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About the Lecture

• Scope Introduce Causal Frameworks that enhance the Causal
Inference

• Goal Tools that enable the analysis of arbitrarily complex causal
models.

• Benefit Enable to explore nonparametric identification of models
with multiple variables

• Beyond Matching, IV, and Mediation Models

• Insights Expand the way you can model an empirical inquiry



Related Literature

1 Pearl (1995)
Causal Diagrams for Empirical Research

2 Pearl (2012)
The Do-Calculus Revisited

3 Jaber, Zhang, Bareinboin (2018)
Causal Identification under Markov Equivalence

4 Heckman and Pinto (2020)
Causal Calculus for the Hypothetical Model Framework

5 Chalak and White (2011)
Extended class of instrumental variables for the estimation of causal
effects

6 Richardson Evans and Robins (2017)
Nested Markov Properties for Acyclic Directed Mixed Graphs



Softwares

R Package

• Tikka and Karvanen (2019)
Identifying Causal Effects with the R Package causaleffect

Online Resource

• Online Software DAGitty

www.http://dagitty.net/

• Johannes Textor (2020)
Drawing and Analyzing Causal DAGs with DAGitty

www.http://dagitty.net/
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Basic Concepts Review
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Defining Causal Models

Causal Model: defined by a 4 components:

1 Random Variables that are observed and/or unobserved by the
analyst: T = {Y ,U,X ,V }.

2 Error Terms that are mutually independent: εY , εU , εX , εV .

3 Structural Equations that are autonomous : fY , fU , fX , fV .

4 Causal Relationships that map the inputs causing each variable:
Y = fY (X ,U, εY );X = fX (V , εX );U = fU(V , εU);V = fV (εV ).

Econometric approach explicitly models unobservables that are often
the main object of study.



Review Causal Calculus Hypotetical Model Do-Calculus References

Structural Relationships / Autonomous Functions

Y = fY (X ,U , εY ), Y observed

X = fX (V , εX ), X observed

U = fU(V , εU), U unobserved

V = fV (εV ), V unobserved

Directed Acyclic Graph (DAG) representation
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Properties of this Causal Framework

• Recursive Property : No variable is descendant of itself.

• Autonomy + Indep. Errors + Recursivity ⇒ Bayesian Network

1 Local Markov Condition (LMC): a variable is independent of
its non-descendants conditioned on its parents.

2 Graphoid Axions (GA): new independence relations based on
the LMC relations

• Benefit of Bayesian Network Tools translates causal links into
independence relations
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A Useful Tool: Local Markov Condition (LMC):
(Kiiveri, 1984, Lauritzen, 1996)

LMC: A variable is independent of its non-descendants conditional
on its parents
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• For example: Y ⊥⊥ V︸︷︷︸
non-

descendants

|(X ,U︸︷︷︸
parents

)

• A fully non-parametric causal model can be equivalently
described by its LMCs.

Pinto and Heckman Causal Calculus
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Additional Tool: Graphoid Axioms (GA)
(Dawid, 1979)

Primary GA rules:

Weak Union: X ⊥⊥ (W ,Y )|Z ⇒ X ⊥⊥ Y |(W ,Z ).

Contraction: X ⊥⊥ W |(Y ,Z ) and X ⊥⊥ Y |Z ⇒ X ⊥⊥ (W ,Y )|Z .
Intersection: X ⊥⊥ W |(Y ,Z ) and X ⊥⊥ Y |(W ,Z )⇒ X ⊥⊥ (W ,Y )|Z

Remaining GA rules:

Symmetry: X ⊥⊥ Y |Z ⇒ Y ⊥⊥ X |Z .
Decomposition: X ⊥⊥ (W ,Y )|Z ⇒ X ⊥⊥ Y |Z .

Redundancy: X ⊥⊥ Y |X .

Pinto and Heckman Causal Calculus



Building Blocks of Causal Relations
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Figure 2. Three important causal structures and the associated patterns of conditional 
independence (CI). 

 
The final structure is a collider structure, depicted in the right panel of Figure 2. In this 
structure, two variables jointly cause a third (A -> B <-C). In this case, you get 
conditional dependence. Even if the variables A and C are uncorrelated to begin with, 
once we condition on their common effect we create a correlation. For instance, suppose 
that two soldiers in a firing squad (B and C) shoot a prisoner (A). Suppose B and C fire 
completely independently, so that learning that B fired gives no information on whether 
C fired: B and C are uncorrelated. So suppose you know that B didn't fire. Then you have 
no information on whether C fired. However, now you learn that the prisoner is dead 
(conditioning on A). Suddenly, you have information: because if B didn't fire, but the 
prisoner is dead, then C must have done it. So, conditioning on a common effect (A) 
renders the causes of that common effect (B and C) correlated, even if they were 
originally independent. 
 
How do we use this connection between causal structures and conditional independence.? 
Suppose we know that B and C are correlated, but become independent once we 
condition on A. Also suppose that we are willing to assume that all the correlations 
between these variables arise through their causal interaction in a DAG. Then we know 
that there are only three possibilities: either A is the common cause of B and C (B <- A -
>C), or we have one of two chains: B -> A -> C or B <- A <- C. Thus, we can narrow 
down the number of causal possibilities by looking at the conditional independence 
relations; for instance, B -> C < -A is decisively ruled out by this situation. As a result, 
we can not only test causal models against correlational data, but we can also search the 
data for possible causal models that are consistent with them. To do this effectively, 
however, we need a method to analyze larger systems. As it happens there are very 
simple rules by which you can look at a causal graph and derive which conditional 
independence relations should hold in the data if that graph were true. The method to do 
this is called d-sepation. Below, we explain how d-separation works. First, however, we 
need to explain the concept of blocking. 

B ⊥⊥ C |A A ⊥⊥ C |B B ⊥⊥ C
but B �⊥⊥ C |A



More general approaches?

Is there a more general approach to investigate independencies? Yes!

1 A linear-algebraic tool for conditional independence inference
Inference
Tanaka, Studeny, Takemura and Sei (2015)

2 Efficient Algorithms for Conditional Independence Inference
Bouckaert, Hemmecke, Lindner, Studeny (2010)

3 Probabilistic Conditional Independence Structures
Studeny (2005)

4 See Lauritzen (1996) for the general theory of Bayesian Networks.



Analysis of Counterfactuals – The Fixing Operator

• Fixing: causal operation sets X -inputs of structural equations to x .

