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Introduction

This part of our contribution to this Handbook reviews and
extends the econometric literature on the evaluation of social
policy.

We organize our discussion around choice-theoretic models for
objective and subjective outcomes of the sort discussed in
Part I.
Specifically, we organize our discussion of the literature around
the concept of the marginal treatment effect (MTE) that was
introduced in Part I.
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Using the marginal treatment effect, we define a variety of
treatment effects and show how they can be generated by a
single economic functional, the MTE.

We then show what various econometric methods assume
about the MTE.
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In this part, we focus exclusively on microeconomic partial
equilibrium evaluation methods, deferring analysis of general
equilibrium issues to Part III.

Thus throughout this chapter, except when we discuss
randomized evaluation of social programs, we assume that
potential outcomes are not affected by interventions but
choices among the potential outcomes are affected.
Thus, we invoke policy invariance assumptions (PI-3) and
(PI-4) of Part I.
We also focus primarily on mean responses, leaving analysis of
distributions of responses for Part III.
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The plan of Part II is as follows.

In Slide 12, we present some basic principles that underlie
conventional econometric evaluation estimators.
In Slide 90, we define the marginal treatment effect in a two
potential outcome model that is a semiparametric version of
the generalized Roy model.
We then show how treatment parameters can be generated as
weighted averages of the MTE.
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We carefully distinguish the definition of parameters from issues
of identification.

Slide 152 considers how instrumental variable methods that
supplement the classical instrumental variable assumptions of
econometrics can be used to identify treatment parameters.
We discuss the crucial role of monotonicity assumptions in the
recent IV literature.
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They impart an asymmetry to the admissible forms of agent
heterogeneity.

Outcomes are permitted to be heterogeneous in a general way
but responses of choices to external inputs are not.
When heterogeneity in choices and outcomes is allowed, the IV
enterprise breaks down.
Treatment parameters can still be defined but IV does not
identify them.
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Slide 402 extends our analysis to consider regression
discontinuity estimators introduced in ? and adapted to
modern econometrics in ?.

We interpret the regression discontinuity estimator within the
MTE framework, as a special type of IV estimator.
In Slide 412, we show how the output of the IV analysis of
Slide 152 can be used to extend parameters identified in one
population to other populations and to forecast the effects of
new programs.
These are questions P-2 and P-3 introduced in Part I. Slides 12
–402 focus solely on the problem of internal validity, which is
the problem defined as P-1.
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We also develop a cost benefit analysis based on the MTE and
we analyze marginal policy changes.

In Slide 471, we generalize the analysis of instrumental
variables to consider models with multiple outcomes.
We develop both unordered and ordered choice models linking
them to an explicit choice-theoretic literature.
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In Slide 675, we consider matching as a special case of our
framework.

Matching applied to estimating conditional means is a version
of nonparametric least squares.
It assumes that marginal and average returns are the same
whereas our general framework allows us to distinguish
marginal from average returns and to identify both.
Matching is more robust than IV to violations of conventional
monotonicity assumptions but the price for this robustness is
steep in terms of its economic content.
In Slide 819, we develop randomization as an instrumental
variable.
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We consider problems with compliance induced by agent
self-selection decisions.

In Slide 938, we consider how to bound the various treatment
parameters when models are not identified.
Slide 1005 develops alternative methods for controlling for
selection: control functions, replacement functions and proxy
variables.
Slide 1028 concludes.
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The Basic Principles Underlying the Identification of the
Major Econometric Evaluation Estimators

In this section, we review the main principles underlying the
major evaluation estimators used in the econometric literature.

We assume two potential outcomes (Y0,Y1).
Models for multiple outcomes are developed in later sections of
this chapter.
As in Part I, D = 1 if Y1 is observed, and D = 0 corresponds to
Y0 being observed.
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The observed objective outcome is

Y = DY1 + (1 − D)Y0. (1)

To briefly recapitulate the lessons of Part I, we distinguish two
distinct econometric problems.
For simplicity, we focus our discussion on identification of
objective outcomes.
A parallel analysis can be made for subjective outcomes.
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The evaluation problem arises because for each person we
observe either Y0 or Y1 but not both.

Thus, in general, it is not possible to identify the individual
level treatment effect Y1 − Y0 for any person.
The typical solution to this problem is to reformulate the
problem at the population level rather than at the individual
level and to identify certain mean outcomes or quantile
outcomes or various distributions of outcomes as described in
Part I.
For example, a common approach is to focus attention on
average treatment effects, such as ATE= E(Y1 − Y0).
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If treatment is assigned or chosen on the basis of potential
outcomes, so

(Y0,Y1) ⊥�⊥ D,
where ⊥�⊥ denotes “is not independent” and “⊥⊥” denotes
independent, we encounter the problem of selection bias.

Suppose that we observe people in each treatment state D = 0
and D = 1.
If Yj ⊥�⊥ D, then the observed Yj will be selectively different
from randomly assigned Yj, j = 0, 1.
Thus E(Y0 | D = 0) ̸= E(Y0) and E(Y1 | D = 1) ̸= E(Y1).
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Using unadjusted data to construct E(Y1 − Y0) will produce
bias:

E(Y1 | D = 1)− E(Y0 | D = 0) ̸= E(Y1 − Y0).

The selection problem is a key aspect of the problem of
evaluating social programs.

Many methods have been proposed to solve both problems.
This chapter unifies these methods using the concept of the
marginal treatment effect (MTE) introduced in Part I of this
Handbook.
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The method with the greatest intuitive appeal, which is
sometimes called the “gold standard” in evaluation analysis, is
the method of random assignment.

Nonexperimental methods can be organized by how they
attempt to approximate what can be obtained by an ideal
random assignment.
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If treatment is chosen at random with respect to (Y0,Y1), or if
treatments are randomly assigned and there is full compliance with
the treatment assignment,

(R-1)
(Y0,Y1) ⊥⊥ D.
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It is useful to distinguish several cases where (R-1) will be
satisfied.

The first is that agents (decision makers whose choices are
being investigated) pick outcomes that are random with
respect to (Y0,Y1).
Thus agents may not know (Y0,Y1) at the time they make
their choices to participate in treatment or at least do not act
on (Y0,Y1), so that Pr (D = 1 | X,Y0,Y1) = Pr (D = 1 | X) for
all X.
Matching assumes a version of (R-1) conditional on matching
variables X: (Y0,Y1) ⊥⊥ D | X.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

It is useful to distinguish several cases where (R-1) will be
satisfied.
The first is that agents (decision makers whose choices are
being investigated) pick outcomes that are random with
respect to (Y0,Y1).

Thus agents may not know (Y0,Y1) at the time they make
their choices to participate in treatment or at least do not act
on (Y0,Y1), so that Pr (D = 1 | X,Y0,Y1) = Pr (D = 1 | X) for
all X.
Matching assumes a version of (R-1) conditional on matching
variables X: (Y0,Y1) ⊥⊥ D | X.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

It is useful to distinguish several cases where (R-1) will be
satisfied.
The first is that agents (decision makers whose choices are
being investigated) pick outcomes that are random with
respect to (Y0,Y1).
Thus agents may not know (Y0,Y1) at the time they make
their choices to participate in treatment or at least do not act
on (Y0,Y1), so that Pr (D = 1 | X,Y0,Y1) = Pr (D = 1 | X) for
all X.

Matching assumes a version of (R-1) conditional on matching
variables X: (Y0,Y1) ⊥⊥ D | X.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

It is useful to distinguish several cases where (R-1) will be
satisfied.
The first is that agents (decision makers whose choices are
being investigated) pick outcomes that are random with
respect to (Y0,Y1).
Thus agents may not know (Y0,Y1) at the time they make
their choices to participate in treatment or at least do not act
on (Y0,Y1), so that Pr (D = 1 | X,Y0,Y1) = Pr (D = 1 | X) for
all X.
Matching assumes a version of (R-1) conditional on matching
variables X: (Y0,Y1) ⊥⊥ D | X.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

A second case arises when individuals are randomly assigned to
treatment status even if they would choose to self select into
no-treatment status, and they comply with the randomization
protocols.

Let ξ be randomized assignment status.
With full compliance, ξ = 1 implies that Y1 is observed and
ξ = 0 implies that Y0 is observed.
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Then, under randomized assignment,

(R-2)
(Y0,Y1) ⊥⊥ ξ,

even if in a regime of self-selection, (Y0,Y1)⊥�⊥D.
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If randomization is performed conditional on X, we obtain
(Y0,Y1) ⊥⊥ ξ | X.
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Let A denote actual treatment status.

If the randomization has full compliance among participants,
ξ = 1 ⇒ A = 1; ξ = 0 ⇒ A = 0 . This is entirely consistent
with a regime in which a person would choose D = 1 in the
absence of randomization, but would have no treatment
(A = 0) if suitably randomized, even though the agent might
desire treatment.
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Let A denote actual treatment status.
If the randomization has full compliance among participants,
ξ = 1 ⇒ A = 1; ξ = 0 ⇒ A = 0 . This is entirely consistent
with a regime in which a person would choose D = 1 in the
absence of randomization, but would have no treatment
(A = 0) if suitably randomized, even though the agent might
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If treatment status is chosen by self-selection, D = 1 ⇒ A = 1
and D = 0 ⇒ A = 0.

If there is imperfect compliance with randomization,
ξ = 1 ; A = 1 because of agent choices.
In general, A = ξD so that A = 1 only if ξ = 1 and D = 1.
This assumes that persons randomized out of the program
cannot participate in it.
If treatment status is randomly assigned, either through
randomization or randomized self-selection,

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ
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This assumes that persons randomized out of the program
cannot participate in it.
If treatment status is randomly assigned, either through
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If treatment status is chosen by self-selection, D = 1 ⇒ A = 1
and D = 0 ⇒ A = 0.
If there is imperfect compliance with randomization,
ξ = 1 ; A = 1 because of agent choices.
In general, A = ξD so that A = 1 only if ξ = 1 and D = 1.

This assumes that persons randomized out of the program
cannot participate in it.
If treatment status is randomly assigned, either through
randomization or randomized self-selection,
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If treatment status is chosen by self-selection, D = 1 ⇒ A = 1
and D = 0 ⇒ A = 0.
If there is imperfect compliance with randomization,
ξ = 1 ; A = 1 because of agent choices.
In general, A = ξD so that A = 1 only if ξ = 1 and D = 1.
This assumes that persons randomized out of the program
cannot participate in it.

If treatment status is randomly assigned, either through
randomization or randomized self-selection,
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If treatment status is chosen by self-selection, D = 1 ⇒ A = 1
and D = 0 ⇒ A = 0.
If there is imperfect compliance with randomization,
ξ = 1 ; A = 1 because of agent choices.
In general, A = ξD so that A = 1 only if ξ = 1 and D = 1.
This assumes that persons randomized out of the program
cannot participate in it.
If treatment status is randomly assigned, either through
randomization or randomized self-selection,

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

(R-3)
(Y0,Y1) ⊥⊥ A.
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This version of randomization can also be defined conditional
on X.

Under (R-1), (R-2) or (R-3), the average treatment effect
(ATE) is the same as the marginal treatment effect and the
parameters treatment on the treated (TT) and treatment on
the untreated (TUT) as defined in Part I:

TT = MTE = TUT = ATE = E(Y1 − Y0) = E(Y1)− E(Y0).
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This version of randomization can also be defined conditional
on X.
Under (R-1), (R-2) or (R-3), the average treatment effect
(ATE) is the same as the marginal treatment effect and the
parameters treatment on the treated (TT) and treatment on
the untreated (TUT) as defined in Part I:

TT = MTE = TUT = ATE = E(Y1 − Y0) = E(Y1)− E(Y0).
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Observe that even with random assignment of treatment status
and full compliance, we cannot, in general, identify the
distribution of the treatment effects (Y1 − Y0), although we
can identify the marginal distributions
F1(Y1 | A = 1,X = x) = F1(Y1 | X = x) and
F0(Y0 | A = 0,X = x) = F0(Y0 | X = x).

One special assumption, common in the conventional
econometrics literature, is that Y1 − Y0 = ∆(x), a constant
given x.
Since ∆(x) can be identified from
E(Y1 | A = 1,X = x)− E(Y0 | A = 0,X = x) because A is
allocated by randomization, the analyst can identify the joint
distribution of (Y0,Y1).

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ
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can identify the marginal distributions
F1(Y1 | A = 1,X = x) = F1(Y1 | X = x) and
F0(Y0 | A = 0,X = x) = F0(Y0 | X = x).
One special assumption, common in the conventional
econometrics literature, is that Y1 − Y0 = ∆(x), a constant
given x.

Since ∆(x) can be identified from
E(Y1 | A = 1,X = x)− E(Y0 | A = 0,X = x) because A is
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can identify the marginal distributions
F1(Y1 | A = 1,X = x) = F1(Y1 | X = x) and
F0(Y0 | A = 0,X = x) = F0(Y0 | X = x).
One special assumption, common in the conventional
econometrics literature, is that Y1 − Y0 = ∆(x), a constant
given x.
Since ∆(x) can be identified from
E(Y1 | A = 1,X = x)− E(Y0 | A = 0,X = x) because A is
allocated by randomization, the analyst can identify the joint
distribution of (Y0,Y1).
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However, this approach assumes that (Y0,Y1) have the same
distribution up to a parameter ∆ (Y0 and Y1 are perfectly
dependent).

One can make other assumptions about the dependence across
ranks from perfect positive or negative ranking to
independence.
In general, the joint distribution of (Y0,Y1) or of (Y1 − Y0) is
not identified unless the analyst can pin down the dependence
across (Y0,Y1).
Thus, even with data from a randomized trial one cannot,
without further assumptions, identify the proportion of people
who benefit from treatment in the sense of gross gain
(Pr(Y1 ≥ Y0)).
This problem plagues all evaluation methods.
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However, this approach assumes that (Y0,Y1) have the same
distribution up to a parameter ∆ (Y0 and Y1 are perfectly
dependent).
One can make other assumptions about the dependence across
ranks from perfect positive or negative ranking to
independence.
In general, the joint distribution of (Y0,Y1) or of (Y1 − Y0) is
not identified unless the analyst can pin down the dependence
across (Y0,Y1).

Thus, even with data from a randomized trial one cannot,
without further assumptions, identify the proportion of people
who benefit from treatment in the sense of gross gain
(Pr(Y1 ≥ Y0)).
This problem plagues all evaluation methods.
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However, this approach assumes that (Y0,Y1) have the same
distribution up to a parameter ∆ (Y0 and Y1 are perfectly
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One can make other assumptions about the dependence across
ranks from perfect positive or negative ranking to
independence.
In general, the joint distribution of (Y0,Y1) or of (Y1 − Y0) is
not identified unless the analyst can pin down the dependence
across (Y0,Y1).
Thus, even with data from a randomized trial one cannot,
without further assumptions, identify the proportion of people
who benefit from treatment in the sense of gross gain
(Pr(Y1 ≥ Y0)).
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distribution up to a parameter ∆ (Y0 and Y1 are perfectly
dependent).
One can make other assumptions about the dependence across
ranks from perfect positive or negative ranking to
independence.
In general, the joint distribution of (Y0,Y1) or of (Y1 − Y0) is
not identified unless the analyst can pin down the dependence
across (Y0,Y1).
Thus, even with data from a randomized trial one cannot,
without further assumptions, identify the proportion of people
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(Pr(Y1 ≥ Y0)).
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Abbring and Heckman discuss methods for identifying joint
distributions of outcomes in Part III.

Assumption (R-1) is very strong.
In many cases, it is thought that there is selection bias with
respect to Y0, Y1, so persons who select into status 1 or 0 are
selectively different from randomly sampled persons in the
population.
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Abbring and Heckman discuss methods for identifying joint
distributions of outcomes in Part III.
Assumption (R-1) is very strong.

In many cases, it is thought that there is selection bias with
respect to Y0, Y1, so persons who select into status 1 or 0 are
selectively different from randomly sampled persons in the
population.
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Abbring and Heckman discuss methods for identifying joint
distributions of outcomes in Part III.
Assumption (R-1) is very strong.
In many cases, it is thought that there is selection bias with
respect to Y0, Y1, so persons who select into status 1 or 0 are
selectively different from randomly sampled persons in the
population.
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The assumption most commonly made to circumvent problems
with (R-1) is that even though D is not random with respect to
potential outcomes, the analyst has access to control variables
X that effectively produce a randomization of D with respect to
(Y0,Y1) given X.

This is the method of matching, which is based on the
following conditional independence assumption:

(M-1)
(Y0,Y1) ⊥⊥ D | X.
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The assumption most commonly made to circumvent problems
with (R-1) is that even though D is not random with respect to
potential outcomes, the analyst has access to control variables
X that effectively produce a randomization of D with respect to
(Y0,Y1) given X.
This is the method of matching, which is based on the
following conditional independence assumption:

(M-2)
(Y0,Y1) ⊥⊥ D | X.
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Conditioning on X randomizes D with respect to (Y0,Y1).

(M-1) assumes that any selective sampling of (Y0,Y1) can be
adjusted by conditioning on observed variables.
(R-1) and (M-1) are different assumptions and neither implies
the other.
In a linear equations model, assumption (M-1) that D is
independent from (Y0,Y1) given X justifies application of least
squares on D to eliminate selection bias in mean outcome
parameters.
For means, matching is just nonparametric regression.
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Conditioning on X randomizes D with respect to (Y0,Y1).
(M-1) assumes that any selective sampling of (Y0,Y1) can be
adjusted by conditioning on observed variables.

(R-1) and (M-1) are different assumptions and neither implies
the other.
In a linear equations model, assumption (M-1) that D is
independent from (Y0,Y1) given X justifies application of least
squares on D to eliminate selection bias in mean outcome
parameters.
For means, matching is just nonparametric regression.
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Conditioning on X randomizes D with respect to (Y0,Y1).
(M-1) assumes that any selective sampling of (Y0,Y1) can be
adjusted by conditioning on observed variables.
(R-1) and (M-1) are different assumptions and neither implies
the other.

In a linear equations model, assumption (M-1) that D is
independent from (Y0,Y1) given X justifies application of least
squares on D to eliminate selection bias in mean outcome
parameters.
For means, matching is just nonparametric regression.
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Conditioning on X randomizes D with respect to (Y0,Y1).
(M-1) assumes that any selective sampling of (Y0,Y1) can be
adjusted by conditioning on observed variables.
(R-1) and (M-1) are different assumptions and neither implies
the other.
In a linear equations model, assumption (M-1) that D is
independent from (Y0,Y1) given X justifies application of least
squares on D to eliminate selection bias in mean outcome
parameters.

For means, matching is just nonparametric regression.
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In order to be able to compare X-comparable people, we must
assume
(M-3)
0 < Pr(D = 1 | X = x) < 1.
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Assumptions (M-1) and (M-2) justify matching.

Assumption (M-2) is required for any evaluation estimator that
compares treated and untreated persons.
It is produced by random assignment if the randomization is
conducted for all X = x and there is full compliance.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

Assumptions (M-1) and (M-2) justify matching.
Assumption (M-2) is required for any evaluation estimator that
compares treated and untreated persons.

It is produced by random assignment if the randomization is
conducted for all X = x and there is full compliance.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

Assumptions (M-1) and (M-2) justify matching.
Assumption (M-2) is required for any evaluation estimator that
compares treated and untreated persons.
It is produced by random assignment if the randomization is
conducted for all X = x and there is full compliance.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

Observe that from (M-1) and (M-2), it is possible to identify
F1(Y1 | X = x) from the observed data F1(Y1 | D = 1,X = x)
since we observe the left hand side of

F1(Y1 | D = 1,X = x) = F1(Y1 | X = x)
= F1(Y1 | D = 0,X = x).

The first equality is a consequence of conditional independence
assumption (M-1).
The second equality comes from (M-1) and (M-2).
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By a similar argument, we observe the left hand side of

F0(Y0 | D = 0,X = x) = F0(Y0 | X = x)
= F0(Y0 | D = 1,X = x),

and the equalities are a consequence of (M-1) and (M-2).

Since the pair of outcomes (Y0,Y1) is not identified for anyone,
as in the case of data from randomized trials, the joint
distributions of (Y0,Y1) given X or of Y1 − Y0 given X are not
identified without further information.
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From the data on Y1 given X and D = 1 and the data on Y0
given X and D = 0, since
E(Y1 | D = 1,X = x) = E(Y1 | X = x) = E(Y1 | D = 0,X = x)
and
E(Y0 | D = 0,X = x) = E(Y0 | X = x) = E(Y0 | D = 1,X = x),
we obtain

E(Y1 − Y0 | X = x) = E(Y1 − Y0 | D = 1,X = x)
= E(Y1 − Y0 | D = 0,X = x).

Effectively, we have a randomization for the subset of the
support of X satisfying (M-2).
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At values of X that fail to satisfy (M-2), there is no variation in
D given X.

We can define the residual variation in D not accounted for by
X as

E(x) = D − E(D | X = x) = D − Pr(D = 1 | X = x).

If the variance of E(x) is zero, it is not possible to construct
contrasts in outcomes by treatment status for those X values
and (M-2) is violated.
To see the consequences of this violation in a regression
setting, use Y = Y0 + D(Y1 − Y0) and take conditional
expectations, under (M-1), to obtain

E(Y | X,D) = E(Y0 | X) + D[E(Y1 − Y0 | X)].
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If Var(E(x)) > 0 for all x in the support of X, one can use
nonparametric least squares to identify
E(Y1 − Y0 | X = x) =ATE(x) by regressing Y on D and X.

The function identified from the coefficient on D is the average
treatment effect.
If Var(E(x)) = 0, ATE(x) is not identified at that x value
because there is no variation in D that is not fully explained by
X.
A special case of matching is linear least squares where we write

Y0 = Xα + U Y1 = Xα + β + U,

U0 = U1 = U and hence under (M-1),

E(Y | X,D) = Xα + Dβ + E(U | X).
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If D is perfectly predictable by X, we cannot identify β because
of a multicollinearity problem.

(M-2) rules out perfect collinearity.
Matching is a nonparametric version of least squares that does
not impose functional form assumptions on outcome equations,
and that imposes support condition (M-2).
However, matching does not assume exogeneity of X.
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Conventional econometric choice models make a distinction
between variables that appear in outcome equations (X) and
variables that appear in choice equations (Z).

The same variables may be in (X) and (Z), but more typically
there are some variables not in common.
For example, the instrumental variable estimator is based on
variables that are not in X but that are in Z.
Matching makes no distinction between the X and the Z.
It does not rely on exclusion restrictions.
The conditioning variables used to achieve conditional
independence can in principle be a set of variables Q distinct
from the X variables (covariates for outcomes) or the Z
variables (covariates for choices).
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between variables that appear in outcome equations (X) and
variables that appear in choice equations (Z).
The same variables may be in (X) and (Z), but more typically
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For example, the instrumental variable estimator is based on
variables that are not in X but that are in Z.
Matching makes no distinction between the X and the Z.
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We use X solely to simplify the notation.

The key identifying assumption is the assumed existence of a
random variable X with the properties satisfying (M-1) and
(M-2).
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Conditioning on a larger vector (X augmented with additional
variables) or a smaller vector (X with some components
removed) may or may not produce suitably modified versions of
(M-1) and (M-2).

Without invoking further assumptions, there is no objective
principle for determining what conditioning variables produce
(M-1).
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Assumption (M-1) is strong.

Many economists do not have enough faith in their data to
invoke it.
Assumption (M-2) is testable and requires no act of faith.
To justify (M-1), it is necessary to appeal to the quality of the
data.
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Using economic theory can help guide the choice of an
evaluation estimator.

A crucial distinction is the one between the information
available to the analyst and the information available to the
agent whose outcomes are being studied.
Assumptions made about these information sets drive the
properties of econometric estimators.
Analysts using matching make strong informational
assumptions in terms of the data available to them.
In fact, all econometric estimators make assumptions about the
presence or absence of informational asymmetries, and we
exposit them in this chapter.
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To analyze the informational assumptions invoked in matching,
and other econometric evaluation strategies, it is helpful to
introduce five distinct information sets and establish some
relationships among them.

1 An information set σ(IR∗) with an associated random variable
that satisfies conditional independence (M-1) is defined as a
relevant information set;

2 The minimal information set σ(IR) with associated random
variable needed to satisfy conditional independence (M-1), the
minimal relevant information set;

3 The information set σ(IA) available to the agent at the time
decisions to participate are made;

4 The information available to the economist, σ(IE∗); and
5 The information σ(IE) used by the economist in conducting an

empirical analysis.
We will denote the random variables generated by these sets as
IR∗ , IR, IA, IE∗ , and IE, respectively.
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Definition 1
We say that σ(IR∗) is a relevant information set if the information
set is generated by the random variable IR∗ , possibly vector valued,
and satisfies condition (M-1), so that

(Y0,Y1) ⊥⊥ D | IR∗ .
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Definition 2
We say that σ(IR) is a minimal relevant information set if it is
the intersection of all sets σ(IR∗) and satisfies (Y0,Y1) ⊥⊥ D | IR.
The associated random variable IR is a minimum amount of
information that guarantees that condition (M-1) is satisfied. There
may be no such set.
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If we define a relevant information set as one that produces
conditional independence, it may not be unique.

If the set σ(IR∗) satisfies the conditional independence
condition, then the set σ(IR∗ ,Q) such that Q ⊥⊥ (Y0,Y1) | IR∗

would also guarantee conditional independence.
For this reason, when possible, it is desirable to use the
minimal relevant information set.
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Definition 3
The agent’s information set, σ(IA), is defined by the information IA
used by the agent when choosing among treatments. Accordingly,
we call IA the agent’s information.

By the agent we mean the person making the treatment
decision, not necessarily the person whose outcomes are being
studied (e.g., the agent may be the parent; the person being
studied may be a child).
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Definition 4
The econometrician’s full information set, σ(IE∗), is defined as all
of the information available to the econometrician, IE∗ .

Definition 5
The econometrician’s information set, σ(IE), is defined by the
information used by the econometrician when analyzing the agent’s
choice of treatment, IE, in conducting an analysis.
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For the case where a unique minimal relevant information set
exists, only three restrictions are implied by the structure of
these sets: σ(IR) ⊆ σ(IR∗), σ(IR) ⊆ σ(IA), and σ(IE) ⊆ σ(IE∗).

