Simultaneous Causality: Part IV on Causality

James J. Heckman

Econ 312, Spring 2021

- A system of linear simultaneous equations captures interdependence among outcomes Y.
- Linear model in terms of parameters (Γ, B), observables (Y, X) and unobservables U :

$$
\begin{equation*}
\Gamma Y+B X=U, \quad E(U)=0, \tag{1}
\end{equation*}
$$

- Y is now a vector of internal and interdependent variables
- X is external and exogenous $(E(U \mid X)=0)$
- Γ is a full rank matrix ("completeness").
- $Y=\Gamma^{-1} B X+\Gamma^{-1} U$ (reduced form)
- Completeness is totally different from another concept of completeness:
- In nonparametric IV, $\int_{\text {Supp } X} \Phi_{\theta}(X) d F(X)=0 \Leftrightarrow \Phi_{\theta}(X)=0$
- This is a linear-in-the-parameters "all causes" model for vector Y, where the causes are X and \mathcal{E}.
- The "structure" is $(\Gamma, B), \Sigma_{U}$, where Σ_{U} is the variance-covariance matrix of U.
- In the Cowles Commission analysis it is assumed that Γ, B, Σ_{U} are invariant to general changes in X and translations of U.
- Autonomy (Frisch, 1938) later called one component of "SUTVA" (see Holland, 1986).
- X, U external variables.
- Y internal variables.
- Consider a two-agent model of social interactions.
- Y_{1} is the outcome for agent $1 ; Y_{2}$ is the outcome for agent 2 .

$$
\begin{align*}
& Y_{1}=\alpha_{1}+\gamma_{12} Y_{2}+\beta_{11} X_{1}+\beta_{12} X_{2}+U_{1}, \tag{2a}\\
& Y_{2}=\alpha_{2}+\gamma_{21} Y_{1}+\beta_{21} X_{1}+\beta_{22} X_{2}+U_{2} . \tag{2b}
\end{align*}
$$

- Social interactions model is a standard version of the simultaneous equations problem.
- This model is sufficiently flexible to capture the notion that the consumption of $1\left(Y_{1}\right)$ depends on the consumption of 2 if $\gamma_{12} \neq 0$, as well as 1 's value of X if $\beta_{11} \neq 0, X_{1}$ (assumed to be observed), 2's value of X, X_{2} if $\beta_{12} \neq 0$ and unobservable factors that affect $1\left(U_{1}\right)$.
- The determinants of 2's consumption are defined symmetrically.
- Allow U_{1} and U_{2} to be freely correlated.
- Captures essence of "reflection problem."
- Assume

$$
\begin{equation*}
E\left(U_{1} \mid X_{1}, X_{2}\right)=0 \tag{3a}
\end{equation*}
$$

and

$$
\begin{equation*}
E\left(U_{2} \mid X_{1}, X_{2}\right)=0 \tag{3b}
\end{equation*}
$$

- Completeness guarantees that (2a) and (2b) have a determinate solution for $\left(Y_{1}, Y_{2}\right)$.
- Applying Haavelmo's (1943) analysis to (2a) and (2b), the causal effect of Y_{2} on Y_{1} is γ_{12}.
- This is the effect on Y_{1} of fixing Y_{2} at different values, holding constant the other variables in the equation.
- Symmetrically, the causal effect of Y_{1} on Y_{2} is γ_{21}.
- Conditioning, i.e., using least squares, in general, fails to identify these causal effects because U_{1} and U_{2} are correlated with Y_{1} and Y_{2}.
- This is a traditional argument.
- It is based on the possibility of correlation between Y_{2} and U_{1} (Haavelmo, 1943).
- But even if $U_{1}=0$ and $U_{2}=0$, so that there are no unobservables, least squares breaks down because Y_{2} is perfectly predictable by X_{1} and X_{2}.

Question: Prove this.

- We cannot simultaneously vary Y_{2}, X_{1} and X_{2}.
- The error term is not the fundamental source of non-identifiability in these models.