Standard Model Model under Fixing

V = fV (εV ) V = fV (εV )
U = fU(V , εU) U = fU(V , εU)
X = fX (V , εX ) X = x

Y = fY (X ,U, εY ) Y = fY (x ,U, εY )

• Importance: Establishes the framework for counterfactuals.

• Counterfactual: Y (x) represents outcome Y when X is fixed at x .

• Linear Case: Y = Xβ + U + εY and Y (x) = xβ + U + εY ;



Questions



Causal Calculus
What can you gain from additional structure?

A General Method to Examine Complex Models
Merging Statical Theory with Causal Analysis



How can we use the SMC to identify the Front-door Model?

V = fV (εV )
V

MT Y

T = fX (V , εT )
M = fM(T , εM)
Y = fY (M,V , εY )

Two Counterfactuals:

M(t) = fM(t, εM)⇒ M(t) ⊥⊥ T

Y (m) = fY (m,V , εY ) but M ⊥⊥ V |T ⇒ Y (m) ⊥⊥ M|T

Thus the following equalities hold:

• P(M(t)) = P(M|T = t)

• E (Y (m)|T = t) = E (Y |M = m,T = t)



Identifying the Counterfactual Mean E (Y (t))

V

MX Y

Outcome Y = fY (M,V , εy ) generates the following counterfactual:

∴ Y (t) = fY (M(t),V , εy )⇒ E (Y (t)) =

∫
E (Y (m))dFM(t)(m)

But P(M(t)) = P(M|T = t) and

E (Y (m)|T = t ′) = E (Y |M = m,T = t ′)

⇒ E (Y (m)) =

∫
E (Y |M = m,T = t ′)dFT (t ′)

⇒ E(Y ( t )) =

∫
m

(∫
t ′

E(Y |M = m,T = t ′ )dFT ( t ′ )

)
︸ ︷︷ ︸

E(Y (m))

dF
M|T= t (m)︸ ︷︷ ︸
dFM(t)(m)



What about this model?

V1 V2

T M1 M2 M3 Y

V3

• X is endogenous, Y (x) �⊥⊥ X , indeed, ALL variables are endogenous

• No instruments

• Yet, causal effects are identified:

E(Y (t)) =

∫
t′

∫
m1

∫
m2

∫
m3

E(Y |m3,m2,m1,T = t′)

dFM3|m2,m1,T=t(m3)

dFM2|m1,T=t′ (m2)

dFM1|T=t(m1)

dFT (t’)



And what about this model?

V3 V2

T M Y

V1

V4

X1

X2

E(Y (t)) =

∫
t′

∫
m

∫
x1

E(Y |m, x1,T = t′)dFM|x1,T=t(m)dFX1|T=t′ (x1)dFT (t
′)



What about a General Framework for Causal Calculus?

• The goal of a framework for causal calculus is to deliver a standard
methodology that applies to any DAG.

• A set general of rules that can be used to assess counterfactual
outcomes whenever those are identified.

• A methodology/algorithm that be coded, so the researcher dos not
need to investigate case by case.

• Such framework is useful to investigate which properties of DAGs
are necessary/sufficient to render identification of causal parameters.

• Most important, a framework that facilitates to investigate the
identification of causal effect is more complex DAGs.



Moreover, Fixing is not Well-defined in Statistics

1 Fixing: causal operation that assigns values to the inputs of
structural equations associated to the variable we fix upon.

2 Conditioning: Statistical exercise that considers the dependence
structure of the data generating process.

• Fixing has direction while conditioning does not.

• Question: How can we make statistics converse with causality?

• Answer: The hypothetical model



Questions
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The Hypothetical Model Framework

Pinto and Heckman Causal Calculus



The Causal Calculus using The Hypothetical Framework
Merging Statical Theory and Causal Analysis

• The mismatch between statistical theory and causal inference
motivated the study of the Hypothetical Model Framework

• The framework merges statical theory and causal analysis without
the necessity of defining new tools of analysis



Properties of the Hypothetical Model

• Insight: express causality through a hypothetical model
assigning independent variation to inputs determining
outcomes.

• Data: generated by an empirical model that shares some
features with the hypothetical model.

• Simplicity: the method does not rely on additional tools of
analysis beyond standard statistical theory

• Identification: relies on evaluating causal parameters defined
in the hypothetical model using data generated by the empirical
model.



Example of Data Generating Model (DAG) Representation

Model: Y = fY (X ,U, εY );X = fX (V , εX );U = fU(V , εU);V = fV (εV ).

V U

X Y

• The Local Markov Condition (LMC) generates two independence
conditions:

• Y ⊥⊥ V |(U,X ) and U ⊥⊥ X |V



Defining The Hypothetical Model

The hypothetical model stems from the following properties:

1 Same set of structural equations as the empirical model.

2 Appends a hypothetical variable that we fix.

3 Hypothetical variable not caused by any other variable.

4 Replaces the input variables we seek to fix by the hypothetical
variable.

Usage:

Empirical Model: Governs the data generating process.
Hypothetical Model: Abstract model used to examine causality.



Example of the Hypothetical Model for fixing T

The Associated Hypothetical Model

Y = fY (T̃ ,U , εY );T = fT (V , εT );U = fU(V , εU);V = fV (εV ).

Empirical Model Hypothetical Model

V U

T Y

V U

T Y T̃

LMC LMC

Y ⊥⊥ V |(U,T ) Y ⊥⊥ (T ,V )|(U, T̃ )

U ⊥⊥ T |V U ⊥⊥ (T , T̃ )|V
T̃ ⊥⊥ (U,V ,T )

T ⊥⊥ (U,Y , T̃ )|V



Why the hypothetical variable is useful?

Properties the Hypothetical Model:

1 Hypothetical Variable: T̃ replaces the T -inputs of structural
equations.

2 Characteristic: T̃ is an external variable, i.e., no parents.

3 Thus: Hypothetical variable has independent variation.

4 Usage: hypothetical variable T̃ enables analysts to examine
fixing using standard tools of probability (conditioning).



Main Benefit

• Fixing in the empirical model is translated to

• statistical conditioning in the hypothetical model

EE(Y (t))︸ ︷︷ ︸
Causal Operation Empirical Model

= EH(Y |T̃ = t)︸ ︷︷ ︸
Statistical Operation Hypothetical Model

• Causality is defined within Statistics/Probability

• No additional Tools Required.
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Identification

• Hypothetical Model allows analysts to define and examine
causal parameters.

