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• Mundlak Problem: Example of a use of panel data to ferret
out and identify a cross sectional relationship.

• Mundlak posed the problem that Xit is correlated with fi (e.g..

• fi is managerial ability; Xit is inputs)

E (fi(Xit)) 6= 0, and we have a specification error bias:

E
[
β̂
]

= β + E
[
(X ′X )−1X ′ε

]
6= 0 since

E (X ′f ) 6= 0.
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• OLS is inconsistent and biased.

• One way to eliminate the problem: Use the within estimator:[
I -

ιι′

T

]
Yi =

[
I -
ιι′

T

]
Xiβ +

[
I -

ιι′

T

]
εi

Yit − Yi · = [Xi − ιXi ·]
′β + Ui ·

• On the transformed data, we get an estimator that is unbiased
and consistent.

• Estimator of fixed effect not consistent (we acquire an
incidental parameters problem but we can eliminate it as
N →∞, T fixed, we get a consistent estimator.)

• Genesis of the first component of differences in differences.
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• Notice, however, if there exists a variable that stays constant
over the spell for all persons, we cannot estimate the
associated β.

f̂i = fi + X f
i ·β

f

where X f
i .and βf are variables and associated coefficients that

stay fixed over spells (we can regress estimated fixed effects on
the X provided that they stay constant over the spell are not
corrected with the fi).
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• In a cross section context, we have that without some other
information, the model is not identified unless we can invoke IV
estimation.

• F.E. estimator is a conditional version of R.E. estimator.

• R.E. estimator: fi + Uit both random values, we condition on
values of fi .
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How To Test For the Presence of Bias?
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• H0 : No Bias in the OLS estimator

• HA :OLS and between estimator are biased, Within estimator is
unbiased.

β̂W vs. β̂B β̂W = β + (WXX )−1

I∑
i=1

X ′i [I -
1

T
ιι′]εi β̂B = β +

(BXX )−1

[
T∑
i=1

X ′i
1

T
ιι′ εi

]
.
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• Under H0

COV
(
β̂W , β̂B

)
= 0

• Independently distributed under a normality assumption.

• ∴ we can test (just pool the standard errors).
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Strict Exogeneity Test
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• Basic idea

E (fi | Xi) 6= 0. where Xi ≡ (Xi1, . . . ,XiT )

• Failure of this is failure of strict exogeneity in the time series
literature.

• Regression Function (Scalar Case)

E ∗(fi | Xi) = ϕ0 + Xi1ϕ1 + Xi2ϕ2 + Xi3ϕ3 + . . .

where E ∗ denotes linear projection.

• Then, in Mundlak’s problem, we get that t = 1, . . . ,T

Yit = β0 + Xitβ1 + [ϕ0 + Xi1ϕ1 + Xi2ϕ2 + . . . ] + Uit .
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• Then, we can test to see whether or not future and past values
of Xit enter the equation (if so, we get a violation of strict
exogeneity in this set up).

• Notice we can estimate ϕ2 (from first equation), ϕ1 (from
second equation) and so forth

• ∴ can estimate β1 but, we cannot separate out the intercepts in
this equation.

• Nor can we identify variables that don’t vary over time.

• This is just a control function in the sense of Heckman and
Robb (1985, 1986).
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Chamberlain’s Strict Exogeneity Test
Yit = Xitβ + εit , i = 1, . . . ,I, t = 1, . . . ,T

Xit is strictly exogenous if E (εit | Xi) = 0

• ∴ model can be fitted by OLS.

• We can test, in time series

Yit = Xitβ + Xit+jγ
an extraneous variable

+ εit ,

i = 1, . . . , I , t = 1, . . . ,T

• We have strict exogeneity in the process if γ = 0 (assumption:
Xit is correlated over time: Xi ,t+j) a future value of a variable is
in the equation (that doesn’t belong) ∴ we can do an exact
test.
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• Consider special error structure: (one factor setup)

εit = fi + Uit , Uit i.i.d.

