1 + n_u)$$

where η_u is uncompensated labor supply elasticity

An adjustment factor

• Since, CV(0) = DE(0) = 0, we have first order approximation:

$$rac{CV\left(\Delta
ight)}{DE\left(\Delta
ight)}pproxrac{CV'\left(0
ight)}{DE'\left(0
ight)}=rac{1}{1+\eta_{u}}$$

E.g., if $\eta_u = 0.2$ would imply we need to scale observed earnings impact by 83%.

An adjustment factor

• Since, CV(0) = DE(0) = 0, we have first order approximation:

$$rac{CV\left(\Delta
ight)}{DE\left(\Delta
ight)}pproxrac{CV'\left(0
ight)}{DE'\left(0
ight)}=rac{1}{1+\eta_{u}}$$

E.g., if $\eta_u = 0.2$ would imply we need to scale observed earnings impact by 83%.

• Second order approximation implies smaller rescaling if income effects substantial $(\eta_c \gg \eta_u)$:

$$\frac{CV\left(\Delta\right)}{DE\left(\Delta\right)} \approx \frac{1 + \frac{1}{2}\eta_{c}\frac{\Delta}{y}}{1 + \eta_{u} + \frac{1}{2}\eta_{u}\left(2 + \eta_{u}^{2}\right)\frac{\Delta}{y}}$$

Note: if $\eta_u \approx 0$ and $\eta_c > 0$ earnings impact *understates* welfare gain!

An adjustment factor

• Since, CV(0) = DE(0) = 0, we have first order approximation:

$$rac{CV\left(\Delta
ight)}{DE\left(\Delta
ight)}pproxrac{CV'\left(0
ight)}{DE'\left(0
ight)}=rac{1}{1+\eta_{u}}$$

E.g., if $\eta_u = 0.2$ would imply we need to scale observed earnings impact by 83%.

• Second order approximation implies smaller rescaling if income effects substantial $(\eta_c \gg \eta_u)$:

$$\frac{CV\left(\Delta\right)}{DE\left(\Delta\right)} \approx \frac{1 + \frac{1}{2}\eta_{c}\frac{\Delta}{y}}{1 + \eta_{u} + \frac{1}{2}\eta_{u}\left(2 + \eta_{u}^{2}\right)\frac{\Delta}{y}}$$

Note: if $\eta_u \approx 0$ and $\eta_c > 0$ earnings impact *understates* welfare gain!

- Also: if $u = u\left(q, \overline{l}, y\right)$ then extra term for "consumption value" of human capital.
- So $\frac{1}{1+n_0}$ scaling potentially very conservative.

MVPF


• In constant elasticity model, bang per net dollar spent is:

$$\begin{array}{ll} \textit{MVPF} & = & \frac{E\left[\textit{CV}\left(\Delta_{i}\right)|\textit{complier}\right]}{\phi_{h} - \phi_{c}S_{c} - \tau p\frac{\partial}{\partial \delta}E\left[Y_{i}I^{*}\left(\tilde{Y}_{i}\right)\right]} \\ & = & \frac{E\left[\textit{CV}\left(\Delta_{i}\right)|\textit{complier}\right]}{\phi_{h} - \phi_{c}S_{c} - \tau \textit{LATE}_{h}^{N}} \\ & \geq & \frac{1}{1 + \eta_{u}}\frac{(1 - \tau)\textit{LATE}_{h}^{N}}{\phi_{h} - \phi_{c}S_{c} - \tau \textit{LATE}_{h}^{N}} \end{array}$$

where $LATE_{h}^{N} \equiv E\left[N_{i}\left(\tilde{Y}_{i}\left(h\right)\right) - N_{i}\left(\tilde{Y}_{i}\left(D_{i}\left(0\right)\right)\right) | complier\right]$ gives the LATE on pre-tax earnings.

• So, we have an overestimate of MVPF by a factor of (at most) $\frac{1}{1+n_w}$.