We have already discussed the first restriction.
The second restriction requires that the minimal relevant
information set must be part of the information the agent uses
when deciding which treatment to take or assign.
It is the information in σ(IA) that gives rise to the selection
problem.
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The third restriction requires that the information used by the
econometrician must be part of the information that the
econometrician observes.

Aside from these orderings, the econometrician’s information
set may be different from the agent’s or the relevant
information set.
The econometrician may know something the agent doesn’t
know, for typically he is observing events after the decision is
made.
At the same time, there may be private information known to
the agent but not the econometrician.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ
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econometrician must be part of the information that the
econometrician observes.
Aside from these orderings, the econometrician’s information
set may be different from the agent’s or the relevant
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Assuming a minimal relevant information set exists, matching
assumption (M-1) implies that σ(IR) ⊆ σ(IE), so that the
econometrician uses at least the minimal relevant information
set, but of course he or she may use more.

However, using more information is not guaranteed to produce
a model with conditional independence property (M-1) satisfied
for the augmented model.
Thus an analyst can “overdo” it.
We present examples of the consequences of the asymmetry in
agent and analyst information sets in Slide 675.
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The possibility of asymmetry in information between the agent
making participation decisions and the observing economist
creates the potential for a major identification problem that is
ruled out by assumption (M-1).

The methods of control functions and instrumental variables
estimators (and closely related regression discontinuity design
methods) address this problem in different ways.
Accounting for this possibility is a more conservative approach
to the selection problem than the one taken by advocates of
matching.
Those advocates assume that they know the X that produces a
relevant information set.
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? show the biases that can result in matching when standard
econometric model selection criteria are applied to pick the X
that are used to satisfy (M-1) and we summarize their analysis
in Slide 675.

Conditional independence condition (M-1) cannot be tested
without maintaining other assumptions.
As noted in Part I, choosing the appropriate conditioning
variables is a problem that plagues all econometric estimators.
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The methods of control functions, replacement functions, proxy
variables and instrumental variables recognize the possibility of
asymmetry in information between the agent being studied and
the econometrician and further recognize that even after
conditioning on X (variables in the outcome equation) and Z
(variables affecting treatment choices, which may include the
X), analysts may fail to satisfy conditional independence
condition (M-1).
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These methods postulate the existence of some unobservables
θ, which may be vector valued, with the property that

(U-1)
(Y0,Y1) ⊥⊥ D | X,Z, θ,

but allow for the possibility that

(U-2)
(Y0,Y1) ⊥�⊥ D | X,Z.
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In the event (U-2) holds, these approaches model the
relationship of the unobservable θ with (Y0,Y1) and D in
various ways.

The content in the control function principle is to specify the
exact nature of the dependence on the relationship between
observables and unobservables in a nontrivial fashion that is
consistent with economic theory.
We present examples of models that satisfy (U-1) but not
(U-2) in Slide 675.
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The early literature focused on mean outcomes conditional on
covariates (????) and assumes a weaker version of (U-1) based
on conditional mean independence rather than full conditional
independence.

More recent work analyzes distributions of outcomes (e.g., ??).
Abbring and Heckman review this work in Part III.
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The normal Roy model discussed in Part I makes distributional
assumptions and identifies the joint distribution of outcomes.

(Recall the discussion in section 6.1 of Part I.) A large
literature surveyed in ? makes alternative assumptions to
satisfy (U-1) in nonparametric settings.
Replacement functions (?) are methods that proxy θ.
They substitute out for θ using observables.
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??, ??, ?, and ?? develop methods that integrate out θ from
the model assuming θ ⊥⊥ (X,Z), or invoking weaker mean
independence assumptions, and assuming access to proxy
measurements for θ.

They also consider methods for estimating the distributions of
treatment effects.
These methods are discussed in Part III.
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The normal selection model discussed in section 6.1 of Part I
produces partial identification of a generalized Roy model and
full identification of a Roy model under separability and
normality.

It models the conditional expectation of U0 and U1 given X,Z,
and D.
In terms of (U-1), it models the conditional mean dependence
of Y0,Y1 on D and θ given X and Z.
? and ? surveys methods for identifying semiparametric
versions of these models.
Appendix B of Part I presents a prototypical identification proof
for a general selection model that implements (U-1) by
estimating the distribution of θ, assuming θ ⊥⊥ (X,Z), and
invoking support conditions on (X,Z).
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Central to both the selection approach and the instrumental
variable approach for a model with heterogenous responses is
the probability of selection.

Let Z denote variables in the choice equation.
Fixing Z at different values (denoted z), we define D(z) as an
indicator function that is “1” when treatment is selected at the
fixed value of z and that is “0” otherwise.
In terms of the separable index model introduced in Part I, for
a fixed value of z,

D (z) = 1 (µD (z) ≥ V)

where Z ⊥⊥ V | X.
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Thus fixing Z = z, values of z do not affect the realizations of
V for any value of X.

An alternative way of representing the independence between Z
and V given X, due to ?, writes that D (z) ⊥⊥ Z | X for all
z ∈ Z, where Z is the support of Z.
The Imbens-Angrist independence condition for IV is

{D (z)}z∈Z ⊥⊥ Z | X.

Thus the probabilities that D (z) = 1, z ∈ Z are independent of
Z.
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The method of instrumental variables (IV) postulates that

(IV-1)(
Y0,Y1, {D (z)}z∈Z

)
⊥⊥ Z | X.(Independence)
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One consequence of this assumption is that E(D | Z) = P(Z),
the propensity score, is random with respect to potential
outcomes.

Thus (Y0,Y1) ⊥⊥ P (Z) | X.
So are all other functions of Z given X.
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The method of instrumental variables also assumes that
(IV-2)
E(D | X,Z) = P(X,Z) is a nondegenerate function of Z given X.
(Rank Condition)

Alternatively, we can write that
Var (E (D | X,Z)) ̸= Var (E (D | X)).
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Comparing (IV-1) to (M-1), in the method of instrumental
variables, Z is independent of (Y0,Y1) given X whereas in
matching, D is independent of (Y0,Y1) given X.

So in (IV-1), Z plays the role of D in matching condition (M-1).
Comparing (IV-2) with (M-2), in the method of IV, the choice
probability Pr(D = 1 | X,Z) is assumed to vary conditional on
X whereas in matching, D varies conditional on X.
Unlike the method of control functions, no explicit model of the
relationship between D and (Y0,Y1) is required in applying IV.
We exposit the implicit model of the relationship between D
and (Y0,Y1) used in instrumental variables in this chapter.
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(IV-2) is a rank condition and can be empirically verified.

(IV-1) is not testable as it involves assumptions about
counterfactuals.
In a conventional common coefficient regression model

Y = α + βD + U,

where β is a constant and where we allow for Cov(D,U) ̸= 0,
(IV-1) and (IV-2) identify β.
When β varies in the population and is correlated with D,
additional assumptions must be invoked for IV to identify
interpretable parameters.
We discuss these conditions in Slide 152 of this chapter,
drawing on and extending the analysis of ??? and ?.
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(IV-1) and (IV-2) identify β.

When β varies in the population and is correlated with D,
additional assumptions must be invoked for IV to identify
interpretable parameters.
We discuss these conditions in Slide 152 of this chapter,
drawing on and extending the analysis of ??? and ?.

Heckman and Vytlacil Using the Marginal Treatment Effect
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Assumptions (IV-1) and (IV-2), with additional assumptions in
the case where β varies in the population which we discuss in
this chapter, can be used to identify mean treatment
parameters.

Replacing Y1 with 1 (Y1 ≤ t) and Y0 with 1 (Y0 ≤ t), where t
is a constant, the IV approach allows us to identify marginal
distributions F1(y1 | X) or F0(y0 | X).
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In matching, the variation in D that arises after conditioning on
X provides the source of randomness that switches people
across treatment status.

Nature is assumed to provide an experimental manipulation
conditional on X that replaces the randomization assumed in
(R-1)-(R-3).
When D is perfectly predictable by X, there is no variation in it
conditional on X, and the randomization by nature breaks
down.
Heuristically, matching assumes a residual
E (X) = D − E(D | X) that is nondegenerate and is one
manifestation of the randomness that causes persons to switch
status.
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In the IV method, it is the choice probability
E(D | X,Z) = P (X,Z) that is random with respect to (Y0,Y1),
not components of D not predictable by (X,Z).

Variation in Z for a fixed X provides the required variation in D
that switches treatment status and still produces the required
conditional independence:

(Y0,Y1) ⊥⊥ P(X,Z) | X.
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Variation in P(X,Z) produces variations in D that switch
treatment status.

Components of variation in D not predictable by (X,Z) do not
produce the required independence.
Instead, the predicted component provides the required
independence.
It is just the opposite in matching.
Versions of the method of control functions use measurements
to proxy θ in (U-1) and (U-2) and remove spurious dependence
that gives rise to selection problems.
These are called replacement functions (see ?) or control
variates (see ?).
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Table 1 summarizes some of the main lessons of this section.

We stress that the stated conditions are necessary conditions.
There are many versions of the IV and control functions
principle and extensions of these ideas which refine these basic
postulates more fully and we exposit them in this Handbook.
We start with the method of instrumental variables and analyze
the general case where responses to treatment are
heterogeneous and persons select into treatment status in
response to the heterogeneity in treatment response.
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Table 1: Identifying Assumptions Under Commonly Used Methods
Identifies Exclusion
marginal condition

Identifying Assumptions distributions? needed?

Random (Y0, Y1) ⊥⊥ ξ, Yes No
Assignment ξ = 1 =⇒ A = 1, ξ = 0 =⇒ A = 0 (full compliance).

Alternatively, if self-selection is random with
respect to outcomes, (Y0, Y1) ⊥⊥ D.
Assignment can be conditional on X.

Matching (Y0, Y1) ⊥�⊥ D, but (Y0, Y1) ⊥⊥ D | X, Yes No
0 < Pr(D = 1 | X) < 1 for all X.
So D conditional on X is a nondegenerate random variable.

Control (Y0, Y1) ⊥�⊥ D | X, Z, but (Y0, Y1) ⊥⊥ D | X, Z, θ. Yes Yes
Functions and The method models dependence induced by θ (for semi-
Extensions or else proxies θ (replacement function). parametric

Version (i). Replacement functions (substitute out θ by observables) models)
(Blundell and Powell, 2003; Heckman and Robb, 1985; Olley and
Pakes, 1996). Factor models (Carneiro, Hansen and Heckman, 2003) No (under
allow for measurement error in the proxies. some para-
Version (ii). Integrate out θ assuming θ ⊥⊥ (X, Z) metric
(Aakvik, Heckman, and Vytlacil, 2005; assumptions)
Carneiro, Hansen, and Heckman, 2003).
Version (iii). For separable models for mean response
expect out θ conditional on X, Z, D as in standard selection models
(control functions in the same sense of Heckman and Robb).

IV (Y0, Y1) ⊥�⊥ D | X, Z, but (Y1, Y0) ⊥⊥ Z | X, Yes Yes
Pr(D = 1 | Z) is a nondegenerate function of Z.

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .... .. .. .. .



Notes: (Y0,Y1) are potential outcomes that depend on X;

D =

{
1 if assigned (or choose) status 1,
0 otherwise;

Z are determinants of D, θ is a vector of unobservables. For random
assignments, A is a vector of actual treatment status. A = 1 if
treated; A = 0 if not. ξ = 1 if a person is randomized to treatment
status; xi = 0 otherwise.

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .... .. .. .. .
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Our strategy in this chapter is to anchor all of our analysis
around the economic theory of choice as embodied in discrete
choice theory and versions of the generalized Roy model
developed in Part I.

We next show how recent developments allow analysts to
define treatment parameters within a well posed economic
framework but without the strong assumptions maintained in
the early literature on selection models.
To focus our discussion, we first consider the analysis of a
prototypical policy evaluation program.
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A Prototypical Policy Evaluation Problem

To motivate our discussion in this chapter, consider the
following prototypical policy problem.

Suppose a policy is proposed for adoption in a country.
It has been tried in other countries and we know outcomes
there.
We also know outcomes in countries where it was not adopted.
From the historical record, what can we conclude about the
likely effectiveness of the policy in countries that have not
implemented it?

Heckman and Vytlacil Using the Marginal Treatment Effect
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To motivate our discussion in this chapter, consider the
following prototypical policy problem.
Suppose a policy is proposed for adoption in a country.
It has been tried in other countries and we know outcomes
there.
We also know outcomes in countries where it was not adopted.
From the historical record, what can we conclude about the
likely effectiveness of the policy in countries that have not
implemented it?

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

To answer questions of this sort, economists build models of
counterfactuals.

Consider the following model.
Let Y0 be the outcome of a country (e.g., GDP) under a
no-policy regime.
Y1 is the outcome if the policy is implemented.
(Y1 − Y0) is the “treatment effect” of the policy.
It may vary among countries.
We observe characteristics X of various countries (e.g., level of
democracy, level of population literacy, etc.).
It is convenient to decompose Y1 into its mean given X, µ1(X),
and deviation from mean U1.
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We can make a similar decomposition for Y0:

Y1 = µ1(X) + U1 (2)
Y0 = µ0(X) + U0.

We do not need to assume additive separability but it is
convenient and we initially adopt it to simplify the exposition
and establish a parallel regression notation that serves to link
the statistical literature on treatment effects with the economic
literature.
We develop more general nonseparable models in later sections
of this chapter.
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It may happen that controlling for the X, Y1 − Y0 is the same
for all countries.

This is the case of homogeneous treatment effects given X.
More likely, countries vary in their responses to the policy even
after controlling for X.
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Figure 1 plots the distribution of Y1 − Y0 for a benchmark X.

It also displays the various treatment parameters introduced in
Part I.
We use a special form of the generalized Roy model with
constant cost C of adopting the policy.
This is called the “extended Roy model”. We use this model
because it is simple and intuitive.
(The precise parameterization of the extended Roy model used
to generate the figure and the treatment effects is given at the
base of figure 1.)
The special case of homogeneity in Y1 − Y0 arises when the
distribution collapses to its mean.
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Figure 1: Distribution of Gains in the Roy Economy
U1 − U0 ⊥�⊥ D
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0
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β
0.2 C=1.5

     Return to Marginal Agent

= Y1 - Y0

TT= 2.666, TUT= −0.632
Return to Marginal Agent = C = 1.5

ATE = µ1 − µ0 = β̄ = 0.2. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .... .. .. .. .



The Model
Outcomes Choice Model

Y1 = µ1 + U1 = α+ β̄ + U1 D =

{
1 if D∗ ≥ 0
0 if D∗ < 0

Y0 = µ0 + U0 = α+ U0

General Case

(U1 − U0) ⊥�⊥ D
ATE ̸=TT ̸=TUT

The researcher observes (Y,D,C).

Y = α+ βD + U0 where β = Y1 − Y0.

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .... .. .. .. .



Parameterization

α = 0.67 (U1,U0) ∼ N (0, �) D∗ = Y1 − Y0 − C
β̄ = 0.2 � =

[
1 −0.9

−0.9 1

]
C = 1.5

Source: Heckman, Urzua and Vytlacil (2006)

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .... .. .. .. .
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It would be ideal if we could estimate the distribution of
Y1 − Y0 given X and there is research that does this.

Abbring and Heckman survey methods for doing so in Part III.
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More often, economists focus on some mean of the distribution
displayed in figure 1 and use a regression framework to
interpret the data.

To turn (2) into a regression model, it is conventional to use
the switching regression framework.
Define D = 1 if a country adopts a policy; D = 0 if it does not.
The observed outcome Y is the switching regression model (1).
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The observed outcome Y is the switching regression model (1).
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Substituting (2) into this expression, and keeping all X implicit,
we obtain

Y = Y0 + (Y1 − Y0)D (3)
= µ0 + (µ1 − µ0 + U1 − U0)D + U0.

Using conventional regression notation,

Y = α + βD + ε (4)

where α = µ0, β = (Y1 −Y0) = µ1 −µ0 +U1 −U0 and ε = U0.
We will also use the notation that η = U1 − U0, letting
β̄ = µ1 − µ0 and β = β̄ + η.
Throughout this section we use treatment effect and regression
notation interchangeably.
The coefficient on D is the treatment effect.
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Substituting (2) into this expression, and keeping all X implicit,
we obtain

Y = Y0 + (Y1 − Y0)D (3)
= µ0 + (µ1 − µ0 + U1 − U0)D + U0.

Using conventional regression notation,
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The case where β is the same for every country is the case
conventionally assumed.

More elaborate versions assume that β depends on X (β(X))
and estimates interactions of D with X.
The case where β varies even after accounting for X is called
the “random coefficient” or “heterogenous treatment effect”
case.
The case where η = U1 − U0 depends on D is the case of
essential heterogeneity analyzed by ?.
This case arises when treatment choices depend at least in part
on the idiosyncratic return to treatment.
A great deal of attention has been focused on this case in
recent decades and we develop the implications of this model in
this chapter.
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An Index Model of Choice and Treatment Effects:
Definitions and Unifying Principles

We now present the model of treatment effects developed in
??? and ?, which relaxes the normality, separability and
exogeneity assumptions invoked in the traditional economic
selection models.

It is rich enough to generate all of the treatment effects
displayed in figure 1 as well as many other policy parameters.
It does not require separability.
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It is a nonparametric generalized Roy model with testable
restrictions that can be used to unify the treatment effect
literature, identify different treatment effects, link the literature
on treatment effects to the literature in structural econometrics
and interpret the implicit economic assumptions underlying
instrumental variables, regression discontinuity design methods,
control functions and matching methods.

We follow ?? and ? in considering binary treatments.
We analyze multiple treatments in Slide 471.
? develop a model with a continuum of treatments and we
briefly survey that work at the end of Slide 471.
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Y is the measured outcome variable.

It is produced from the switching regression model (1).
Outcomes are general nonlinear, nonseparable functions of
observables and unobservables:

Y1 = µ1(X,U1) (5)
Y0 = µ0(X,U0). (6)

Examples of models that can be written in this form include
conventional latent variable models for discrete choice that are
generated by a latent variable crossing a threshold:
Yi = 1 (Y∗

i ≥ 0), where Y∗
i = µi (X) + Ui, i = 0, 1.

Notice that in the general case, µi(X,Ui)− E(Yi | X) ̸= Ui,
i = 0, 1.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

Y is the measured outcome variable.
It is produced from the switching regression model (1).

Outcomes are general nonlinear, nonseparable functions of
observables and unobservables:

Y1 = µ1(X,U1) (5)
Y0 = µ0(X,U0). (6)

Examples of models that can be written in this form include
conventional latent variable models for discrete choice that are
generated by a latent variable crossing a threshold:
Yi = 1 (Y∗

i ≥ 0), where Y∗
i = µi (X) + Ui, i = 0, 1.

Notice that in the general case, µi(X,Ui)− E(Yi | X) ̸= Ui,
i = 0, 1.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

Y is the measured outcome variable.
It is produced from the switching regression model (1).
Outcomes are general nonlinear, nonseparable functions of
observables and unobservables:

Y1 = µ1(X,U1) (5)
Y0 = µ0(X,U0). (6)

Examples of models that can be written in this form include
conventional latent variable models for discrete choice that are
generated by a latent variable crossing a threshold:
Yi = 1 (Y∗

i ≥ 0), where Y∗
i = µi (X) + Ui, i = 0, 1.

Notice that in the general case, µi(X,Ui)− E(Yi | X) ̸= Ui,
i = 0, 1.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

Y is the measured outcome variable.
It is produced from the switching regression model (1).
Outcomes are general nonlinear, nonseparable functions of
observables and unobservables:

Y1 = µ1(X,U1) (5)
Y0 = µ0(X,U0). (6)

Examples of models that can be written in this form include
conventional latent variable models for discrete choice that are
generated by a latent variable crossing a threshold:
Yi = 1 (Y∗

i ≥ 0), where Y∗
i = µi (X) + Ui, i = 0, 1.

Notice that in the general case, µi(X,Ui)− E(Yi | X) ̸= Ui,
i = 0, 1.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

Y is the measured outcome variable.
It is produced from the switching regression model (1).
Outcomes are general nonlinear, nonseparable functions of
observables and unobservables:

Y1 = µ1(X,U1) (5)
Y0 = µ0(X,U0). (6)

Examples of models that can be written in this form include
conventional latent variable models for discrete choice that are
generated by a latent variable crossing a threshold:
Yi = 1 (Y∗

i ≥ 0), where Y∗
i = µi (X) + Ui, i = 0, 1.

Notice that in the general case, µi(X,Ui)− E(Yi | X) ̸= Ui,
i = 0, 1.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

As defined in Part I, the individual treatment effect associated
with moving an otherwise identical person from “0” to “1” is
Y1 − Y0 = ∆ and is defined as the causal effect on Y of a
ceteris paribus move from “0” to “1”.

To link this framework to the literature on economic choice
models, we characterize the decision rule for program
participation by an index model:

D∗ = µD(Z)− V ; D = 1 if D∗ ≥ 0 ;
D = 0 otherwise, (7)

where, from the point of view of the econometrician, (Z,X) is
observed and (U0,U1,V) is unobserved.
The random variable V may be a function of (U0,U1).
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For example, in the original Roy Model, µ1 and µ0 are additively
separable in U1 and U0 respectively, and V = −[U1 − U0].

In the original formulations of the generalized Roy model,
outcome equations are separable and V = −[U1 − U0 − UC],
where UC arises from the cost function (recall the discussion in
section 3.3 of Part I).
Without loss of generality, we define Z so that it includes all of
the elements of X as well as any additional variables unique to
the choice equation.
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section 3.3 of Part I).
Without loss of generality, we define Z so that it includes all of
the elements of X as well as any additional variables unique to
the choice equation.
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We invoke the following assumptions that are weaker than
those used in the conventional literature on structural
econometrics or the recent literature on semiparametric
selection models and at the same time can be used both to
define and to identify different treatment parameters.
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The assumptions are:

(A-1)
(U0,U1,V) are independent of Z conditional on X (Independence);

(A-2)
µD(Z) is a nondegenerate random variable conditional on X
(Rank Condition);

(A-3)
The distribution of V is continuous;
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(A-4)
The values of E(Y1) and E(Y0) are finite (Finite Means);

(A-5)
0 < Pr(D = 1 | X) < 1.
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(A-1) assumes that V is independent of Z given X, and is used
below to generate counterfactuals.

For the definition of treatment effects, we do not need either (A-1)
or (A-2).
Our definitions of treatment effects and their unification through
MTE do not require any elements of Z that are not elements of X
or independence assumptions.
However, our analysis of instrumental variables requires that Z
contain at least one element not in X.
Assumptions (A-1) or (A-2) justify application of instrumental
variables methods and nonparametric selection or control function
methods.
Some parameters in the recent IV literature are defined by an
instrument so we make assumptions about instruments up front,
noting where they are not needed.
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Assumption (A-4) is needed to satisfy standard integration
conditions.

It guarantees that the mean treatment parameters are well
defined.
Assumption (A-5) is the assumption in the population of both
a treatment and a control group for each X.
Observe that there are no exogeneity requirements for X.
This is in contrast with the assumptions commonly made in the
conventional structural literature and the semiparametric
selection literature (see, e.g., ?).
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A counterfactual “no feedback” condition facilitates
interpretability so that conditioning on X does not mask the
effects of D.
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Letting Xd denote a value of X if D is set to d, a sufficient condition
that rules out feedback from D to X is:
(A-6)
Let X0 denote the counterfactual value of X that would be observed
if D is set to 0. X1 is defined analogously. Assume Xd = X for
d = 0, 1. (The XD are invariant to counterfactual manipulations.)
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Condition (A-6) is not strictly required to formulate an
evaluation model, but it enables an analyst who conditions on
X to capture the “total” or “full effect” of D on Y (see ?).

This assumption imposes the requirement that X is an external
variable determined outside the model and is not affected by
counterfactual manipulations of D.
However, the assumption allows for X to be freely correlated
with U1, U0 and V so it can be endogenous.
Until we discuss the problems of external validity and policy
forecasting in Slide 412, we analyze treatment effects
conditional on X, and maintain assumption (A-6).
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In this notation, P(Z) is the probability of receiving treatment
given Z , or the “propensity score”
P(Z) ≡ Pr(D = 1 | Z) = FV|X(µD(Z)), where FV|X(·) denotes
the distribution of V conditional on X.

We sometimes denote P(Z) by P, suppressing the Z argument.
We also work with UD, a uniform random variable
(UD ∼ Unif[0, 1]) defined by UD = FV|X(V).
The separability between V and µD (Z) or D (Z) and UD is
conventional.
It plays a crucial role in justifying instrumental variable
estimators in the general models analyzed in this chapter.
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? establishes that assumptions (A-1)–(A-5) for selection model
(1) and (5)–(7) are equivalent to the assumptions used to
generate the LATE model of ? which are developed below in
Slide 152.

Thus the nonparametric selection model for treatment effects
developed by Heckman and Vytlacil is implied by the
assumptions of the Imbens-Angrist instrumental variable model
for treatment effects.
Our approach links the IV literature to the literature on
economic choice models exposited in Part I.
Our latent variable model is a version of the standard sample
selection bias model.
We weave together two strands of the literature often thought
to be distinct (see e.g., ?).
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Our latent variable model is a version of the standard sample
selection bias model.
We weave together two strands of the literature often thought
to be distinct (see e.g., ?).
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The model of equations (5)-(7) and assumptions (A-1)–(A-5)
impose two testable restrictions on the distribution of (Y, D, Z,
X).

First, it imposes an index sufficiency restriction: for any set A
and for j = 0, 1,

Pr(Yj ∈ A | X,Z,D = j) = Pr(Yj ∈ A | X,P(Z),D = j).

Z (given X) enters the model only through the propensity score
P(Z).
This restriction has empirical content when Z contains two or
more variables not in X.
Second, the model also imposes monotonicity in p for
E(YD | X = x, P = p) and E(Y (1 − D) | X = x, P = p).
?, appendix A develop this condition further, and show that it
is testable.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

The model of equations (5)-(7) and assumptions (A-1)–(A-5)
impose two testable restrictions on the distribution of (Y, D, Z,
X).
First, it imposes an index sufficiency restriction: for any set A
and for j = 0, 1,

Pr(Yj ∈ A | X,Z,D = j) = Pr(Yj ∈ A | X,P(Z),D = j).

