Simultaneous Causality: Part IV on Causality

James J. Heckman

Econ 312, Spring 2021

イロン イロン イヨン イヨン 三日

1/29

• A system of linear simultaneous equations captures interdependence among outcomes *Y*.

 Linear model in terms of parameters (Γ, B), observables (Y, X) and unobservables U:

$$\Gamma Y + BX = U, \qquad E(U) = 0, \tag{1}$$

- Y is now a vector of internal and interdependent variables
- X is external and exogenous (E(U | X) = 0)
- Γ is a full rank matrix ("completeness").
- $Y = \Gamma^{-1}BX + \Gamma^{-1}U$ (reduced form)
- Completeness is totally different from another concept of completeness:
- In nonparametric IV, $\int_{\text{Supp}X} \Phi_{\theta}(X) dF(X) = 0 \Leftrightarrow \Phi_{\theta}(X) = 0$

- This is a linear-in-the-parameters "all causes" model for vector Y, where the causes are X and \mathcal{E} .
- The "structure" is (Γ, B) , Σ_U , where Σ_U is the variance-covariance matrix of U.
- In the Cowles Commission analysis it is assumed that Γ, B, Σ_U are invariant to general changes in X and translations of U.
- Autonomy (Frisch, 1938) later called one component of "SUTVA" (see Holland, 1986).
- X, U external variables.
- Y internal variables.

- Consider a two-agent model of social interactions.
- Y_1 is the outcome for agent 1; Y_2 is the outcome for agent 2.

$$Y_{1} = \alpha_{1} + \gamma_{12}Y_{2} + \beta_{11}X_{1} + \beta_{12}X_{2} + U_{1},$$
(2a)

$$Y_{2} = \alpha_{2} + \gamma_{21}Y_{1} + \beta_{21}X_{1} + \beta_{22}X_{2} + U_{2}.$$
(2b)

- Social interactions model is a standard version of the simultaneous equations problem.
- This model is sufficiently flexible to capture the notion that the consumption of 1 (Y_1) depends on the consumption of 2 if $\gamma_{12} \neq 0$, as well as 1's value of X if $\beta_{11} \neq 0$, X_1 (assumed to be observed), 2's value of X , X_2 if $\beta_{12} \neq 0$ and unobservable factors that affect 1 (U_1).
- The determinants of 2's consumption are defined symmetrically.
- Allow U_1 and U_2 to be freely correlated.
- Captures essence of "reflection problem."

$$E(U_1 | X_1, X_2) = 0$$
 (3a)

and

$$E(U_2 | X_1, X_2) = 0.$$
 (3b)

- Completeness guarantees that (2a) and (2b) have a determinate solution for (Y₁, Y₂).
- Applying Haavelmo's (1943) analysis to (2a) and (2b), the causal effect of Y_2 on Y_1 is γ_{12} .
- This is the effect on Y_1 of fixing Y_2 at different values, holding constant the other variables in the equation.

- Symmetrically, the causal effect of Y_1 on Y_2 is γ_{21} .
- Conditioning, i.e., using least squares, in general, fails to identify these causal effects because U_1 and U_2 are correlated with Y_1 and Y_2 .
- This is a traditional argument.
- It is based on the possibility of correlation between Y_2 and U_1 (Haavelmo, 1943).
- But even if $U_1 = 0$ and $U_2 = 0$, so that there are no unobservables, least squares breaks down because Y_2 is perfectly predictable by X_1 and X_2 .

Question: Prove this.

- We cannot simultaneously vary Y_2 , X_1 and X_2 .
- The error term is not the fundamental source of non-identifiability in these models.

Reduced Form

• Under completeness, the reduced form outcomes of the model after social interactions are solved out can be written as

$$Y_1 = \pi_{10} + \pi_{11}X_1 + \pi_{12}X_2 + \mathcal{E}_1,$$
 (4a)

$$Y_2 = \pi_{20} + \pi_{21}X_1 + \pi_{22}X_2 + \mathcal{E}_2.$$
 (4b)

$$E(\mathcal{E}_1|X) = 0$$
$$E(\mathcal{E}_2|X) = 0$$

- Least squares can identify the *ceteris paribus* effects of X₁ and X₂ on Y₁ and Y₂ because E(E₁ | X₁, X₂) = 0 and E(E₂ | X₁, X₂) = 0.
- Simple algebra:

