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A system of linear simultaneous equations captures
interdependence among outcomes Y .
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Linear model in terms of parameters (Γ,B), observables (Y ,X )
and unobservables U :

ΓY + BX = U , E (U) = 0, (1)

Y is now a vector of internal and interdependent variables

X is external and exogenous (E (U | X ) = 0)

Γ is a full rank matrix (“completeness”).

Y = Γ−1BX + Γ−1U (reduced form)

Completeness is totally different from another concept of
completeness:

In nonparametric IV,
∫

SuppX

Φθ(X )dF (X ) = 0⇔ Φθ(X ) = 0
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This is a linear-in-the-parameters “all causes” model for vector
Y , where the causes are X and E .

The “structure” is (Γ,B), ΣU , where ΣU is the
variance-covariance matrix of U .

In the Cowles Commission analysis it is assumed that Γ,B ,ΣU

are invariant to general changes in X and translations of U .

Autonomy (Frisch, 1938) later called one component of
“SUTVA” (see Holland, 1986).

X ,U external variables.

Y internal variables.
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Consider a two-agent model of social interactions.

Y1 is the outcome for agent 1; Y2 is the outcome for agent 2.
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Y1 = α1 + γ12Y2 + β11X1 + β12X2 + U1, (2a)

Y2 = α2 + γ21Y1 + β21X1 + β22X2 + U2. (2b)

Social interactions model is a standard version of the
simultaneous equations problem.

This model is sufficiently flexible to capture the notion that the
consumption of 1 (Y1) depends on the consumption of 2 if
γ12 6= 0, as well as 1’s value of X if β11 6= 0, X1 (assumed to be
observed), 2’s value of X , X2 if β12 6= 0 and unobservable
factors that affect 1 (U1).

The determinants of 2’s consumption are defined symmetrically.

Allow U1 and U2 to be freely correlated.

Captures essence of “reflection problem.”
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Assume
E (U1 | X1,X2) = 0 (3a)

and
E (U2 | X1,X2) = 0. (3b)

Completeness guarantees that (2a) and (2b) have a
determinate solution for (Y1,Y2).

Applying Haavelmo’s (1943) analysis to (2a) and (2b), the
causal effect of Y2 on Y1 is γ12.

This is the effect on Y1 of fixing Y2 at different values, holding
constant the other variables in the equation.

7 / 29



Symmetrically, the causal effect of Y1 on Y2 is γ21.

Conditioning, i.e., using least squares, in general, fails to
identify these causal effects because U1 and U2 are correlated
with Y1 and Y2.

This is a traditional argument.

It is based on the possibility of correlation between Y2 and U1

(Haavelmo, 1943).

But even if U1 = 0 and U2 = 0, so that there are no
unobservables, least squares breaks down because Y2 is
perfectly predictable by X1 and X2.

Question: Prove this.

We cannot simultaneously vary Y2, X1 and X2.

The error term is not the fundamental source of
non-identifiability in these models.
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Reduced Form

Under completeness, the reduced form outcomes of the model
after social interactions are solved out can be written as

Y1 = π10 + π11X1 + π12X2 + E1, (4a)

Y2 = π20 + π21X1 + π22X2 + E2. (4b)

E (E1|X ) = 0

E (E2|X ) = 0
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Least squares can identify the ceteris paribus effects of X1 and
X2 on Y1 and Y2 because E (E1 | X1,X2) = 0 and
E (E2 | X1,X2) = 0.
Simple algebra:

π11 =
β11 + γ12β21
1− γ12γ21

, π12 =
β12 + γ12β22
1− γ12γ21

,

π21 =
γ21β11 + β21
1− γ12γ21

,

π22 =
γ21β12 + β22
1− γ12γ21

E1 =
U1 + γ12U2

1− γ12γ21
,

E2 =
γ21U1 + U2

1− γ12γ21
.
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Without any further information on the variances of
(U1,U2) and their relationship to the causal parameters,
we cannot identify the causal effects γ12 and γ21 from
the reduced form regression coefficients.