Z (given X) enters the model only through the propensity score
P(Z).
This restriction has empirical content when Z contains two or
more variables not in X.
Second, the model also imposes monotonicity in p for
E(YD | X = x, P = p) and E(Y (1 − D) | X = x, P = p).
?, appendix A develop this condition further, and show that it
is testable.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

The model of equations (5)-(7) and assumptions (A-1)–(A-5)
impose two testable restrictions on the distribution of (Y, D, Z,
X).
First, it imposes an index sufficiency restriction: for any set A
and for j = 0, 1,

Pr(Yj ∈ A | X,Z,D = j) = Pr(Yj ∈ A | X,P(Z),D = j).

Z (given X) enters the model only through the propensity score
P(Z).

This restriction has empirical content when Z contains two or
more variables not in X.
Second, the model also imposes monotonicity in p for
E(YD | X = x, P = p) and E(Y (1 − D) | X = x, P = p).
?, appendix A develop this condition further, and show that it
is testable.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

The model of equations (5)-(7) and assumptions (A-1)–(A-5)
impose two testable restrictions on the distribution of (Y, D, Z,
X).
First, it imposes an index sufficiency restriction: for any set A
and for j = 0, 1,

Pr(Yj ∈ A | X,Z,D = j) = Pr(Yj ∈ A | X,P(Z),D = j).

Z (given X) enters the model only through the propensity score
P(Z).
This restriction has empirical content when Z contains two or
more variables not in X.

Second, the model also imposes monotonicity in p for
E(YD | X = x, P = p) and E(Y (1 − D) | X = x, P = p).
?, appendix A develop this condition further, and show that it
is testable.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

The model of equations (5)-(7) and assumptions (A-1)–(A-5)
impose two testable restrictions on the distribution of (Y, D, Z,
X).
First, it imposes an index sufficiency restriction: for any set A
and for j = 0, 1,

Pr(Yj ∈ A | X,Z,D = j) = Pr(Yj ∈ A | X,P(Z),D = j).

Z (given X) enters the model only through the propensity score
P(Z).
This restriction has empirical content when Z contains two or
more variables not in X.
Second, the model also imposes monotonicity in p for
E(YD | X = x, P = p) and E(Y (1 − D) | X = x, P = p).

?, appendix A develop this condition further, and show that it
is testable.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

The model of equations (5)-(7) and assumptions (A-1)–(A-5)
impose two testable restrictions on the distribution of (Y, D, Z,
X).
First, it imposes an index sufficiency restriction: for any set A
and for j = 0, 1,

Pr(Yj ∈ A | X,Z,D = j) = Pr(Yj ∈ A | X,P(Z),D = j).

Z (given X) enters the model only through the propensity score
P(Z).
This restriction has empirical content when Z contains two or
more variables not in X.
Second, the model also imposes monotonicity in p for
E(YD | X = x, P = p) and E(Y (1 − D) | X = x, P = p).
?, appendix A develop this condition further, and show that it
is testable.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

Even though the model of treatment effects we exposit is not
the most general possible model, it has testable implications
and hence empirical content.

It unites various literatures and produces a nonparametric
version of the selection model, and links the treatment
literature to economic choice theory.
We compare the assumptions used to identify IV with the
assumptions used in matching in Slide 675.
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Definitions of Treatment Effects in the Two Outcome Model

As developed in Part I, the difficulty of observing the same
individual in both treated and untreated states leads to the use
of various population level treatment effects widely used in the
biostatistics literature and often applied in economics.

The most commonly invoked treatment effect is the Average
Treatment Effect (ATE): ∆ATE(x) ≡ E(∆ | X = x) where
∆ = Y1 − Y0.
This is the effect of assigning treatment randomly to everyone
of type X assuming full compliance, and ignoring general
equilibrium effects.
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The average impact of treatment on persons who actually take
the treatment is Treatment on the Treated (TT):
∆TT(x) ≡ E(∆ | X = x,D = 1).

This parameter can also be defined conditional on P(Z):
∆TT(x, p) ≡ E(∆ | X = x,P(Z) = p,D = 1).
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The mean effect of treatment on those for whom X = x and
UD = uD, the Marginal Treatment Effect (MTE), plays a
fundamental role in the analysis of this chapter:

∆MTE(x, uD) ≡ E(∆ | X = x,UD = uD). (8)

This parameter is defined independently of any instrument.
We separate the definition of parameters from their
identification.
The MTE is the expected effect of treatment conditional on
observed characteristics X and conditional on UD, the
unobservables from the first stage decision rule.
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For uD evaluation points close to zero, ∆MTE(x, uD) is the
expected effect of treatment on individuals with the value of
unobservables that make them most likely to participate in
treatment and who would participate even if the mean scale
utility µD (Z) is small.

If UD is large, µD (Z) would have to be large to induce people
to participate.
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One can also interpret E(∆ | X = x, UD = uD) as the mean
gain in terms of Y1 − Y0 for persons with observed
characteristics X who would be indifferent between treatment
or not if they were randomly assigned a value of Z, say z, such
that µD(z) = uD.

When Y0 and Y1 are value outcomes, MTE is a mean
willingness-to-pay measure.
MTE is a choice-theoretic building block that unites the
treatment effect, selection, matching and control function
literatures.
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A third interpretation is that MTE conditions on X and the
residual defined by subtracting the expectation of D∗ from D∗:
ŨD = D∗ − E (D∗ | Z,X).

This is a “replacement function” interpretation in the sense of
? and ?, or “control function” interpretation in the sense of ?.
These three interpretations are equivalent under separability in
D∗, i.e., when (7) characterizes the choice equation, but lead to
three different definitions of MTE when a more general
nonseparable model is developed.
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These three interpretations are equivalent under separability in
D∗, i.e., when (7) characterizes the choice equation, but lead to
three different definitions of MTE when a more general
nonseparable model is developed.

Heckman and Vytlacil Using the Marginal Treatment Effect
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This point is developed in Slide 370 where we discuss a general
nonseparable model.

The additive separability of equation (7) in terms of
observables and unobservables plays a crucial role in the
justification of instrumental variable methods.
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The LATE parameter of ? is a version of MTE.

We present their full conditions for identification in Slide 152.
Here we define it in the notation used in this chapter.
LATE is defined by an instrument in their analysis.
As in Part I, we define LATE independently of any instrument
after first presenting the Imbens–Angrist definition.
Define D(z) as a counterfactual choice variable, with D(z) = 1
if state 1 (D = 1) would have been chosen if Z had been set to
z, and D(z) = 0 otherwise.
Let Z(x) denote the support of the distribution of Z
conditional on X = x.
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For any (z, z′) ∈ Z(x)×Z(x) such that P(z) > P(z′), LATE is
E(∆ | X = x,D(z) = 1,D(z′) = 0) = E(Y1 − Y0 | X =
x,D(z) = 1,D(z′) = 0), the mean gain to persons who would
be induced to switch from D = 0 to D = 1 if Z were
manipulated externally from z′ to z.

In an example of the returns to education, z′ could be the base
level of tuition and z a reduced tuition level.
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Using the latent index model, developed in Part I and defined
in the introduction to this section, ?? show that LATE can be
written as

E(Y1 − Y0 | X = x,D(z) = 1,D(z′) = 0)
= E(Y1 − Y0 | X = x, u′

D < UD ≤ uD)

= ∆LATE(x, uD, u′
D)

for uD = Pr(D(z) = 1) = P(z), u′
D = Pr(D(z′) = 1) = P(z′),

where assumption (A-1) implies that
Pr(D(z) = 1) = Pr(D = 1 | Z = z) and
Pr(D(z′) = 1) = Pr(D = 1 | Z = z′).

Imbens and Angrist define the LATE parameter as the
probability limit of an estimator.
Their analysis conflates issues of definition of parameters with
issues of identification.
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Our representation of LATE allows us to separate these two
conceptually distinct matters and to define the LATE
parameter more generally.

One can, in principle, evaluate the right hand side of the
preceding equation at any uD, u′

D points in the unit interval and
not only at points in the support of the distribution of the
propensity score P (Z) conditional on X = x where it is
identified.
From assumptions (A-1), (A-3), and (A-4), ∆LATE(x, uD, u′

D) is
continuous in uD and u′

D and
lim

u′
D↑uD

∆LATE(x, uD, u′
D) = ∆MTE(x, uD).
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? use assumptions (A-1)–(A-5) and the latent index structure
to develop the relationship between MTE and the various
treatment effect parameters shown in the first three lines of
table 2A.

Appendix, Slide 1030, presents the formal derivation of the
parameters and associated weights and graphically illustrates
the relationship between ATE and TT.
There we establish that all treatment parameters may be
expressed as weighted averages of the MTE:

Treatment Parameter (j) =
∫ 1

0
∆MTE (x, uD) ωj (x, uD) duD

where ωj (x, uD) is the weighting function for the MTE and the
integral is defined over the full support of uD.
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Table 2: A. Treatment effects and estimands as weighted averages of the
marginal treatment effect

ATE(x) = E (Y1 − Y0 | X = x) =
∫ 1

0 ∆MTE(x, uD) duD

TT(x) = E (Y1 − Y0 | X = x,D = 1) =
∫ 1

0 ∆MTE(x, uD)ωTT(x, uD) duD

TUT(x) = E (Y1 − Y0 | X = x,D = 0) =
∫ 1

0 ∆MTE (x, uD) ωTUT (x, uD) duD

PRTE(x) = E (Ya′ | X = x)− E (Ya | X = x) =
∫ 1

0 ∆MTE (x, uD) ωPRTE (x, uD) duD

for two policies a and a′ that affect the Z but not the X

IVJ(x) =
∫ 1

0 ∆MTE(x, uD)ωJ
IV(x, uD) duD, given instrument J

OLS(x) =
∫ 1

0 ∆MTE(x, uD)ωOLS(x, uD) duD

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .... .. .. .. .



B. Weights
ωATE(x, uD) = 1

ωTT(x, uD) =
[∫ 1

uD
fP|X(p | X = x)dp

] 1
E(P | X = x)

ωTUT (x, uD) =
[∫ uD

0 fP|X (p|X = x) dp
] 1

E ((1 − P) |X = x)

ωPRTE(x, uD) =

[ FPa′ |X
(uD|x)−FPa|X(uD|x)

∆P̄(x)

]
, where ∆P̄(x) = E (Pa | X = x) − E

(
Pa′ | X = x

)

ωJ
IV(x, uD) =

[∫ 1
uD

∫
(J(Z) − E (J(Z) | X = x)) fJ,P|X (j, t | X = x) dj dt

] 1
Cov(J(Z), D | X = x)

ωOLS(x, uD) = 1 +
E(U1 | X = x, UD = uD)ω1(x, uD) − E(U0 | X = x, UD = uD)ω0(x, uD)

∆MTE(x, uD)

ω1(x, uD) =
[∫ 1

uD
fP|X(p | X = x) dp

] 1
E(P | X = x)

ω0(x, uD) =
[∫ uD

0 fP|X(p | X = x) dp
] 1

E((1 − P) | X = x)

Source: ?

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .... .. .. .. .
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Except for the OLS weights, the weights in the table all
integrate to one, although in some cases the weights for IV
may be negative.

We analyze how negative weights for IV might arise in
Slide 152.
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In table 2A, ∆TT (x) is shown as a weighted average of ∆MTE:

∆TT (x) =
∫ 1

0
∆MTE (x, uD)ωTT (x, uD) duD,

where

ωTT (x, uD) =
1− FP|X (uD | x)∫ 1

0
(
1− FP|X (t | x)

)
dt

=
SP|X (uD | x)

E (P (Z) | X = x) , (9)

and SP|X(uD | x) is Pr(P (Z) > uD | X = x) and ωTT (x, uD) is a
weighted distribution.

The parameter ∆TT (x) oversamples ∆ MTE (x, uD) for those
individuals with low values of uD that make them more likely to
participate in the program being evaluated.
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In table 2A, ∆TT (x) is shown as a weighted average of ∆MTE:

∆TT (x) =
∫ 1

0
∆MTE (x, uD)ωTT (x, uD) duD,

where

ωTT (x, uD) =
1− FP|X (uD | x)∫ 1

0
(
1− FP|X (t | x)

)
dt

=
SP|X (uD | x)

E (P (Z) | X = x) , (9)

and SP|X(uD | x) is Pr(P (Z) > uD | X = x) and ωTT (x, uD) is a
weighted distribution.
The parameter ∆TT (x) oversamples ∆ MTE (x, uD) for those
individuals with low values of uD that make them more likely to
participate in the program being evaluated.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

Treatment on the untreated (TUT) is defined symmetrically
with TT and oversamples those least likely to participate.

The various weights are displayed in table 2B.
The other weights, treatment effects and estimands shown in
this table are discussed later.
A central theme of this chapter is that under our assumptions
all estimators and estimands can be written as weighted
averages of MTE.
This allows us to unify the treatment effect literature using a
common functional ∆MTE(x, uD).
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Table 3: Treatment parameters and estimands in the generalized Roy
example

Treatment on the Treated 0.2353
Treatment on the Untreated 0.1574
Average Treatment Effect 0.2000
Sorting Gaina 0.0353
Policy Relevant Treatment Effect (PRTE) 0.1549
Selection Biasb −0.0628
Linear Instrumental Variablesc 0.2013
Ordinary Least Squares 0.1725

aTT − ATE = E(Y1 − Y0 | D = 1)− E(Y1 − Y0)
bOLS − TT = E(Y0 | D = 1)− E(Y0 | D = 0)
cUsing Propensity Score P (Z) as the instrument.
Note: The model used to create Table 3 is the same as those used to create
Figures 2A and 2B. The PRTE is computed using a policy t characterized as
follows:
If Z > 0 then D = 1 if Z(1+ t)− V ≥ 0.
If Z ≤ t then D = 1 if Z − V ≥ 0.
For this example t is set equal to 0.2.

Source: Heckman and Vytlacil (2005). .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .... .. .. .. .
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Observe that if
E(Y1 − Y0 | X = x,UD = uD) = E(Y1 − Y0 | X = x), so
∆ = Y1 − Y0 is mean independent of UD given X = x, then
∆MTE = ∆ATE = ∆TT = ∆ LATE.

Therefore, in cases where there is no heterogeneity in terms of
unobservables in MTE (∆ constant conditional on X = x) or
agents do not act on it so that UD drops out of the conditioning
set, marginal treatment effects are average treatment effects,
so that all of the evaluation parameters are the same.
Otherwise, they are different.
Only in the case where the marginal treatment effect is the
average treatment effect will the “effect” of treatment be
uniquely defined.
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Figure 2A plots weights for a parametric normal generalized
Roy model generated from the parameters shown at the base of
figure 2B.

This is an instance of the general model developed in Part I,
section 5.
The model allows for costs to vary in the population and is
more general than the extended Roy model.
We discuss the weights for IV depicted in figure 2B in Slide 152
and the weights for OLS in Slide 675.
A high uD is associated with higher cost, relative to return, and
less likelihood of choosing D = 1.
The decline of MTE in terms of higher values of uD means that
people with higher uD have lower gross returns.
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Figure 2A plots weights for a parametric normal generalized
Roy model generated from the parameters shown at the base of
figure 2B.
This is an instance of the general model developed in Part I,
section 5.
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We discuss the weights for IV depicted in figure 2B in Slide 152
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A high uD is associated with higher cost, relative to return, and
less likelihood of choosing D = 1.
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Figure 2: A. Weights for the marginal treatment effect for different
parameters

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .... .. .. .. .



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5
ω(uD )

uD

MTE
0.35

MTE

ATE

TT

0

TUT

B. Marginal Treatment Effect vs Linear Instrumental Variables and
Ordinary Least Squares Weights

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-3

-2

-1

0

1

2

3

4

5
ωTT(u D )

uD

MTE  
  OLS    D  )

0.5

MTE

IV

OLS

-0.3

   ω  (u

Y1 = α+ β̄ + U1 U1 = σ1τ α = 0.67 σ1 = 0.012
Y0 = α+ U0 U0 = σ0τ β̄ = 0.2 σ0 = −0.050
D = 1 if Z − V ≥ 0 V = σVτ τ ∼ N(0, 1) σV = −1.000

UD = Φ
(

V
σVστ

)
Z ∼ N(−0.0026, 0.2700)

Source: Heckman and Vytlacil (2005).

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .... .. .. .. .



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

TT overweights low values of uD (i.e., it oversamples UD that
make it likely to have D = 1).

ATE samples UD uniformly.
Treatment on the Untreated (E(Y1 − Y0 | X = x,D = 0)), or
TUT, oversamples the values of UD which make it unlikely to
have D = 1.

Heckman and Vytlacil Using the Marginal Treatment Effect
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Table 3 shows the treatment parameters produced from the
different weighting schemes for the model used to generate the
weights in figures 2A and 2B.

Given the decline of the MTE in uD, it is not surprising that
TT>ATE>TUT.
This is the generalized Roy version of the principle of
diminishing returns.
Those most likely to self select into the program benefit the
most from it.
The difference between TT and ATE is a sorting gain:
E(Y1 − Y0 | X,D = 1)− E(Y1 − Y0 | X), the average gain
experienced by people who sort into treatment compared to
what the average person would experience.
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Purposive selection on the basis of gains should lead to positive
sorting gains of the kind found in the table.

If there is negative sorting on the gains, then
TUT≥ATE≥TT.
Later in this chapter, we return to this table to discuss the
other numbers in it.
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Purposive selection on the basis of gains should lead to positive
sorting gains of the kind found in the table.
If there is negative sorting on the gains, then
TUT≥ATE≥TT.

Later in this chapter, we return to this table to discuss the
other numbers in it.
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Table 4 reproduced from ? presents evidence on the
nonconstancy of the MTE in UD drawn from a variety of
studies of schooling, job training, migration and unionism.

Most of the evidence is obtained using parametric normal
selection models or variants of such models.
With the exception of studies of unionism, a common finding in
the empirical literature is the nonconstancy of MTE given X.
The evidence from the literature suggests that different
treatment parameters measure different effects, and persons
participate in programs based on heterogeneity in responses to
the program being studied.
The phenomenon of nonconstancy of the MTE that we analyze
in this chapter is of substantial empirical interest.
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Table 4: Evidence of selection on unobservables and constancy of the
MTE for separable models.

Finding on the
Study Method Hypothesis of

Constancy of the MTE
Unionism

Lee (1978) Normal Selection Model σ1V = σ0V
(H0 : σ1V = σ0V) Do not reject

Farber (1983) Normal Selection Model σ1V = σ0V
(H0 : σ1V = σ0V) Do not reject

Duncan Normal Selection Model σ1V = σ0V
and Leigh (1985) (H0 : σ1V = σ0V) Do not reject
Robinson (1989) Normal Selection Model σ1V ̸= σ0V

(µ1 − µ0)IV = (µ1 − µ0)normal Do not reject
Schooling

(College vs. High School)
Willis Normal Selection Model σ1V ̸= σ0V
and Rosen (1979) (H0 : σ1V = σ0V) Reject
Heckman, Tobias Normal Selection Model σ1V ̸= σ0V
and Vytlacil (2003) (H0 : σ1V = σ0V) Reject

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .... .. .. .. .



Finding on the
Study Method Hypothesis of

Constancy of the MTE
Job Training

Björklund Normal Selection Model σ1V ̸= σ0V
and Moffitt (1987) (H0 : σ1V = σ0V) Reject
Heckman, Ichimura, E(U1 − U0 | D = 1,Z,X) = Reject
Smith and Todd E(U1 − U0 | D = 1,X) selection on
(1998; Supplement) unobservables

Sectoral Choice
Heckman and Normal Selection Model σ1V ̸= σ0V
Sedlacek (1990) (H0 : σ1V = σ0V) Reject

Migration
Pessino (1991) Normal Selection Model σ1V ̸= σ0V

(H0 : σ1V = σ0V) Reject
Tunali (2000) H0 : E(U1 − U0 | D = 1) = 0 Cannot reject

(estimated using robust selection)
Notes: Y = DY1 + (1− D)Y0.
Y1 = µ1 (X) + U1
Y0 = µ0 (X) + U0
Z ⊥⊥ (U0,U1) ,Z ⊥�⊥ D
D = 1 (µD (Z)− V ≥ 0), where µD (Z) − V is the index determining
selection into “1” or “0”
Hypothesis: No Selection on Unobservables (Constancy of the MTE)
H0 : E(U1 − U0 | D = 1,Z,X) does not depend on D where
Cov(U1,UV) = σ1V,
Cov (U0,UV) = σ0V (in normal model, the null hypothesis is σ1V = σ0V).

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .... .. .. .. .



Source: Heckman (2001)

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .... .. .. .. .
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The additively separable latent index model for D (equation
(7)) and assumptions (A-1)–(A-5) are far stronger than what is
required to define the parameters in terms of the MTE.

The representations of treatment effects defined in table 2A
remain valid even if Z is not independent of UD, if there are no
variables in Z that are not also contained in X, or if a more
general nonseparable choice model generates D (so
D∗ = µD (Z,UD)).
An important advantage of our approach over other approaches
to the analysis of instrumental variables in the recent literature
is that no instrument Z is needed to define the parameters.
We separate the tasks of definition and identification of
parameters as discussed in table 1 of Part I, and present an
analysis more closely rooted in economics.
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Appendices, Slides 1030 and 1049, define the treatment
parameters for both separable (Appendix, Slide 1030) and
nonseparable choice equations (Appendix, Slide 1049).

We show that the treatment parameters can be defined even if
there is no instrument or if instrumental variables methods
break down as they do in nonseparable models.
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As noted in Part I, the literature on structural econometrics is
clear about the basic parameters of interest although it is not
always clear about the exact combinations of parameters
needed to answer specific policy problems.

The literature on treatment effects offers a variety of evaluation
parameters.
Missing from that literature is an algorithm for defining
treatment effects that answer precisely formulated economic
policy questions.
The MTE provides a framework for developing such an
algorithm.
In the next section, we present one well defined policy
parameter that can be used to generate Benthamite policy
evaluations as discussed in section 5 of Part I.
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Policy Relevant Treatment Parameters

The conventional treatment parameters do not always answer
economically interesting questions.

Their link to cost-benefit analysis and interpretable economic
frameworks is sometimes obscure.
Each answers a different question.
Many investigators estimate a treatment effect and hope that it
answers an interesting question.
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A more promising approach for defining parameters is to
postulate a policy question or decision problem of interest and
to derive the treatment parameter that answers it.

Taking this approach does not in general produce the
conventional treatment parameters or the estimands produced
from instrumental variables.
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Consider a class of policies that affect P, the probability of
participation in a program, but do not affect ∆MTE.

The policies analyzed in the treatment effect literature that
change the Z not in X are more restrictive than the general
policies that shift X and Z analyzed in the structural literature.
An example from the schooling literature would be policies that
change tuition or distance to school but do not directly affect
the gross returns to schooling (?).
Since we ignore general equilibrium effects in this chapter, the
effects on (Y0,Y1) from changes in the overall level of
education are assumed to be negligible.
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Consider a class of policies that affect P, the probability of
participation in a program, but do not affect ∆MTE.
The policies analyzed in the treatment effect literature that
change the Z not in X are more restrictive than the general
policies that shift X and Z analyzed in the structural literature.
An example from the schooling literature would be policies that
change tuition or distance to school but do not directly affect
the gross returns to schooling (?).
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Let p and p′ denote two potential policies and let Dp and Dp′

denote the choices that would be made under policies p and p′.

When we discuss the Policy Relevant Treatment Effect, we use
“p” to denote the policy and distinguish it from the realized
value of P(Z).
Under our assumptions, the policies affect the Z given X, but
not the potential outcomes.
Let the corresponding decision rules be Dp = 1[Pp(Zp) ≥ UD],
Dp′ = 1[Pp′(Zp′) ≥ UD], where Pp(Zp) = Pr(Dp = 1 | Zp) and
Pp′(Zp′) = Pr(Dp′ = 1 | Zp′).
To simplify the exposition, we will suppress the arguments of
these functions and write Pp and Pp′ for Pp(Zp) and Pp′(Zp′).
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Define (Y0,p,Y1,p,UD,p) as (Y0,Y1,UD) under policy p, and
define (Y0,p′ ,Y1,p′ ,UD,p′) correspondingly under policy p′.

We assume that Zp and Zp′ are independent of (Y0,p,Y1,p,UD,p)
and (Y0,p′ ,Y1,p′ ,UD,p′) respectively, conditional on Xp and Xp′ .
Let Yp = DpY1,p + (1 − Dp)Y0,p and
Yp′ = Dp′Y1,p′ + (1−Dp′)Y0,p′ denote the outcomes that would
be observed under policies p and p′, respectively.
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∆MTE is policy invariant in the sense of Hurwicz as defined in
Part I if E(Y1,p | UD,p = uD,Xp = x) and
E(Y0,p | UD,p = uD,Xp = x) are invariant to the choice of policy
p (Policy Invariance for the Marginal Treatment Effect).

Policy invariance can be justified by the strong assumption that
the policy being investigated does not change the
counterfactual outcomes, covariates, or unobservables, i.e.,
(Y0,p, Y1,p, Xp, UD,p) = (Y0,p′ , Y1,p′ , Xp′ , UD,p′).
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However, ∆MTE is policy invariant if this assumption is relaxed to
the weaker assumption that the policy change does not affect the
distribution of these variables conditional on X:
(A-7)
The distribution of (Y0,p,Y1,p,UD,p) conditional on Xp = x is the
same as the distribution of (Y0,p′ ,Y1,p′ ,UD,p′) conditional on Xp′ = x
(policy invariance for distribution).
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Assumption (A-7) guarantees that manipulations of the
distribution of Z do not affect anything in the model except the
choice of outcomes.

