Panel Data Analysis
 Part I - Classical Methods: Background Material

James J. Heckman
University of Chicago

Econ 312, Spring 2021

Review of the Early Econometric Literature on the Problem

- $Y_{i t}=X_{i t} \beta+\varepsilon_{i t} \quad i=1, \ldots, l$, and $t=1, \ldots, T$
- $Y_{i}=X_{i} \cdot \beta+\varepsilon_{i} . \quad i=1, \ldots, l$
- $Y_{i .}=\sum_{t=1}^{T} \frac{Y_{i t}}{T}, \quad X_{i}=\sum_{t=1}^{T} \frac{X_{i t}}{T}$
- $Y_{i}=\left(Y_{i 1}, \ldots, Y_{i T}\right), \quad X_{i}=\left(X_{i 1}, \ldots, X_{i T}\right)$
- $\varepsilon_{i t}=f_{i}+U_{i t}$
- $E\left(f_{i}\right)=E\left(U_{i t}\right)=0$
- $E\left(f_{i}^{2}\right)=\sigma_{f}^{2} \quad E\left(U_{i t}^{2}\right)=\sigma_{U}^{2}$
- $E\left(f_{i} f_{i^{\prime}}\right)=0 \quad i \neq i^{\prime}$
- $U_{i t}$ is iid for all i, t.
- Assume that $X_{i t}$ is strictly exogenous:
- $E\left(U_{i t}+f_{i} \mid X_{i 1}, \ldots, X_{i T}\right)=0$ all t.
- Also distribution of the $X_{i}=\left(X_{i 1}, \ldots, X_{i T}\right)^{\prime}$ does not depend on β.

$$
\begin{gathered}
\operatorname{Cov}\left(\varepsilon_{i, t,}, \varepsilon_{i, t^{\prime}}\right)=\sigma_{f}^{2} \\
\rho=\frac{\sigma_{f}^{2}}{\sigma_{f}^{2}+\sigma_{u}^{2}} \quad \text { (intraclass correlation coefficient) }
\end{gathered}
$$

- Look at covariance matrix for $\varepsilon_{i}=\left(\varepsilon_{i 1}, \ldots, \varepsilon_{i T}\right)^{\prime}$

$$
E\left(\varepsilon_{i}^{\prime} \varepsilon_{i}\right)=\left(\sigma_{f}^{2}+\sigma_{u}^{2}\right)\left(\begin{array}{ccc}
1 & \rho & \rho \\
\rho & \ddots & \rho \\
\rho & \rho & 1
\end{array}\right)=A
$$

- Now stack all of the disturbances (in groups of T)
- $\varepsilon=\left(\varepsilon_{1}, \varepsilon_{2} \ldots \varepsilon_{l}\right)$

$$
E\left(\varepsilon \varepsilon^{\prime}\right)=\Omega \neq I=\left(\begin{array}{cccc}
A & 0 & 0 & 0 \\
0 & A & 0 & 0 \\
0 & 0 & A & 0 \\
0 & 0 & 0 & A
\end{array}\right)
$$

- $T \times T$ blocks
- stack X_{i} into a supervector X
- stack Y_{i} into a supervector Y
- Then, we have that GLS estimator is

$$
\hat{\beta}_{G L S}=\left(X^{\prime} \Omega^{-1} X\right)^{-1}\left(X^{\prime} \Omega^{-1} Y\right)
$$

- OLS applied to the data yields unbiased but inefficient estimators of β (because of exogeneity of $X_{i t}$ with respect to $\varepsilon_{i t}$).
- But computer program produces the wrong standard errors.
- Correct standard errors are:

$$
\sigma^{2}\left(X^{\prime} X\right)^{-1}\left(X^{\prime} \Omega X\right)\left(X^{\prime} X\right)^{-1}
$$