Reduced Form

- Under completeness, the reduced form outcomes of the model after social interactions are solved out can be written as

$$
\begin{align*}
& Y_{1}=\pi_{10}+\pi_{11} X_{1}+\pi_{12} X_{2}+\mathcal{E}_{1}, \tag{4a}\\
& Y_{2}=\pi_{20}+\pi_{21} X_{1}+\pi_{22} X_{2}+\mathcal{E}_{2} . \tag{4b}
\end{align*}
$$

$$
\begin{aligned}
& E\left(\mathcal{E}_{1} \mid X\right)=0 \\
& E\left(\mathcal{E}_{2} \mid X\right)=0
\end{aligned}
$$

- Least squares can identify the ceteris paribus effects of X_{1} and X_{2} on Y_{1} and Y_{2} because $E\left(\mathcal{E}_{1} \mid X_{1}, X_{2}\right)=0$ and $E\left(\mathcal{E}_{2} \mid X_{1}, X_{2}\right)=0$.
- Simple algebra:

$$
\begin{gathered}
\pi_{11}=\frac{\beta_{11}+\gamma_{12} \beta_{21}}{1-\gamma_{12} \gamma_{21}}, \quad \pi_{12}=\frac{\beta_{12}+\gamma_{12} \beta_{22}}{1-\gamma_{12} \gamma_{21}} \\
\pi_{21}=\frac{\gamma_{21} \beta_{11}+\beta_{21}}{1-\gamma_{12} \gamma_{21}} \\
\pi_{22}=\frac{\gamma_{21} \beta_{12}+\beta_{22}}{1-\gamma_{12} \gamma_{21}} \\
\mathcal{E}_{1}=\frac{U_{1}+\gamma_{12} U_{2}}{1-\gamma_{12} \gamma_{21}} \\
\mathcal{E}_{2}=\frac{\gamma_{21} U_{1}+U_{2}}{1-\gamma_{12} \gamma_{21}}
\end{gathered}
$$

- Without any further information on the variances of $\left(U_{1}, U_{2}\right)$ and their relationship to the causal parameters, we cannot identify the causal effects γ_{12} and γ_{21} from the reduced form regression coefficients.
- This is so because holding X_{1}, X_{2}, U_{1} and U_{2} fixed in (2a) or (2b), it is not possible to vary Y_{2} or Y_{1}, respectively, because they are exact functions of X_{1}, X_{2}, U_{1} and U_{2}.
- This exact dependence holds true even if $U_{1}=0$ and $U_{2}=0$ so that there are no unobservables.
- There is no mechanism yet specified within the model to independently vary the right hand sides of Equations (2a) and (2b).
- The mere fact that we can write (2a) and (2b) means that we "can imagine" independent variation.
- Causality is in the mind.

Question: Can we still define the causal effect of Y_{2} on Y_{1} and Y_{1} on Y_{2}, even if we cannot identify them?

- We "can imagine" a model

$$
Y=\varphi_{0}+\varphi_{1} X_{1}+\varphi_{2} X_{2}
$$

but if part of the model is $(*) X_{1}=X_{2}$, no causal effect of X_{1} holding X_{2} constant is possible in principle within the rules of the model.

- If we break restriction $(*)$ and permit independent variation in X_{1} and X_{2}, we can define the causal effect of X_{1} holding X_{2} constant.
- But we can imagine such variation.
- In some conceptualizations, no causality is possible; in others it is.
- Distinguish identification from causation.
- The X effects on Y_{1} and Y_{2}, identified through the reduced forms, combine the direct effects (through $\beta_{i j}$) and the indirect effects (as they operate through Y_{1} and Y_{2}, respectively).
- If we assume exclusions $\left(\beta_{12}=0\right)$ or $\left(\beta_{21}=0\right)$ or both, we can identify the ceteris paribus causal effects of Y_{2} on Y_{1} and of Y_{1} on Y_{2}, respectively, if $\beta_{22} \neq 0$ or $\beta_{11} \neq 0$, respectively.

Consider Standard Identification Analyses

- Suppose

$$
\begin{aligned}
\beta_{12}=0 \text { and } \beta_{21} & =0 \\
\pi_{11}=\frac{\beta_{11}}{1-\gamma_{12} \gamma_{21}} & \pi_{12}
\end{aligned}=\frac{\gamma_{12} \beta_{22}}{1-\gamma_{12} \gamma_{21}}, ~ \pi_{22}=\frac{\beta_{22}}{1-\gamma_{12} \gamma_{21}} .
$$

$$
\begin{aligned}
& \frac{\pi_{12}}{\pi_{22}}=\gamma_{12} \\
& \frac{\pi_{21}}{\pi_{11}}=\gamma_{21}
\end{aligned}
$$

- \therefore we identify β_{11} and β_{22}.
- Suppose instead only $\beta_{12}=0$

$$
\begin{aligned}
\pi_{22} & =\frac{\beta_{22}}{1-\gamma_{12} \gamma_{21}} \\
\pi_{12} & =\frac{\gamma_{12} \beta_{22}}{1-\gamma_{12} \gamma_{21}} \\
\frac{\pi_{12}}{\pi_{22}} & =\gamma_{12}
\end{aligned}
$$