• Empirical Model generates observed/unobserved data;

Clarity: What is Identification?
The capacity to express causal parameters of the hypothetical model
through observed probabilities in the empirical model.

Tools: What does Identification require?
Probability laws that connect Hypothetical and Empirical Models.

Pinto and Heckman Causal Calculus
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Connecting Hypothetical and Empirical Models:
Two Useful Conditions

Only two conditions suffice to investigate the identification of causal parameters!

For any disjoint set of variables Y ,W , we have that:

Rule 1:Y ⊥⊥ T̃ |(T ,W )⇒
PH(Y |T̃ ,T = t ′,W ) = PH(Y |T = t ′,W ) = PE (Y |T = t ′,W )

Rule 2:Y ⊥⊥ T |(T̃ ,W )⇒
PH(Y |T̃ = t,T ,W ) = PH(Y |T̃ = t,W ) = PE (Y |T = t,W )

Pinto and Heckman Causal Calculus



• If Y ⊥⊥ T̃ |(T ,W ) or Y ⊥⊥ T |(T̃ ,W ) occurs

• We can connect hypothetical and empirical models!
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How to use this Causal Framework?
Rules of Engagement

1 Define the empirical and associated hypothetical model.

2 Hypothetical Model: Generate statistical relationships
(LMC, GA)

3 Express PH(Y |T̃ ) in terms of other variables.

4 Connect this expression to the empirical model using
Y ⊥⊥ T̃ |(T ,W ) or Y ⊥⊥ T |(T̃ ,W )

Pinto and Heckman Causal Calculus



Example of the Hypothetical Model for Fixing X

Empirical Model Hypothetical Model
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Local Markov Condition Local Markov Condition

Y ⊥⊥ V |(U,X ) Y ⊥⊥ (X ,V )|(U, X̃ )

U ⊥⊥ X |V X ⊥⊥ (U,Y , X̃ )|V

1 EE (Y (x)|V ) = EH(Y |X̃ = x ,V ) by the main property of the HM

2 X ⊥⊥ (U,Y , X̃ )|V ⇒ X ⊥⊥ Y |(X̃ ,V ) holds by LMC

3 EH(Y |X̃ = x ,V ) = EE (Y |X = x ,V ) by rule 2
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Rule 2 is a Matching Property

If there exist V such that, T ⊥⊥ Y |V , T̃ , then EH(Y |V , T̃ = t) in
hypothetical model is equal to EE(Y (t)|T = t) in empirical model.

• Main Property of the Hypothetical Model implies that
counterfactual outcome EE(Y (x)) can be expressed as

EE(Y (t)) =

∫
EH(Y |V = v , T̃ = t)dFV (v)

• LMC for the hypothetical model generates Y ⊥⊥ T |(V , T̃ ).

• By Rule 2, EH(Y |V = v , T̃ = t) = EE(Y |V = v ,T = t)

• Thus, the counterfactual outcome EE(Y (t)) can be obtained by:

EE(Y (t)) =

∫
EE(Y |V = v ,T = t)dFV (v)︸ ︷︷ ︸

In Empirical Model by Rule 2

Pinto and Heckman Causal Calculus



Causal Model 1: Revisiting the Front-door Model

Empirical Front-door Model Hypothetical Front-door Model

Observed Variables Observed Variables

T = fT (V , εT ) T = fT (V , εT )

M = fM(T , εM) M = fM(T̃ , εM)
Y = fY (V ,M, εY ) Y = fY (V ,M, εY )

Y = fY (V ,M, εY )

Exogenous Variables Exogenous Variables

V V , T̃

Unobserved Variables Unobserved Variables

V = fV (εV ) V = fV (εV )



Independence Relations for Front-Door Model

Empirical Model Hypothetical Model

V

M YT

V

M YT

T̃

V ⊥⊥ −|− V ⊥⊥ (M, T̃ )

T ⊥⊥ −|V T ⊥⊥ (M,Y , T̃ )|V
M ⊥⊥ V |T M ⊥⊥ (T ,V )|T̃
Y ⊥⊥ T |(V ,M) Y ⊥⊥ (T , T̃ )|(V ,M)

T̃ ⊥⊥ (T ,V )

Useful independence relations in the Front-Door hypothetical model:

1 Y ⊥⊥ T̃ |(M,T ) (due to Y ⊥⊥ T̃ |M & (T̃ ,M) ⊥⊥ (T ,V ))

2 M ⊥⊥ T |T̃
3 T̃ ⊥⊥ T



General Identification Criteria

1 Given a Causal Model represented by a DAG,

2 The counterfactual outcome Y (t) is identified if

3 There exists a set of observable variable K that bridges

4 The conditional independence Y ⊥⊥ T̃ |(T ,K ) into T ⊥⊥ T̃ .

5 Moreover, the identification formula for Y (t) can be expressed as
an alternate pattern.



Conditions for Causal Model 1 (Front-door)

Variable M bridges the independence Y ⊥⊥ T̃ |(T ,M) to T̃ ⊥⊥ T :

Connection

Y ⊥⊥ T̃ | ( T , M ) ⇒ PH(Y |T̃ ,T = t ′ ,M) = PE (Y |T = t ′ ,M)

M ⊥⊥ T | T̃ ⇒ PH(M|T̃ = t ,T ) = PE (M|T = t )

T ⊥⊥ T̃ | T ⇒ PH(T = t ′ |T̃ ) = PE (T = t ′ )

The identification Formula that follows the alternate pattern:

PH(Y |T̃ = t) =

=
∑
t′,m

PH(Y |m,T = t ′ , T̃ = t)PH(m|T = t ′, T̃ = t )PH(T = t ′ |T̃ = t)

=
∑
t′ ,m

PE (Y |m,T = t ′ )PE (m|T = t )PE (T = t ′ ),



Identifying Equations (Front-door Model)

Categorical Variables:

EH(Y |T̃ = t) =

=
∑
t′ ,m

EE (Y |m,T = t ′ )PE (m|T = t )PE (T = t ′ ),

Continuous Case:

E(Y (t)) =

∫
t′

∫
m
E (Y |m,T = t ′ )dF

M|T= t
(m)dFT ( t ′ )

Previous Equation:

E(Y ( t )) =

∫
m

(∫
t ′

E(Y |M = m,T = t ′ )dFT ( t ′ )

)
︸ ︷︷ ︸

E(Y (m))

dF
M|T= t (m)︸ ︷︷ ︸
dFM(t)(m)



What if We Assume Linearity? (Chalack and White, 2013)
The Front Door ModelExtended instrumental variables methods 31

GRAPH 10 (G10) Condi�onal instruments

Z

Uy

YX

Uz

Ux

Substituting S10(2) into S10(3) with βo ≡ γ ′
z δo gives

(4) Y c= X ′βo + U ′
zα

′
zδo + U ′

yαo.

S10 doesn’t specify how dependence between Ux and Uy arises. Clearly, X and Z
are endogenous in (4), so neither XC nor XI can identify βo. Also, XC|I fails, as
X �⊥ Uy|Z. But S10 ensures

(XI|C) Conditionally Exogenous Instruments, given Causes: Z⊥Uy | X.

Theorem 1 applies with Z̃ = Z and W̃ = X to identify δo from S10(4) by XC|I
with causes Z and conditioning instruments X . If γ z can also be identified, then
identification of βo ≡ γ ′

z δo follows from proposition 1. But γ z is identified from
S10(2) by XC, as X ⊥ Uz. In contrast to XI but like XC| I, XI|C does not require
� = k.

The feasible plug-in estimator with linearity of E(Z | X) is

β̂XI |C
n ≡ {(X′X)−1(X′Z)} × {[Z′(I − X(X′X)−1X′)Z]−1[Z′(I − X(X′X)−1X′)Y]}.

Although XI|C uses a single XIV Z to identify βo, both Z and X play dual
roles. Z is both a response for X and a cause for Y . The causes X are exogenous
with respect to Uz in S10(2) and are conditioning instruments with respect to Uy

in S10(3).
Just as for XI, a succinct set of causal properties characterizes structural

identification:

CP:XI|C (Causal Properties of Conditionally Exogenous Instruments, Given
Causes) (i) The effect of X on Z is identified via XC with exogenous causes
Z; (ii) that of Z on Y is identified via XC |I with conditioning instruments X; (iii)
If X causes Y, it does so only via Z.

Note the exclusion restriction enforced by (iii). As is easily seen, S10 satisfies
CP:XI|C.

XI|C corresponds to Pearl’s (1995, 2000) front-door method. Whereas the
treatment effect literature applies XC| I (e.g., back door) to identify effects using

Extended instrumental variables methods 31
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z δo gives

(4) Y c= X ′βo + U ′
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S10 doesn’t specify how dependence between Ux and Uy arises. Clearly, X and Z
are endogenous in (4), so neither XC nor XI can identify βo. Also, XC|I fails, as
X �⊥ Uy|Z. But S10 ensures

(XI|C) Conditionally Exogenous Instruments, given Causes: Z⊥Uy | X.

Theorem 1 applies with Z̃ = Z and W̃ = X to identify δo from S10(4) by XC|I
with causes Z and conditioning instruments X . If γ z can also be identified, then
identification of βo ≡ γ ′

z δo follows from proposition 1. But γ z is identified from
S10(2) by XC, as X ⊥ Uz. In contrast to XI but like XC| I, XI|C does not require
� = k.

The feasible plug-in estimator with linearity of E(Z | X) is

β̂XI |C
n ≡ {(X′X)−1(X′Z)} × {[Z′(I − X(X′X)−1X′)Z]−1[Z′(I − X(X′X)−1X′)Y]}.

Although XI|C uses a single XIV Z to identify βo, both Z and X play dual
roles. Z is both a response for X and a cause for Y . The causes X are exogenous
with respect to Uz in S10(2) and are conditioning instruments with respect to Uy

in S10(3).
Just as for XI, a succinct set of causal properties characterizes structural

identification:

CP:XI|C (Causal Properties of Conditionally Exogenous Instruments, Given
Causes) (i) The effect of X on Z is identified via XC with exogenous causes
Z; (ii) that of Z on Y is identified via XC |I with conditioning instruments X; (iii)
If X causes Y, it does so only via Z.

Note the exclusion restriction enforced by (iii). As is easily seen, S10 satisfies
CP:XI|C.

XI|C corresponds to Pearl’s (1995, 2000) front-door method. Whereas the
treatment effect literature applies XC| I (e.g., back door) to identify effects using

E(Y (t)) =
∑
m

P(M = m|X = x)

(∑
x′

E(Y |m, x ′)P(X = x ′)

)



What if We Assume Linearity? (Chalack and White, 2013)
The Matching Model

Extended instrumental variables methods 27

A feasible plug-in estimator for βo based on linearity of E(X | W ) is

β̂XC|I
n ≡ {X′(I − W(W′W)−1W′)X}−1{X′(I − W(W′W)−1W′)Y}.

This is the Frisch–Waugh (1933) partial regression estimator, obtained by re-
gressing Y on the residuals from the regression of X on W. This is also the OLS
estimator for βo in the regression of Y on X and W . This regression emerges
naturally from S7a by performing the substitutions enforcing our convention that
observables do not cause unobservables, as represented in S7b:
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In writing S7b, we adjust the notation in the natural way. With the assumed
independence, theorem 1 applies with7 Z̃ = (X, W ) satisfying XC (m̃ = 0). In
S7b, both βo, the direct (and full) effect of X on Y , and γ o, the direct effect of W
on Y , are identified.

Momentarily shifting attention to the effects of W , note that the full effect of
W on Y is γ o + γ ′

x βo, identified from a regression of Y on W only. Interestingly,
in this regression, omitting the causally relevant X results in omitted variable bias
only if one is interested in the direct rather than the full effect of W . When the
full effect of W is of interest, including a variable caused by W results in included
variable bias. The proper choice of variables thus depends on the specific effect
of interest. The traditional account of the omitted variables ‘problem’ ignores
this distinction and is therefore incomplete.