$$\pi_{11} = \frac{\beta_{11} + \gamma_{12}\beta_{21}}{1 - \gamma_{12}\gamma_{21}}, \qquad \pi_{12} = \frac{\beta_{12} + \gamma_{12}\beta_{22}}{1 - \gamma_{12}\gamma_{21}},$$

$$\pi_{21} = \frac{\gamma_{21}\beta_{11} + \beta_{21}}{1 - \gamma_{12}\gamma_{21}},$$

$$\pi_{22} = \frac{\gamma_{21}\beta_{12} + \beta_{22}}{1 - \gamma_{12}\gamma_{21}},$$

$$\mathcal{E}_{1} = \frac{U_{1} + \gamma_{12}U_{2}}{1 - \gamma_{12}\gamma_{21}},$$

$$\mathcal{E}_{2} = \frac{\gamma_{21}U_{1} + U_{2}}{1 - \gamma_{12}\gamma_{21}}.$$

- Without any further information on the variances of (U_1, U_2) and their relationship to the causal parameters, we cannot identify the causal effects γ_{12} and γ_{21} from the reduced form regression coefficients.
- This is so because holding X₁, X₂, U₁ and U₂ fixed in (2a) or (2b), it is not possible to vary Y₂ or Y₁, respectively, because they are exact functions of X₁, X₂, U₁ and U₂.
- This exact dependence holds true even if $U_1 = 0$ and $U_2 = 0$ so that there are no unobservables.

- There is no mechanism yet specified within the model to independently vary the right hand sides of Equations (2a) and (2b).
- The mere fact that we can write (2a) and (2b) means that we "can imagine" independent variation.
- Causality is in the mind.

Question: Can we still define the causal effect of Y_2 on Y_1 and Y_1 on Y_2 , even if we cannot identify them?

• We "can imagine" a model

$$Y = \varphi_0 + \varphi_1 X_1 + \varphi_2 X_2,$$

but if part of the model is $(*) X_1 = X_2$, no causal effect of X_1 holding X_2 constant is possible in principle within the rules of the model.

- If we break restriction (*) and permit independent variation in X₁ and X₂, we can define the causal effect of X₁ holding X₂ constant.
- But we can imagine such variation.

- In some conceptualizations, no causality is possible; in others it is.
- Distinguish identification from causation.
- The X effects on Y_1 and Y_2 , identified through the reduced forms, combine the direct effects (through β_{ij}) and the indirect effects (as they operate through Y_1 and Y_2 , respectively).
- If we assume exclusions (β₁₂ = 0) or (β₂₁ = 0) or both, we can identify the *ceteris paribus* causal effects of Y₂ on Y₁ and of Y₁ on Y₂, respectively, if β₂₂ ≠ 0 or β₁₁ ≠ 0, respectively.

Consider Standard Identification Analyses

Suppose

$$\beta_{12} = 0$$
 and $\beta_{21} = 0$

$$\pi_{11} = \frac{\beta_{11}}{1 - \gamma_{12}\gamma_{21}} \qquad \pi_{12} = \frac{\gamma_{12}\beta_{22}}{1 - \gamma_{12}\gamma_{21}}$$
$$\pi_{21} = \frac{\gamma_{21}\beta_{11}}{1 - \gamma_{12}\gamma_{21}} \qquad \pi_{22} = \frac{\beta_{22}}{1 - \gamma_{12}\gamma_{21}}$$

$$\frac{\pi_{12}}{\pi_{22}} = \gamma_{12}$$
$$\frac{\pi_{21}}{\pi_{21}} = \gamma_{21}$$

• : we identify β_{11} and β_{22} .

• Suppose instead only $\beta_{12} = 0$

$$\pi_{22} = \frac{\beta_{22}}{1 - \gamma_{12}\gamma_{21}}$$
$$\pi_{12} = \frac{\gamma_{12}\beta_{22}}{1 - \gamma_{12}\gamma_{21}}$$
$$\frac{\pi_{12}}{\pi_{22}} = \gamma_{12}$$

- Then can form left-hand side of $y_1 \gamma_{12}y_2 = \beta_{11}X_1 + \beta_{12}X_2 + U_1$.
- \therefore can identify $\beta_{11} = 0$ from OLS (recall $E(U_1|X) = 0$).
- Can identify $\sigma_1^2 = Var(U_1)$.