- Then can form left-hand side of $y_{1}-\gamma_{12} y_{2}=\beta_{11} X_{1}+\beta_{12} X_{2}+U_{1}$.
- \therefore can identify $\beta_{11}=0$ from OLS (recall $E\left(U_{1} \mid X\right)=0$).
- Can identify $\sigma_{1}^{2}=\operatorname{Var}\left(U_{1}\right)$.
- Symmetrically if $\beta_{21}=0$ can identify $\beta_{22}, \sigma_{2}^{2}$.
- Suppose $\operatorname{Cov}\left(U_{1}, U_{2}\right)=0$.

$$
\begin{aligned}
\operatorname{Cov}\left(\mathcal{E}_{1}, \mathcal{E}_{2}\right) & =\operatorname{Cov}\left[\left(\frac{U_{1}+\gamma_{12} U_{2}}{1-\gamma_{12} \gamma_{21}}\right)\left(\frac{\gamma_{21} U_{1}+U_{2}}{1-\gamma_{12} \gamma_{21}}\right)\right] \\
& =\frac{\gamma_{21} \sigma_{1}^{2}+\gamma_{12} \sigma_{2}^{2}}{\left(1-\gamma_{12} \gamma_{21}\right)^{2}} \\
\operatorname{Var}\left(\mathcal{E}_{1}\right) & =\frac{\sigma_{2}^{1}+\gamma_{12}^{2} \sigma_{2}^{2}}{\left(1-\gamma_{12} \gamma_{21}\right)^{2}} \\
\operatorname{Var}\left(\mathcal{E}_{2}\right) & =\frac{\gamma_{21}^{2} \sigma_{1}^{2}+\sigma_{2}^{2}}{\left(1-\gamma_{12} \gamma_{21}\right)^{2}}
\end{aligned}
$$

- Suppose we add this to $\beta_{12}=0$.
- By previously analysis, we know $\gamma_{12}, \sigma_{1}^{2}$.
- Then we know

$$
\begin{aligned}
& a=\frac{\operatorname{Cov}\left(\mathcal{E}_{1}, \mathcal{E}_{2}\right)}{\operatorname{Var}\left(\mathcal{E}_{1}\right)}=\frac{\gamma_{21} \sigma_{1}^{2}+\gamma_{12} \sigma_{2}^{2}}{\sigma_{1}^{2}+\gamma_{12}^{2} \sigma_{2}^{2}} \\
& b=\frac{\operatorname{Cov}\left(\mathcal{E}_{1}, \mathcal{E}_{2}\right)}{\operatorname{Var}\left(\mathcal{E}_{2}\right)}=\frac{\gamma_{21} \sigma_{1}^{2}+\gamma_{12} \sigma_{2}^{2}}{\gamma_{1}^{2}+\sigma_{1}^{2}+\sigma_{2}^{2}}
\end{aligned}
$$

- 2 equations in 2 unknowns
- Can solve: $\sigma_{2}^{2}, \gamma_{21}$ (in principle) letting " ^" denote estimate

$$
\begin{aligned}
(\hat{a})\left(\sigma_{1}^{2}+\gamma_{12}^{2} \sigma_{2}^{2}\right) & =\gamma_{21} \sigma_{1}^{2}+\gamma_{12} \sigma_{2}^{2} \\
(\hat{b})\left(\gamma_{21}^{2} \sigma_{1}^{2}+\sigma_{2}^{2}\right) & =\gamma_{21} \sigma_{1}^{2}+\gamma_{12} \sigma_{2}^{2} \\
\hat{a}\left(\hat{\sigma}_{1}^{2}+\hat{\gamma}_{12}^{2} \sigma_{2}^{2}\right) & =\hat{b}\left(\gamma_{21}^{2} \hat{\sigma}_{1}^{2}+\sigma_{2}^{2}\right) \\
\hat{c}=\frac{\operatorname{Var}\left(\mathcal{E}_{1}\right)}{\operatorname{Var}\left(\mathcal{E}_{2}\right)} & =\frac{\hat{\sigma}_{1}^{2}+\hat{\gamma}_{12}^{2} \sigma_{2}^{2}}{\gamma_{21}^{2} \hat{\sigma}_{1}^{2}+\sigma_{2}^{2}}
\end{aligned}
$$

- Alternatively, we could assume $\beta_{11}=\beta_{22}=0$ and $\beta_{12} \neq 0$, $\beta_{21} \neq 0$ to identify γ_{12} and γ_{21}.
- These exclusions say that the social interactions only operate through the Y 's.
- Agent 1's consumption depends only on agent 2's consumption and not on his value of X_{2}.
- Agent 2 is modeled symmetrically versus agent 1 .
- Observe that we have not ruled out correlation between U_{1} and U_{2}.
- When the procedure for identifying causal effects is applied to samples, it is called indirect least squares (Tinbergen, 1930).
- The analysis for social interactions in this section is of independent interest.
- It can be generalized to the analysis of N person interactions if the outcomes are continuous variables.