• E ∗(fi |X1i ,X2i ,X3i , . . . ,XTi )=
T∑
j=1

ϕjXji

• Then if we relax the strict exogeneity assumption, we have that

E ∗(Yit |Xit , [Xi1, . . . ,XiT ]) = Xitβ +
T∑
j=1

ϕjXji E (Yit | Xi) = Xiπ
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• Array the Xit into a supervector

Π = DIAG{β, β, . . . , β}+ ιTϕ

∴ in all T regressions, we have that ϕj stays fixed ∴ we can
test this assumption.

• When applying this test in particular economic situations, we
must interpret the results with caution.

• For e.g., in the application of this test to the situation in the
permanent income hypothesis, the significance of the
coefficients of future values can not be ruled out under the
model.
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Example: Chamberlain test with T = 3 periods
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• Simple regression setting with εit = fi + Uit,Uit i.i.d., Uit ⊥/⊥ fi
we have:

fi = σ1X1 + σ2X2 + σ3X3 + V

• Then

Y1 = β1X1 + σ1X1 + σ2X2 + σ3X3 + V + U1

Y2 = β2X2 + σ1X1 + σ2X2 + σ3X3 + V + U2

Y3 = β3X3 + σ1X1 + σ2X2 + σ3X3 + V + U3
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• For a factor structure,

• εit = λtfi + Uit Uit i.i.d. ⊥⊥ fi .
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• Then: Y1 = β1X1 + λ1(σ1X1 + σ2X2 + σ3X3) + λ1V + U1

Y2 = β2X2 + λ2(σ1X1 + σ2X2 + σ3X3) + λ2V + U2

Y3 = β3X3 + λ3(σ1X1 + σ2X2 + σ3X3) + λ3V + U3
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Can Identify λ1σ2 λ1σ3 (β1 + λ1σ1)
λ2σ1 λ2σ3 β2 + λ2σ2

(β3 + λ3σ3) λ3σ1 λ3σ2 · · · · · · · · ·


• Normalize: set λ1 ≡ 1 then we can identify, λ2, λ3, σ1, σ2 and
σ3.
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Maximum likelihood panel data estimators
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• Consider these models from a more general viewpoint, we can
form different maximum likelihood estimators of the parameters
of interest.

• Assume εit = fi + Uit . Write

• Z
∼ i

= (Yi1, . . . ,YiT ,Xi1, . . . ,XiT ) i = 1, . . . ,I
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• Z
∼ i

is an i.i.d. random vector with distribution depending on

θ
˜

= (β, f1, . . . , fi , . . . , fI) = (β, f )

(treat fi as a parameter)

L =
N∏
i=1

f (Z
˜ i

∣∣∣θ
˜

) f (Zi |β, f1, . . . , fI ). Max L w .r .t.θ =⇒ θ̂ML.

Heckman Part II



(
f̂i
)
ML

P9 fi as I →∞
T fixed

.

• In general, β̂ML
P9 β as I → ∞ because of this.

• Not like in linear models (in general, roots of these equations
interconnected and we have problems).

• A joint system of equations
∂`nL
∂β

= 0
∂`nL
∂fi

= 0, i = 1, . . . , I .
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• This set of likelihood equations can be solved using three
distinct concepts:

1 Marginal Likelihood;
2 Conditional Likelihood; and
3 Integrated Likelihood.
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Marginal Likelihood (or Ancillary Likelihood):
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• Find (if possible) g(Y ,X ) independent of the f

• i.e. find some statistic Si = S(Yi ,Xi) such that f (Si |β )

LMarginal =
I∏

i=1

f (Si |β ) Max
β
LM → β̂M

• Then we can form the ML estimators for β (the parameters of
interest) without worrying about the fis.

Heckman Part II



• We say that si is ancillary for f given β with respect to original
model.

• (This is really b-ancillarity).

• An example of this is the within estimator.

Yit = Xitβ + fi + Uit

Uit i.i.d. N (0, σ2
U)
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• T = 2
Si = Yi2 − Yi1

• Si is called an ancillary statistic distribution is independent is fi :

Si |X
d

˜N (β(Xi2 − Xi1)
∣∣2σ2) .