These are specialized versions of (PI-3) and (PI-4) invoked in
Part I.
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For the widely used Benthamite social welfare criterion Υ(Y),
where Υ is a utility function, comparing policies using mean
utilities of outcomes and considering the effect for individuals
with a given level of X = x we obtain the policy relevant
treatment effect, PRTE, denoted ∆PRTE(x):

E(Υ (Yp) | X = x)− E (Υ (Yp′) | X = x)

=

∫ 1

0
∆MTE

Υ (x, uD){FPp′ |X(uD | x)− FPp|X(uD | x)}duD, (10)

where FPp|X(· | x) and FPp′ |X(· | x) are the distributions of Pp
and Pp′ conditional on X = x, respectively, defined for the
different policy regimes and
∆MTE

Υ (x, uD) = E(Υ (Y1,p)−Υ(Y0,p) | UD,p = uD,Xp = x).
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The weights in expression (10) are derived in Appendix,
Slide 1082 under the assumption that the policy does not
change the joint distribution of outcomes.

To simplify the notation, throughout the rest of this chapter
when we discuss PRTE, we assume that Υ(Y) = Y.
Modifications of our analysis for the more general case are
straightforward.
We also discuss the implications of noninvariance for the
definition and interpretation of the PRTE in Appendix,
Slide 1082.
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Define ∆P̄ (x) = E(Pp | X = x)− E(Pp′ | X = x), the change in
the proportion of people induced into the program due to the
intervention.

Assuming ∆P̄ (x) is positive, we may define per person affected
weights as ω PRTE (x, uD) =

FPp′ |X
(uD|x)−FPp|X(uD|x)

∆P̄(x) .
These weights are displayed in table 2B.
As demonstrated in the next section, in general, conventional
IV weights the MTE differently than either the conventional
treatment parameters (∆ATE or ∆TT) or the policy relevant
parameter, and so does not recover these parameters.
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Instead of hoping that conventional treatment parameters or
favorite estimators answer interesting economic questions, the
approach developed by ???? is to estimate the MTE and
weight it by the appropriate weight determined by how the
policy changes the distribution of P to construct ∆PRTE.

In ?, we also develop an alternative approach that produces a
policy weighted instrument to identify ∆PRTE by standard
instrumental variables.
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We elaborate our discussion of policy analysis based in the
MTE and develop other policy parameters for local and global
perturbations of policy in Slide 412 after developing the
instrumental variable estimator and the related regression
discontinuity estimator.

The analyses of Slides 152 and 402 give us tools to make
specific the discussion of alternative approaches to policy
evaluation.
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discontinuity estimator.
The analyses of Slides 152 and 402 give us tools to make
specific the discussion of alternative approaches to policy
evaluation.
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Instrumental Variables

The method of instrumental variables (IV) is currently the most
widely used method in economics for estimating economic
models when unobservables are present that violate the
matching assumption (M-1).

We first present an intuitive exposition of the method and then
present a more formal development.
We analyze a model with two outcomes.
We generalize the analysis to multiple outcomes in Slide 471.
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Return to the policy adoption example presented at the end of
Slide 12.

The distribution of returns to adoption is depicted in figure 1.
First, consider the method of IV, where β (given X), which is
the same as Y1 − Y0 given X, is the same for every country.
This is the familiar case and we develop it first.
The model is

Y = α + βD + ε, (11)
where conditioning on X is implicit.
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A simple least squares regression of Y on D (equivalently a
mean difference in outcomes between countries with D = 1 and
countries with D = 0) is possibly subject to a selection bias on
Y0.

Countries that adopt the policy may be atypical in terms of
their Y0 (= α + ε).
Thus if countries that would have done well in terms of
unobservable ε (= U0) even in the absence of the policy are the
ones that adopt the policy, β estimated from OLS (or its
semiparametric version – matching) is upward biased because
Cov(D, ε) > 0.
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If there is an instrument Z, with the properties that

Cov(Z,D) ̸= 0 (12)

Cov(Z, ε) = 0, (13)
then standard IV identifies β, at least in large samples,

plim β̂IV =
Cov(Z,Y)
Cov(Z,D)

= β.

If other instruments exist, each identifies β.
Z produces a controlled variation in D relative to ε.
Randomization of assignment with full compliance to
experimental protocols is an example of an instrument.
From the instrumental variable estimators, we can identify the
effect of adopting the policy in any country since all countries
respond to the policy in the same way controlling for their X.
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If β (= Y1 − Y0) varies in the population even after controlling
for X, there is a distribution of responses that cannot in general
be summarized by a single number.

Even if we are interested in the mean of the distribution, a new
phenomenon distinct from selection bias might arise.
This is a problem of sorting on the gain, which is distinct from
sorting on levels.
If β varies, even after controlling for X, there may be sorting on
the gain (Cov(β,D) ̸= 0).
This is the model of essential heterogeneity as defined by ?.
It is also called a correlated random coefficient model (?).
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The application of instrumental variables to this case is more
problematic.

Suppose that we augment the standard instrumental variable
assumptions (12) and (13) by the following assumption:

Cov(Z, β) = 0. (14)

Can we identify the mean of (Y1 − Y0) using IV?
In general we cannot.
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To see why, let β̄ = (µ1 − µ0) be the mean treatment effect
(the mean of the distribution in figure 1).

β = β̄ + η, where U1 − U0 = η and β̄ = µ1 − µ0 and we keep
the conditioning on X implicit.
Write equation (11) in terms of these parameters:

Y = α + β̄D + [ε+ ηD] .

The error term of this equation (ε+ ηD) contains two
components.
By assumption, Z is uncorrelated with ε and η.
But to identify β̄, we need IV to be uncorrelated with [ε+ ηD].
That requires Z to be uncorrelated with ηD.
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components.
By assumption, Z is uncorrelated with ε and η.
But to identify β̄, we need IV to be uncorrelated with [ε+ ηD].
That requires Z to be uncorrelated with ηD.
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If policy adoption is made without knowledge of η
(= U1 − U0), the idiosyncratic gain to policy adoption after
controlling for the observables, then η and D are statistically
independent and hence uncorrelated, and IV identifies β̄.

If, however, policy adoption is made with partial or full
knowledge of η, IV does not identify β̄ because E(ηD | Z) =
E(η | D = 1,Z) Pr(D = 1 | Z) and if there is sorting on the
unobserved gain η , the first term is not zero.
Similar calculations show that IV does not identify the mean
gain to the countries that adopt the policy (E (β | D = 1)) and
many other summary treatment parameters.
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Whether η (= U1 − U0) is correlated with D depends on the
quality of the data available to the empirical economist and
cannot be settled a priori.

The conservative position is to allow for such correlation.
However, this rules out IV as an interesting econometric
strategy for identifying any of the familiar mean treatment
parameters.
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In light of the negative conclusions about IV in the literature
preceding their paper, it is remarkable that ? establish that
under certain conditions, in the model with essential
heterogeneity, IV can identify an interpretable parameter.

The parameter they identify is a discrete approximation to the
marginal gain parameter introduced by ?.
The Bjö rklund-Moffitt parameter is a version of MTE for a
parametric normal selection model.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

In light of the negative conclusions about IV in the literature
preceding their paper, it is remarkable that ? establish that
under certain conditions, in the model with essential
heterogeneity, IV can identify an interpretable parameter.
The parameter they identify is a discrete approximation to the
marginal gain parameter introduced by ?.

The Bjö rklund-Moffitt parameter is a version of MTE for a
parametric normal selection model.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

In light of the negative conclusions about IV in the literature
preceding their paper, it is remarkable that ? establish that
under certain conditions, in the model with essential
heterogeneity, IV can identify an interpretable parameter.
The parameter they identify is a discrete approximation to the
marginal gain parameter introduced by ?.
The Bjö rklund-Moffitt parameter is a version of MTE for a
parametric normal selection model.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

We derive their parameter from a selection model in Slide 338.

? demonstrate how to use a selection model to identify the
marginal gain to persons induced into a treatment status by a
marginal change in the cost of treatment.
? show how to estimate a discrete approximation to the
Björklund-Moffitt parameter using instrumental variables.
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? assume the existence of an instrument Z that takes two or
more distinct values.

This is implicit in (12).
If Z assumes only one value, the covariance in (12) would be
zero.
Strengthening the covariance conditions of equations (13) and
(14), they assume (IV-1) and (IV-2) (independence and rank
respectively) and that Z is independent of β = (Y1 − Y0) and
Y0.
Recall that we denote by D(z) the random variable indicating
receipt of treatment when Z is set to z.
(D(z) = 1 if treatment is received; D(z) = 0 otherwise).
The Imbens-Angrist independence and rank assumptions are
(IV-1) and (IV-2).
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They supplement the standard IV assumptions with what they
call a “monotonicity” assumption.

It is a condition across persons.
The assumption maintains that if Z is fixed first at one and
then at the other of two distinct values, say Z = z and Z = z′,
then all persons respond in their choice of D to the change in Z
in the same way.
In our policy adoption example, this condition states that a
movement from z to z′, causes all countries to move toward (or
against) adoption of the public policy being studied.
If some adopt, others do not drop the policy in response to the
same change.
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then all persons respond in their choice of D to the change in Z
in the same way.
In our policy adoption example, this condition states that a
movement from z to z′, causes all countries to move toward (or
against) adoption of the public policy being studied.
If some adopt, others do not drop the policy in response to the
same change.
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More formally, letting Di (z) be the indicator (= 1 if adopted;
= 0 if not) for adoption of a policy if Z = z for country i, then
for any distinct values z and z′ ? assume:

(IV-3)
Di (z) ≥ Di (z′) for all i, or Di (z) ≤ Di (z′) for all i = 1, . . . , I.
(Monotonicity or Uniformity)
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The content in this assumption is not in the order for any
person.

Rather, the responses have to be uniform across people for a
given choice of z and z′.
One possibility allowed under (IV-3) is the existence of three
values of z < z′ < z′′ such that for all i, Di (z) ≥ Di (z′) but
Di (z′) ≤ Di (z′′) . The standard usage of the term monotonicity
rules out this possibility by requiring that one of the following
hold for all i: (a) z < z′ componentwise implies Di (z) ≥ Di (z′)
or (b) z < z′ componentwise implies Di (z) ≤ Di (z′).
Of course, if the Di (z) are monotonic in Z in the same
direction for all i , they are monotonic in the sense of Imbens
and Angrist.
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For any value of z′ in the domain of definition of Z, from (IV-1)
and (IV-2) and the definition of D (z), (Y0,Y1,D (z′)) is
independent of Z.

For any two values of the instrument Z = z and Z = z′, we may
write

E (Y | Z = z)− E (Y | Z = z′)
= E(Y1D + Y0 (1− D) | Z = z)− E(Y1D + Y0 (1− D) | Z = z′)
= E (Y0 + D (Y1 − Y0) | Z = z)− E (Y0 + D (Y1 − Y0) | Z = z′) .

From the independence condition (IV-1), and the definition of
D (z) and D (z′), we may write this expression as
E [(Y1 − Y0) (D (z)− D (z′))].
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Using the law of iterated expectations,

E (Y | Z = z)− E (Y | Z = z′) (15)
= E (Y1 − Y0 | D (z)− D (z′) = 1) Pr (D (z)− D (z′) = 1)
− E (Y1 − Y0 | D (z)− D (z′) = −1) Pr (D (z)− D (z′) = −1) .

By the monotonicity condition (IV-3), we eliminate one or the
other term in the final expression.
Suppose that Pr(D(z)− D(z′) = −1) = 0, then

E (Y | Z = z)− E (Y | Z = z′)
= E (Y1 − Y0 | D(z)− D(z′) = 1) Pr (D(z)− D(z′) = 1) .

Observe that, by monotonicity, Pr(D(z)− D(z′) = 1) =
Pr (D = 1 | Z = z) − Pr (D = 1 | Z = z′).
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For values of z and z′ that produce distinct propensity scores
Pr(D = 1 | Z = z), using monotonicity once more, we obtain
LATE:

LATE =
E (Y | Z = z)− E (Y | Z = z′)

Pr(D = 1 | Z = z)− Pr(D = 1 | Z = z′)
= E (Y1 − Y0 | D(z)− D(z′) = 1) . (16)

This is the mean gain to those induced to switch from “0” to
“1” by a change in Z from z′ to z.
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This is not the mean of Y1 − Y0 (average treatment effect)
unless the Z assume values (z, z′) such that Pr (D (z) = 1) = 1
and Pr (D (z′) = 1) = 0.

It is also not the effect of treatment on the treated
(E (Y1 − Y0 | D = 1) = E (β | D = 1)) unless the analyst has
access to one or more values of Z such that Pr (D (z) = 1) = 1.
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The LATE parameter is defined by a hypothetical manipulation
of instruments.

It depends on the particular instrument used.
If monotonicity (uniformity) is violated, IV estimates an
average response of those induced to switch into the program
and those induced to switch out of the program by the change
in the instrument because both terms in (15) are present.
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In an application to wage equations, ?? interprets the LATE
estimator as identifying returns to marginal persons.

? notes that the actual margin of choice selected by the IV
estimator is not identified by the instrument.
It is unclear as to which segment of the population the return
estimated by LATE applies.
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If the analyst is interested in knowing the average response(
β̄
)
, the effect of the policy on the outcomes of countries that

adopt it (E(β | D = 1)) or the effect of the policy if a particular
country adopts it, there is no guarantee that the IV estimator
comes any closer to the desired target than the OLS estimator
and indeed it may be more biased than OLS.

Because different instruments define different parameters,
having a wealth of different strong instruments does not
improve the precision of the estimate of any particular
parameter.
This is in stark contrast with the traditional model with β ⊥⊥ D.
In that case, all valid instruments identify β̄.
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If the analyst is interested in knowing the average response(
β̄
)
, the effect of the policy on the outcomes of countries that

adopt it (E(β | D = 1)) or the effect of the policy if a particular
country adopts it, there is no guarantee that the IV estimator
comes any closer to the desired target than the OLS estimator
and indeed it may be more biased than OLS.
Because different instruments define different parameters,
having a wealth of different strong instruments does not
improve the precision of the estimate of any particular
parameter.
This is in stark contrast with the traditional model with β ⊥⊥ D.
In that case, all valid instruments identify β̄.
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The ?-?-? test for the validity of extra instruments applies to
the traditional model.

In the more general case with essential heterogeneity, because
different instruments estimate different parameters, no clear
inference emerges from such specification tests.
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When there are more than two distinct values of Z, Imbens and
Angrist draw on the analysis of ?, which was refined in ? and
?, to produce a weighted average of pairwise LATE parameters
where the scalars Z are ordered to define the LATE parameter.

In this case, IV is a weighted average of LATE parameters with
non-negative weights.
Imbens and Angrist generalize this result to the case of vector
Z assuming that instruments are monotonic functions of the
probability of selection.
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??? , ? and ? generalize the analysis of ? in several ways and
we report their results in this chapter.

Using a choice-theoretic parameter (the marginal treatment
effect or MTE) introduced into the literature on selection
models by ?, they relate the parameters estimated by IV to well
formulated choice models.
This allows treatment parameters to be defined independent of
any values assumed by instruments.
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It is possible to generate all treatment effects as different
weighted averages of the MTE.

IV can also be interpreted as a weighted average of MTE.
Different instruments weight different segments of the MTE
differently.
Using the nonparametric generalized Roy model, MTE is a limit
form of LATE.
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Using MTE, we overcome a problem that plagues the LATE
literature.

LATE estimates marginal returns at an unidentified margin (or
intervals of margins).
We show how to use the MTE to unify diverse instrumental
variables estimates and to determine what margins (or intervals
of margins) they identify.
Instead of reporting a marginal return for unidentified persons,
we show how to report marginal returns for all persons
identified by their location on the scale of a latent variable that
arises from a well defined choice model and is related to the
propensity of persons to make the choice being studied.
We can interpret the margins of choice identified by various
instruments and place diverse instruments on a common
interpretive footing.
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?? establish the central role of the propensity score
(Pr(D = 1 | Z = z) = P(z) ) in both selection and IV models.

They show that with vector Z and a scalar instrument J(Z)
constructed from vector Z, the weights on LATE and MTE that
are implicit in standard IV are not guaranteed to be
non-negative.
Thus IV can be negative even though all pairwise LATEs and
pointwise MTEs are positive.
Thus the treatment effects for any pair of (z, z′) can be positive
but the IV can be negative.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

?? establish the central role of the propensity score
(Pr(D = 1 | Z = z) = P(z) ) in both selection and IV models.
They show that with vector Z and a scalar instrument J(Z)
constructed from vector Z, the weights on LATE and MTE that
are implicit in standard IV are not guaranteed to be
non-negative.

Thus IV can be negative even though all pairwise LATEs and
pointwise MTEs are positive.
Thus the treatment effects for any pair of (z, z′) can be positive
but the IV can be negative.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

?? establish the central role of the propensity score
(Pr(D = 1 | Z = z) = P(z) ) in both selection and IV models.
They show that with vector Z and a scalar instrument J(Z)
constructed from vector Z, the weights on LATE and MTE that
are implicit in standard IV are not guaranteed to be
non-negative.
Thus IV can be negative even though all pairwise LATEs and
pointwise MTEs are positive.

Thus the treatment effects for any pair of (z, z′) can be positive
but the IV can be negative.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

?? establish the central role of the propensity score
(Pr(D = 1 | Z = z) = P(z) ) in both selection and IV models.
They show that with vector Z and a scalar instrument J(Z)
constructed from vector Z, the weights on LATE and MTE that
are implicit in standard IV are not guaranteed to be
non-negative.
Thus IV can be negative even though all pairwise LATEs and
pointwise MTEs are positive.
Thus the treatment effects for any pair of (z, z′) can be positive
but the IV can be negative.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

We present examples below.

Certain instruments produce positive weights and avoid this
particular interpretive problem.
Our analysis generalizes the analyses of weights on treatment
effects by Yitzhaki and Imbens-Angrist, who analyze a special
case where all weights are positive.
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We establish the special status of P (z) as an instrument.

It always produces non-negative weights for MTE and LATE.
It enables analysts to identify MTE or LATE.
With knowledge of P (z), and the MTE or LATE, we can
decompose any IV estimate into identifiable MTEs (at points)
or LATEs (over intervals) and identifiable weights on MTE (or
LATE) where the weights can be constructed from data.
The ability to decompose IV into interpretable components
allows analysts to determine the response to treatment of
persons at different levels of unobserved factors that determine
treatment status.
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We present a simple test for essential heterogeneity (β
dependent on D) that allows analysts to determine whether or
not they can avoid the complexities of the more general model
with heterogeneity in response to treatments.

In Slide 471, we generalize the analysis of IV in the
two-outcome model to a multiple outcome model, analyzing
both ordered and unordered choice cases.
We also demonstrate the fundamental asymmetry in the recent
IV literature for models with heterogeneous outcomes.
Responses to treatment are permitted to be heterogeneous in a
general way.
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Responses of choices to instruments are not.

When heterogeneity in choice is allowed for in a general way, IV
and local IV do not estimate parameters that can be
interpreted as weighted averages of MTEs or LATEs.
We now turn to an analysis of the two-outcome model.
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IV in Choice Models

A key contribution of the analysis of Heckman and Vytlacil is
to adjoin choice equation (7) to the outcome equations (1), (5)
and (6).

A standard binary threshold cross model for D is
D = 1 (D∗ ≥ 0), where 1 (·) is an indicator (1 (A) = 1 if A is
true, 0 otherwise).
A familiar version of (7) sets µD (Z) = Zγ and writes

D∗ = Zγ − V, (17)

where (V ⊥⊥ Z) | X.
(V is independent of Z given X).
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In this notation, the propensity score or choice probability is

P(z) = Pr(D = 1 | Z = z) = Pr(Zγ ≥ V) = FV(Zγ)

where FV is the distribution of V which is assumed to be
continuous.

In terms of the generalized Roy model where C is the cost of
participation in sector 1, D = 1 [Y1 − Y0 − C > 0].
For a separable model in outcomes and in costs,

C = µD (W) + UC,

we have Z = (X,W), µD (Z) = µ1 (X)− µ0 (X)− µD (W), and
V = − (U1 − U0 − UC).
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In constructing many of our examples, we work with a special
version where UC = 0.

We call this version the extended Roy model.
It is the model used to produce figure 1.
Our analysis, however, applies to more general models, and we
also offer examples of generalized Roy models, as we have in
figure 2 and table 3.
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In the case where β (given X) is a constant, under (IV-1) and
(IV-2) it is not necessary to specify the choice model to identify
β.

In a general model with heterogenous responses, the
specification of P(z) and its relationship with the instrument
play crucial roles.
To see this, study the covariance between Z and ηD discussed
in the introduction to this section.
By the law of iterated expectations, letting Z̄ denote the mean
of Z,

Cov (Z, ηD) = E
((

Z − Z̄
)

Dη
)

= E
((

Z − Z̄
)
η | D = 1

)
Pr (D = 1)

= E
((

Z − Z̄
)
η | Zγ > V

)
Pr (Zγ ≥ V) .
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Thus, even if Z and η are independent, they are not
independent conditional on D = 1 [Zγ ≥ V] if η = (U1 − U0) is
dependent on V (i.e., if the decision maker has partial
knowledge of η and acts on it).

Selection models allow for this dependence (see ???; and ?).
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Keeping X implicit, assuming that

(U1,U0,V) ⊥⊥ Z (18)

(alternatively, assuming that (ε, η) ⊥⊥ Z), we obtain

E(Y | D = 0,Z = z) = E(Y0 | D = 0,Z = z)
= α + E(U0 | zγ < V),

where α and possibly E (U0 | zγ < V) depend on X, which can
be written as

E(Y | D = 0,Z = z) = α + K0(P(z))

where the functional form of K0 is produced from the
distribution of (U0,V).

Focusing on means, the conventional selection approach models
the conditional mean dependence between (U0,U1) and V.
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Similarly,

E (Y | D = 1,Z = z) = E (Y1 | D = 1,Z = z)
= α + β̄ + E (U1 | zγ ≥ V)
= α + β̄ + K1(P(z))

where α, β̄ and K1(P(z)) may depend on X.

K0(P(z)) and K1(P(z)) are control functions in the sense of ??.
The control functions expect out the unobservables θ that give
rise to selection bias (see (U-1)).
Under standard conditions developed in the literature, analysts
can identify β̄.
? discusses semiparametric identification.
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rise to selection bias (see (U-1)).

Under standard conditions developed in the literature, analysts
can identify β̄.
? discusses semiparametric identification.
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Because we condition on Z = z (or P(z)), correct specification
of the Z plays an important role in econometric selection
methods.

This sensitivity to the full set of instruments in Z appears to be
absent from the IV method.
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If β is a constant (given X), or if η (= β − β̄) is independent of
V, only one instrument from vector Z needs to be used to
identify the parameter.

Missing or unused instruments play no role in identifying mean
responses but may affect the efficiency of the IV estimators.
In a model where β is variable and not independent of V ,
misspecification of Z plays an important role in interpreting
what IV estimates analogous to its role in selection models.
Misspecification of Z affects both approaches to identification.
This is a new phenomenon in models with heterogenous β.
We now review results from the recent literature on
instrumental variables in the model with essential heterogeneity.
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Instrumental Variables and Local Instrumental Variables

In this section, we use ∆MTE defined in Slide 90 for a general
nonseparable model (5)–(7) to organize the literature on
econometric evaluation estimators.

In terms of our simple regression model,

∆MTE(x, uD) = E (∆ | X = x,UD = uD)

= E
(
β | X = x,V = F−1

V (uD)
)

= β̄(x) + E (η | X = x,V = v) .

where v = F−1
V (uD).

We assume policy invariance in the sense of Hurwicz for mean
parameters (Assumption (A-7)).
For simplicity, we suppress the a and a′ subscripts that indicate
specific policies.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

Instrumental Variables and Local Instrumental Variables

In this section, we use ∆MTE defined in Slide 90 for a general
nonseparable model (5)–(7) to organize the literature on
econometric evaluation estimators.
In terms of our simple regression model,

∆MTE(x, uD) = E (∆ | X = x,UD = uD)

= E
(
β | X = x,V = F−1

V (uD)
)

= β̄(x) + E (η | X = x,V = v) .

where v = F−1
V (uD).

We assume policy invariance in the sense of Hurwicz for mean
parameters (Assumption (A-7)).
For simplicity, we suppress the a and a′ subscripts that indicate
specific policies.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

Instrumental Variables and Local Instrumental Variables

In this section, we use ∆MTE defined in Slide 90 for a general
nonseparable model (5)–(7) to organize the literature on
econometric evaluation estimators.
In terms of our simple regression model,

∆MTE(x, uD) = E (∆ | X = x,UD = uD)

= E
(
β | X = x,V = F−1

V (uD)
)

= β̄(x) + E (η | X = x,V = v) .

where v = F−1
V (uD).

We assume policy invariance in the sense of Hurwicz for mean
parameters (Assumption (A-7)).

For simplicity, we suppress the a and a′ subscripts that indicate
specific policies.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

Instrumental Variables and Local Instrumental Variables

In this section, we use ∆MTE defined in Slide 90 for a general
nonseparable model (5)–(7) to organize the literature on
econometric evaluation estimators.
In terms of our simple regression model,

∆MTE(x, uD) = E (∆ | X = x,UD = uD)

= E
(
β | X = x,V = F−1

V (uD)
)

= β̄(x) + E (η | X = x,V = v) .

where v = F−1
V (uD).

We assume policy invariance in the sense of Hurwicz for mean
parameters (Assumption (A-7)).
For simplicity, we suppress the a and a′ subscripts that indicate
specific policies.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

We focus primarily on instrumental variable estimators and
review the method of local instrumental variables.

Slide 184 demonstrated in a simple but familiar case that well
established intuitions about instrumental variable identification
strategies break down when ∆MTE is nonconstant in uD given X
(β ̸⊥⊥ D | X).
We acquire the probability of selection P (z) as a determinant
of the IV covariance relationships.
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Two sets of instrumental variable conditions are presented in
the current literature for this more general case: those
associated with conventional instrumental variable assumptions,
which are implied by the assumption of “no selection on
heterogenous gains,” (β ⊥⊥ D | X) and those which permit
selection on heterogeneous gains.

Neither set of assumptions implies the other, nor does either
identify the policy relevant treatment effect or other
economically interpretable parameters in the general case.
Each set of conditions identifies different treatment parameters.
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In place of standard instrumental variables methods, ???
advocate a new approach to estimating policy impacts by
estimating ∆MTE using local instrumental variables (LIV) to
identify all of the treatment parameters from a generator ∆MTE

that can be weighted in different ways to answer different
policy questions.

