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Factor Models: Traditionally work with
Covariance Information

One Factor Models

E(0) = 0; E(e)=0;i=1,...,5

S/l :a10+€17 }/220526_‘—527 }/2320539—{_537
Yi=ul+ey, Ys=as0+ce5 & ¢



For T' > 3, can identify the model with on normalization.

Cov(Y1,Ys) = aano;
Cov (Y1,Y3) = ayas0;
Cov (Ya,Ys) = ayasos

Normalize a; =1

Cov (Y, Ys)
Cou (Vs, Ya)

:Oé?)



.. We know o2 from Cov (Y1, Ys) . From Cov (Y1,Y;) , 5 = 3,4,5,
we know
a3, Oy, 5.

Can get the variances of the ¢; from variances of the Y;
Var(Y;) = afoj + o2,

If T = 2, all we can identify is @03, even with the normal-
ization.

If ap =1, 02 = 1, we identify as.



2 Factors:
Assume 6, 1L 04

EiJ_ng \V/Z,_]

Normalize:

ag101 + (0)0s + &1
= agf; + (0)0s + &9
= a3t + asls +e3
= 01 + agls + ey

= a5ty + asly + 5

Let 11 = ]_, Q39 = 1.



Cov (Y1,Y2) = amoj,
Cov (Y1,Ys) = asoj

2
Cov (Yz> Yé) = 210310y,

Couv (Ya,Y3)

Form ratio of m = (31,

. we identify asy, ag1, 07, as before.

Cov(Y1,Yy) = 04410317

Cov (Y1,Yr) = Ozklagl

. we identify ay, for all k and o7, .



2 2
Cov (Y3, Ys) — asiomop, = a0y,

2 2
Cov (Yé, YB) — (3105109, = (5200,
2 2
Cov (Yy,Ys) — anas10p, = Qs20420%,,
By same logic,
2
Cov (Y4, Ys) — anasiop, N
= Q52

2
Cov (Y:% Y;L) — (31004109,

.. get 032 and the factor “2” loadings.



If we have dedicated measurements of factor, do not need a
normalization on Y. They provide a natural scale. Assume

01 1L 6, (testable)

M,
M,

Cov (Y1, M)
Cov (Ya, M)
Cov (Y3, M)
Cov (Y1,Y5)
Cov (Y1,Y3)

01+ i
Oy + canr

2
&110’91

2
0421091

2
04310'91

2

1102109, ,

2 . 2
(113109, , .10y,

.. We can get as1, 05 and the other factors.



General Case

Y =p+ A 0 + ¢
Tx1 TxKKx1 Tx1
0 are factors, € uniquenesses
E() =0
o 0 0
2
Var(e') =D = 0 o5 0
0o .
0O --- 0 ggT
E@)=0

Var (Y) = AZ@A/ + D 29 =F (9(9/)



The only source of information on A and ¥y is from the covari-
ances.

Associated with each variance of Y; is a o2 .
Each variance contributes one new parameter.
How many unique covariance terms do we have?

T(T —1)

5 This is the data.

We have T' uniquenesses; T K elements of A.



K (K —1)
2

K (K —1)
2

Observe that if we multiply A by an orthogonal matrix C,
(CC" = 1), we have

elements of >g.

+ TK parameters (X9, A).

Var (Y)=AC[C'2yC]C'N + D
C' is a “rotation”. Cannot separate AC' from A.

Model not identified against orthogonal transformations in the
general case.



Some common assumptions:

() 6; 1L 6;, Vi



joined with

(ii)

Q21
Q31
041
Q51
Qg1

—_— o O

(67D)
Q52
Qg2

o O O O

63

_ OO O o oo

OO O O oo




We know that we can identify of the A, ¥y parameters.

— T((T -1
KUY |y  TO0)
# of free parameters data

“Ledermann Bound”



Generalized Roy Model with Factor Structure
Generalized Roy versions of college choice model:
M = p(X) 4 0100 01 + 02000 + €t
(Measurement: A test score equation)

Vi =1 (X) + 01091 + 0203, + €1

College earnings
Yy = i (X) + 010k, + Osady + ) } & &

YP =) (X) + 010}y + 005, + €]

High School earnings
Yo' =y (X) + 0100 + 005, + &3 } © ¢

Cost

C =2Zy+ 01000 + 0000 + ¢



Decision Rule Under Perfect Certainty:
(Assume Interest Rate r = 0)

p1 (X) + pp (X) + 01 (a1, + a1 )
+0 (g + a3,) + 61+ )
B 19 (X) + pd (X) + 64 (04?,1 + 04(1)72)
+0; (091 +a3,) + €7 + )
—Zy = 01010 — Oz00¢c — €c
pr (X) + g (X) = [ (X) + 5 (X) + Z7]
+01 [(04%,1 + 0‘%,2) - (04(1),1 + a?,z) - 0410}
+0 [(a3; + ady) — (091 + a9 ,) — asc]

+ (e1+e3) — (1 +¢5) —ec



In Reduced Form
I =9 (X, Z)+ a6 + o260, +¢r.
Set U[ = 051’191 + 0417292 +e€5.