• Thus an example of the Marginal likelihood estimator is the
first difference estimator, which is almost identical to the
“within” estimator.

• Here, the within estimator would also be a Marginal likelihood
estimator.
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• Because

U ′i [I −
ιι′

T
]
ιι′

T
Ui = 0.

• We can always break up the distribution of Yi into two pieces

Yi =

[
I− ιι′

T

]
Yi +

ιι′

T
Yi

g (Yi | Xi , β, fi) = g (FYi | Xi , β)︸ ︷︷ ︸
This portion ind of fi
Marginal Likelihood

g (ιYi · | Xi , β)︸ ︷︷ ︸
This is a sufficient

statistic for fi
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Maximum Likelihood: Second Principle
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• Find s, a sufficient statistic for fi such that

f (Yi | sufficient statistic for fi) is ind. of fi .

• Find

si = s(Yi ,Xi) so that f (Zi |β, fi , si) = f (Zi |β, si)

• Can throw away si , e.g., Si = Yi1 + Yi2

Yi1 + Yi2

d

˜N(fi + β (Xi1 + Xi2) , 2σ2
U + 4σ2

f ).
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Transform observation
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(
Yi1

Yi2

)
→
(

Yi2 − Yi1

Yi2 + Yi1

)
Cov(Yi2 − Yi1,Yi2 + Yi1 |X ) = 0

f (Yi1,Yi2) = f (Yi2 − Yi1,Yi1 + Yi2)

= f (Yi2 − Yi1 |X ) f (Yi1 + Yi2 |X )

but

f (Yi2 − Yi1,Yi2 + Yi1 | X , Si)

= f (Yi2 − Yi1 | Xi)

∴ conditional likelihood function is the same as in previous case.
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Integrated L.F. or Random Effects Estimator
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• Pick a density for fi (other methods do not require this)

pdf of fi ≡ g (fi | X ).

• For each person

g (Yi | Xi , β) =

∫
g (Yi | Xi , β, f ) g (f | X ) df

LI =
I∏

i=1

g (Yi | Xi , β)

• Suppose it is normal, fi ∼ N (0, σ2
f ).
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• When we integrate out fi in the above using normality, we get

Yi ∼ N

Xiβ, (σ
2
f + σ2

U)

 1 ρ ρ
ρ 1 ρ
· · · · · · 1

 .

• Problem becomes one of estimating

• (β, σ2
U and distribution function of fi).
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Two possible methods:

1 Assume g(f | X , η) is a known finite parameter distribution
(function of η) and estimate (β, σ2

U , η) (maybe f too).

2 Nonparametric estimation (e.g., Heckman-Singer). Then
estimate β, σ2

U , dg(f ).
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Mundlak Point:

• The within estimator is the GLS estimator in all cases if

fi = αX̄i + Wi .

• The more general point is that if we permit fixed effects to be
functions of exogenous variables, the between and within
estimators will in general differ.

• Lee (as cited in Judge, et al.) shows how special the Mundlak
point is.
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• Suppose fi = αZi + Wi

Wi ∼ N (0, σ2
f ).

If Zi = Xi ·

βMarginal = βCon = βInt. = βWithin = β̂MLE

in a regression setting.

• Mundlak’s point is this: Suppose that

fi = ϕXi · + Vi (then Vi is ind of Uit)

Yi = Xiβ + ϕXi · + ιVi + Ui .
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• Now what is the random effect estimator?

Yi = (Xi − iXi ·)β + iXi ·(ϕ + β) + ιVi + Ui

intuitively: you get info only on β from within.

• Apply GLS

A∗ =

[
I − c

ιι′

T

]
= F̃

where c =

[
1−

√
1− ρ

1− ρ + ρT

]
(refer to Section 3.2 of Part I).
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• Thus, we get the GLS transformation as:

F̃Yi = F̃ (Xi − iXi ·)β + F̃Xi ·(ϕ + β) + F̃ (ιVi + Ui)

• In general, [
I − c

ιι′

T

]
Xi · = Xi ·(1− c).
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