This is so because holding X1, X2, U1 and U2 fixed in (2a) or
(2b), it is not possible to vary Y2 or Y1, respectively, because
they are exact functions of X1, X2, U1 and U2.

This exact dependence holds true even if U1 = 0 and U2 = 0 so
that there are no unobservables.
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There is no mechanism yet specified within the model to
independently vary the right hand sides of Equations (2a) and
(2b).

The mere fact that we can write (2a) and (2b) means that we
“can imagine” independent variation.

Causality is in the mind.

Question: Can we still define the causal effect of Y2 on Y1 and Y1

on Y2, even if we cannot identify them?
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We “can imagine” a model

Y = ϕ0 + ϕ1X1 + ϕ2X2,

but if part of the model is (∗)X1 = X2, no causal effect of X1

holding X2 constant is possible in principle within the rules of
the model.

If we break restriction (∗) and permit independent variation in
X1 and X2, we can define the causal effect of X1 holding X2

constant.

But we can imagine such variation.
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In some conceptualizations, no causality is possible; in others it
is.

Distinguish identification from causation.

The X effects on Y1 and Y2, identified through the reduced
forms, combine the direct effects (through βij) and the indirect
effects (as they operate through Y1 and Y2, respectively).

If we assume exclusions (β12 = 0) or (β21 = 0) or both, we can
identify the ceteris paribus causal effects of Y2 on Y1 and of Y1

on Y2, respectively, if β22 6= 0 or β11 6= 0, respectively.
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Consider Standard Identification Analyses

Suppose
β12 = 0 and β21 = 0

π11 =
β11

1− γ12γ21
π12 =

γ12β22
1− γ12γ21

π21 =
γ21β11

1− γ12γ21
π22 =

β22
1− γ12γ21
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π12
π22

= γ12

π21
π11

= γ21

∴ we identify β11 and β22.
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Suppose instead only β12 = 0

π22 =
β22

1− γ12γ21

π12 =
γ12β22

1− γ12γ21
π12
π22

= γ12

Then can form left-hand side of y1− γ12y2 = β11X1+β12X2+U1.

∴ can identify β11 = 0 from OLS (recall E (U1|X ) = 0).

Can identify σ2
1 = Var(U1).
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Symmetrically if β21 = 0 can identify β22, σ2
2.

Suppose Cov(U1,U2) = 0.

Cov(E1, E2) = Cov

[(
U1 + γ12U2

1− γ12γ21

)(
γ21U1 + U2

1− γ12γ21

)]
=
γ21σ

2
1 + γ12σ

2
2

(1− γ12γ21)2

Var(E1) =
σ1
2 + γ212σ

2
2

(1− γ12γ21)2

Var(E2) =
γ221σ

2
1 + σ2

2

(1− γ12γ21)2

Suppose we add this to β12 = 0.

By previously analysis, we know γ12, σ
2
1.
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Then we know

a =
Cov(E1, E2)

Var(E1)
=
γ21σ

2
1 + γ12σ

2
2

σ2
1 + γ212σ

2
2

b =
Cov(E1, E2)

Var(E2)
=
γ21σ

2
1 + γ12σ

2
2

γ21 + σ2
1 + σ2

2

2 equations in 2 unknowns

Can solve: σ2
2, γ21 (in principle) letting “ ˆ ” denote estimate

(â)(σ2
1 + γ212σ

2
2) = γ21σ

2
1 + γ12σ

2
2

(b̂)(γ221σ
2
1 + σ2

2) = γ21σ
2
1 + γ12σ

2
2

â(σ̂2
1 + γ̂212σ

2
2) = b̂(γ221σ̂

2
1 + σ2

2)

ĉ =
Var(E1)

Var(E2)
=
σ̂2
1 + γ̂212σ

2
2

γ221σ̂
2
1 + σ2

2
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Alternatively, we could assume β11 = β22 = 0 and β12 6= 0,
β21 6= 0 to identify γ12 and γ21.