6.4.2. Proxies for unobserved common causes
Structural Proxies S7a (S7b) is not necessary for XC|I. Pearl’s (1995; 2000, 79–81)
back-door structures, where an observable (W ) mediates a link between X and
Y , also ensure XC|I. Here, W acts either as a common cause (G7a, G7b), or as
a response to the unobserved common cause and a cause of either Y or X (G8a,
G8b). XC|I holds in G8a and G8b, as the unobserved confounding common cause
causes Y via W (G8a) or X via W (G8b). As W is a structurally relevant proxy for
the unobserved common cause, we may refer to W as a ‘structural proxy.’

7 In S7b and S8a below, W appears in Z̃, abusing our convention that W not appear in Z̃. But this
is just for convenience, as the underlying identifying condition is indeed XC |I: X ⊥ Uy | W .
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• This is the Frisch–Waugh–Lovell (double errors) theorem



What if We Assume Linearity?
Conditional Instruments
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CP:PXI|I parallels CP:PXI, but identification in (i) and (ii) is via XC|I, not XC.
As in CP:OXI |I, the conditioning instruments in (i) and (ii) may differ. (iii)
imposes the key exclusion restriction. Our comments about PXI and ILS also
apply here: the ILS derivative ratio of two inconsistent XC |I estimators remains
informative for βo in the linear case, but generally not in the non-separable case.
As with PXI, Z is not required to cause X in S13b.

7.2. Conditionally exogenous causes and instruments, given instruments
When conditioning instruments W render only a subvector X2 of X ≡ [X ′

1, X ′
2]′

conditionally exogenous, no previous method identifies βo ≡ [β ′
1, β

′
2]′. But iden-

tification obtains, given conditional instruments Z for X1 that are conditionally
exogenous given W . Consider S14 :

GRAPH 14 (G14) Condi�onally exogenous
instruments and causes, given

condi�oning instruments (XCI|I) 
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S14 ensures (Z, X2) ⊥ Uy | Uw. Provided W is a suitable predictive proxy, this
ensures

(XCI|I) Conditionally Exogenous Causes and Instruments,

given Conditioning Instruments: (Z, X2) ⊥ Uy | W.

XCI|I is the special case of XI|I in which X2 plays the role of a conditional
instrument for itself. Letting Z̃ = [Z′, X ′

2]′ and W̃ = W , theorem 1 ensures that
βo is identified as

βo = [E({Z̃ − E(Z̃ | W )}X ′)]−1E({Z̃ − E(Z̃ | W )}Y )

if and only if E({Z̃ − E(Z̃ | W )}X ′) is non-singular. Again, � = k is necessary.
The XCI|I plug-in estimator with linearity for E(Z̃ | W ) is

β̂XCI |I
n ≡ [Z̃′(I − W(W′W)−1W′)X]−1[Z̃′(I − W(W′W)−1W′)Y].

An analogous result holds for the XCI case (Z̃ ⊥ Uy) with βo identified as
βo = E(Z̃X ′)−1E(Z̃Y ). The XCI plug-in estimator is β̂XCI

n ≡ (Z̃′X)−1(Z̃′Y).
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• Conditional Instruments: Z̃ = [Z ,X2]
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TABLE 4
Extended instrumental variables methods

instruments in indirect least-squares-like methods and to extend Pearl’s (1995)
back-door method. A main message emerging from our analysis is the central
importance of sufficiently specifying the causal relations governing the unob-
servables, as these play a crucial role in creating obstacles or opportunities for
identification.

Among the useful insights that emerge from our analysis is the understanding
that, in the presence of conditioning instruments, not all regression coefficients
need have causal meaning. Thus, not all regression coefficients need have signs
or magnitudes that make economic sense. We also see that the standard account
of the ‘problem’ of omitted variables is incomplete and possibly misleading. In
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Example: Causal Model 2

Empirical Model Hypothetical Model

Observed Variables Observed Variables

T = fT (V1,V2, εT ) T = fT (V1,V2, εT )
M1 = fM1(V3,T , εM1) M1 = fM1(V3,T , εM1)
M2 = fM2(V2,M1, εM2) M2 = fM2(V2,M1, εM2)
M3 = fM3(V3,M2, εM3) M3 = fM3(V3,M2, εM3)
Y = fY (V1,M3, εY ) Y = fY (V1,M3, εY )

Exogenous Variables Exogenous Variables

V1,V2,V3 V1,V2,V3, T̃



DAG of Causal Model 2

Directed Acyclic Graph of the Empirical Model

V1 V2

T M1 M2 M3 Y

V3

Directed Acyclic Graph of the Hypothetical Model

T̃ V1 V2

T M1 M2 M3 Y

V3



Causal Model 2 - Connecting Hypothetical and Empirical

Applying LMC and GA to the hypothetical model generates the following
indep. relations:

Y ⊥⊥ T̃ |( T , M3 ,M2,M1)

M3 ⊥⊥ T |( T̃ , M2 ,M1)

M2 ⊥⊥ T̃ |( T , M1 )

M1 ⊥⊥ T | T̃

T̃ ⊥⊥ T always hold

Observe that:

• The sequence of observed variables M1 → M2 → M3 forms a bridge

• from Y ⊥⊥ T̃ |(T ,M3,M2,M1) (initial relation)

• to T̃ ⊥⊥ T (final relation)



Causal Model 2 - Connecting Hypothetical and Empirical

Using the two probability rules, we can achieve identification:

Hypothetical Model PH(Y |T̃ = t ) =
∑

t′ ,m3,m2,m1

PH(Y |m3,m2,m1,T = t ′ , T̃ = t )

PH(M3 = m3|m2,m1,T = t ′ , T̃ = t )

PH(M2 = m2|m1,T = t ′ , T̃ = t )

PH(M1 = m1|T = t ′ , T̃ = t )

PH(T = t ′ |T̃ = t )

Empirical Model PE (Y ( t )) =
∑

t′ ,m3,m2,m1

(alternate pattern) PE (Y |m3,m2,m1,T = t ′ )
PE (M3 = m3|m2,m1,T = t )

PE (M2 = m2|m1,T = t ′ )
PE (M1 = m1|T = t )

PE (T = t ′ )



Review Causal Calculus Hypotetical Model Do-Calculus References

Small Detour: On the Do-Calculus

• Creates a special set of rules that combine:

1 Graphical conditions
2 Conditional independence statements
3 Probability equalities as postulates

In contrast, the hypothetical model framework does not require any tool
outside of standard probability theory, provided we endow the space of
hypotheticals with a probability measure

Major Achievement: The do-calculus is Complete!