- OLS standard errors to assume to be $\sigma^{2}\left(X^{\prime} X\right)^{-1}$.
- \therefore inferences based on OLS models are incorrect.
- Write

$$
A=(1-\rho) I+\rho \iota \iota^{\prime}
$$

- ι is a $T \times 1$ vector of 1^{\prime} s

$$
\begin{gathered}
A=\left(\begin{array}{llll}
1-\rho & 0 & 0 & \vdots \\
0 & 1-\rho & 0 & \vdots \\
0 & 0 & 1-\rho & \vdots \\
\cdots & \cdots & \cdots & \cdots
\end{array}\right)+\left(\begin{array}{llll}
\rho & \rho & \rho & \rho \\
\rho & \rho & \rho & \rho \\
\rho & \rho & \rho & \rho \\
\cdots & \cdots & \cdots & \cdots
\end{array}\right) \\
A^{-1}=\lambda_{1} \iota \iota^{\prime}+\lambda_{2} l
\end{gathered}
$$

- $\rho \neq 1$
- Where

$$
\begin{gathered}
\lambda_{1}=\frac{-\rho}{(1-\rho)(1-\rho+T \rho)} \\
\lambda_{2}=\frac{1}{1-\rho} .
\end{gathered}
$$

- Prove this result on A^{-1}.
- Proof: $A A^{-1}=I$ (direct multiplication). What is the GLS estimator doing?

$$
\begin{gathered}
\hat{\beta}_{G L S}=\left(X^{\prime} \Omega^{-1} X\right)^{-1}\left(X^{\prime} \Omega^{-1} Y\right) \\
\Omega^{-1}=\left(\begin{array}{cllll}
A^{-1} & 0 & 0 & 0 & \vdots \\
0 & A^{-1} & 0 & 0 & \vdots \\
0 & 0 & A^{-1} & 0 & \vdots \\
0 & 0 & 0 & A^{-1} & \vdots
\end{array}\right) \\
X=\left(\begin{array}{c}
X_{1} \\
X_{2} \\
\vdots \\
X_{I}
\end{array}\right) \quad Y=\left(\begin{array}{c}
Y_{1} \\
Y_{2} \\
\vdots \\
Y_{1}
\end{array}\right) .
\end{gathered}
$$

- Thus, we conclude that

$$
\hat{\beta}_{G L S}=\left(\sum_{i=1}^{1} X_{i}^{\prime} A^{-1} X_{i}\right)^{-1}\left(\sum_{i=1}^{\prime} X_{i}^{\prime} A^{-1} Y_{i}\right)
$$

- Use the expression for A^{-1} given above:

$$
\sum_{i=1}^{\prime} X_{i}^{\prime} A^{-1} X_{i}=T \lambda_{1}\left(\sum_{i=1}^{\prime} \frac{X_{i}^{\prime} \iota^{\prime} X_{i}}{T}\right)+\lambda_{2} \sum_{i=1}^{\prime} X_{i}^{\prime} X_{i}
$$

- Look at

$$
\frac{\iota^{\prime} X_{i}}{T}=X_{i} .
$$

a K vector of means.

- Now look at the GLS estimator it is a function of within and between variation.
- Total sum of squares

$$
T_{X X}=\sum_{i=1}^{\prime} X_{i}^{\prime} X_{i}
$$

Within Deviations ($T \times K$)

$$
\begin{aligned}
X_{i}-\iota X_{i .}^{\prime} & =X_{i}-\frac{\iota^{\prime}}{T} X_{i} \\
& =\left[I-\frac{\iota^{\prime}}{T}\right] X_{i}
\end{aligned}
$$

- Observe:

$$
\left[I-\frac{\iota \iota^{\prime}}{T}\right]\left[I-\frac{\iota \iota^{\prime}}{T}\right]=I-\frac{\iota \iota^{\prime}}{T} \quad \text { (idempotent) }
$$

X_{i} is $T \times K, X_{i}^{\prime}$ is $1 \times K$.