These exclusions say that the social interactions only operate
through the Y ’s.

Agent 1’s consumption depends only on agent 2’s consumption
and not on his value of X2.

Agent 2 is modeled symmetrically versus agent 1.

Observe that we have not ruled out correlation between U1 and
U2.
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When the procedure for identifying causal effects is applied to
samples, it is called indirect least squares (Tinbergen, 1930).

The analysis for social interactions in this section is of
independent interest.

It can be generalized to the analysis of N person interactions if
the outcomes are continuous variables.
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Nonlinear Systems Possible

Thus we can postulate a system of equations G (Y ,X ,U) = 0
and develop conditions for unique solution of reduced forms
Y = K (X ,U) requiring that certain Jacobian terms be
nonvanishing (Matzkin, “Nonparametric Identification of
Simultaneous Equations,” 2007).

The structural form (1) is an all causes model that relates in a
deterministic way outcomes (internal variables) to other
outcomes (internal variables) and external variables (the X and
U).

Question: Are ceteris paribus manipulations associated with
the effect of some components of Y on other components of Y
possible within the model?

Yes.
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The intuition for these results is that if β12 = 0, we can vary Y2

in Equation (2a) by varying the X2 that does not directly affect
Y1 in the structural equation.

Since X2 does not appear in the equation, under exclusion, we
can keep U1,X1 fixed and vary Y2 using X2 in (4b) if β22 6= 0.

Notice that we could also use U2 as a source of variation in
(4b) to shift Y2.

The roles of U2 and X2 are symmetric.

However, if U1 and U2 are correlated, shifting U2 shifts U1

unless we control for it.

The component of U2 uncorrelated with U1 plays the role of X2.
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Symmetrically, by excluding X1 from(2b), we can vary Y1,
holding X2 and U2 constant.

These results are more clearly seen when U1 = 0 and U2 = 0.
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A hypothetical thought experiment justifies these exclusions.

If agents do not know or act on the other agent’s X , these
exclusions are plausible.

An implicit assumption in using (2a) and (2b) for causal
analysis is invariance of the parameters (Γ, β,ΣU) to
manipulations of the external variables.
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This definition of causal effects in an interdependent system
generalizes the recursive definitions of causality featured in the
statistical treatment effect literature (Holland, 1988, and Pearl,
2009).

The key to this definition is manipulation of external inputs and
exclusion, not randomization or matching.
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Control Function Principle

E (U1|E2) =

(
σ11γ21 + σ12
1− γ21γ21

)
E2 + 0

U1 =

(
σ11γ12 + σ12
1− γ21γ21

)
Ê2︸ ︷︷ ︸

control function

+V1

V1: portion of U1 not correlated with Y2.

If no exclusions in first equation, perfect multicollinearity, i.e.,
Y1 = γ12(Ŷ2) + β11X1 + β12X2 + γ12Ê2 + U1 controls for
covariance between Y2 and U1.
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In a General Nonlinear Model

Y1 = g1 (Y2,X1,X2,U1)

Y2 = g2 (Y1,X1,X2,U2) ,

exclusion is defined as ∂g1
∂X1

= 0 for all (Y2,X1,X2,U1) and ∂g2
∂X2

= 0
for all (Y1,X1,X2,U2).
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Assuming the existence of local solutions, we can solve these
equations to obtain

Y1 = ϕ1 (X1,X2,U1,U2)

Y2 = ϕ2 (X1,X2,U1,U2)

By the chain rule we can write

∂g1
∂Y2

=
∂Y1

∂X1

/
∂Y2

∂X1
=
∂ϕ1

∂X1

/
∂ϕ2

∂X1
.

We may define causal effects for Y1 on Y2 using partials with
respect to X2 in an analogous fashion.
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