For certain classes of policy interventions covered by
Assumption (A-7) and analyzed in Slide 412, ∆MTE possesses
an invariance property analogous to the invariant parameters of
traditional structural econometrics.
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Conditions on the MTE that Justify the Application of Conventional
Instrumental Variables

In the general case where ∆MTE(x, uD) is nonconstant in uD
(E (β | X = x,V = v) depends on v), IV does not in general
estimate any of the treatment effects defined in Slide 90.

We consider a scalar instrument J(Z) constructed from Z which
may be vector valued.
We sometimes denote J(Z) by J, leaving implicit that J is a
function of Z.
If Z is a vector, J (Z) can be one coordinate of Z, say Z1.
We develop this particular case in presenting our examples.
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The notation is sufficiently general to make J(Z) a general
function of Z.

The standard conditions J(Z) ⊥⊥ (U0,U1) | X and
Cov(J(Z),D | X) ̸= 0 corresponding to (IV-1) and (IV-2)
respectively, do not, by themselves, imply that instrumental
variables using J(Z) as the instrument will identify conventional
or policy relevant treatment effects.
When responses to treatment are heterogenous, we must
supplement the standard conditions to identify interpretable
parameters.
To link our analysis to conventional analyses of IV, we continue
to invoke familiar-looking representations of additive
separability of outcomes in terms of (U0,U1) so we invoke (2).
This is not required.
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All derivations and results in this subsection hold without
assuming additive separability if µ1(x) and µ0(x) are replaced by
E(Y1 | X = x) and E(Y0 | X = x), respectively, and U1 and U0
are replaced by Y1 −E(Y1 | X) and Y0 −E(Y0 | X), respectively.

This highlights the point that all of our analysis of IV is
conditional on X and X need not be exogenous with respect to
(U0,U1) to identify the MTE conditional on X.
To simplify the notation, we keep the conditioning on X
implicit unless it is useful to break it out separately.
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Two distinct sets of instrumental variable conditions in the
literature are those due to ?? and ?, and those due to ? which
we previously discussed.

We review the conditions of ?? and ? in Appendix, Slide 1163,
which is presented in the context of our discussion of matching
in Slide 675, where we compare IV and matching.
In the case where ∆MTE is nonconstant in uD, standard IV
estimates different parameters depending on which assumptions
are maintained.
We have already shown that when responses to treatment are
heterogeneous, and choices are made on the basis of this
heterogeneity, standard IV does not identify µ1 − µ0 = β̄.
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There are two important cases of the variable response model.

The first case arises when responses are heterogeneous, but
conditional on X, people do not base their participation on
these responses.
In this case, keeping the conditioning on X implicit,

(C-1)
D ⊥⊥ ∆ =⇒ E(∆ | UD) = E(∆), ∆MTE(uD) is constant in uD and
∆MTE = ∆ATE = ∆TT = ∆LATE, i.e., E(β | D = 1) = E(β), because
β ⊥⊥ D.
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There are two important cases of the variable response model.
The first case arises when responses are heterogeneous, but
conditional on X, people do not base their participation on
these responses.

In this case, keeping the conditioning on X implicit,
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D ⊥⊥ ∆ =⇒ E(∆ | UD) = E(∆), ∆MTE(uD) is constant in uD and
∆MTE = ∆ATE = ∆TT = ∆LATE, i.e., E(β | D = 1) = E(β), because
β ⊥⊥ D.
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There are two important cases of the variable response model.
The first case arises when responses are heterogeneous, but
conditional on X, people do not base their participation on
these responses.
In this case, keeping the conditioning on X implicit,
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In this case, all mean treatment parameters are the same.

The second case arises when selection into treatment depends
on β:

(C-4)
D ̸⊥⊥ ∆and E(∆ | UD) ̸= E(∆) (i.e., β ̸⊥⊥ D).
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In this case, all mean treatment parameters are the same.
The second case arises when selection into treatment depends
on β:

(C-5)
D ̸⊥⊥ ∆and E(∆ | UD) ̸= E(∆) (i.e., β ̸⊥⊥ D).
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In this case, ∆MTE is nonconstant, and in general, the
treatment parameters differ among each other.

In this case (IV-1) and (IV-2) for general instruments do not
identify β̄ (as shown in Slide 184) or E(β | D = 1).
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In this case, ∆MTE is nonconstant, and in general, the
treatment parameters differ among each other.
In this case (IV-1) and (IV-2) for general instruments do not
identify β̄ (as shown in Slide 184) or E(β | D = 1).
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A sufficient condition that generates (C-1) is the information
condition that decisions to participate in the program are not
made on the basis of U1 − U0 (= η) (in the notation of
Slide 184):

(I-1)
Pr(D = 1 | Z,U1 − U0) = Pr(D = 1 | Z) (i.e.,
Pr(D = 1 | Z, β) = Pr(D = 1 | Z)).
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Before we investigate what standard instrumental variables
estimators identify, we first present the local instrumental
variables estimator which directly estimates the MTE.

It is a limit form of LATE.
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Before we investigate what standard instrumental variables
estimators identify, we first present the local instrumental
variables estimator which directly estimates the MTE.
It is a limit form of LATE.
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Estimating the MTE Using Local Instrumental Variables

??? develop the Local Instrumental Variable (LIV) estimator to
recover ∆MTE pointwise.

LIV is the derivative of the conditional expectation of Y with
respect to P(Z) = p.
This is defined as

∆LIV(p) ≡ ∂E(Y | P(Z) = p)
∂p . (19)

It is the population mean response to a policy change
embodied in changes in P(Z) analyzed by ?.
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LIV is the derivative of the conditional expectation of Y with
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E(Y | P(Z)) is well-defined as a consequence of assumption
(A-4), and E(Y | P(Z)) can be recovered over the support of
P(Z).

Under our assumptions, LIV identifies MTE at all points of
continuity in P (Z) (conditional on X).
This expression does not require additive separability of
µ1(X,U1) or µ0(X,U0).
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E(Y | P(Z)) is well-defined as a consequence of assumption
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E(Y | P(Z)) is well-defined as a consequence of assumption
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Under standard regularity conditions, a variety of
nonparametric methods can be used to estimate the derivative
of E(Y | P(Z)) and thus to estimate ∆MTE.

With ∆MTE in hand, if the support of the distribution of P(Z)
conditional on X is the full unit interval, one can generate all
the treatment parameters defined in Slide 90 as well as the
policy relevant treatment parameter presented in Slide 139 as
weighted versions of ∆MTE.
When the support of the distribution of P(Z) conditional on X
is not full, it is still possible to identify some parameters.
? show that to identify ATE under Assumptions (A-1)–(A-5),
it is necessary and sufficient that the support of the distribution
of P(Z) include 0 and 1.
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Thus, identification of ATE does not require that the
distribution of P(Z) be the full unit interval or that the
distribution of P(Z) be continuous.

But the support must include {0, 1}.
Sharp bounds on the treatment parameters can be constructed
under the same assumptions imposed in this chapter without
imposing full support conditions.
The resulting bounds are simple and easy to apply compared
with those presented in the previous literature.
We discuss these and other bounds in Slide 938.
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To establish the relationship between LIV and ordinary IV based
on P(Z) and to motivate how LIV identifies ∆MTE, notice that
from the definition of Y, the conditional expectation of Y given
P(Z) is, recalling that ∆ = Y1 − Y0,

E(Y | P(Z) = p)
= E(Y0 | P(Z) = p) + E(∆ | P(Z) = p,D = 1)p,

where we keep the conditioning on X implicit.

Our model and conditional independence assumption (A-1)
imply

E(Y | P(Z) = p) = E(Y0) + E(∆ | p ≥ UD)p.
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Applying the IV (Wald) estimator for two different values of
P(Z), p and p′, for p ̸= p′, we obtain:

E(Y | P(Z) = p)− E(Y | P(Z) = p′)
p − p′ (20)

= ∆ATE +
E(U1 − U0 | p ≥ UD)p − E(U1 − U0 | p′ ≥ UD)p′

p − p′ ,

where this particular expression is obtained under the
assumption of additive separability in the outcomes.

Exactly the same equation holds without additive separability if
one replaces U1 and U0 with Y1 − E(Y1|X) and Y0 − E(Y0|X).
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When U1 ≡ U0 or (U1 − U0) ⊥⊥ UD, (case (C-1)), IV based on
P(Z) estimates ∆ ATE because the second term on the right
hand side of the expression (20) vanishes.

Otherwise, IV estimates a combination of MTE parameters
which we analyze further below.
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Assuming additive separability of the outcome equations,
another representation of E(Y|P(Z) = p) reveals the index
structure.

It writes (keeping the conditioning on X implicit) that

E(Y|P(Z) = p) = E (Y0) + ∆ATEp +

∫ p

0
E(U1 − U0|UD = uD)duD.

(21)

We can differentiate with respect to p and use LIV to identify
∆MTE:

∆MTE(p) = ∂E(Y | P(Z) = p)
∂p = ∆ATE + E(U1 − U0|UD = p).

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

Assuming additive separability of the outcome equations,
another representation of E(Y|P(Z) = p) reveals the index
structure.
It writes (keeping the conditioning on X implicit) that

E(Y|P(Z) = p) = E (Y0) + ∆ATEp +

∫ p

0
E(U1 − U0|UD = uD)duD.

(21)

We can differentiate with respect to p and use LIV to identify
∆MTE:

∆MTE(p) = ∂E(Y | P(Z) = p)
∂p = ∆ATE + E(U1 − U0|UD = p).

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

Assuming additive separability of the outcome equations,
another representation of E(Y|P(Z) = p) reveals the index
structure.
It writes (keeping the conditioning on X implicit) that

E(Y|P(Z) = p) = E (Y0) + ∆ATEp +

∫ p

0
E(U1 − U0|UD = uD)duD.

(21)

We can differentiate with respect to p and use LIV to identify
∆MTE:

∆MTE(p) = ∂E(Y | P(Z) = p)
∂p = ∆ATE + E(U1 − U0|UD = p).

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

Notice that IV estimates ∆ATE when E (Y | P(Z) = p) is a
linear function of p so the third term on the right hand side of
(21) vanishes.

Thus a test of the linearity of E(Y | P(Z) = p) in p is a test of
the validity of linear IV for ∆ATE, i.e., it is a test of whether or
not the data are consistent with a correlated random coefficient
model (β ̸⊥⊥ D).
The nonlinearity of E(Y | P(Z) = p) in p provides a way to
distinguish whether Case (C-1) or Case (C-2) describes the
data.
It is also a test of whether or not agents can at least partially
anticipate future unobserved (by the econometrician) gains (the
Y1 − Y0 given X ) at the time they make their participation
decisions.
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The levels and derivatives of E(Y | P(Z) = p) and standard
errors can be estimated using a variety of semiparametric
methods.

? present an algorithm for estimating ∆MTE using local linear
regression.
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This analysis generalizes to the nonseparable outcomes case.

We use separability in outcomes only to simplify the exposition
and link to more traditional models.
In particular, exactly the same expression holds with exactly the
same derivation for the nonseparable case if we replace U1 and
U0 with Y1 − E(Y1|X) and Y0 − E(Y0|X), respectively.
This simple test for the absence of general heterogeneity based
on linearity of E (Y | Z) in P (Z) applies to the case of LATE for
any pair of instruments.
An equivalent way is to check that all pairwise LATEs are the
same over the sample support of Z.
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same over the sample support of Z.
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Figure 3A plots two cases of E (Y | P(Z) = p) based on the
generalized Roy model used to generate the example in
figure 2A and 2B.

Recall that in this model, there are unobserved components of
cost.
When ∆MTE (= E (β | X = x,V = v)) does not depend on uD
(or v) the expectation is a straight line.
This is Case (C-1).
Figure 3B plots the derivatives of the two curves in figure 3A.
When ∆MTE depends on uD (or v) (Case (C-2)), people sort
into the program being studied positively on the basis of gains
from the program, and one obtains the curved line depicted in
figure 3A.
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Figure 3: A. Plot of the E(Y | P(Z) = p)
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B. Plot of the identified marginal treatment effect from figure 3A
(the derivative).
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Note: Parameters for the general heterogeneous case are the same as
those used in Figures 2A and 2B. For the homogeneous case we impose

U1 = U0 (σ1 = σ0 = 0.012).
Source: Heckman and Vytlacil (2005).
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What Does Linear IV Estimate?

It is instructive to determine what linear IV estimates when
∆ MTE is nonconstant and conditions (A-1)–(A-5) hold.

We analyze the general nonseparable case.
We consider instrumental variables conditional on X = x using
a general function of Z as an instrument.
We then specialize our result using P(Z) as the instrument.
As before, let J(Z) be any function of Z such that
Cov(J(Z),D) ̸= 0.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

What Does Linear IV Estimate?

It is instructive to determine what linear IV estimates when
∆ MTE is nonconstant and conditions (A-1)–(A-5) hold.
We analyze the general nonseparable case.

We consider instrumental variables conditional on X = x using
a general function of Z as an instrument.
We then specialize our result using P(Z) as the instrument.
As before, let J(Z) be any function of Z such that
Cov(J(Z),D) ̸= 0.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

What Does Linear IV Estimate?

It is instructive to determine what linear IV estimates when
∆ MTE is nonconstant and conditions (A-1)–(A-5) hold.
We analyze the general nonseparable case.
We consider instrumental variables conditional on X = x using
a general function of Z as an instrument.

We then specialize our result using P(Z) as the instrument.
As before, let J(Z) be any function of Z such that
Cov(J(Z),D) ̸= 0.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

What Does Linear IV Estimate?

It is instructive to determine what linear IV estimates when
∆ MTE is nonconstant and conditions (A-1)–(A-5) hold.
We analyze the general nonseparable case.
We consider instrumental variables conditional on X = x using
a general function of Z as an instrument.
We then specialize our result using P(Z) as the instrument.

As before, let J(Z) be any function of Z such that
Cov(J(Z),D) ̸= 0.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

What Does Linear IV Estimate?

It is instructive to determine what linear IV estimates when
∆ MTE is nonconstant and conditions (A-1)–(A-5) hold.
We analyze the general nonseparable case.
We consider instrumental variables conditional on X = x using
a general function of Z as an instrument.
We then specialize our result using P(Z) as the instrument.
As before, let J(Z) be any function of Z such that
Cov(J(Z),D) ̸= 0.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

Define the IV estimator:

βIV (J) ≡ Cov (J (Z) ,Y)
Cov (J (Z) ,D)

,

where to simplify the notation we keep the conditioning on X
implicit.

Appendix, Slide 1090, derives a representation of this
expression in terms of weighted averages of the MTE displayed
in table 2B.
We exposit this expression in this section.
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In Appendix, Slide 1090, we establish that:
Cov (J (Z) ,Y) (22)

=

∫ 1

0
∆MTE(uD)E(J(Z)− E(J(Z)) | P(Z) ≥ uD) Pr(P(Z) ≥ uD)duD.

By the law of iterated expectations,
Cov (J(Z),D) = Cov (J(Z),P(Z)).
Thus

βIV (J) =
∫ 1

0
∆MTE(uD)ωIV (uD | J) duD,

where

ωIV (uD | J) = E(J(Z)− E(J(Z)) | P(Z) ≥ uD) Pr(P(Z) ≥ uD)

Cov (J (Z) ,P (Z))
, (23)

assuming the standard rank condition (IV-2) holds:
Cov (J (Z) ,P (Z)) ̸= 0.
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The weights integrate to one,∫ 1

0
ωIV (uD | J) duD = 1,

and can be constructed from the data on P(Z), J(Z) and D.

Assumptions about the properties of the weights are testable.
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We discuss additional properties of the weights for the special
case where the propensity score is the instrument J(Z) = P(Z).

We then analyze the properties of the weights for a general
instrument J(Z).
When J (Z) = P (Z), equation (23) specializes to

ωIV (uD|P(Z))

=
[E(P(Z) | P(Z) ≥ uD)− E(P(Z))] Pr(P(Z) ≥ uD)

Var (P (Z)) .

Figure 4A plots the IV weight for J (Z) = P(Z) and the MTE
for our generalized Roy model example developed in figures 2
and 3 and table 3.
The weights are positive and peak at the mean of P.
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We discuss additional properties of the weights for the special
case where the propensity score is the instrument J(Z) = P(Z).
We then analyze the properties of the weights for a general
instrument J(Z).
When J (Z) = P (Z), equation (23) specializes to

ωIV (uD|P(Z))

=
[E(P(Z) | P(Z) ≥ uD)− E(P(Z))] Pr(P(Z) ≥ uD)

Var (P (Z)) .

Figure 4A plots the IV weight for J (Z) = P(Z) and the MTE
for our generalized Roy model example developed in figures 2
and 3 and table 3.
The weights are positive and peak at the mean of P.
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Figure 4: A. Marginal Treatment Effect vs Linear Instrumental Variables,
Ordinary Least Squares, and Policy Relevant Treatment Effect Weights: When
P (Z) is the Instrument

The Policy is Given at the Base of Table 3. The model parameters are given at the base of
Figure 2.
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B. Marginal Treatment Effect vs. Linear IV with Z as an Instrument, Linear IV
with P (Z (1+ t (1 [Z > 0]))) = P̃ (z, t) as an Instrument, and Policy Relevant
Treatment Effect Weights. For The Policy Defined at the Base of Table 3. The

model parameters are given at the base of Figure 2.
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C. Marginal Treatment Effect vs. IV Policy and Policy Relevant Treatment
Effect Weights For The Policy Defined at the Base of Table 3.
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Figure 4A also plots the OLS weight given in table 2 and the
weight for a policy exercise described below table 3 and
discussed further below.

Let pMin and pMax denote the minimum and maximum points in
the support of the distribution of P(Z) (conditional on X = x).
The weights on MTE when P(Z) is the instrument are
nonnegative for all evaluation points, are strictly positive for
uD ∈ (pMin, pMax) and are zero for uD < pMin and for uD > pMax.
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Figure 4A also plots the OLS weight given in table 2 and the
weight for a policy exercise described below table 3 and
discussed further below.
Let pMin and pMax denote the minimum and maximum points in
the support of the distribution of P(Z) (conditional on X = x).

The weights on MTE when P(Z) is the instrument are
nonnegative for all evaluation points, are strictly positive for
uD ∈ (pMin, pMax) and are zero for uD < pMin and for uD > pMax.
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Figure 4A also plots the OLS weight given in table 2 and the
weight for a policy exercise described below table 3 and
discussed further below.
Let pMin and pMax denote the minimum and maximum points in
the support of the distribution of P(Z) (conditional on X = x).
The weights on MTE when P(Z) is the instrument are
nonnegative for all evaluation points, are strictly positive for
uD ∈ (pMin, pMax) and are zero for uD < pMin and for uD > pMax.
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The properties of the weights for general J(Z) depend on the
conditional relationship between J(Z) and P(Z).

From the general expression for (23), it is clear that the IV
estimator with J(Z) as an instrument satisfies the following
properties:

(i) Two instruments J and J∗ weight MTE equally at all values of
uD if and only if they have the same (centered) conditional
expectation of J given P, i.e.,
E (J|P(Z) = p)− E(J) = E (J∗ | P(Z) = p)− E (J∗) for all p in
the support of the distribution of P(Z).
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The properties of the weights for general J(Z) depend on the
conditional relationship between J(Z) and P(Z).
From the general expression for (23), it is clear that the IV
estimator with J(Z) as an instrument satisfies the following
properties:
(i) Two instruments J and J∗ weight MTE equally at all values of

uD if and only if they have the same (centered) conditional
expectation of J given P, i.e.,
E (J|P(Z) = p)− E(J) = E (J∗ | P(Z) = p)− E (J∗) for all p in
the support of the distribution of P(Z).
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(ii) The support of ωIV(uD | J) is contained in [pMin, pMax] the
minimum and maximum value of p in the population (given x).
Therefore ωIV (t | J) = 0 for t < pMin and for t > pMax. Using
any instrument other than P(Z) leads to nonzero weights only
on a subset of [pMin, pMax], and using the propensity score as an
instrument leads to nonnegative weights on a larger range of
evaluation points than using any other instrument.
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(iii) ωIV(uD | J) is nonnegative for all uD if E(J | P(Z) ≥ p) is
weakly monotonic in p. Using J as an instrument yields
nonnegative weights on ∆MTE if E(J | P(Z) ≥ p) is weakly
monotonic in p. This condition is satisfied when J(Z) = P(Z).
More generally, if J is a monotonic function of P(Z), then using
J as the instrument will lead to nonnegative weights on ∆MTE.
There is no guarantee that the weights for a general J (Z) will
be nonnegative for all uD, although the weights integrate to
unity and thus must be positive over some range of evaluation
points. We produce examples below where the instrument leads
to negative weights for some evaluation points. ? assume that
J(Z) is monotonic in P(Z) and thus produce positive weights.
Our analysis is more general.
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The propensity score plays a central role in determining the
properties of the weights.

The IV weighting formula critically depends on the conditional
mean dependence between instrument J(Z) and the propensity
score.
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The propensity score plays a central role in determining the
properties of the weights.
The IV weighting formula critically depends on the conditional
mean dependence between instrument J(Z) and the propensity
score.
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The interpretation placed on the IV estimand depends on the
specification of P(Z) even if only Z1 (e.g., the first coordinate
of Z) is used as the instrument.

This drives home the point about the difference between IV in
the traditional model and IV in the more general model with
heterogeneous responses analyzed in this chapter.
In the traditional model, the choice of any valid instrument and
the specification of instruments in P(Z) not used to construct a
particular IV estimator does not affect the IV estimand.
In the more general model, these choices matter.
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The interpretation placed on the IV estimand depends on the
specification of P(Z) even if only Z1 (e.g., the first coordinate
of Z) is used as the instrument.
This drives home the point about the difference between IV in
the traditional model and IV in the more general model with
heterogeneous responses analyzed in this chapter.

In the traditional model, the choice of any valid instrument and
the specification of instruments in P(Z) not used to construct a
particular IV estimator does not affect the IV estimand.
In the more general model, these choices matter.
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The interpretation placed on the IV estimand depends on the
specification of P(Z) even if only Z1 (e.g., the first coordinate
of Z) is used as the instrument.
This drives home the point about the difference between IV in
the traditional model and IV in the more general model with
heterogeneous responses analyzed in this chapter.
In the traditional model, the choice of any valid instrument and
the specification of instruments in P(Z) not used to construct a
particular IV estimator does not affect the IV estimand.

In the more general model, these choices matter.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

The interpretation placed on the IV estimand depends on the
specification of P(Z) even if only Z1 (e.g., the first coordinate
of Z) is used as the instrument.
This drives home the point about the difference between IV in
the traditional model and IV in the more general model with
heterogeneous responses analyzed in this chapter.
In the traditional model, the choice of any valid instrument and
the specification of instruments in P(Z) not used to construct a
particular IV estimator does not affect the IV estimand.
In the more general model, these choices matter.
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Two economists, using the same J(Z) = Z1, will obtain the
same IV point estimate, but the interpretation placed on that
estimate will depend on the specification of the Z in P(Z) even
if P(Z) is not used as an instrument.

The weights can be positive for one instrument and negative
for another.
We show some examples after developing the properties of the
IV weights.
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same IV point estimate, but the interpretation placed on that
estimate will depend on the specification of the Z in P(Z) even
if P(Z) is not used as an instrument.
The weights can be positive for one instrument and negative
for another.

We show some examples after developing the properties of the
IV weights.
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Two economists, using the same J(Z) = Z1, will obtain the
same IV point estimate, but the interpretation placed on that
estimate will depend on the specification of the Z in P(Z) even
if P(Z) is not used as an instrument.
The weights can be positive for one instrument and negative
for another.
We show some examples after developing the properties of the
IV weights.
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Further properties of the IV Weights

Expression (23) for the weights does not impose any support
conditions on the distribution of P(Z), and thus does not
require either that P(Z) be continuous or discrete.

To demonstrate this, consider two extreme special cases: (i)
when P(Z) is a continuous random variable, and (ii) when P(Z)
is a discrete random variable.
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To simplify the exposition, initially assume that J(Z) and P(Z)
are jointly continuous random variables.

This assumption plays no essential role in any of the results of
this chapter and we develop the discrete case after developing
the continuous case.
The weights defined in equation (23) can be written as

ωIV (uD) =

∫
(j − E(J (Z)))

∫ 1
uD

fJ,P (j, t) dt dj
Cov (J (Z) ,D)

, (24)

where fJ,P is the joint density of J(Z) and P(Z) and we
implicitly condition on X.
The weights can be negative or positive.
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Observe that ω (0) = 0 and ω (1) = 0.

The weights integrate to 1 because as shown in Appendix,
Slide 1090,∫ ∫

(j − E (J(Z)))
∫ 1

uD

fJ,P (j, t) dt dj duD = Cov (J (Z) ,D) ,

so even if the weight is negative over some intervals, it must be
positive over other intervals.
Observe that when there is one instrument (Z is a scalar), and
assumptions (A-1)–(A-5) are satisfied, the weights are always
positive provided J (Z) is a monotonic function of the scalar Z.
In this case, which is covered by (23), but excluded in deriving
(24), J (Z) and P (Z) have the same distribution and fJ,P (j, t)
collapses to a univariate distribution.
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fJ,P (j, t) dt dj duD = Cov (J (Z) ,D) ,
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In this case, which is covered by (23), but excluded in deriving
(24), J (Z) and P (Z) have the same distribution and fJ,P (j, t)
collapses to a univariate distribution.
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The possibility of negative weights arises when J (Z) is not a
monotonic function of P (Z).

It also arises when there are two or more instruments, and the
analyst computes estimates with only one instrument or a
combination of the Z instruments that is not a monotonic
function of P (Z) so that J (Z) and P (Z) are not perfectly
dependent.
If the instrument is P (Z) (so J (Z) = P (Z)) then the weights
are everywhere non-negative because from (24),
E(P (Z) | P (Z) > uD)− E (P (Z)) ≥ 0.
In this case, the density of (P (Z) , J (Z)) collapses to the
density of P (Z).
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For any scalar Z, we can define J (Z) and P (Z) so that they are
perfectly dependent, provided that J (Z) and P (Z) are
monotonic in Z.

Generally, the weight (23) is positive if E (J (Z) | P (Z) > uD) is
weakly monotonic in uD.
Nonmonotonicity of this expression can produce negative
weights.
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Constructing the Weights from Data

Observe that the weights can be constructed from data on
(J,P,D).