Pinto and Heckman Causal Calculus



Review Causal Calculus Hypotetical Model Do-Calculus References

Limitation of the Do-Calculus:
IV model is not Identified

• The necessary assumptions the identify the IV model are
monotonicity/separability conditions

• These are functional form assumptions

• They refer to properties of the structural functions

• Beyond the DAG information
(Causal direction among variables remains the same)

• The do-calculus cannot identify the IV model

• The algorithm simply returns that the IV model is not identified

Pinto and Heckman Causal Calculus



Causal Model 2 - Comparison Hypothetical vs Do-Calculus

Equation from do-calculus is different, but equivalent:
Hypothetical Model (alternate pattern):

PE (Y (t)) =
∑

m3,m2,m1, t′

PE (Y |m3,m2,m1, t
′ )PE (m3|m2,m1, t )

PE (m2|m1, t
′ )PE (m1| t )PE ( t ′ )

Do-calculus:

PE (Y (t)) =
∑

m1,m2,m3

PE (m1|t)PE (m3|t,m1,m2)·(∑
t′

PE (t ′)PE (m2|t ′,m1)

)
·∑

t′,m′
2

PE (t ′)PE (m′
2|t ′,m1)PE (Y |t ′,m1,m

′
2,m3)





Causal Model 3

Empirical Model Hypothetical Model

Observed Variables Observed Variables

X1 = fX1(V2,V3, εX1) X1 = fX1(V2,V3, εX1)
X2 = fX2(V4,X1, εX2) X2 = fX2(V4,X1, εX2)

T = fT (V1,V2,V4,X1, εT ) T = fT (V1,V2,V4,X1, εT )

M = fM(X1,T , εM) M = fM(X1, T̃ , εM)
Y = fY (V1,V3,X2,M, εY ) Y = fY (V1,V3,X2,M, εY )

Exogenous Variables Exogenous Variables

V1,V2,V3,V4 V1,V2,V3,V4, T̃

Unobserved Variables Unobserved Variables

V1 = fV1(εV1), V2 = fV2(εV2), V1 = fV1(εV1), V2 = fV2(εV2)
V3 = fV3(εV3), V4 = fV4(εV4) V3 = fV3(εV3), V4 = fV4(εV4)



DAG of Empirical Model 3

Directed Acyclic Graph of the Empirical Model

V3 V2

T M Y

V1

V4

X1

X2



DAG of Hypothetical Model 3

Directed Acyclic Graph of the Hypothetical Model

V3 V2

T M Y

T̃

V1

V4

X1

X2

Y ⊥⊥ T̃ |( T̃ ,X1,M) (1)

M ⊥⊥ T |( T̃ ,X1) (2)

X1 ⊥⊥ T̃ | T̃ (3)



Causal Model 3 - Connecting Hypothetical and Empirical

LMC and GA give you the following conditions:

Y ⊥⊥ T̃ |( T , M ,X1)

M ⊥⊥ T |( T̃ , X1 )

X1 ⊥⊥ T̃ | T

T̃ ⊥⊥ T always hold

• The sequence of observed variables M → X1 forms a bridge

• from Y ⊥⊥ T̃ |(T ,X1,M) (initial relation)

• to T̃ ⊥⊥ T (final relation)



Causal Model 3 - Connecting Hypothetical and Empirical

Using the two probability rules, we can achieve identification:

Hypothetical Model PH(Y |T̃ = t ) =
∑

t′ ,m,x1

PH(Y |m, x1,T = t ′ , T̃ = t )

PH(M = m|x1,T = t ′ , T̃ = t )

PH(X1 = x1|T = t ′ , T̃ = t )

PH(T = t ′ |T̃ = t )

Empirical Model PE (Y ( t )) =
∑

t′ ,m,x1

(alternate pattern) PE (Y |m, x1,T = t ′ )
PE (M = m|x1,T = t )

PE (X1 = x1|T = t ′ )

PE (T = t ′ )



Causal Model 3 - Do-calculus Identifying Equation

Equation from do-calculus is different, but equivalent:
Using Hypothetical Model (alternate pattern):

PE (Y ( t )) =∑
m,x1, t′

PE (Y |m, x1,T = t ′ )PE (m|x1,T = t )PE (x1|T = t ′ )PE (T = t ′)

Using Do-calculus:

PE (Y (t)) =
∑

x1,x2,m

PE (m|x1,T = t)PE (x2|x1)PE (x1)

·
(∑

t′ PE (Y |x1,T = t ′, x2,m)PE (x2|x1,T = t ′)PE (T = t ′|x1)PE (x1)
)

(
PE (x2|x1)PE (x1)

)



Questions/Break



The Do-calculus

The most substantial contribution to the theory of causality is the last
decades.

• Do-calculus (Pearl, 1995) three causal inference rules.

• Software

1 Free Software DAGitty (only for indepence conditions,
matching variables and finding Instruments)

2 R-package causaleffect



The Do-calculus

• Goal: Counterfactual manipulations using the empirical model.

• No Hypothetical Model

• Tools: Uses causal/graphical/statistical rules outside statistics.

• Fixing: Uses do(X ) = x for fixing X at x in the DAG for all
X -inputs (does not allow to target causal links separately).

• Flexibility: Does not easily define complex treatments, such as
treatment on the treated, i.e.,
EE(Y |X = 1, X̃ = 1)− EE(Y |X = 1, X̃ = 0).

Difference: Identification using the hypothetical model does not
require additional causal rules, only standard statistical tools.



Definition the Do-operator (which is Fixing)

The Do-operator is based on the Truncated Factorization of the
probability factor of the fixed variable is deleted:
Let X ⊂ V : Then
Pr(V (x) = v) = Pr(V1 = v1, . . . ,Vm+n = vm+n, |do(X ) = x) and:

Pr(V (x) = v) =

{ ∏
Vi∈V \X P(Vi = vi |pa(Vi )) if v is consistent with x ;

0 if v is inconsistent with x .