CFHSSY (2011)

Review: know your Heckit

Potential outcomes

$$Y_{1i} = \mu_1 + U_{i1}$$

 $Y_{0i} = \mu_0 + U_{i0}$

• Regime switching:

$$D_{i}^{*} = \psi_{0} + \psi_{1}Z_{i} + V_{i},$$

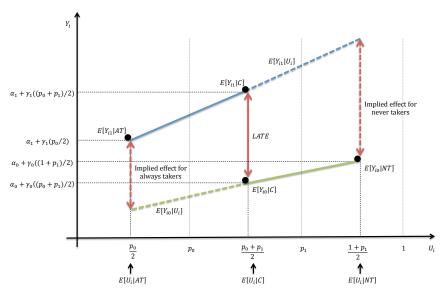
$$D_{i} = 1\{D_{i}^{*} > 0\},$$

Random assignment:

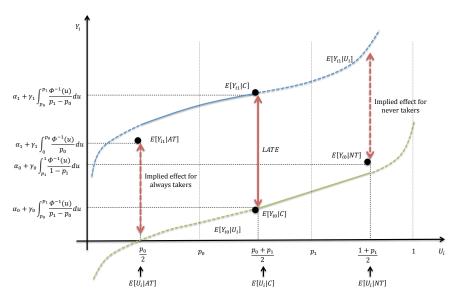
$$(U_{i1}, U_{i0}, V_i) \perp Z_i$$

Result:

$$E[Y_i|Z_i = z, D_i = d] = \mu_d + E[U_{id}|Z_i = z, D_i = d]$$


$$= \mu_d + \gamma_d \underbrace{\lambda_d(\pi(z))}_{Control En}$$

where
$$\pi(z) = P(D_i = 1 | Z_i = z)$$
.


Review: control functions

$$E[Y_i|Z_i=z,D_i=d] = \mu_d + \lambda_d(\pi(z))$$

- Standard causal estimands functions of $\{\mu_0, \mu_1, \lambda_0(.), \lambda_1(.), \pi(.)\}$:
 - $ATE = \mu_1 \mu_0$
 - $MTE(z) = \mu_1 \mu_0 + \gamma_1 \lambda'_1(\pi(z)) \gamma_0 \lambda'_0(\pi(z))$
 - LATE = $\mu_1 \mu_0 (\gamma_1 \gamma_0) \left(\frac{\pi(0) \lambda_1(\pi(0)) + (1 \pi(1)) \lambda_0(\pi(1))}{\pi(1) \pi(0)} \right)$
- Identification challenges:
 - Getting $(\lambda_0(.), \lambda_1(.))$ requires "identification at infinity"
 - With binary instrument, need parametric structure
 - Classic "two-step" Heckit: $\lambda_d\left(\pi\right) = \rho_d \frac{\phi\left(\Phi^{-1}\left(\pi\right)\right)}{\pi}$

Linear selection model: $E[Y_{id}|U_i] = \alpha_d + \gamma_d U_i$

Heckit model: $E[Y_{id}|U_i] = \alpha_d + \gamma_d \Phi^{-1}(U_i)$

 Folk wisdom: good instrument ⇒ parametric structure not important (Newey, Powell, Walker, 1990)

- Folk wisdom: good instrument ⇒ parametric structure not important (Newey, Powell, Walker, 1990)
- Modern answer: depends on estimand (interpolation vs extrapolation):
 - ATE is not identified
 - But LATE estimate might be good even if Heckit assumptions wrong

- Folk wisdom: good instrument ⇒ parametric structure not important (Newey, Powell, Walker, 1990)
- Modern answer: depends on estimand (interpolation vs extrapolation):
 - ATE is not identified
 - But LATE estimate might be good even if Heckit assumptions wrong
- Kline and Walters (2015): with binary Z, fully saturated two-step Heckit gives LATE estimate numerically equivalent to IV!

- Folk wisdom: good instrument ⇒ parametric structure not important (Newey, Powell, Walker, 1990)
- Modern answer: depends on estimand (interpolation vs extrapolation):
 - ATE is not identified
 - But LATE estimate might be good even if Heckit assumptions wrong
- Kline and Walters (2015): with binary Z, fully saturated two-step Heckit gives LATE estimate numerically equivalent to IV!
- Heckit MTE estimate is discrete approx to derivative over range of compliance traced out by instrument.
 - In limiting case where $\pi\left(z'\right) \to \pi\left(z\right)$ interpolation is exact because $LATE = MTE\left(z\right)$

CF differences nearly linear

Relationship between control function differences and choice probability differences

			Partial R ²	
	Control function	Total R ²	Difference in π_h	Difference in π_c
Preschool choice	difference	(1)	(2)	(3)
Head Start	v_h	0.887	0.886	0.047
	v_c	0.483	0.002	0.473
Other centers	v_h	0.930	0.929	0.549
	v_c	0.764	0.505	0.606
No preschool	v_h	0.826	0.816	0.060
	v_c	0.044	0.005	0.035