.. we can write
Yio= mX)+0;
Yy = m(X)+U;
Y= ) (X)+ Uy
Yy = m(X)+ 0y
U}, U} etc. match the error terms previously shown.
Ul = «910&’1 + 92(1%71 + &7 etc.

UM = 91&171\/[ + 62&2,]\4 +Em



Cov (Ull,f))\

B (VX 2.1 >0) = p} (X) + = 2hn

Using notes on the Roy model, we can identify beside the
means,

p1 (X)), ps (X)), 1S (X), pS (X), the following parameters:

(U1, U3) , Var (U}),Var (Uy)

(UL, Un) , Cov (Uy,Unr) ,Var (Uy)
Cov (Ulo, UO) Var (U{)) , Var (US)

Cov (U{), UM) Cov (Ug, UM)



Normal Case: (6, ) normal.

(0,e) L (X,Z2)

PI‘(S: 1 | X,Z,Ql,gg)

AR g R



Fact:

FS=1[X3+60>V], X 1 (8,V)
0,V are normal, § 1L V, E(0) =0,E (V) =0

Pr(S=1]X,0) = @(Xﬁ”))
oy

Pr(S—1]X) = @(X—Bl)
(0f +03)*

Why?

S=1[Xp>V -4

Rest follows from independence (between V' — 6, and X, and
normality).



Unconditional Probability: (Not conditional on Factors)
Pr(S=1|X,2)
_p | M)+ (X) = [0 (X) + pp (X)] = 27

172
2 2 9 2 92
(051 + Q7,05 + 041,2‘702)

Observe that if we know u} (X)), us (X)), u9 (X)), 3 (X) we know

[ (X) + 413 (X)] = [ (X) + iz (X)] .

If Z~ not perfectly collinear with this term (e.g. one X or
more not in Z) we can identify

1
2 2 2 2 2\3%
(061 + 07,05, + a1,2092)

*. we also identify ~ (get absolute scale on costs).



Suppose agents do not know 6, or the future e1, el 9, €5 but
know ¢, and 6.

Then if what they know is set at mean zero, (they use rational
expectations in a linear decision rule) and their mean forecast
is the population mean,

and ays = 0, what can we identify?



What information do we have about covariances?

Suppose we have two dedicated measurement systems for 6,
and 0,. We normalize the First loading as a convention.

Mll = 91
My = a%,Mel
M§ = O4:§,M91
M12 - 92
M22 = O‘%,M92
M32 = a%,MQQ

€ %,M
e3¢ Cognitive Ability
€3 M

€ %,M
5%7 M Noncognitive Ability

++ 4+ ++

2
€3 M



Observe from M! system we get
Var (01) ) aé,M? ail’),M
From M? system we get

Var (02) ) ag,M? ag,M



Then
Cov (Ull, Mll) = ailazl
Cov (Uy, M) = aq,0,

.. we get all of the factor loadings in Y on 6;.

Using M? we get a3 ;, ol , and we get variances of uniquenesses
1 1
Var(e1),Var(e3).

By similar reasoning, we get

0 0 0 0
A1, g1, Oy 9, Qg 9

Var (7)), Var (£})



Observe that from
Cov (I, M{) =0, [oq, + 0&3 — (a?,l + a?yg) e

.. We can get ay¢, since we know all other terms on the right
hand side by the previous reasoning.

From
Cov (I, M7) = oy, [0451 + 0452 — (a%l + agz) — o)

we can get ase.

From Pr(S =1 X, Z), we can identify o2 using previous rea-
soning



Therefore we can identify everything in the model if there is one
X not in Z since we can identify the terms in the numerator.



Can we test the model?

In the notation of the Hicks lecture notes, we have for a test
of whether 65 belongs in the model

Pr(S=1]|X,2)

_p | M)+ (X) = [ (X) + 45 (X)] —
( —i—oz“ae —i—ozmag A@2)%

Apparently, we can test the null
HO : Agz =0

*. we can test if §; components enter or not.



The problem with this test is that if 02 # 0, we can always
adjust its value to fit the model perfectly well.

(This problem vanishes if we assume a pure Roy model (so
o2, =0).)

Notice, however, that we can also tolerate v # 0 so long as
2
oz, = 0.



Correct 1dea of the correct test:
Form

2
I o
1y _ %0 1 1 1 0 0
Cov (—01 U | = —01 gy [ozm + gy — (041,1 + 04172) — aLC]

2 1 1 1 0 0
+ Aﬂzaazam [al,l Ty — (041,1 + a1,2) - 041,0}
. we can compute the test under the null.

Under the null that Ay, = 0, we can identify o2

.. we construct a test under null:

2 1 1 1 0 0
I 09, Q11 |1 T Q19— Q7 T Q7o) — Qi
oo (L )bl ek~ o o) “on] _

—_ 1
O'[7 gr

We know both terms under the null. Departures are evidence
that agents know 6,.



If the agent knows #; but not 0, and sets

Justified by linearity of the criterion and rational expectations,
assuming F (03 | Zy) = 0.



Then we have that the test amounts to deciding
e Which model fits the data better?

Average effect (we estimate the average probability):
/Pr(S — 1| X, 2,00, A, 09) F (61) f (6) db.

(we test Ay, = 0)
This is what is done in the Hicks lecture.