- Symmetrically if $\beta_{21} = 0$ can identify β_{22} , σ_2^2 .
- Suppose $Cov(U_1, U_2) = 0.$

$$\begin{aligned} \mathsf{Cov}(\mathcal{E}_{1}, \mathcal{E}_{2}) &= \mathsf{Cov}\left[\left(\frac{U_{1} + \gamma_{12}U_{2}}{1 - \gamma_{12}\gamma_{21}}\right)\left(\frac{\gamma_{21}U_{1} + U_{2}}{1 - \gamma_{12}\gamma_{21}}\right)\right] \\ &= \frac{\gamma_{21}\sigma_{1}^{2} + \gamma_{12}\sigma_{2}^{2}}{(1 - \gamma_{12}\gamma_{21})^{2}} \\ \mathsf{Var}(\mathcal{E}_{1}) &= \frac{\sigma_{2}^{1} + \gamma_{12}^{2}\sigma_{2}^{2}}{(1 - \gamma_{12}\gamma_{21})^{2}} \\ \mathsf{Var}(\mathcal{E}_{2}) &= \frac{\gamma_{21}^{2}\sigma_{1}^{2} + \sigma_{2}^{2}}{(1 - \gamma_{12}\gamma_{21})^{2}} \end{aligned}$$

- Suppose we add this to $\beta_{12} = 0$.
- By previously analysis, we know γ_{12}, σ_1^2 .

• Then we know

$$\begin{aligned} \mathbf{a} &= \frac{Cov(\mathcal{E}_{1}, \mathcal{E}_{2})}{Var(\mathcal{E}_{1})} = \frac{\gamma_{21}\sigma_{1}^{2} + \gamma_{12}\sigma_{2}^{2}}{\sigma_{1}^{2} + \gamma_{12}^{2}\sigma_{2}^{2}} \\ \mathbf{b} &= \frac{Cov(\mathcal{E}_{1}, \mathcal{E}_{2})}{Var(\mathcal{E}_{2})} = \frac{\gamma_{21}\sigma_{1}^{2} + \gamma_{12}\sigma_{2}^{2}}{\gamma_{1}^{2} + \sigma_{1}^{2} + \sigma_{2}^{2}} \end{aligned}$$

- 2 equations in 2 unknowns
- Can solve: σ_2^2, γ_{21} (in principle) letting " ^" denote estimate

$$\begin{aligned} (\hat{a})(\sigma_{1}^{2} + \gamma_{12}^{2}\sigma_{2}^{2}) &= \gamma_{21}\sigma_{1}^{2} + \gamma_{12}\sigma_{2}^{2} \\ (\hat{b})(\gamma_{21}^{2}\sigma_{1}^{2} + \sigma_{2}^{2}) &= \gamma_{21}\sigma_{1}^{2} + \gamma_{12}\sigma_{2}^{2} \\ \hat{a}(\hat{\sigma}_{1}^{2} + \hat{\gamma}_{12}^{2}\sigma_{2}^{2}) &= \hat{b}(\gamma_{21}^{2}\hat{\sigma}_{1}^{2} + \sigma_{2}^{2}) \\ \hat{c} &= \frac{Var(\mathcal{E}_{1})}{Var(\mathcal{E}_{2})} = \frac{\hat{\sigma}_{1}^{2} + \hat{\gamma}_{12}^{2}\sigma_{2}^{2}}{\gamma_{21}^{2}\hat{\sigma}_{1}^{2} + \sigma_{2}^{2}} \end{aligned}$$

19/29

- Alternatively, we could assume $\beta_{11} = \beta_{22} = 0$ and $\beta_{12} \neq 0$, $\beta_{21} \neq 0$ to identify γ_{12} and γ_{21} .
- These exclusions say that the social interactions only operate through the Y's.
- Agent 1's consumption depends only on agent 2's consumption and not on his value of X₂.
- Agent 2 is modeled symmetrically versus agent 1.
- Observe that we have *not* ruled out correlation between U_1 and U_2 .