Example of the Do-operator
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• Variables: Y ,X ,Z

• Factorization:

Pr(Y ,X ,Z ) = Pr(Y |Z ,X ) Pr(X |Z ) Pr(Z )

= Pr(Y |X ) Pr(X |Z ) Pr(Z )

• Do-operator: Pr(Z ,Y |do(X ) = x) = Pr(Y |X = x) Pr(Z )

• Conditional operator:

Pr(Y ,Z |X = x) = Pr(Y |Z ,X = x) Pr(Z |X = x)

= Pr(Y |X = x) Pr(Z |X = x)

Do-operator targets variables, not causal links.



Comparison: Hypothetical Model and Do-Operator

Fixing within Standard Probability Theory

Fixing in the empirical model is translated to statistical conditioning
in the hypothetical model:

EE(Y (x))︸ ︷︷ ︸
Causal Operation Empirical Model

= EH(Y |X̃ = x)︸ ︷︷ ︸
Statistical Operation Hypothetical Model

do-Operator and Statistical Conditioning

Let X̃ be the hypothetical variable in GH associated with variable X
in the empirical model GE, such that ChH(X̃ ) = ChE(X ), then:

PH(TE \ {X}|X̃ = x) = PE(TE \ {X}|do(X ) = x).



Defining the Do-calculus

What is the do-calculus?

A set of three graphical/statistical rules that convert expressions of
causal inference into probability equations.

1 Goal: Identify causal effects from non-experimental data.

2 Application: Bayesian network structure, i.e., Directed Acyclic
Graph (DAG) that represents causal relationships.

3 Identification method: Iteration of do-calculus rules to
generate a function that describes treatment effects statistics
as a function of the observed variables only (Tian and Pearl
2002, Tian and Pearl 2003).



Characteristics of Pearl’s Do-Calculus

1 Information: DAG only provides information on the causal
relation among variables.

2 Not Suited for examining assumptions on functional forms.

3 Identification: If this information is sufficient to identify
causal effects, then:

4 Completeness:

i There exists a sequence of application of the Do-Calculus that
ii generates a formula for causal effects based on observational

quantities (Huang and Valtorta 2006, Shpitser and Pearl 2006)

5 Limitation: Does not allow for additional information outside
the DAG framework.

i Only applies to the information content of a DAG.
ii IV is not identified through Do-calculus
iii Why? requires assumptions outside DAG: linearity,

monotonicity, separability.



Notation for the Do-calculus

More notation is needed to define these rules:

DAG Notation
Let X ,Y ,Z be arbitrary disjoint sets of variables (nodes) in a causal
graph G .

• GX : DAG that modifies G by deleting the arrows pointing to X .

• GX : DAG that modifies G by deleting arrows emerging from X .

• GX ,Z : DAG that modifies G by deleting arrows pointing to X
and emerging from Z .



Examples of DAG Notation
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Example of DAG Notation
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Do-calculus Rules

• Rule 1: Insertion/deletion of observations:

Y ⊥⊥ Z |(X ,W ) under GX ⇒ P(Y |do(X ),Z ,W ) = P(Y |do(X ),W )

• Rule 2: Action/observation exchange:

Y ⊥⊥ Z |(X ,W ) under GX , Z ⇒ P(Y |do(X ), do(Z ),W ) = P(Y |do(X ),Z ,W )

• Rule 3: Insertion/deletion of actions:

Y ⊥⊥ Z |(X ,W ) & GX , Z(W ) ⇒ P(Y |do(X ), do(Z ),W ) = P(Y |do(X ),W )

where Z (W ) is the set of Z -nodes that are not ancestors of any

W -node in GX .



Understanding the Rules of Do-Calculus

Let G be a DAG then for any disjoint sets of variables X ,Y ,Z ,W :
Rule 1: Insertion/deletion of observations

If Y ⊥⊥ Z |(X ,W )︸ ︷︷ ︸
Statistical Relation

under GX︸︷︷︸
Graphic Criterion

then

Pr(Y |do(X ),Z ,W ) = Pr(Y |do(X ),W )︸ ︷︷ ︸
Equivalent Probability Expression



Do-Calculus Exercise

G GX

V

X

U

Y

V

X

U

Y

1 LMC to X under GX generates X ⊥⊥ (U,Y )|V ⇒ X ⊥⊥ (U,Y )|V .
2 Now if X ⊥⊥ (U,Y )|V holds under GX , then, by Rule 2,

P(Y |do(X ),V ) = P(Y |X ,V ).

∴ E (Y |do(X ) = x) =

∫
E (Y |V = v , do(X ) = x)dFV (v)︸ ︷︷ ︸

Using do(X),i.e. Fixing X

=

∫
E (Y |V = v ,X = x)dFV (v)︸ ︷︷ ︸

Replace “do” with Standard Statistical Conditioning



Do-Calculus Exercise : The Front-door Model



Using the Do-Calculus : Task 1 – Compute Pr(Z |do(X ))
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X ⊥⊥ Z

• X ⊥⊥ Z in GX , by Rule 2, Pr(Z |do(X )) = Pr(Z |X ).



Using the Do-Calculus : Task 2 – Compute Pr(Y |do(Z ))

GZ GZ

X Z

U

Y

X Z

U

Y

X Z

U

Y X Z

U

Y

X Z

U

Y

X Z

U

Y

X Z

U

Y

X Z

U

Y X Z

U

Y

X Z

U

Y

Z ⊥⊥ X Z ⊥⊥ Y |X

• Z ⊥⊥ X in GZ , by Rule 3, Pr(X |do(Z )) = Pr(X )

• Z ⊥⊥ Y |X in GZ , by Rule 2, Pr(Y |X , do(Z )) = Pr(Y |X ,Z )

Adding these results, we have that:

∴ Pr(Y |do(Z )) =
∑
X

Pr(Y |X , do(Z )) Pr(X |do(Z ))

=
∑
X

Pr(Y |X ,Z ) Pr(X )



Using the Do-Calculus : Task 3 – Compute Pr(Y |Z , do(X ))
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Y ⊥⊥ Z |X Y ⊥⊥ X |Z

