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@ A system of linear simultaneous equations captures
interdependence among outcomes Y.
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@ Linear model in terms of parameters (I', B), observables (Y, X)
and unobservables U:

['Y+BX=U, E(U)=0, (1)

@ Y is now a vector of internal and interdependent variables
@ X is external and exogenous (E (U | X) = 0)
@ [ is a full rank matrix (“completeness”).
o Y =T"1BX+T1U (reduced form)

@ Completeness is totally different from another concept of
completeness:

In nonparametric IV, [ ®(X)dF(X) =0« dy(X) =0

SuppX
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@ This is a linear-in-the-parameters “all causes” model for vector
Y, where the causes are X and £.

@ The “structure” is (I', B), Xy, where ¥ is the
variance-covariance matrix of U.

@ In the Cowles Commission analysis it is assumed that I, B, >
are invariant to general changes in X and translations of U.

@ Autonomy (Frisch, 1938) later called one component of
“SUTVA”" (see Holland, 1986).

e X, U external variables.
Y internal variables.
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@ Consider a two-agent model of social interactions.

@ Y is the outcome for agent 1; Y5 is the outcome for agent 2.
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Yi = o1 +712Y2 + BuXy + BroXo + Us, (2a)
Yo = ax+ 721 Y1+ BaXi + BnXs + Us. (2b)

@ Social interactions model is a standard version of the
simultaneous equations problem.

@ This model is sufficiently flexible to capture the notion that the
consumption of 1 (Y1) depends on the consumption of 2 if
712 # 0, as well as 1's value of X if 811 # 0, X; (assumed to be
observed), 2's value of X , X; if 812 # 0 and unobservable
factors that affect 1 (U,).

@ The determinants of 2's consumption are defined symmetrically.

@ Allow U; and U, to be freely correlated.

@ Captures essence of “reflection problem.”
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@ Assume
E(U1 |X1,X2):0 (33)

and
E (U, | X1, X3) =0. (3b)
o Completeness guarantees that (2a) and (2b) have a
determinate solution for (Y3, Y2).
@ Applying Haavelmo's (1943) analysis to (2a) and (2b), the
causal effect of Y, on Y is v15.

@ This is the effect on Y; of fixing Y, at different values, holding
constant the other variables in the equation.
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@ Symmetrically, the causal effect of Y; on Y5 is vo1.

e Conditioning, i.e., using least squares, in general, fails to
identify these causal effects because U; and U, are correlated
with Yl and Yz.

@ This is a traditional argument.

@ It is based on the possibility of correlation between Y, and U,
(Haavelmo, 1943).

@ But even if U; =0 and U, = 0, so that there are no
unobservables, least squares breaks down because Y5 is
perfectly predictable by X; and X,.

Question: Prove this. J

@ We cannot simultaneously vary Y,, X; and X;.

@ The error term is not the fundamental source of

non-identifiability in these models.
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Reduced Form

@ Under completeness, the reduced form outcomes of the model
after social interactions are solved out can be written as

Y1 = mo+muX + mXe + &, (4a)
Y2 = T20 —|— 7T21X1 —|— 7T22X2 —I— 52. (4b)
E(&|X) =0
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@ Least squares can identify the ceteris paribus effects of X; and
X, on Yy and Y, because E(&; | X1, Xz) = 0 and
E(& | X, X5) =0.

@ Simple algebra:

_ B11 + 71120621 _ B2 + 712822

11 ) 12 )
Il = V12721 1— Y12721
_ Y21BPu + Ba
o1 = —(/—————,
1 — y12721
_ Y21P12 + B
Ty = ————————
1 —y12721
£ Ui + 7120
1 P EE—
1 — 712721
£ Y1 Ur + Uy
2 —_—
1 — 72721
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@ Without any further information on the variances of
(U1, U,) and their relationship to the causal parameters,
we cannot identify the causal effects v, and ~,; from
the reduced form regression coefficients.

@ This is so because holding X;, X, U; and U, fixed in (2a) or
(2b), it is not possible to vary Y; or Y7, respectively, because
they are exact functions of Xi, X5, U; and Us.

@ This exact dependence holds true even if U; =0 and U, = 0 so
that there are no unobservables.
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@ There is no mechanism yet specified within the model to
independently vary the right hand sides of Equations (2a) and
(2b).

@ The mere fact that we can write (2a) and (2b) means that we
“can imagine” independent variation.

o Causality is in the mind.

Question: Can we still define the causal effect of Y5 on Y; and Y;
on Y>, even if we cannot identify them?
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@ We “can imagine” a model
Y = o+ p1X1 + 2 X,

but if part of the model is () X; = X3, no causal effect of X
holding X, constant is possible in principle within the rules of
the model.

@ If we break restriction () and permit independent variation in
Xi and X, we can define the causal effect of X; holding X,
constant.

@ But we can imagine such variation.
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@ In some conceptualizations, no causality is possible; in others it
is.

@ Distinguish identification from causation.