- When the procedure for identifying causal effects is applied to samples, it is called **indirect least squares** (Tinbergen, 1930).
- The analysis for social interactions in this section is of independent interest.
- It can be generalized to the analysis of *N* person interactions if the outcomes are continuous variables.

Nonlinear Systems Possible

- Thus we can postulate a system of equations G (Y, X, U) = 0 and develop conditions for unique solution of reduced forms Y = K (X, U) requiring that certain Jacobian terms be nonvanishing (Matzkin, "Nonparametric Identification of Simultaneous Equations," 2007).
- The structural form (1) is an all causes model that relates in a deterministic way outcomes (internal variables) to other outcomes (internal variables) and external variables (the X and U).
- **Question:** Are *ceteris paribus* manipulations associated with the effect of some components of *Y* on other components of *Y* possible within the model?
- Yes.

- The intuition for these results is that if β₁₂ = 0, we can vary Y₂ in Equation (2a) by varying the X₂ that does not directly affect Y₁ in the structural equation.
- Since X₂ does not appear in the equation, under exclusion, we can keep U₁, X₁ fixed and vary Y₂ using X₂ in (4b) if β₂₂ ≠ 0.
- Notice that we could also use U₂ as a source of variation in (4b) to shift Y₂.
- The roles of U_2 and X_2 are symmetric.
- However, if U_1 and U_2 are correlated, shifting U_2 shifts U_1 unless we control for it.
- The component of U_2 uncorrelated with U_1 plays the role of X_2 .

- Symmetrically, by excluding X₁ from(2b), we can vary Y₁, holding X₂ and U₂ constant.
- These results are more clearly seen when $U_1 = 0$ and $U_2 = 0$.

- A hypothetical thought experiment justifies these exclusions.
- If agents do not know or act on the other agent's X, these exclusions are plausible.
- An implicit assumption in using (2a) and (2b) for causal analysis is invariance of the parameters (Γ, β, Σ_U) to manipulations of the external variables.

- This definition of causal effects in an interdependent system generalizes the recursive definitions of causality featured in the statistical treatment effect literature (Holland, 1988, and Pearl, 2009).
- The key to this definition is manipulation of external inputs and exclusion, not randomization or matching.

Control Function Principle

$$E(U_1|\mathcal{E}_2) = \left(\frac{\sigma_{11}\gamma_{21} + \sigma_{12}}{1 - \gamma_{21}\gamma_{21}}\right)\mathcal{E}_2 + 0$$
$$U_1 = \underbrace{\left(\frac{\sigma_{11}\gamma_{12} + \sigma_{12}}{1 - \gamma_{21}\gamma_{21}}\right)\hat{\mathcal{E}}_2}_{\text{control function}} + V_1$$

- V_1 : portion of U_1 not correlated with Y_2 .
- If no exclusions in first equation, perfect multicollinearity, i.e., $Y_1 = \gamma_{12}(\hat{Y}_2) + \beta_{11}X_1 + \beta_{12}X_2 + \gamma_{12}\hat{\mathcal{E}}_2 + U_1$ controls for covariance between Y_2 and U_1 .

In a General Nonlinear Model

$$\begin{array}{rcl} Y_1 &=& g_1(Y_2, X_1, X_2, U_1) \\ Y_2 &=& g_2(Y_1, X_1, X_2, U_2) \,, \end{array}$$

exclusion is defined as $\frac{\partial g_1}{\partial X_1} = 0$ for all (Y_2, X_1, X_2, U_1) and $\frac{\partial g_2}{\partial X_2} = 0$ for all (Y_1, X_1, X_2, U_2) .

 Assuming the existence of local solutions, we can solve these equations to obtain

$$\begin{array}{rcl} Y_1 &=& \varphi_1 \left(X_1, X_2, U_1, U_2 \right) \\ Y_2 &=& \varphi_2 \left(X_1, X_2, U_1, U_2 \right) \end{array}$$

• By the chain rule we can write

$$\frac{\partial g_1}{\partial Y_2} = \frac{\partial Y_1}{\partial X_1} \left/ \frac{\partial Y_2}{\partial X_1} = \frac{\partial \varphi_1}{\partial X_1} \right/ \frac{\partial \varphi_2}{\partial X_1}.$$

• We may define causal effects for Y_1 on Y_2 using partials with respect to X_2 in an analogous fashion.