- Thus, we have that within variation is given by

$$
\begin{gathered}
\sum_{i=1}^{\prime} X_{i}^{\prime}\left(I-\frac{\iota \iota^{\prime}}{T}\right) X_{i}=W_{X X} \\
B_{X X}=T \sum_{i=1}^{\prime} X_{i}^{\prime} X_{i}=\sum_{i=1}^{\prime} \frac{X_{i}^{\prime} \iota \iota^{\prime} X_{i}}{T} \\
T_{X X}=\underbrace{W_{X X}}_{\text {within }}+\underbrace{B_{X X}}_{\text {between }}
\end{gathered}
$$

- GLS estimator is given by taking

$$
\begin{aligned}
& T \lambda_{1}\left(\sum_{i=1}^{\prime} \frac{X_{i}^{\prime} \iota \iota^{\prime} X_{i}}{T}\right)+\lambda_{2}\left[\sum_{i=1}^{\prime} \frac{X_{i}^{\prime} \iota \iota^{\prime} X_{i}}{T}+W_{X X}\right] \\
= & \lambda_{2} W_{X X}+\left(\lambda_{2}+T \lambda_{1}\right)\left(\sum_{i=1}^{1} \frac{X_{i}^{\prime} \iota \iota^{\prime} X_{i}}{T}\right) \\
= & \lambda_{2} W_{X X}+\left(\lambda_{2}+T \lambda_{1}\right) B_{X X} .
\end{aligned}
$$

- There is a similar decomposition for other term and we get that

$$
\begin{aligned}
\hat{\beta}_{G L S}= & {\left[\lambda_{2} W_{X X}+\left(\lambda_{2}+T \lambda_{1}\right) B_{X X}\right]^{-1} } \\
& \cdot\left[\lambda_{2} W_{X Y}+\left(\lambda_{1}+T \lambda_{2}\right) B_{X Y}\right]
\end{aligned}
$$

- Define

$$
\begin{gathered}
\theta=1+T \frac{\lambda_{1}}{\lambda_{2}}=1-T \frac{\rho}{(1-\rho+T \rho)} \\
\theta=\frac{1-\rho+T \rho-T \rho}{1-\rho+T \rho}=\frac{1-\rho}{1-\rho+T \rho} \\
\hat{\beta}_{G L S}=\left[W_{X X}+\theta B_{X X}\right]^{-1}\left[W_{X Y}+\theta B_{X Y}\right] .
\end{gathered}
$$

- 2 estimators are averaged together:

Take first estimator the within estimator.

- This is simply given by taking deviations from mean:

$$
\begin{aligned}
Y_{i t}-Y_{i .} & =\left(X_{i t}-X_{t \cdot}\right) \beta+U_{i t}-U_{i} . \\
Y_{i .} & =X_{i}, \beta+f_{i}+\bar{U}_{i .} .
\end{aligned}
$$

- \therefore subtracting Y_{i}. produces an estimator free of f_{i}.
- Doing that eliminates the fixed effects from the model. Thus, we have that

$$
\begin{aligned}
\hat{\beta}_{W} & =\left(W_{X X}\right)^{-1} W_{X Y} \\
\hat{\beta}_{B} & =\left(B_{X X}\right)^{-1} B_{X Y}
\end{aligned}
$$

- Simply average over the groups and we are done.

$$
\begin{aligned}
\left(W_{X X}\right) \hat{\beta}_{W} & =W_{X Y} \\
\left(B_{X x}\right) \hat{\beta}_{B} & =B_{X Y} \\
{\left[W_{X X}+\theta B_{X x}\right] \hat{\beta}_{G L S} } & =W_{X x} \hat{\beta}_{W}+\theta\left(B_{X X}\right) \hat{\beta}_{B}
\end{aligned}
$$

- \therefore we have that

$$
\hat{\beta}_{G L S}=\left[W_{x x}+\theta B_{x x}\right]^{-1}\left[W_{x x} \hat{\beta}_{W}+\theta B_{x x} \hat{\beta}_{B}\right] .
$$