Data on (J (Z) ,P (Z)) pairs and (J (Z) ,D) pairs (for each X
value) are all that is required.
We can use a smoothed sample frequency to estimate the joint
density fJ,P.
Thus, given our maintained assumptions, any property of the
weight, including its positivity at any point (x, uD) , can be
examined with data.
We present examples of this approach below.
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As is evident from tables 2A and 2B and figures 2A and 2B,
the weights on ∆MTE (uD) generating ∆IV are different from
the weights on ∆MTE (uD) that generate the average treatment
effect which is widely regarded as an important policy
parameter (see, e.g., ?) or from the weights associated with
the policy relevant treatment parameter which answers
well-posed policy questions (??).

It is not obvious why the weighted average of ∆MTE (uD)
produced by IV is of any economic interest.
Since the weights can be negative for some values of uD,
∆MTE (uD) can be positive everywhere in uD but IV can be
negative.
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Thus, IV may not estimate a treatment effect for any person.

We present some examples of IV models with negative weights
below.
A basic question is why estimate the model with IV at all given
the lack of any clear economic interpretation of the IV
estimator in the general case.
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Discrete Instruments

The representation (23) can be specialized to cover discrete
instruments, J (Z).

Consider the case where the distribution of P(Z) (conditional
on X) is discrete.
The support of the distribution of P(Z) contains a finite
number of values p1 < p2 < · · · < pK and the support of the
instrument J (Z) is also discrete taking I distinct values where I
and K may be distinct.
E(J(Z)|P(Z) ≥ uD) is constant in uD, for uD within any
(pℓ, pℓ+1) interval, and Pr(P(Z) ≥ uD) is constant in uD, for uD
within any (pℓ, pℓ+1) interval, and thus ωJ

IV(uD) is constant in
uD over any (pℓ, pℓ+1) interval.
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Let λℓ denote the weight on LATE for the interval (ℓ, ℓ+ 1).

In this notation,

∆IV
J =

∫
E(Y1 − Y0|UD = uD)ω

J
IV(uD)duD

=
K−1∑
ℓ=1

λℓ

∫ pℓ+1

pℓ

E(Y1 − Y0|UD = uD)
1

(pℓ+1 − pℓ)
duD

=
K−1∑
ℓ=1

∆LATE(pℓ, pℓ+1)λℓ. (25)

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

Let λℓ denote the weight on LATE for the interval (ℓ, ℓ+ 1).
In this notation,

∆IV
J =

∫
E(Y1 − Y0|UD = uD)ω

J
IV(uD)duD

=
K−1∑
ℓ=1

λℓ

∫ pℓ+1

pℓ

E(Y1 − Y0|UD = uD)
1

(pℓ+1 − pℓ)
duD

=
K−1∑
ℓ=1

∆LATE(pℓ, pℓ+1)λℓ. (25)

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

Let ji be the ith smallest value of the support of J(Z).

The discrete version of equation (23) is

λℓ =

I∑
i=1

(ji − E (J(Z)))
K∑

t>ℓ

(f (ji, pt))

Cov (J (Z) ,D)
(pℓ+1 − pℓ) (26)

where f is the probability frequency of (ji, pt): the probability
that J (Z) = ji and P (Z) = pt.
There is no presumption that high values of J(Z) are associated
with high values of P(Z).
J(Z) can be one coordinate of Z that may be positively or
negatively dependent on P(Z), which depends on the full
vector.
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In the case of scalar Z, as long as J(Z) and P(Z) are monotonic
in Z there is perfect dependence between J(Z) and P(Z).

In this case, the joint probability density collapses to a
univariate density and the weights have to be positive, exactly
as in the case for continuous instruments previously discussed.
Our expression for the weight on LATE generalizes the
expression presented by ? who in their analysis of the case of
vector Z only consider the case where J(Z) and P(Z) are
perfectly dependent because J(Z) is a monotonic function of
P(Z).
More generally, the weights can be positive or negative for any
ℓ but they must sum to 1 over all ℓ.
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Monotonicity or uniformity is a property needed with just two
values of Z, Z = z1 and Z = z2, to guarantee that IV estimates
a treatment effect.

With more than two values of Z, we need to weight the LATEs
and MTEs.
If the instrument J(Z) shifts P(Z) in the same way for
everyone, it shifts D in the same way for everyone since
D = 1 [P (Z) ≥ UD] and Z is independent of UD.
If J(Z) is not monotonic in P(Z), it may shift P(Z) in different
ways for different people.
Negative weights are a tip-off of two-way flows.
We present examples below.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

Monotonicity or uniformity is a property needed with just two
values of Z, Z = z1 and Z = z2, to guarantee that IV estimates
a treatment effect.
With more than two values of Z, we need to weight the LATEs
and MTEs.

If the instrument J(Z) shifts P(Z) in the same way for
everyone, it shifts D in the same way for everyone since
D = 1 [P (Z) ≥ UD] and Z is independent of UD.
If J(Z) is not monotonic in P(Z), it may shift P(Z) in different
ways for different people.
Negative weights are a tip-off of two-way flows.
We present examples below.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

Monotonicity or uniformity is a property needed with just two
values of Z, Z = z1 and Z = z2, to guarantee that IV estimates
a treatment effect.
With more than two values of Z, we need to weight the LATEs
and MTEs.
If the instrument J(Z) shifts P(Z) in the same way for
everyone, it shifts D in the same way for everyone since
D = 1 [P (Z) ≥ UD] and Z is independent of UD.

If J(Z) is not monotonic in P(Z), it may shift P(Z) in different
ways for different people.
Negative weights are a tip-off of two-way flows.
We present examples below.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

Monotonicity or uniformity is a property needed with just two
values of Z, Z = z1 and Z = z2, to guarantee that IV estimates
a treatment effect.
With more than two values of Z, we need to weight the LATEs
and MTEs.
If the instrument J(Z) shifts P(Z) in the same way for
everyone, it shifts D in the same way for everyone since
D = 1 [P (Z) ≥ UD] and Z is independent of UD.
If J(Z) is not monotonic in P(Z), it may shift P(Z) in different
ways for different people.

Negative weights are a tip-off of two-way flows.
We present examples below.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

Monotonicity or uniformity is a property needed with just two
values of Z, Z = z1 and Z = z2, to guarantee that IV estimates
a treatment effect.
With more than two values of Z, we need to weight the LATEs
and MTEs.
If the instrument J(Z) shifts P(Z) in the same way for
everyone, it shifts D in the same way for everyone since
D = 1 [P (Z) ≥ UD] and Z is independent of UD.
If J(Z) is not monotonic in P(Z), it may shift P(Z) in different
ways for different people.
Negative weights are a tip-off of two-way flows.

We present examples below.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

Monotonicity or uniformity is a property needed with just two
values of Z, Z = z1 and Z = z2, to guarantee that IV estimates
a treatment effect.
With more than two values of Z, we need to weight the LATEs
and MTEs.
If the instrument J(Z) shifts P(Z) in the same way for
everyone, it shifts D in the same way for everyone since
D = 1 [P (Z) ≥ UD] and Z is independent of UD.
If J(Z) is not monotonic in P(Z), it may shift P(Z) in different
ways for different people.
Negative weights are a tip-off of two-way flows.
We present examples below.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

Identifying Margins of Choice Associated With Each Instrument and
Unifying Diverse Instruments Within a Common Framework

We have just established that different instruments weight the
MTE differently.

Using P(Z) in the local IV estimator, we can identify the MTE.
We can construct the weights associated with each instrument
from the joint distribution of (J(Z),P(Z)) given X.
By plotting the weights for each instrument, we can determine
the margins identified by the different instruments.
Using P(Z) as the instrument enables us to extend the support
associated with any single instrument, and to determine which
segment of the MTE is identified by any particular instrument.
As before, we keep conditioning on X implicit.
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Yitzhaki’s Derivation of the Weights

An alternative and in some ways more illuminating way to
derive the weights used in IV is to follow ?? and ? who prove
for a general regression function E (Y | P (Z) = p) that a linear
regression of Y on P estimates

βY,P =

∫ 1

0

[
∂E (Y | P (Z) = p)

∂p

]
ω (p) dp,

where

ω (p) =
∫ 1

p (t − E (P)) dFP (t)
Var (P) ,

which is exactly the weight (23) when P is the instrument.
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Thus we can interpret (23) as the weight on ∂E(Y|P(Z)=p)
∂p when

two-stage least squares (2SLS) based on P (Z) is used to
estimate the “causal effect” of D on Y.

Under uniformity,

∂E (Y | P (Z) = p)
∂p

∣∣∣∣
p=uD

= E (Y1 − Y0 | UD = uD)

= ∆MTE (uD) .
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Our analysis is more general than that of ? or ? because we
allow for instruments that are not monotonic functions of
P (Z), whereas the Yitzhaki weighting formula only applies to
instruments that are monotonic functions of P(Z).

The analysis of ? is more general than that of ?, because he
does not impose uniformity (monotonicity).

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

Our analysis is more general than that of ? or ? because we
allow for instruments that are not monotonic functions of
P (Z), whereas the Yitzhaki weighting formula only applies to
instruments that are monotonic functions of P(Z).
The analysis of ? is more general than that of ?, because he
does not impose uniformity (monotonicity).

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

We present some further examples of these weights after
discussing the role of P(Z) and the role of monotonicity and
uniformity.

We present Yitzhaki’s Theorem and the relationship of our
analysis to Yitzhaki’s analysis in Appendices, Slides 1098 and
1104.
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We present Yitzhaki’s Theorem and the relationship of our
analysis to Yitzhaki’s analysis in Appendices, Slides 1098 and
1104.
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The Central Role of the Propensity Score

Observe that both (23) and (24) (and their counterparts for
LATE (25) and (26)) contain expressions involving the
propensity score P(Z), the probability of selection into
treatment.

Under our assumptions, it is a monotonic function of the mean
utility of treatment, µD (Z).
The propensity score plays a central role in selection models as
a determinant of control functions in selection models (see ??)
as noted in Slide 184.
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In matching models, it provides a computationally convenient
way to condition on Z (see, e.g., ??, and the discussion in
Slide 675).

For the IV weight to be correctly constructed and interpreted,
we need to know the correct model for P (Z), i.e., we need to
know exactly which Z determine P (Z).
As previously noted, this feature is not required in the
traditional model for instrumental variables based on response
heterogeneity.
In that simpler framework, any instrument will identify
µ1(X)− µ0 (X) and the choice of a particular instrument affects
efficiency but not identifiability.
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One can be casual about the choice model in the traditional
setup, but not in the model of choice of treatment with
essential heterogeneity.

Thus, unlike the application of IV to traditional models under
condition (C-1), IV applied in the model of essential
heterogeneity depends on (a) the choice of the instrument
J (Z), (b) its dependence with P (Z) , the true propensity score
or choice probability and (c) the specification of the propensity
score (i.e., what variables go into Z).
Using the propensity score one can identify LIV and LATE and
the marginal returns at values of the unobserved UD.
From the MTE identified by P(Z) and the weights that can be
constructed from the joint distribution of (J(Z),P(Z)) given X,
we can identify the segment of the MTE identified by any IV.
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Monotonicity, Uniformity and Conditional Instruments

Monotonicity, or uniformity condition (IV-3), is a condition on
a collection of counterfactuals for each person and hence is not
testable, since we know only one element of the collection for
any person.

It rules out general heterogeneous responses to treatment
choices in response to changes in vector Z.
The recent literature on instrumental variables with
heterogeneous responses is thus asymmetric.
Outcome equations can be heterogeneous in a general way
while choice equations cannot be.
If µD (Z) = Zγ, where γ is a common coefficient shared by
everyone, the choice model satisfies the uniformity property.
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On the other hand, if γ is a random coefficient (i.e., has a
nondegenerate distribution) that can take both negative and
positive values, and there are two or more variables in Z with
nondegenerate γ coefficients, uniformity can be violated.

Different people can respond to changes in Z differently, so
there can be non-uniformity.
The uniformity condition can be violated even when all
components of γ are of the same sign if Z is a vector and γ is a
nondegenerate random variable.
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Changing one coordinate of Z, holding the other coordinates at
different values across people is not the experiment that defines
monotonicity or uniformity.

Changing one component of Z, allowing the other coordinates
of Z to vary across people, does not necessarily produce uniform
flows toward or against participation in the treatment status.
For example, let µD (z) = γ0 + γ1z1 + γ2z2 + γ3z1z2, where γ0,
γ1, γ2 and γ3 are constants, and consider changing z1 from a
common base state while holding z2 fixed at different values
across people.
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If γ3 < 0, then µD (z) does not necessarily satisfy the
uniformity condition.

If we move (z1, z2) as a pair from the same base values to the
same destination values z′, uniformity is satisfied even if
γ3 < 0, although µD (z) is not a monotonic function of z.
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Positive weights and uniformity are distinct issues.

Under uniformity, and assumptions (A-1)–(A-5), the weights on
MTE for any particular instrument may be positive or negative.
The weights for MTE using P (Z) must be positive as we have
shown so the propensity score has a special status as an
instrument.
Negative weights associated with the use of J (Z) as an
instrument do not necessarily imply failure of uniformity in Z.
Even if uniformity is satisfied for Z, it is not necessarily satisfied
for J (Z).
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instrument.
Negative weights associated with the use of J (Z) as an
instrument do not necessarily imply failure of uniformity in Z.

Even if uniformity is satisfied for Z, it is not necessarily satisfied
for J (Z).
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Condition (IV-3) is an assumption about a vector.

Fixing one combination of Z (when J is a function of Z) or one
coordinate of Z does not guarantee uniformity in J even if there
is uniformity in Z.
The flow created by changing one coordinate of Z can be
reversed by the flow created by the other components of Z if
there is negative dependence among components even if ceteris
paribus all components of Z affect D in the same direction.
We present some examples below.
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The issues of positive weights and the existence of one way
flows in response to an intervention are conceptually distinct.

Even with two values for a scalar Z, flows may be two way (see
equation (15)).
If we satisfy (IV-3) for a vector, so uniformity applies, weights
for a particular instrument may be negative for certain intervals
of UD (i.e., for some of the LATE parameters).
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If we condition on Z2 = z2, . . . ,ZK = zK using Z1 as an
instrument, then a uniform flow condition is satisfied.

We call this conditional uniformity.
By conditioning, we effectively convert the problem back to
that of a scalar instrument where the weights must be positive.
If uniformity holds for Z1, fixing the other Z at common values,
then one dimensional LATE/MTE analysis applies.
Clearly, the weights have to be defined conditionally.
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The concept of conditioning on other instruments to produce
positive weights for the selected instrument is a new idea, not
yet appreciated in the empirical IV literature and has no
counterpart in the traditional IV model.

In the conventional model, the choice of a valid instrument
affects efficiency but not the definition of the parameters as it
does in the more general case.
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In summary, nothing in the economics of choice guarantees
that if Z is changed from z to z′, that people respond in the
same direction to the change.

See the general expression (15).
The condition that people respond to choices in the same
direction for the same change in Z does not imply that D(z) is
monotonic in z for any person in the usual mathematical usage
of the term monotonicity.
If D(z) is monotonic in the usual usage of this term and
responses are in the same direction for all people, then
“monotonicity” or better “uniformity” condition (IV-3) would
be satisfied.
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If responses to a common change of Z are heterogenous in a
general way, we obtain (15) as the general case.

Vytlacil’s ? Theorem breaks down and IV cannot be expressed
in terms of a weighted average of MTE terms.
Nonetheless, Yitzhaki’s characterization of IV, derived in
Appendix, Slide 1090, remains valid and the weights on
∂E(Y|P=p)

∂p are positive and of the same form as the weights
obtained for MTE (or LATE) when the monotonicity condition
holds.
IV can still be written as a weighted average of LIV terms, even
though LIV does not identify the MTE.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

If responses to a common change of Z are heterogenous in a
general way, we obtain (15) as the general case.
Vytlacil’s ? Theorem breaks down and IV cannot be expressed
in terms of a weighted average of MTE terms.

Nonetheless, Yitzhaki’s characterization of IV, derived in
Appendix, Slide 1090, remains valid and the weights on
∂E(Y|P=p)

∂p are positive and of the same form as the weights
obtained for MTE (or LATE) when the monotonicity condition
holds.
IV can still be written as a weighted average of LIV terms, even
though LIV does not identify the MTE.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

If responses to a common change of Z are heterogenous in a
general way, we obtain (15) as the general case.
Vytlacil’s ? Theorem breaks down and IV cannot be expressed
in terms of a weighted average of MTE terms.
Nonetheless, Yitzhaki’s characterization of IV, derived in
Appendix, Slide 1090, remains valid and the weights on
∂E(Y|P=p)

∂p are positive and of the same form as the weights
obtained for MTE (or LATE) when the monotonicity condition
holds.

IV can still be written as a weighted average of LIV terms, even
though LIV does not identify the MTE.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

If responses to a common change of Z are heterogenous in a
general way, we obtain (15) as the general case.
Vytlacil’s ? Theorem breaks down and IV cannot be expressed
in terms of a weighted average of MTE terms.
Nonetheless, Yitzhaki’s characterization of IV, derived in
Appendix, Slide 1090, remains valid and the weights on
∂E(Y|P=p)

∂p are positive and of the same form as the weights
obtained for MTE (or LATE) when the monotonicity condition
holds.
IV can still be written as a weighted average of LIV terms, even
though LIV does not identify the MTE.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

Treatment Effects vs. Policy Effects

Even if uniformity condition (IV-3) fails, IV may answer
relevant policy questions.

By Yitzhaki’s analysis, summarized in Slide 250, IV or 2SLS
estimates a weighted average of marginal responses which may
be pointwise positive or negative.
Policies may induce some people to switch into and others to
switch out of choices, as is evident from equation (15).
These net effects are of interest in many policy analyses.
Thus, subsidized housing in a region supported by higher taxes
may attract some to migrate to the region and cause others to
leave.
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The net effect from the policy is all that is required to perform
cost benefit calculations of the policy on outcomes.

If the housing subsidy is the instrument, and the net effect of
the subsidy is the parameter of interest, the issue of
monotonicity is a red herring.
If the subsidy is exogenously imposed, IV estimates the net
effect of the policy on mean outcomes.
Only if the effect of migration on outcomes induced by the
subsidy on outcomes is the question of interest, and not the
effect of the subsidy, does uniformity emerge as an interesting
condition.
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Some Examples of Weights in the Generalized Roy Model and the
Extended Roy Model

It is useful to develop intuition about the properties of the IV
estimator and the structure of the weights for two prototypical
choice models.

We develop the weights for a generalized Roy model where
unobserved cost components are present and an extended Roy
model where cost components are observed but there are no
unobserved cost components.
The extended Roy model is used to generate figure 1 and was
introduced at the end of Slide 12.
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Table 3 presents the IV estimand for the generalized Roy model
used to generate figures 2A and 2B using P (Z) as the
instrument.

The model generating D = 1 [Zγ ≥ V] is given at the base of
figure 2B (Z is a scalar, γ is 1, V is normal, UD = Φ

(
V
σV

)
).

We compare the IV estimand with the policy relevant treatment
effect for a policy precisely defined at the base of table 3.
This policy has the structure that if Z > 0, persons get a bonus
Zt for participation in the program, where t > 0.
The decision rule for program participation for Z > 0 is
D = 1 [Z(1 + t) ≥ V].
People are not forced into participation in the program but are
rather induced into it by the bonus.
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Given the assumed distribution of Z, and the other parameters
of the model, we obtain the policy relevant treatment
parameter weight ωPRTE(uD) as plotted in figures 4A–4C (the
scales of the ordinates differ across the graphs, but the weight
is the same).

We use the per capita PRTE and consider three instruments.
Table 5 presents estimands for the three instruments shown in
the table for the generalized Roy model in three environments.
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Given the assumed distribution of Z, and the other parameters
of the model, we obtain the policy relevant treatment
parameter weight ωPRTE(uD) as plotted in figures 4A–4C (the
scales of the ordinates differ across the graphs, but the weight
is the same).
We use the per capita PRTE and consider three instruments.
Table 5 presents estimands for the three instruments shown in
the table for the generalized Roy model in three environments.
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Table 5: Linear instrumental variable estimands and the policy relevant
treatment effect
Using Propensity Score P(Z) as the Instrument 0.2013

Using Propensity Score P (Z (1+ t (1 [Z > 0]))) as the Instrument 0.1859

Using a dummy B as an Instrumenta 0.1549

Policy Relevant Treatment Effect (PRTE) 0.1549
aThe dummy B is such that B = 1 if an individual belongs to
a randomly assigned eligible population, 0 otherwise.

Source: Heckman and Vytlacil (2005)
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The first instrument we consider for this example is P(Z),
which assumes that there is no policy in place (t = 0).

It is identified (estimated) on a sample with no policy in place
but otherwise the model is the same as the one with the policy
in place.
The weight on this instrument is plotted in figure 4A.
That figure also displays the OLS weight as well as the MTE
that is being weighted to generate the estimate.
It also shows the weight used to generate PRTE.
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The first instrument we consider for this example is P(Z),
which assumes that there is no policy in place (t = 0).
It is identified (estimated) on a sample with no policy in place
but otherwise the model is the same as the one with the policy
in place.
The weight on this instrument is plotted in figure 4A.

That figure also displays the OLS weight as well as the MTE
that is being weighted to generate the estimate.
It also shows the weight used to generate PRTE.
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The first instrument we consider for this example is P(Z),
which assumes that there is no policy in place (t = 0).
It is identified (estimated) on a sample with no policy in place
but otherwise the model is the same as the one with the policy
in place.
The weight on this instrument is plotted in figure 4A.
That figure also displays the OLS weight as well as the MTE
that is being weighted to generate the estimate.

It also shows the weight used to generate PRTE.
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It also shows the weight used to generate PRTE.
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The IV weights for P(Z) and the weights for ∆PRTE differ.

This is as it should be because ∆PRTE is making a comparison
across regimes but the IV in this case makes comparisons
within a no policy regime.
Given the shape of ∆MTE(uD), it is not surprising that the
estimand for IV based on P(Z) is so much above the ∆PRTE

which weights a lower-valued segment of ∆MTE(uD) more
heavily.
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The second instrument we consider exploits the variation
induced by the policy in place and fits it on samples where the
policy is in place (i.e., the t is the same as that used to
generate the PRTE).

On intuitive grounds, this instrument might be thought to work
well in identifying the PRTE, but in fact it does not.
The instrument is P̃(Z, t) = P(Z(1 + t1 [Z > 0])) which jumps
in value when Z switches from Z < 0 to Z > 0.
This is the choice probability in the regime with the policy in
place.
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This is the choice probability in the regime with the policy in
place.
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Figure 4B plots the weight for this IV along with the weight for
P(Z) as an IV and the weight for PRTE (repeated from
figure 4A).

While this weight looks a bit more like the weight for ∆PRTE

than the previous instrument, it is clearly different.
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Figure 4C plots the weight for an ideal instrument for PRTE: a
randomization of eligibility.

This compares the outcomes in one population where the
policy is in place with outcomes in a regime where the policy is
not in place.
Thus we use an instrument B such that

B =

{
1 if a person is eligible to participate in the program
0 otherwise.
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Persons for whom B = 1, make their participation choices under
the policy with a jump in Z, t1(Z > 0), in their choice sets.

If B = 0, persons are embargoed from the policy and cannot
receive a bonus.
The B = 0 case is a prepolicy regime.
We assume Pr[B = 1 | Y0,Y1,V,Z] = Pr[B = 1] = 0.5, so all
persons are equally likely to receive or not receive eligibility for
the bonus and assignment does not depend on model
unobservables in the outcome equation.
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The Wald estimator in this case is
E(Y | B = 1)− E(Y | B = 0)

Pr(D = 1 | B = 1)− Pr(D = 1 | B = 0) .

The IV weight for this estimator is a special case of equation
(23):

ωIV (uD | B) =
E
(

B − E(B) | P̂(Z) ≥ uD

)
Pr
(

P̂(Z) ≥ uD

)
Cov

(
B, P̂(Z)

) ,

where P̂(Z) = P (Z (1 + t1[Z > 0]))B P(Z)(1−B).

Here, the IV is eligibility for a policy and IV is equivalent to a
social experiment that identifies the mean gain per participant
who switches to participation in the program.
It is to be expected that this IV weight and ωPRTE are identical.
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Further Examples within the Extended Roy Model

To gain a further understanding of how to construct the
weights, and to understand how negative weights can arise, it is
useful to return to the policy adoption model presented at the
end of Slide 12.

The only unobservables in this model are in the outcome
equations.
To simplify the analysis, we use an extended Roy model where
the only unobservables are the unmeasured gains.
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In this framework, the cost C of adopting the policy is the same
across all countries.

Countries choose to adopt the policy if D∗ > 0 where D∗ is the
net benefit of adoption: D∗ = (Y1 − Y0 − C) and
ATE= E (β) = E (Y1 − Y0) = µ1 − µ0, while treatment on the
treated is E (β | D = 1) = E (Y1 − Y0 | D = 1) =
µ1 − µ0 + E (U1 − U0 | D = 1).
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In this setting, the gross return to the country at the margin is
C, i.e.,
E (Y1 − Y0 | D∗ = 0) = E (Y1 − Y0 | Y1 − Y0 = C) = C.

Recall that figure 1 presents the standard treatment parameters
for the values of the choice parameter presented at the base of
the figure.
Countries that adopt the policy are above average.
In a model where the cost varies (the generalized Roy model
with UC ̸= 0), and C is negatively correlated with the gain,
adopting countries could be below average.
We consider cases with discrete instruments and cases with
continuous instruments.
We first turn to the discrete case.
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Discrete Instruments and Weights for LATE

Consider what instrumental variables identify in the model of
country policy adoption presented below figure 5.