• Y ⊥⊥ Z |X in GX ,Z , by Rule 2, Pr(Y |Z , do(X )) = Pr(Y |do(Z ), do(X ))

• Y ⊥⊥ X |Z in GX ,Z , by Rule 3, Pr(Y |do(X ), do(Z )) = Pr(Y |do(Z ))

Adding these results, we have that:

∴ Pr(Y |Z , do(X )) = Pr(Y |do(Z ), do(X )) = Pr(Y |do(Z ))



Using the Do-Calculus : Final Task – Compute Pr(Y |do(X ))

Using Tasks 1,2 and 3, we have that:

∴ Pr(Y |do(X )) =
∑
Z

Pr(Y |Z , do(X )) Pr(Z |do(X ))

=
∑
Z

Pr(Y |do(Z ), do(X ))︸ ︷︷ ︸
Task 3

Pr(Z |do(X ))

=
∑
Z

Pr(Y |do(Z ))︸ ︷︷ ︸
Task 3

Pr(Z |do(X ))

=
∑
Z

(∑
X ′

Pr(Y |X ′,Z ) Pr(X ′)

)
︸ ︷︷ ︸

Task 2

Pr(Z |X )︸ ︷︷ ︸
Task 1



Summarizing Do-calculus of Pearl (2009) and
Hypothetical Model Framework

Hypothetical Model Do-calculus

Features in Common Features in Common
Autonomy Autonomy
(Frisch, 1938) (Frisch, 1938)
Errors Terms: Error Terms:
ε mutually independent ε mutually independent
Statistical Tools: Statistical Tools:
LMC and GA apply LMC and GA apply
Counterfactuals: Counterfactuals:
Fixing is a Causal Operation Uses “do” for Fixing
Complete Method Complete Method
Solution: Haavelmo’s Inspired Solution: Graphical/Statistical rules

Where They Depart Where They Depart
Introduces Creates
PH (hypothetical model) Three Graphical/Statistical rules
Identification: Identification:
Connect PH and PE Reiteration of do-calculus rules
Versatility: Versatility:
Standard Statistical Tools apply Standard Statistical Tools do not apply

Need an extra statistical/graphical theory



Research Questions

1 The Do-calculus is complete, the hypothetical model was not shown
to be complete.

2 Go beyond an algorithm.

• Every DAG can be described by a Binary Matrix
• Generate a criteria, i.e. a formula (not an algorithm) that

determines if a causal effect is identified or not
• Only need to test if the bridge pattern holds
• The identification formula is immediate given the pattern



Do-Calculus Exercise : The Roy Model



Generalized Roy Model

The Generalized Roy Model stems from six variables:

1 V: Unobserved confounding variable V not caused by any
variable;

2 X: observed pre-treatment variables X caused by V ;

3 Z: instrumental variable Z caused by X ;

4 T: treatment choice T that caused by Z ,V and X ;

5 U: unobserved variable U caused by T ,V and X ;

6 Y: outcome of interest Y caused by T ,U and X .



Generalized Roy Model
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This figure represents causal relations of the Generalized Roy Model.
Arrows represent direct causal relations. Circles represent
unobserved variables. Squares represent observed variables



Key Aspects of the Generalized Roy Model

1 T is caused by Z ,V ;

2 U mediates the effects of V on Y (that is V causes U);

3 T and U cause Y and

4 Z (instrument) not caused by V ,U and does not directly cause
Y ,U .

We are left to examine the cases whether:

1 V causes X (or vice-versa),

2 X causes Z (or vice-versa),

3 X causes T ,

4 X causes U ,

5 T causes U , and

6 X causes Y .

The combinations of all these causal relations generate 144 possible
models (Pinto, 2013).



Key Aspects of the Generalized Roy Model (Pinto, 2013)
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Dashed lines denote causal relations that may not exist or, if they
exist, the causal direction can go either way. Dashed arrows denote
causal relations that may not exist, but, if they exist, the causal
direction must comply the arrow direction.



Marginalizing the Generalized Roy Model

• We examine the identification of causal effects of the
Generalized Roy Model using a simplified model w.l.o.g.

• Suppress variables X and U .

• This simplification is usually called marginalization in the DAG
literature (Koster (2002), Lauritzen (1996), Wermuth (2011)).



Marginalizing the Generalized Roy Model

G = GZ
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This figure represents causal relations of the Marginalized Roy
Model. Arrows represent direct causal relations. Circles represent
unobserved variables. Squares represent observed variables
Note: Z is exogenous, thus conditioning on Z is equivalent to
fixing Z .



Examining the Marginalized Roy Model – 1/4

• Y ⊥⊥ Z in GX , by Rule 1

Pr(Y |do(X ),Z ) = Pr(Y |do(X ))

• Y ⊥⊥ Z , in GX ,Z , by Rule 3

Pr(Y |do(X ),Z ) = Pr(Y |do(X ))

• Y ⊥⊥ Z |X in GX ,Z , by Rule 2

Pr(Y |do(X ), do(Z )) = Pr(Y |do(X ),Z )
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Examining the Marginalized Roy Model – 2/4

• Under GX , Y �⊥⊥ X , thus Rule 2 does not apply.

• Under GX ,Z , Y �⊥⊥ X |Z , thus Rule 2 does not apply.
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Examining the Marginalized Roy Model – 3/4

• GZ ⇒ Y ⊥⊥ Z , thus by Rule 2 Pr(Y |do(Z )) = Pr(Y |Z ).
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Examining the Marginalized Roy Model – 4 of 4
Modifications

• Under GX ,Z , Y �⊥⊥ (X ,Z ), thus Rule 2 does not apply.
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Conclusion of Do-calculus and the Roy Model

The Do-Calculus applied to the Marginalized Roy Model generates:

1 Pr(Y |do(X ), do(Z )) = Pr(Y |do(X ),Z ) = Pr(Y |do(X )),

2 Pr(Y |do(Z )) = Pr(Y |Z )

These relations only corroborate the exogeneity of the instrumental
variable Z and are not sufficient to identify Pr(Y |do(X )).

Identification of the Roy Model
To identify the Roy Model, we make assumption on how Z impacts
X , i.e. monotonicity/separability.
These assumptions cannot be represented in a DAG.
These assumptions are associated with properties of how Z causes
X and not only if Z causes X .
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