- For a scalar regressor $\hat{\beta}_{G L S}$ lies between $\hat{\beta}_{W}$ and $\hat{\beta}_{B}$.
- (But not, necessarily so, for the general regressor case).
- Now suppose $\rho=0$

$$
\Longrightarrow \lambda_{1}=0 \Longrightarrow \theta=1
$$

- Then $\hat{\beta}_{G L S}$ is simply OLS. Suppose that $\rho=1$.
- A is singular, A^{-1} doesn't exist.
- If we have that regressors are fixed over the spell for the case that the rank of $W_{X X}=0$ and $G L S$ is between estimator.
- Suppose that $T \rightarrow \infty, \rho \neq 0$

$$
\begin{aligned}
\lim _{T \rightarrow \infty} \frac{\left(T \lambda_{1}\right)}{\lambda_{2}} & =\lim _{T \rightarrow \infty} \frac{-\rho T}{(1-\rho+T \rho)} \\
& =\lim _{T \rightarrow \infty} \frac{-\rho}{\frac{1-\rho}{T}+\rho} \rightarrow-1
\end{aligned}
$$

- $\therefore \theta=0$
- $\therefore\left[\hat{\beta}_{G L S}=\hat{\beta}_{W}\right]$.
- In this case, the within estimator is the efficient estimator.
- Now A^{-1} matrix itself can be written in an interesting fashion and provides an example of another interpretation of the estimator.
- $A^{-1}=\lambda_{2}\left(I-k \iota \iota^{\prime}\right)$ where k is given by $-\frac{\lambda_{1}}{\lambda_{2}}$

$$
\begin{aligned}
& {\left[I-c \iota \iota^{\prime}\right]\left[I-c \iota \iota^{\prime}\right] } \\
= & I-c \iota \iota^{\prime}-c \iota \iota^{\prime}+T c^{2} \iota \iota^{\prime} \\
= & I-\left(2 c-T c^{2}\right) \iota \iota^{\prime}
\end{aligned}
$$

where

$$
2 c-T c^{2}=-\frac{\lambda_{1}}{\lambda_{2}}, \quad F=I-c \iota^{\prime} .
$$

- Solve to get

$$
c=\frac{1}{T}\left[1-\sqrt{\frac{1-\rho}{1-\rho+\rho T}}\right]
$$

- \therefore GLS estimator is of the form

$$
\hat{\beta}_{G L S}=\left[\sum_{i=1}^{\prime}\left(X_{i}^{\prime} A^{-1} X_{i}\right)\right]^{-1}\left[\sum_{i=1}^{\prime} X_{i}^{\prime} A^{-1} Y_{i}\right]
$$

- But this is \Leftrightarrow to transforming the data in the following way

$$
\begin{aligned}
Y_{i} & =X_{i} \beta+\varepsilon_{i} \\
F Y_{i} & =F X_{i} \beta+F \varepsilon_{i} \\
F Y_{i} & =Y_{i}-(c T \iota) Y_{i} . \\
Y_{i .} & =\frac{\iota^{\prime} Y_{i}}{T}
\end{aligned}
$$

- The mean value of Y_{i} for person i over sample period T.

$$
F X_{i}=X_{i}-(c T) \iota X_{i}^{\prime}
$$

- Now, suppose that we have $\rho=0, c=0$, GLS is OLS applied to data.

Standard Errors for Fixed Effect; Estimator IS Produced by OLS Formula; GLS is OLS

- Proof:

$$
\begin{gathered}
Y=\left(\begin{array}{c}
Y_{1} \\
Y_{2} \\
\ldots \\
Y_{N}
\end{array}\right)=\left(\begin{array}{c}
\iota \\
0 \\
\cdots \\
0
\end{array}\right) f_{i}+\left(\begin{array}{c}
0 \\
\iota \\
\ldots \\
0
\end{array}\right) f_{2}+\left(\begin{array}{c}
0 \\
0 \\
\cdots \\
\iota
\end{array}\right) f_{N} \\
+\left(\begin{array}{c}
X_{1} \\
\cdots \\
X_{N}
\end{array}\right) \beta+\left(\begin{array}{c}
U_{1} \\
\cdots \\
U_{N}
\end{array}\right) \\
Y_{i}=\left(\begin{array}{c}
Y_{i 1} \\
\cdots \\
Y_{i T}
\end{array}\right) \quad X_{i}=\left(\begin{array}{c}
X_{i 1} \\
\cdots \\
X_{i T}
\end{array}\right) \\
E\left(U_{i} U_{i}^{\prime}\right)=\sigma^{2} I_{T}
\end{gathered}
$$