That figure presents three cases that we analyze in this section.
Let cost C = Zγ where instrument Z = (Z1,Z2).
Higher values of Z reduce the probability of adopting the policy
if γ ≥ 0, component by component.
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Figure 5: Monotonicity: the extended Roy economy
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B. Changing Z1 without Controlling for Z2
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Outcomes Choice Model

Y1 = α + β̄ + U1 D =

{
1 if Y1 − Y0 − γZ ≥ 0
0 if Y1 − Y0 − γZ < 0

Y0 = α + U0 with γZ = γ1Z1 + γ2Z2

Parameterization

(U1, U0) ∼ N (0, �) , � =
[

1 −0.9
−0.9 1

]
, α = 0.67, β̄ = 0.2, γ = (0.5, 0.5) (except in Case C)

Z1 = {−1, 0, 1} and Z2 = {−1, 0, 1}
A. Standard Case B. Changing Z1 without Controlling for Z2 C. Random Coefficient Case

z −→ z′ z −→ z′ or z −→ z′′ z −→ z′
z = (0, 1) and z′ = (1, 1) z = (0, 1), z′ = (1, 1) and z′′ = (1,−1) z = (0, 1) and z′ = (1, 1)

γ is a random vector
γ̃ = (0.5, 0.5) and ˜̃γ = (−0.5, 0.5)

where γ̃ and ˜̃γ are two realizations of γ

D(γz) ≥ D(γz′) D(γz) ≥ D(γz′) or D(γz) < D(γz′′) D
(˜̃γz

)
≥ D

(˜̃γz′
)

and D (γ̃z) < D
(
γ̃z′

)
For all individuals Depending on the value of z′ or z′′ Depending on value of γ

Source: ?

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .... .. .. .. .
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Consider the “standard” case depicted in figure 5A.

Increasing both components of discrete-valued Z raises costs
and hence raises the benefit observed for the country at the
margin by eliminating adoption in low return countries.
It also reduces the probability that countries adopt the policy.
In general a different country is at the margin when different
instruments are used.

Heckman and Vytlacil Using the Marginal Treatment Effect
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Consider the “standard” case depicted in figure 5A.
Increasing both components of discrete-valued Z raises costs
and hence raises the benefit observed for the country at the
margin by eliminating adoption in low return countries.

It also reduces the probability that countries adopt the policy.
In general a different country is at the margin when different
instruments are used.

Heckman and Vytlacil Using the Marginal Treatment Effect
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Consider the “standard” case depicted in figure 5A.
Increasing both components of discrete-valued Z raises costs
and hence raises the benefit observed for the country at the
margin by eliminating adoption in low return countries.
It also reduces the probability that countries adopt the policy.

In general a different country is at the margin when different
instruments are used.

Heckman and Vytlacil Using the Marginal Treatment Effect
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Consider the “standard” case depicted in figure 5A.
Increasing both components of discrete-valued Z raises costs
and hence raises the benefit observed for the country at the
margin by eliminating adoption in low return countries.
It also reduces the probability that countries adopt the policy.
In general a different country is at the margin when different
instruments are used.

Heckman and Vytlacil Using the Marginal Treatment Effect
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Figure 6A plots the weights and figure 6B plots the
components of the weights for the LATE values using P (Z) as
an instrument for the distribution of discrete Z values shown at
the base of the figure.

Figure 6C presents the LATE parameter derived using P (Z) as
an instrument.
The weights are positive as predicted from equation (15) when
J (Z) = P (Z).
Thus, the monotonicity condition for the weights in terms of
uD is satisfied.

Heckman and Vytlacil Using the Marginal Treatment Effect
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Figure 6A plots the weights and figure 6B plots the
components of the weights for the LATE values using P (Z) as
an instrument for the distribution of discrete Z values shown at
the base of the figure.
Figure 6C presents the LATE parameter derived using P (Z) as
an instrument.

The weights are positive as predicted from equation (15) when
J (Z) = P (Z).
Thus, the monotonicity condition for the weights in terms of
uD is satisfied.

Heckman and Vytlacil Using the Marginal Treatment Effect
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Figure 6A plots the weights and figure 6B plots the
components of the weights for the LATE values using P (Z) as
an instrument for the distribution of discrete Z values shown at
the base of the figure.
Figure 6C presents the LATE parameter derived using P (Z) as
an instrument.
The weights are positive as predicted from equation (15) when
J (Z) = P (Z).

Thus, the monotonicity condition for the weights in terms of
uD is satisfied.
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Figure 6A plots the weights and figure 6B plots the
components of the weights for the LATE values using P (Z) as
an instrument for the distribution of discrete Z values shown at
the base of the figure.
Figure 6C presents the LATE parameter derived using P (Z) as
an instrument.
The weights are positive as predicted from equation (15) when
J (Z) = P (Z).
Thus, the monotonicity condition for the weights in terms of
uD is satisfied.

Heckman and Vytlacil Using the Marginal Treatment Effect



Figure 6: IV Weight and Its Components under Discrete Instruments
when P (Z) is the Instrument: The Extended Roy Economy

A. IV Weights
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B. E(P(Z)|P(Z) > pℓ) and E(P(Z))

0

0.2

0.4

0.6

0.8

1

E(P(Z)|P(Z)>p
1
) E(P(Z)|P(Z)>p

2
)E(P(Z)|P(Z)>p

3
)E(P(Z)|P(Z)>p

4
)

E(P(Z))=0.5663

-0.2

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .... .. .. .. .



C. Local Average Treatment Effects

∆
LATE

0.340,0.438
∆ LATE

0.438,0.540

∆
LATE

0.540,0.640
∆

LATE

0.640,0.730

0.8

0.6

0.4

 0.2

0

-0.2

-0.4

-0.6

-0.8

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .... .. .. .. .



The model is the same as the one presented below Figure 5.

ATE = 0.2, TT = 0.5942, TUT = −0.4823 and ∆IV
P(Z) =

K−1∑
ℓ=1

∆LATE (
pℓ, pℓ+1

)
λℓ = −0.09

∆LATE (
pℓ, pℓ+1

)
=

E
(
Y|P(Z) = pℓ+1

)
− E (Y|P(Z) = pℓ)

pℓ+1 − pℓ

=
β
(
pℓ+1 − pℓ

)
+ σU1−U0

(
ϕ
(
Φ−1 (

1 − pℓ+1
))

− ϕ
(
Φ−1 (1 − pℓ)

))
pℓ+1 − pℓ

λℓ =
(
pℓ+1 − pℓ

) K∑
i=1

(pi − E (P (Z)))
K∑

t>ℓ
f (pi, pt)

Cov (Z1, D)
=

(
pℓ+1 − pℓ

) K∑
t>ℓ

(pt − E (P (Z))) f (pt)

Cov (Z1, D)

Joint Probability Distribution of (Z1, Z2) and the Propensity Score
(joint probabilities in ordinary type (Pr(Z1 = z1, Z2 = z2)); propensity score in italics (Pr (D = 1|Z1 = z1, Z2 = z2)))

Z1\Z2 −1 0 1
−1 0.02 0.02 0.36

0.7309 0.6402 0.5409
0 0.3 0.01 0.03

0.6402 0.5409 0.4388
1 0.2 0.05 0.01

0.5409 0.4388 0.3408
Cov(Z1, Z2) = −0.5468

Source: ?

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .... .. .. .. .
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The outcome and choice parameters are the same as those
used to generate figures 1 and 5.

The LATE parameters for each interval of P values are
presented in a table just below the figures.
There are four LATE parameters corresponding to the five
distinct values of the propensity score for that value.
The LATE parameters exhibit the declining pattern with uD
predicted by the Roy model.

Heckman and Vytlacil Using the Marginal Treatment Effect
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The outcome and choice parameters are the same as those
used to generate figures 1 and 5.
The LATE parameters for each interval of P values are
presented in a table just below the figures.

There are four LATE parameters corresponding to the five
distinct values of the propensity score for that value.
The LATE parameters exhibit the declining pattern with uD
predicted by the Roy model.

Heckman and Vytlacil Using the Marginal Treatment Effect
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The outcome and choice parameters are the same as those
used to generate figures 1 and 5.
The LATE parameters for each interval of P values are
presented in a table just below the figures.
There are four LATE parameters corresponding to the five
distinct values of the propensity score for that value.

The LATE parameters exhibit the declining pattern with uD
predicted by the Roy model.

Heckman and Vytlacil Using the Marginal Treatment Effect
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The outcome and choice parameters are the same as those
used to generate figures 1 and 5.
The LATE parameters for each interval of P values are
presented in a table just below the figures.
There are four LATE parameters corresponding to the five
distinct values of the propensity score for that value.
The LATE parameters exhibit the declining pattern with uD
predicted by the Roy model.

Heckman and Vytlacil Using the Marginal Treatment Effect
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A case producing negative weights is depicted in figure 5 B.

In that graph, the same Z is used to generate the choices as is
used to generate figure 1B.
However, in this case, the analyst uses Z1 as the instrument.
Z1 and Z2 are negatively dependent and E(Z1 | P(Z) > uD) is
not monotonic in uD.
This nonmonotonicity is evident in figure 7B.
It produces the pattern of negative weights shown in figure 7A.
These are associated with two way flows.
Increasing Z1 controlling for Z2 reduces the probability of
country policy adoption.

Heckman and Vytlacil Using the Marginal Treatment Effect
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A case producing negative weights is depicted in figure 5 B.
In that graph, the same Z is used to generate the choices as is
used to generate figure 1B.

However, in this case, the analyst uses Z1 as the instrument.
Z1 and Z2 are negatively dependent and E(Z1 | P(Z) > uD) is
not monotonic in uD.
This nonmonotonicity is evident in figure 7B.
It produces the pattern of negative weights shown in figure 7A.
These are associated with two way flows.
Increasing Z1 controlling for Z2 reduces the probability of
country policy adoption.
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A case producing negative weights is depicted in figure 5 B.
In that graph, the same Z is used to generate the choices as is
used to generate figure 1B.
However, in this case, the analyst uses Z1 as the instrument.

Z1 and Z2 are negatively dependent and E(Z1 | P(Z) > uD) is
not monotonic in uD.
This nonmonotonicity is evident in figure 7B.
It produces the pattern of negative weights shown in figure 7A.
These are associated with two way flows.
Increasing Z1 controlling for Z2 reduces the probability of
country policy adoption.
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A case producing negative weights is depicted in figure 5 B.
In that graph, the same Z is used to generate the choices as is
used to generate figure 1B.
However, in this case, the analyst uses Z1 as the instrument.
Z1 and Z2 are negatively dependent and E(Z1 | P(Z) > uD) is
not monotonic in uD.

This nonmonotonicity is evident in figure 7B.
It produces the pattern of negative weights shown in figure 7A.
These are associated with two way flows.
Increasing Z1 controlling for Z2 reduces the probability of
country policy adoption.
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A case producing negative weights is depicted in figure 5 B.
In that graph, the same Z is used to generate the choices as is
used to generate figure 1B.
However, in this case, the analyst uses Z1 as the instrument.
Z1 and Z2 are negatively dependent and E(Z1 | P(Z) > uD) is
not monotonic in uD.
This nonmonotonicity is evident in figure 7B.

It produces the pattern of negative weights shown in figure 7A.
These are associated with two way flows.
Increasing Z1 controlling for Z2 reduces the probability of
country policy adoption.
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A case producing negative weights is depicted in figure 5 B.
In that graph, the same Z is used to generate the choices as is
used to generate figure 1B.
However, in this case, the analyst uses Z1 as the instrument.
Z1 and Z2 are negatively dependent and E(Z1 | P(Z) > uD) is
not monotonic in uD.
This nonmonotonicity is evident in figure 7B.
It produces the pattern of negative weights shown in figure 7A.

These are associated with two way flows.
Increasing Z1 controlling for Z2 reduces the probability of
country policy adoption.

Heckman and Vytlacil Using the Marginal Treatment Effect
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A case producing negative weights is depicted in figure 5 B.
In that graph, the same Z is used to generate the choices as is
used to generate figure 1B.
However, in this case, the analyst uses Z1 as the instrument.
Z1 and Z2 are negatively dependent and E(Z1 | P(Z) > uD) is
not monotonic in uD.
This nonmonotonicity is evident in figure 7B.
It produces the pattern of negative weights shown in figure 7A.
These are associated with two way flows.

Increasing Z1 controlling for Z2 reduces the probability of
country policy adoption.

Heckman and Vytlacil Using the Marginal Treatment Effect
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A case producing negative weights is depicted in figure 5 B.
In that graph, the same Z is used to generate the choices as is
used to generate figure 1B.
However, in this case, the analyst uses Z1 as the instrument.
Z1 and Z2 are negatively dependent and E(Z1 | P(Z) > uD) is
not monotonic in uD.
This nonmonotonicity is evident in figure 7B.
It produces the pattern of negative weights shown in figure 7A.
These are associated with two way flows.
Increasing Z1 controlling for Z2 reduces the probability of
country policy adoption.
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Figure 7: IV Weight and Its Components under Discrete Instruments
when Z1 is the Instrument: The Extended Roy Economy
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B. E(Z1|P(Z) > pℓ) and E(Z1)
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The model is the same as the one presented below Figure 5. The values of the treatment
parameters are the same as the ones presented below Figure 6.

∆IV
Z1 =

K−1∑
ℓ=1

∆LATE (pℓ, pℓ+1)λℓ = 0.1833

λℓ = (pℓ+1 − pℓ)

I∑
i=1

(
z1,i − E (Z1)

) K∑
t>ℓ

f
(
z1,i, pt

)
Cov (Z1,D)

Joint Probability Distribution of (Z1,Z2) and the Propensity Score
(joint probabilities in ordinary type (Pr(Z1 = z1,Z2 = z2)); propensity score in italics
(Pr (D = 1|Z1 = z1,Z2 = z2)))

Z1\Z2 −1 0 1
−1 0.02 0.02 0.36

0.7309 0.6402 0.5409
0 0.3 0.01 0.03

0.6402 0.5409 0.4388
1 0.2 0.05 0.01

0.5409 0.4388 0.3408
Cov(Z1,Z2) = −0.5468

Source: ?.

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .... .. .. .. .
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However, we do not condition on Z2 in constructing this figure.

Z2 is floating.
Two way flows are induced by uncontrolled variation in Z2.
For some units, the strength of the associated variation in Z2
offsets the increase in Z1 and for other units it does not.
Observe that the LATE parameters defined using P (Z) are the
same in both examples.
They are just weighted differently.
We discuss the random coefficient choice model generating
figure 5C in Slide 370.

Heckman and Vytlacil Using the Marginal Treatment Effect
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However, we do not condition on Z2 in constructing this figure.
Z2 is floating.

Two way flows are induced by uncontrolled variation in Z2.
For some units, the strength of the associated variation in Z2
offsets the increase in Z1 and for other units it does not.
Observe that the LATE parameters defined using P (Z) are the
same in both examples.
They are just weighted differently.
We discuss the random coefficient choice model generating
figure 5C in Slide 370.
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However, we do not condition on Z2 in constructing this figure.
Z2 is floating.
Two way flows are induced by uncontrolled variation in Z2.

For some units, the strength of the associated variation in Z2
offsets the increase in Z1 and for other units it does not.
Observe that the LATE parameters defined using P (Z) are the
same in both examples.
They are just weighted differently.
We discuss the random coefficient choice model generating
figure 5C in Slide 370.
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The IV estimator does not identify ATE, TT or TUT (given at
the bottom of figure 6C).

Conditioning on Z2 produces positive weights.
This is illustrated in the weights shown in table 6 that
condition on Z2 using the same model that generated figure 6.
Conditioning on Z2 effectively converts the problem back into
one with a scalar instrument and the weights are positive for
that case.
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The IV estimator does not identify ATE, TT or TUT (given at
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Conditioning on Z2 produces positive weights.
This is illustrated in the weights shown in table 6 that
condition on Z2 using the same model that generated figure 6.

Conditioning on Z2 effectively converts the problem back into
one with a scalar instrument and the weights are positive for
that case.
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This is illustrated in the weights shown in table 6 that
condition on Z2 using the same model that generated figure 6.
Conditioning on Z2 effectively converts the problem back into
one with a scalar instrument and the weights are positive for
that case.
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Table 6: The Conditional Instrumental Variable Estimator
Z2 = −1 Z2 = 0 Z2 = 1

P (−1,Z2) = p3 0.7309 0.6402 0.5409
P (0,Z2) = p2 0.6402 0.5409 0.4388
P (1,Z2) = p1 0.5409 0.4388 0.3408

λ1 0.8418 0.5384 0.2860
λ2 0.1582 0.4616 0.7140

∆LATE (p1, p2) −0.2475 0.2497 0.7470
∆LATE (p2, p3) −0.7448 −0.2475 0.2497

∆IV
Z1|Z2=z2

−0.3262 0.0202 0.3920

(
∆IV

Z1|Z2=z2

)
and Conditional Local Average Treatment Effect

(
∆LATE (

pℓ, pℓ+1|Z2 = z2
))

when Z1 is the Instrument
(given Z2 = z2)

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .... .. .. .. .



The model is the same as the one presented below Figure 2
∆IV

Z1|Z2=z2 =

I−1∑
ℓ=1

∆LATE (
pℓ, pℓ+1|Z2 = z2

)
λℓ|Z2=z2 =

I−1∑
ℓ=1

∆LATE (
pℓ, pℓ+1|Z2 = z2

)
λℓ|Z2=z2

∆LATE (
pℓ, pℓ+1|Z2 = z2

)
=

E
(
Y|P(Z) = pℓ+1, Z2 = z2

)
− E (Y|P(Z) = pℓ, Z2 = z2)

pℓ+1 − pℓ

λℓ|Z2=z2 =
(
pℓ+1 − pℓ

) I∑
i=1

(
z1,i − E (Z1|Z2 = z2)

) I∑
t>ℓ

f
(
z1,i, pt|Z2 = z2

)
Cov (Z1, D)

=
(
pℓ+1 − pℓ

) I∑
t>ℓ

(
z1,t − E (Z1|Z2 = z2)

)
f
(
z1,t, pt|Z2 = z2

)
Cov (Z1, D)

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .... .. .. .. .



Probability Distribution of Z1 Conditional on Z2
(Pr(Z1 = z1|Z2 = z2))

z1 Pr(Z1 = z1|Z2 = −1) Pr(Z1 = z1|Z2 = 0) Pr(Z1 = z1|Z2 = 1)
−1 0.0385 0.25 0.9
0 0.5769 0.125 0.075
1 0.3846 0.625 0.025

Source: ?

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .... .. .. .. .
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From Yitzhaki’s analysis, for any sample size, a regression of Y
on P identifies a weighted average of slopes based on ordered
regressors:

E (Yℓ | pℓ)− E (Yℓ−1 | pℓ−1)

pℓ − pℓ−1

where pℓ > pℓ−1 and the weights are the positive
Yitzhaki–Imbens–Angrist weights derived in ?? or in ?.

The weights are positive whether or not monotonicity condition
(IV-3) holds.
If monotonicity holds, IV is a weighted average of LATEs.
Otherwise it is just a weighted average of ordered (by pℓ)
estimators consistent with two way flows.
We next discuss continuous instruments.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

From Yitzhaki’s analysis, for any sample size, a regression of Y
on P identifies a weighted average of slopes based on ordered
regressors:

E (Yℓ | pℓ)− E (Yℓ−1 | pℓ−1)

pℓ − pℓ−1

where pℓ > pℓ−1 and the weights are the positive
Yitzhaki–Imbens–Angrist weights derived in ?? or in ?.
The weights are positive whether or not monotonicity condition
(IV-3) holds.

If monotonicity holds, IV is a weighted average of LATEs.
Otherwise it is just a weighted average of ordered (by pℓ)
estimators consistent with two way flows.
We next discuss continuous instruments.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

From Yitzhaki’s analysis, for any sample size, a regression of Y
on P identifies a weighted average of slopes based on ordered
regressors:

E (Yℓ | pℓ)− E (Yℓ−1 | pℓ−1)

pℓ − pℓ−1
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The weights are positive whether or not monotonicity condition
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If monotonicity holds, IV is a weighted average of LATEs.
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Continuous Instruments

For the case of continuous Z, we present a parallel analysis for
the weights associated with the MTE.

Figure 8 plots E(Y | P(Z)) and MTE for the extended Roy
models generated by the parameters displayed at the base of
the figure.
In cases I and II, β ⊥⊥ D, so ∆MTE (uD) is constant in uD.
In case I, this is trivial since β is a constant.
In case II, β is random but selection into D does not depend on
β.
Case III is the model with essential heterogeneity (β ⊥�⊥ D).

Heckman and Vytlacil Using the Marginal Treatment Effect
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For the case of continuous Z, we present a parallel analysis for
the weights associated with the MTE.
Figure 8 plots E(Y | P(Z)) and MTE for the extended Roy
models generated by the parameters displayed at the base of
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In cases I and II, β ⊥⊥ D, so ∆MTE (uD) is constant in uD.
In case I, this is trivial since β is a constant.
In case II, β is random but selection into D does not depend on
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the weights associated with the MTE.
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Figure 8: Conditional Expectation of Y on P(Z) and the Marginal
Treatment Effect (MTE)

A. E(Y|P(Z) = p) B. ∆MTE(uD)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

p

Cases I and II

Case III

0 0.2 0.4 0.6 0.8 1
−5

−4

−3

−2

−1

0

1

2

3

4

5

p=u
D

Cases I and II

Case III

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .... .. .. .. .



Outcomes Choice Model

Y1 = α+ β̄ + U1 D =

{
1 if D∗ ≥ 0
0 if D∗ < 0

Y0 = α+ U0

Case I Case II Case III

U1 = U0 U1 − U0 ⊥⊥ D U1 − U0 ⊥�⊥ D
β̄ =ATE=TT=TUT=IV β̄ =ATE=TT=TUT=IV β̄ =ATE̸=TT ̸=TUT ̸=IV

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .... .. .. .. .



Parameterization
Cases I, II and III Cases II and III Case III

α = 0.67 (U1, U0) ∼ N (0, �) D∗ = Y1 − Y0 − γZ
β̄ = 0.2 with � =

[
1 −0.9

−0.9 1

]
Z ∼ N (µZ, �Z)

µZ = (2,−2) and �Z=
[

9 −2
−2 9

]
γ = (0.5, 0.5)

Source: ?

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .... .. .. .. .
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The graph (figure 8A) depicts E(Y | P(Z)) in the three cases.

Cases I and II make E(Y | P(Z)) linear in P(Z).
Case III is nonlinear in P(Z).
This arises when β ⊥�⊥ D.
The derivative of E(Y | P(Z)) is presented in figure 8B.
It is a constant for cases I and II (flat MTE) but declining in
UD = P(Z) for the case with selection on the gain.
A simple test for linearity in P(Z) in the outcome equation
reveals whether or not the analyst is in cases I and II (β ⊥⊥ D)
or case III (β ⊥�⊥ D).
These cases are the extended Roy counterparts to
E (Y | P (Z) = p) and MTE shown for the generalized Roy
model in figures 3A and 3B.
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reveals whether or not the analyst is in cases I and II (β ⊥⊥ D)
or case III (β ⊥�⊥ D).
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E (Y | P (Z) = p) and MTE shown for the generalized Roy
model in figures 3A and 3B.
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The graph (figure 8A) depicts E(Y | P(Z)) in the three cases.
Cases I and II make E(Y | P(Z)) linear in P(Z).
Case III is nonlinear in P(Z).

This arises when β ⊥�⊥ D.
The derivative of E(Y | P(Z)) is presented in figure 8B.
It is a constant for cases I and II (flat MTE) but declining in
UD = P(Z) for the case with selection on the gain.
A simple test for linearity in P(Z) in the outcome equation
reveals whether or not the analyst is in cases I and II (β ⊥⊥ D)
or case III (β ⊥�⊥ D).
These cases are the extended Roy counterparts to
E (Y | P (Z) = p) and MTE shown for the generalized Roy
model in figures 3A and 3B.
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The graph (figure 8A) depicts E(Y | P(Z)) in the three cases.
Cases I and II make E(Y | P(Z)) linear in P(Z).
Case III is nonlinear in P(Z).
This arises when β ⊥�⊥ D.

The derivative of E(Y | P(Z)) is presented in figure 8B.
It is a constant for cases I and II (flat MTE) but declining in
UD = P(Z) for the case with selection on the gain.
A simple test for linearity in P(Z) in the outcome equation
reveals whether or not the analyst is in cases I and II (β ⊥⊥ D)
or case III (β ⊥�⊥ D).
These cases are the extended Roy counterparts to
E (Y | P (Z) = p) and MTE shown for the generalized Roy
model in figures 3A and 3B.
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The graph (figure 8A) depicts E(Y | P(Z)) in the three cases.
Cases I and II make E(Y | P(Z)) linear in P(Z).
Case III is nonlinear in P(Z).
This arises when β ⊥�⊥ D.
The derivative of E(Y | P(Z)) is presented in figure 8B.
It is a constant for cases I and II (flat MTE) but declining in
UD = P(Z) for the case with selection on the gain.
A simple test for linearity in P(Z) in the outcome equation
reveals whether or not the analyst is in cases I and II (β ⊥⊥ D)
or case III (β ⊥�⊥ D).

These cases are the extended Roy counterparts to
E (Y | P (Z) = p) and MTE shown for the generalized Roy
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The graph (figure 8A) depicts E(Y | P(Z)) in the three cases.
Cases I and II make E(Y | P(Z)) linear in P(Z).
Case III is nonlinear in P(Z).
This arises when β ⊥�⊥ D.
The derivative of E(Y | P(Z)) is presented in figure 8B.
It is a constant for cases I and II (flat MTE) but declining in
UD = P(Z) for the case with selection on the gain.
A simple test for linearity in P(Z) in the outcome equation
reveals whether or not the analyst is in cases I and II (β ⊥⊥ D)
or case III (β ⊥�⊥ D).
These cases are the extended Roy counterparts to
E (Y | P (Z) = p) and MTE shown for the generalized Roy
model in figures 3A and 3B.
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MTE gives the mean marginal return for persons who have
utility P(Z) = uD.

Thus, P(Z) = uD is the margin of indifference.
Those with low uD values have high returns.
Those with high uD values have low returns.
Figure 8 highlights that, in the general case, MTE (and LATE)
identify average returns for persons at the margin of indifference
at different levels of the mean utility function (P(Z)).
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MTE gives the mean marginal return for persons who have
utility P(Z) = uD.
Thus, P(Z) = uD is the margin of indifference.
Those with low uD values have high returns.
Those with high uD values have low returns.