@ The X effects on Y; and Y5, identified through the reduced
forms, combine the direct effects (through ;) and the indirect
effects (as they operate through Y; and Y5, respectively).

e If we assume exclusions (12 = 0) or (21 = 0) or both, we can
identify the ceteris paribus causal effects of Y, on Y; and of Y;
on Y,, respectively, if Sy # 0 or $11 # 0, respectively.
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Consider Standard ldentification Analyses J

@ Suppose
B2 =0and B =0

_ Bu1 _ V12522
T =T T2 = 7———
1 — y12721 1— 2721
V21511 B2z
o1 = ————— Ty = ———————

1 — v12721 1= Y272
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12
— = 712
722
21
— =721
11

@ .. we identify 511 and [(,.
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@ Suppose instead only 51, =0

B22
T = ———
1 —v12721
V12322
T2 = ——————
1 —v12721
12
— = "12
22

@ Then can form left-hand side of y; — 12y = B11.X1 + S12Xo + Us.
@ .. can identify 813 = 0 from OLS (recall E(U;|X) = 0).
e Can identify 02 = Var(U,).
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e Symmetrically if 82; = 0 can identify (.5, 03.
@ Suppose Cov(Uy, U;) = 0.

U U. U U.
Cov(&1, &) = Cov {( 1+ 712 2) (721 1+ 2)}
1 — y12721 1 — y2721
_ Y2107 + 11203

(1 - 712721)2
3 + 75203

(1 = y12721)?
V5101 + 03

(1 — 712721)2

Var(&1) =
Var(Sg) =

@ Suppose we add this to 51, = 0.

@ By previously analysis, we know 715, 02.
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@ Then we know
_ Cov(&1,8) _ Y2107 + 71203
Var (&) 0% + 11203
_ Cov(&1,8) _ Y2107 + 71203
Var(&,) Vi + 03 + 03

@ 2 equations in 2 unknowns
e Can solve: 03,7, (in principle) letting

u AN

denote estimate

(8)(05 + 13203) = 72105 + V1205

(b)(7%107 + 03) = Y2107 + 1120%

c'3(61 +’Y1202) (72216%4’02)
e Var(&;) 01 + 71202
Var(£,) 73,63 + 0%
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e Alternatively, we could assume 31; = 3» = 0 and 31, # 0,
B21 # 0 to identify 1, and vo;.

@ These exclusions say that the social interactions only operate
through the Y's.

@ Agent 1's consumption depends only on agent 2's consumption
and not on his value of Xj.

@ Agent 2 is modeled symmetrically versus agent 1.

@ Observe that we have not ruled out correlation between U; and
Us.
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@ When the procedure for identifying causal effects is applied to
samples, it is called indirect least squares (Tinbergen, 1930).

@ The analysis for social interactions in this section is of
independent interest.

@ It can be generalized to the analysis of N person interactions if
the outcomes are continuous variables.
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Nonlinear Systems Possible

@ Thus we can postulate a system of equations G (Y, X, U) =0
and develop conditions for unique solution of reduced forms
Y = K (X, U) requiring that certain Jacobian terms be
nonvanishing (Matzkin, “Nonparametric ldentification of
Simultaneous Equations,” 2007).

@ The structural form (1) is an all causes model that relates in a
deterministic way outcomes (internal variables) to other
outcomes (internal variables) and external variables (the X and
U).

@ Question: Are ceteris paribus manipulations associated with
the effect of some components of Y on other components of Y
possible within the model?

@ Yes.
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@ The intuition for these results is that if 51, = 0, we can vary Y5
in Equation (2a) by varying the X, that does not directly affect
Y} in the structural equation.

@ Since X, does not appear in the equation, under exclusion, we
can keep Uy, X; fixed and vary Y5 using X5 in (4b) if 8 # 0.

@ Notice that we could also use U, as a source of variation in
(4b) to shift Y5.

@ The roles of U, and X, are symmetric.

@ However, if U; and U, are correlated, shifting U, shifts U,
unless we control for it.

@ The component of U, uncorrelated with U, plays the role of X;.
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@ Symmetrically, by excluding X; from(2b), we can vary Y7,
holding X, and U, constant.

@ These results are more clearly seen when U; =0 and U, = 0.
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@ A hypothetical thought experiment justifies these exclusions.

@ If agents do not know or act on the other agent's X, these
exclusions are plausible.

@ An implicit assumption in using (2a) and (2b) for causal
analysis is invariance of the parameters (I', 5, L) to
manipulations of the external variables.
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@ This definition of causal effects in an interdependent system
generalizes the recursive definitions of causality featured in the
statistical treatment effect literature (Holland, 1988, and Pearl,
2009).

@ The key to this definition is manipulation of external inputs and
exclusion, not randomization or matching.
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Control Function Principle

E(Ui|&) = (M) & +0

1 — 1721
o +o PN
Uy = ( 11712 12) & +Vs
R 1 — 1721 B

NV
control function

@ Vi: portion of U; not correlated with Y5.
@ If no exclusions in first equation, perfect multicollinearity, i.e.,
Y1 = 712(Y2) + B11 X1 + B12Xo + 712€2 + Uy controls for

covariance between Y, and U;.
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In a General Nonlinear Model

h — gl(Y2,X17X2,U1)
Y, = g2(Y1,X17X2,U2)7

exclusion is defined as gf’?l =0 for all (Y2, Xi, X5, Uy) and 8g2 =0

for all (Y1,X1,X2, U2)
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@ Assuming the existence of local solutions, we can solve these
equations to obtain

Yi = 1 (X1, Xz, Ur, Us)
Y, = 902(X17X2,U1,U2)

@ By the chain rule we can write

og1 _ oYy /oY, _ dp1 /0>
aY, 90Xy / 00Xy 0Xy /| 0Xy

@ We may define causal effects for Y; on Y, using partials with
respect to X, in an analogous fashion.

29/29