$$
E\left(U_{i} U_{j}^{\prime}\right)=0, \quad i \neq j .
$$

- Define $F=I-\frac{\iota^{\prime}}{T}$.
- Partition

$$
Y_{i}=X_{i} \beta+i f_{i}+U_{i}
$$

- Using

$$
\begin{gathered}
(F)+\frac{\iota^{\prime}}{T}=1 \\
\left(\frac{\iota^{\prime}}{T}\right) F=0 \\
F Y_{i}=F X_{i} \beta+F U_{i} \\
\frac{\iota^{\prime}}{T} Y_{i}=\frac{\iota^{\prime}}{T} X_{i} \beta+\frac{\iota^{\prime}}{T} U_{i} \\
\hat{\beta}_{W}=\left[\sum_{i=1}^{\prime} X_{i}^{\prime} F X_{i}\right]^{-1}\left[\sum_{i=1}^{I} X_{i}^{\prime} F Y_{i}\right] .
\end{gathered}
$$

- Let

$$
B=\left(\sum_{i=1}^{\prime} X_{i}^{\prime} F X_{i}\right)
$$

- Note: The B here is not the between matrix.

$$
\begin{aligned}
\operatorname{Var} \hat{\beta}_{W} & =(B)^{\prime} E\left[\left(\sum_{i=1}^{\prime} X_{i}^{\prime} F U_{i}\right) \sum_{i=1}^{N} U_{i}^{\prime} F X_{i}\right] B \\
& =B^{\prime}\left[\sigma_{U}^{2} \sum_{i=1}^{\prime}\left(X_{i}^{\prime} F\right) F X_{i}^{\prime}\right] B \\
& =\sigma_{U}^{2}\left(\sum X_{i}^{\prime} F X_{i}\right)^{-1}
\end{aligned}
$$

where

$$
\left(\frac{\iota \iota^{\prime}}{T}\right)\left(\frac{\iota \iota^{\prime}}{T}\right)=\frac{\iota \iota^{\prime}}{T} .
$$

- This is OLS variance covariance.
- Between Estimator:

$$
\begin{aligned}
\hat{\beta}_{B} & =\left[\sum_{i=1}^{N}\left(x_{i} \frac{u^{\prime}}{T} X_{i}^{\prime}\right)\right]^{-1}\left[\sum_{i=1}^{N} x_{i} \frac{u^{\prime}}{T} Y_{i}\right] \\
& =\beta+\sum_{i=1}^{N} x_{i} \frac{u^{\prime}}{T} U_{i}+\sum_{i=1}^{N} x_{i} \frac{i i^{\prime}}{T} f_{i}
\end{aligned}
$$

- Now $\hat{\beta}_{B}$ uncorrelated with $\hat{\beta}_{W}$ because

$$
f_{i} \Perp U_{j} \text { all } i, j ;
$$

$$
\begin{aligned}
\operatorname{Var}\left(\hat{\beta}_{B}\right)= & \left(\sum X_{i} \frac{\iota^{\prime}}{T} X_{i}^{\prime}\right)^{-1}\left[\frac{\sigma_{U}^{2}}{T}+\sigma_{f}^{2}\right] \\
& \cdot\left(\sum \frac{X_{i} \iota^{\prime} X_{i}^{\prime}}{T}\right)\left(\sum X_{i} \frac{\iota^{\prime}}{T} X_{i}^{\prime}\right)^{-1} \\
= & \left(\sigma_{f}^{2}+\frac{\sigma_{U}^{2}}{T}\right)\left(\sum X_{i} \frac{\iota^{\prime}}{T} X_{i}^{\prime}\right)^{-1} .
\end{aligned}
$$