Nonlinear Systems Possible

- Thus we can postulate a system of equations $G(Y, X, U)=0$ and develop conditions for unique solution of reduced forms $Y=K(X, U)$ requiring that certain Jacobian terms be nonvanishing (Matzkin, "Nonparametric Identification of Simultaneous Equations," 2007).
- The structural form (1) is an all causes model that relates in a deterministic way outcomes (internal variables) to other outcomes (internal variables) and external variables (the X and U).
- Question: Are ceteris paribus manipulations associated with the effect of some components of Y on other components of Y possible within the model?
- Yes.
- The intuition for these results is that if $\beta_{12}=0$, we can vary Y_{2} in Equation (2a) by varying the X_{2} that does not directly affect Y_{1} in the structural equation.
- Since X_{2} does not appear in the equation, under exclusion, we can keep U_{1}, X_{1} fixed and vary Y_{2} using X_{2} in (4b) if $\beta_{22} \neq 0$.
- Notice that we could also use U_{2} as a source of variation in (4b) to shift Y_{2}.
- The roles of U_{2} and X_{2} are symmetric.
- However, if U_{1} and U_{2} are correlated, shifting U_{2} shifts U_{1} unless we control for it.
- The component of U_{2} uncorrelated with U_{1} plays the role of X_{2}.
- Symmetrically, by excluding X_{1} from(2b), we can vary Y_{1}, holding X_{2} and U_{2} constant.
- These results are more clearly seen when $U_{1}=0$ and $U_{2}=0$.
- A hypothetical thought experiment justifies these exclusions.
- If agents do not know or act on the other agent's X, these exclusions are plausible.
- An implicit assumption in using (2a) and (2b) for causal analysis is invariance of the parameters $\left(\Gamma, \beta, \Sigma_{U}\right)$ to manipulations of the external variables.
- This definition of causal effects in an interdependent system generalizes the recursive definitions of causality featured in the statistical treatment effect literature (Holland, 1988, and Pearl, 2009).
- The key to this definition is manipulation of external inputs and exclusion, not randomization or matching.

Control Function Principle

$$
\begin{aligned}
E\left(U_{1} \mid \mathcal{E}_{2}\right) & =\left(\frac{\sigma_{11} \gamma_{21}+\sigma_{12}}{1-\gamma_{21} \gamma_{21}}\right) \mathcal{E}_{2}
\end{aligned}+0
$$

- V_{1} : portion of U_{1} not correlated with Y_{2}.
- If no exclusions in first equation, perfect multicollinearity, i.e., $Y_{1}=\gamma_{12}\left(\hat{Y}_{2}\right)+\beta_{11} X_{1}+\beta_{12} X_{2}+\gamma_{12} \hat{\mathcal{E}}_{2}+U_{1}$ controls for covariance between Y_{2} and U_{1}.

In a General Nonlinear Model

$$
\begin{aligned}
& Y_{1}=g_{1}\left(Y_{2}, X_{1}, X_{2}, U_{1}\right) \\
& Y_{2}=g_{2}\left(Y_{1}, X_{1}, X_{2}, U_{2}\right),
\end{aligned}
$$

exclusion is defined as $\frac{\partial g_{1}}{\partial X_{1}}=0$ for all $\left(Y_{2}, X_{1}, X_{2}, U_{1}\right)$ and $\frac{\partial g_{2}}{\partial X_{2}}=0$ for all ($Y_{1}, X_{1}, X_{2}, U_{2}$).

- Assuming the existence of local solutions, we can solve these equations to obtain

$$
\begin{aligned}
& Y_{1}=\varphi_{1}\left(X_{1}, X_{2}, U_{1}, U_{2}\right) \\
& Y_{2}=\varphi_{2}\left(X_{1}, X_{2}, U_{1}, U_{2}\right)
\end{aligned}
$$

- By the chain rule we can write

$$
\frac{\partial g_{1}}{\partial Y_{2}}=\frac{\partial Y_{1}}{\partial X_{1}} / \frac{\partial Y_{2}}{\partial X_{1}}=\frac{\partial \varphi_{1}}{\partial X_{1}} / \frac{\partial \varphi_{2}}{\partial X_{1}}
$$

- We may define causal effects for Y_{1} on Y_{2} using partials with respect to X_{2} in an analogous fashion.