Figure 8 highlights that, in the general case, MTE (and LATE)
identify average returns for persons at the margin of indifference
at different levels of the mean utility function (P(Z)).
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MTE gives the mean marginal return for persons who have
utility P(Z) = uD.
Thus, P(Z) = uD is the margin of indifference.
Those with low uD values have high returns.
Those with high uD values have low returns.
Figure 8 highlights that, in the general case, MTE (and LATE)
identify average returns for persons at the margin of indifference
at different levels of the mean utility function (P(Z)).
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Figure 9 plots MTE and LATE for different intervals of uD
using the model generating figure 8.

LATE is the chord of E(Y | P(Z)) evaluated at different points.
The relationship between LATE and MTE is depicted in
figure 9B.
LATE is the integral under the MTE curve divided by the
difference between the upper and lower limits.
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Figure 9 plots MTE and LATE for different intervals of uD
using the model generating figure 8.
LATE is the chord of E(Y | P(Z)) evaluated at different points.

The relationship between LATE and MTE is depicted in
figure 9B.
LATE is the integral under the MTE curve divided by the
difference between the upper and lower limits.
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Figure 9 plots MTE and LATE for different intervals of uD
using the model generating figure 8.
LATE is the chord of E(Y | P(Z)) evaluated at different points.
The relationship between LATE and MTE is depicted in
figure 9B.

LATE is the integral under the MTE curve divided by the
difference between the upper and lower limits.
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Figure 9 plots MTE and LATE for different intervals of uD
using the model generating figure 8.
LATE is the chord of E(Y | P(Z)) evaluated at different points.
The relationship between LATE and MTE is depicted in
figure 9B.
LATE is the integral under the MTE curve divided by the
difference between the upper and lower limits.
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Figure 9: The Local Average Treatment Effect
A. E(Y|P(Z) = p) and ∆LATE(pℓ, pℓ+1) B. ∆MTE(uD) and ∆LATE(pℓ, pℓ+1)
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∆LATE(pℓ, pℓ+1) =
E
(
Y|P(Z) = pℓ+1

)
− E (Y|P(Z) = pℓ)

pℓ+1 − pℓ
=

pℓ+1∫
pℓ

∆MTE(uD)duD

pℓ+1 − pℓ

∆LATE(0.6, 0.9) = −1.17

∆LATE(0.1, 0.35) = 1.719

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .... .. .. .. .



Outcomes Choice Model

Y1 = α + β̄ + U1 D =

{
1 if D∗ ≥ 0
0 if D∗ < 0

Y0 = α + U0 with D∗ = Y1 − Y0 − γZ

Parameterization

(U1, U0) ∼ N (0, �) and Z ∼ N (µZ, �Z)

� =
[

1 −0.9
−0.9 1

]
, µZ = (2,−2) and �Z=

[
9 −2
−2 9

]
α = 0.67, β̄ = 0.2, γ = (0.5, 0.5)

Source: ?

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .... .. .. .. .
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The treatment parameters associated with case III are plotted
in figure 10.

The MTE is the same as that presented in figure 8.
ATE has the same value for all p.
The effect of treatment on the treated for P (Z) = p,
∆TT (p) = E (Y1 − Y0 | D = 1,P (Z) = p) declines in p
(equivalently it declines in uD).
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The treatment parameters associated with case III are plotted
in figure 10.
The MTE is the same as that presented in figure 8.

ATE has the same value for all p.
The effect of treatment on the treated for P (Z) = p,
∆TT (p) = E (Y1 − Y0 | D = 1,P (Z) = p) declines in p
(equivalently it declines in uD).
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The treatment parameters associated with case III are plotted
in figure 10.
The MTE is the same as that presented in figure 8.
ATE has the same value for all p.

The effect of treatment on the treated for P (Z) = p,
∆TT (p) = E (Y1 − Y0 | D = 1,P (Z) = p) declines in p
(equivalently it declines in uD).
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The treatment parameters associated with case III are plotted
in figure 10.
The MTE is the same as that presented in figure 8.
ATE has the same value for all p.
The effect of treatment on the treated for P (Z) = p,
∆TT (p) = E (Y1 − Y0 | D = 1,P (Z) = p) declines in p
(equivalently it declines in uD).
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Figure 10: Treatment Parameters and OLS/Matching as a function of
P(Z) = p
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Parameter Definition Under Assumptions (*)

Marginal Treatment Effect E [Y1 − Y0|D∗ = 0, P (Z) = p] β̄ + σU1−U0
Φ−1(1 − p)

Average Treatment Effect E [Y1 − Y0|P (Z) = p] β

Treatment on the Treated E [Y1 − Y0|D∗ ≥ 0, P (Z) = p] β̄ + σU1−U0

φ(Φ−1(1−p))
p

Treatment on the Untreated E [Y1 − Y0|D∗ < 0, P (Z) = p] β̄ − σU1−U0

φ(Φ−1(1−p))
1−p

OLS/Matching on P (Z) E [Y1|D∗ ≥ 0, P (Z) = p] − E [Y0|D∗ < 0, P (Z) = p] β̄ +

(

σ2

U1
−σU1,U0√
σU1−U0

)

(

1−2p

p(1−p)

)

φ
(

Φ−1(1 − p)
)

Note: Φ(·) and ϕ (·) represent the cdf and pdf of a standard normal
distribution, respectively. Φ−1 (·) represents the inverse of Φ(·).
(*): The model in this case is the same as the one presented below Figure 9.
Source: ?

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .... .. .. .. .
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Treatment on the untreated given p,
TUT(p) = ∆TUT (p) = E(Y1 − Y0 | D = 0,P(Z) = p) also
declines in p.

LATE(p, p′) =
∆TT(p′)p′ −∆TT(p)p

p′ − p , p′ ̸= p

MTE =
∂[∆TT(p)p]

∂p .

We can generate all of the treatment parameters from ∆TT (p).

Heckman and Vytlacil Using the Marginal Treatment Effect
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Matching on P = p (which is equivalent to nonparametric
regression given P = p) produces a biased estimator of TT(p).

Matching assumes a flat MTE (average return equals marginal
return).
Therefore it is systematically biased for ∆TT (p) in a model
with essential heterogeneity.
Making observables alike makes the unobservables dissimilar.
Holding p constant across treatment and control groups
understates TT(p) for low values of p and overstates it for high
values of p.
We develop this point further when we discuss matching in
Slide 675.
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Therefore it is systematically biased for ∆TT (p) in a model
with essential heterogeneity.
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Holding p constant across treatment and control groups
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values of p.
We develop this point further when we discuss matching in
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Matching assumes a flat MTE (average return equals marginal
return).
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values of p.
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Matching on P = p (which is equivalent to nonparametric
regression given P = p) produces a biased estimator of TT(p).
Matching assumes a flat MTE (average return equals marginal
return).
Therefore it is systematically biased for ∆TT (p) in a model
with essential heterogeneity.
Making observables alike makes the unobservables dissimilar.

Holding p constant across treatment and control groups
understates TT(p) for low values of p and overstates it for high
values of p.
We develop this point further when we discuss matching in
Slide 675.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

Matching on P = p (which is equivalent to nonparametric
regression given P = p) produces a biased estimator of TT(p).
Matching assumes a flat MTE (average return equals marginal
return).
Therefore it is systematically biased for ∆TT (p) in a model
with essential heterogeneity.
Making observables alike makes the unobservables dissimilar.
Holding p constant across treatment and control groups
understates TT(p) for low values of p and overstates it for high
values of p.

We develop this point further when we discuss matching in
Slide 675.
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Figure 11 plots the MTE (as a function of uD where
uD = FV(v)), the weights for ATE, TT and TUT and the IV
weights using Z1 as the instrument for the model used to
generate figure 9.

The distribution of the Z is assumed to be normal with
generating parameters given at the base of figure 9.
The IV weight for normal Z is always nonnegative even if we
use only one coordinate of vector Z.
This is a consequence of the monotonicity of E(Zj | P(Z) ≥ uD)
in uD for any component of vector Z, which is a property of
normal selection models.
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generate figure 9.
The distribution of the Z is assumed to be normal with
generating parameters given at the base of figure 9.
The IV weight for normal Z is always nonnegative even if we
use only one coordinate of vector Z.

This is a consequence of the monotonicity of E(Zj | P(Z) ≥ uD)
in uD for any component of vector Z, which is a property of
normal selection models.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

Figure 11 plots the MTE (as a function of uD where
uD = FV(v)), the weights for ATE, TT and TUT and the IV
weights using Z1 as the instrument for the model used to
generate figure 9.
The distribution of the Z is assumed to be normal with
generating parameters given at the base of figure 9.
The IV weight for normal Z is always nonnegative even if we
use only one coordinate of vector Z.
This is a consequence of the monotonicity of E(Zj | P(Z) ≥ uD)
in uD for any component of vector Z, which is a property of
normal selection models.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

Panel A of figure 11 plots the treatment weights derived by ??
and the IV weight (24), along with the MTE.

The ATE = ∆ATE weight is flat (= 1).
TT oversamples the low uD agents (those more likely to adopt
the policies).
TUT oversamples the high uD agents.
The IV weight is positive as it must be when the Z are normally
distributed.
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Panel A of figure 11 plots the treatment weights derived by ??
and the IV weight (24), along with the MTE.
The ATE = ∆ATE weight is flat (= 1).

TT oversamples the low uD agents (those more likely to adopt
the policies).
TUT oversamples the high uD agents.
The IV weight is positive as it must be when the Z are normally
distributed.
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Panel A of figure 11 plots the treatment weights derived by ??
and the IV weight (24), along with the MTE.
The ATE = ∆ATE weight is flat (= 1).
TT oversamples the low uD agents (those more likely to adopt
the policies).

TUT oversamples the high uD agents.
The IV weight is positive as it must be when the Z are normally
distributed.
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The ATE = ∆ATE weight is flat (= 1).
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TUT oversamples the high uD agents.

The IV weight is positive as it must be when the Z are normally
distributed.
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Panel A of figure 11 plots the treatment weights derived by ??
and the IV weight (24), along with the MTE.
The ATE = ∆ATE weight is flat (= 1).
TT oversamples the low uD agents (those more likely to adopt
the policies).
TUT oversamples the high uD agents.
The IV weight is positive as it must be when the Z are normally
distributed.
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Figure 11: Treatment Weights, IV Weights using Z1 as the Instrument
and the Marginal Treatment Effect

A. Weights and MTE B. IV Weights, E(Z1|P(Z) ≥ uD) and E(Z1)
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IV is far from any of the standard treatment parameters.

Panel B decomposes the weight into its numerator components
E(Z1 | P(Z) ≥ uD) and E(Z1), and the weight itself.
The difference E (Z1 | P (Z) ≥ uD)− E (Z1) multiplied by
Pr (P (Z) ≥ uD) and normalized by Cov(Z1,D) is the weight
(see equation 23).
The weight is plotted as the dotted line in figure 9B.
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The weight is plotted as the dotted line in figure 9B.
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IV is far from any of the standard treatment parameters.
Panel B decomposes the weight into its numerator components
E(Z1 | P(Z) ≥ uD) and E(Z1), and the weight itself.
The difference E (Z1 | P (Z) ≥ uD)− E (Z1) multiplied by
Pr (P (Z) ≥ uD) and normalized by Cov(Z1,D) is the weight
(see equation 23).

The weight is plotted as the dotted line in figure 9B.
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IV is far from any of the standard treatment parameters.
Panel B decomposes the weight into its numerator components
E(Z1 | P(Z) ≥ uD) and E(Z1), and the weight itself.
The difference E (Z1 | P (Z) ≥ uD)− E (Z1) multiplied by
Pr (P (Z) ≥ uD) and normalized by Cov(Z1,D) is the weight
(see equation 23).
The weight is plotted as the dotted line in figure 9B.
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Suppose that instead of assuming normality for the regressors,
instrument Z is assumed to be a random vector with a
distribution function given by a mixture of two normals:

Z ∼ P1N(κ1,Σ1) + P2N(κ2,Σ2),

where P1 is the proportion in population 1, P2 is the proportion
in population 2 and P1 + P2 = 1.

This produces a model with continuous instruments, where
E(J̃(Z) | P(Z) ≥ uD) need not be monotonic in uD where
J̃ (Z) = J (Z)− E (J (Z)).
Such a data generating process for the instrument could arise
from an ecological model in which two different populations are
mixed (e.g., rural and urban populations).
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Appendix, Slide 1107, derives the instrumental variable weights
on ∆MTE when Z1 (the first element of Z) is used as the
instrument, i.e., J(Z) = Z1.

For simplicity, we assume that there are no X regressors.
The probability of selection is generated using µD (Z) = Zγ.
The joint distribution of (Z1,Zγ) is normal within each group.
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In our example, the dependence between Z1 and Zγ
(= FV (Zγ) = P (Z)) is negative in one population and positive
in another.

Thus in one population, as Z1 increases P (Z) increases.
In the other population, as Z1 increases P (Z) decreases.
If this second population is sufficiently big (P1 is small) or the
negative correlation in the second population is sufficiently big,
the weights can become negative because E(J̃(Z) | P(Z) ≥ uD)
is not monotonic in uD.
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We present examples for a conventional normal outcome
selection model generated by the parameters presented at the
base of figure 12.

The discrete choice equation is a conventional probit:
Pr (D = 1 | Z = z) = Φ

(
zγ
σV

)
.

The outcome equations are linear normal equations.
Thus ∆MTE(v) = E(Y1 − Y0 | V = v), is linear in v:

E(Y1 − Y0 | V = v) = µ1 − µ0 +
Cov (U1 − U0,V)

Var (V) v.

At the base of the figure, we define β̄ = µ1 − µ0 and α = µ0.
The average treatment effects are the same for all different
distributions of the Z.
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Thus ∆MTE(v) = E(Y1 − Y0 | V = v), is linear in v:

E(Y1 − Y0 | V = v) = µ1 − µ0 +
Cov (U1 − U0,V)

Var (V) v.

At the base of the figure, we define β̄ = µ1 − µ0 and α = µ0.
The average treatment effects are the same for all different
distributions of the Z.
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Figure 12: Marginal Treatment Effect and IV Weights using Z1 as the
Instrument when Z = (Z1,Z2) ∼ p1N(κ1,Σ1) + p2N(κ2,Σ2) for different
values of Σ2

A. IV Weights B. ∆MTE (v)

4 3 2 1 0 1 2 3 4
1

0. 8

0. 6

0. 4

0. 2

0

0.2

0.4

0.6

0.8

1

v

1

2

3

ω

ω

ω

-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1

2

3

4

v

 

 

 

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .... .. .. .. .



Outcomes Choice Model

Y1 = α + β̄ + U1 D =

{
1 if D∗ ≥ 0
0 if D∗ < 0

Y0 = α + U0 D∗ = Y1 − Y0 − γZ and V = − (U1 − U0)

Parameterization

(U1, U0) ∼ N (0, �) , � =
[

1 −0.9
−0.9 1

]
, α = 0.67, β̄ = 0.2

Z = (Z1, Z2) ∼ p1N(κ1,Σ1) + p2N(κ2,Σ2)

p1 = 0.45, p2 = 0.55 ; Σ1 =

[
1.4 0.5
0.5 1.4

]
Cov(Z1, γZ) = γΣ1

1 = 0.98 ; γ = (0.2, 1.4)

Source: ?

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .... .. .. .. .
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In each of the following examples, we show results for models
with vector Z that satisfies (IV-1) and (IV-2) and with γ > 0
componentwise where γ is the coefficient of Z in the cost
equation.

We vary the weights and means of the instruments.
Ceteris paribus, an increase in each component of Z increases
Pr (D = 1 | Z = z).
Table 7 presents the parameters treatment on the treated
(E(Y1 − Y0|D = 1)), treatment on the untreated
(E(Y1 − Y0|D = 0)), and the average treatment effect
(E(Y1 − Y0)) produced by our model for different distributions
of the regressors.
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Table 7: IV estimator and Cov(Z2, γZ) associated with each value of Σ2

Table 7. IV estimator and Cov( ) associated with each value of Σ

Weights Σ2 κ1 κ2 IV ATE TT TUT Cov(Z2, γZ) = γΣ1

2

ω1

[

0.6 −0.5
−0.5 0.6

]

[

0 0
] [

0 0
]

0.434 0.2 1.401 −1.175 −0.58

ω2

[

0.6 0.1
0.1 0.6

]

[

0 0
] [

0 0
]

0.078 0.2 1.378 −1.145 0.26

ω3

[

0.6 −0.3
−0.3 0.6

]

[

0 −1
] [

0 1
]

−2.261 0.2 1.310 −0.859 −0.30

Source: Heckman, Urzua and Vytlacil (2006)

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .... .. .. .. .
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In standard IV analysis, under assumptions (IV-1) and (IV-2)
the distribution of Z does not affect the probability limit of the
IV estimator.

It only affects its sampling distribution.
Figure 12A shows three weights corresponding to the
perturbations of the variances of the instruments in the second
component population Σ2 and the means (κ1, κ2) shown at the
table at the base of the figure.
The ∆MTE

V used in all of our examples are plotted in figure 12B.
The MTE has the familiar shape, reported in ? and ? that
returns are highest for those with values of v that make them
more likely to get treatment (i.e., low values of v).
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The weights ω1 and ω3 plotted in figure 12A correspond to the
case where E (Z1 − E (Z1) | P(Z) ≥ uD) is not monotonic in uD.

In these cases, the sign of the covariance between Z1 and Zγ
(i.e., P(Z)) is not the same in the two subpopulations.
The IV estimates reported in the table at the base of the figure
range all over the place even though the parameters of the
outcome and choice model are the same.
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Different distributions of Z critically affect the probability limit
of the IV estimator in the model of essential heterogeneity.

The model of outcomes and choices is the same across all of
these examples.
The MTE and ATE parameters are the same.
Only the distribution of the instrument differs.
The instrumental variable estimand is sometimes positive and
sometimes negative, and oscillates wildly in magnitude
depending on the distribution of the instruments.
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of the IV estimator in the model of essential heterogeneity.
The model of outcomes and choices is the same across all of
these examples.
The MTE and ATE parameters are the same.

Only the distribution of the instrument differs.
The instrumental variable estimand is sometimes positive and
sometimes negative, and oscillates wildly in magnitude
depending on the distribution of the instruments.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

Different distributions of Z critically affect the probability limit
of the IV estimator in the model of essential heterogeneity.
The model of outcomes and choices is the same across all of
these examples.
The MTE and ATE parameters are the same.
Only the distribution of the instrument differs.

The instrumental variable estimand is sometimes positive and
sometimes negative, and oscillates wildly in magnitude
depending on the distribution of the instruments.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

Different distributions of Z critically affect the probability limit
of the IV estimator in the model of essential heterogeneity.
The model of outcomes and choices is the same across all of
these examples.
The MTE and ATE parameters are the same.
Only the distribution of the instrument differs.
The instrumental variable estimand is sometimes positive and
sometimes negative, and oscillates wildly in magnitude
depending on the distribution of the instruments.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

The estimated “effect” is often way off the mark for any
desired treatment parameter.

These examples show how uniformity in Z does not translate
into uniformity in J (Z) (Z1 in this example).
This sensitivity is a phenomenon that does not appear in the
conventional homogeneous response model but is a central
feature of a model with essential heterogeneity.
We now compare selection and IV models.
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conventional homogeneous response model but is a central
feature of a model with essential heterogeneity.
We now compare selection and IV models.
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Comparing Selection and IV Models

We now show that local IV identifies the derivatives of a
selection model.

Making the X explicit, in the standard selection model, U1 and
U0 are scalar random variables that are additively separable in
the outcome equations, Y1 = µ1(X)+U1 and Y0 = µ0(X)+U0.
The control function approach conditions on Z and D.
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As a consequence of index sufficiency, this is equivalent to
conditioning on P (Z) and D:

E (Y | X,D,Z) = µ0 (X) + [µ1 (X)− µ0 (X)]D
+ K1 (P (Z) ,X)D + K0 (P (Z) ,X) (1 − D) ,

where the control functions are

K1 (P(Z),X) = E(U1 | D = 1,X,P (Z))
K0 (P(Z),X) = E (U0 | D = 0,X,P (Z)) .
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The IV approach does not condition on D.

It works with

E (Y | X,Z) = µ0 (X) + [µ1 (X)− µ0 (X)]P(Z) (27)
+ K1 (P (Z) ,X)P(Z)
+ K0 (P (Z) ,X) (1 − P(Z)) ,

the population mean outcome given X,Z.
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From index sufficiency, E (Y | X,Z) = E (Y | X,P(Z)).

The MTE is the derivative of this expression with respect to
P(Z), which we have defined as LIV:

∂E(Y | X,P(Z))
∂P(Z)

∣∣∣∣
P(Z)=p

= LIV (X, p) = MTE (X, p) .

The distribution of P (Z) and the relationship between J (Z)
and P (Z) determine the weight on MTE.
Under assumptions (A-1)–(A-5), along with rank and limit
conditions (??), one can identify µ1 (X), µ0 (X), K1 (P (Z) ,X),
and K0 (P (Z) ,X).

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

From index sufficiency, E (Y | X,Z) = E (Y | X,P(Z)).
The MTE is the derivative of this expression with respect to
P(Z), which we have defined as LIV:

∂E(Y | X,P(Z))
∂P(Z)

∣∣∣∣
P(Z)=p

= LIV (X, p) = MTE (X, p) .

The distribution of P (Z) and the relationship between J (Z)
and P (Z) determine the weight on MTE.
Under assumptions (A-1)–(A-5), along with rank and limit
conditions (??), one can identify µ1 (X), µ0 (X), K1 (P (Z) ,X),
and K0 (P (Z) ,X).

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

From index sufficiency, E (Y | X,Z) = E (Y | X,P(Z)).
The MTE is the derivative of this expression with respect to
P(Z), which we have defined as LIV:

∂E(Y | X,P(Z))
∂P(Z)

∣∣∣∣
P(Z)=p

= LIV (X, p) = MTE (X, p) .

The distribution of P (Z) and the relationship between J (Z)
and P (Z) determine the weight on MTE.

Under assumptions (A-1)–(A-5), along with rank and limit
conditions (??), one can identify µ1 (X), µ0 (X), K1 (P (Z) ,X),
and K0 (P (Z) ,X).

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

From index sufficiency, E (Y | X,Z) = E (Y | X,P(Z)).
The MTE is the derivative of this expression with respect to
P(Z), which we have defined as LIV:

∂E(Y | X,P(Z))
∂P(Z)

∣∣∣∣
P(Z)=p

= LIV (X, p) = MTE (X, p) .

The distribution of P (Z) and the relationship between J (Z)
and P (Z) determine the weight on MTE.
Under assumptions (A-1)–(A-5), along with rank and limit
conditions (??), one can identify µ1 (X), µ0 (X), K1 (P (Z) ,X),
and K0 (P (Z) ,X).

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

The selection (control function) estimator identifies the
conditional means

E (Y1 | X,P(Z),D = 1) = µ1 (X) + K1 (X,P(Z)) (28a)

and

E (Y0 | X,P(Z),D = 0) = µ0 (X) + K0 (X,P(Z)) . (28b)

These can be identified from nonparametric regressions of Y1
and Y0 on X,Z in each population.

To decompose these means and separate µ1 (X) from
K1 (X,P(Z)) without invoking functional form or curvature
assumptions, it is necessary to have an exclusion (a Z not in X).
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In addition, there must exist a limit set for Z given X such that
K1 (X,P(Z)) = 0 for Z in that limit set.

Otherwise, without functional form or curvature assumptions, it
is not possible to disentangle µ1 (X) from K1 (X,P(Z)) which
may contain constants and functions of X that do not interact
with P(Z) (see ?).
A parallel argument for Y0 shows that we require a limit set for
Z given X such that K0 (X,P(Z)) = 0.
Selection models operate by identifying the components of
(28a) and (28b) and generating the treatment parameters from
these components.
Thus they work with levels of the Y.
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The local IV method works with derivatives of (27) and not
levels and cannot directly recover the constant terms in (28a)
and (28b).

Using our analysis of LIV but applied to YD = Y1D and
Y(1 − D) = Y0(1 − D), it is straightforward to use LIV to
estimate the components of the MTE separately.
Thus we can identify

µ1(X) + E (U1 | X,UD = uD)

and
µ0(X) + E (U0 | X,UD = uD)

separately.
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This corresponds to what is estimated from taking the
derivatives of expressions (28a) and (28b) multiplied by P(Z)
and (1 − P(Z)) respectively:

P(Z)E (Y1 | X,Z,D = 1)
= P(Z)µ1 (X) + P(Z)K1 (X,P(Z))

and

(1 − P(Z))E (Y0 | X,Z,D = 0)
= (1 − P(Z))µ0 (X) + (1 − P(Z))K0 (X,P(Z)) .

Thus the control function method works with levels, whereas
the LIV approach works with slopes of combinations of the
same basic functions.
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Constants that do not depend on P(Z) disappear from the
estimates of the model.

The level parameters are obtained by integration using the
formulae in table 2B.
Misspecification of P (Z) (either its functional form or its
arguments) and hence of K1 (P (Z) ,X) and K0 (P (Z) ,X), in
general, produces biased estimates of the parameters of the
model under the control function approach even if
semiparametric methods are used to estimate µ0, µ1,K0 and K1.
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To implement the method, we need to know all of the
arguments of Z.

The terms K1 (P (Z) ,X) and K0 (P (Z) ,X) can be
nonparametrically estimated so it is only necessary to know
P (Z) up to a monotonic transformation.
The distributions of U0,U1 and V do not need to be specified
to estimate control function models (see ?).
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These problems with control function models have their
counterparts in IV models.

If we use a misspecified P(Z) to identify the MTE or its
components, in general, we do not identify MTE or its
components.
Misspecification of P(Z) plagues both approaches.
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One common criticism of selection models is that without
invoking functional form assumptions, identification of µ1(X)
and µ0(X) requires that P(Z) → 1 and P(Z) → 0 in limit sets.

Identification in limit sets is sometimes called “identification at
infinity.” In order to identify ATE = E(Y1 − Y0|X), IV methods
also require that P(Z) → 1 and P(Z) → 0 in limit sets, so an
identification at infinity argument is implicit when IV is used to
identify this parameter.
The LATE parameter avoids this problem by moving the goal
posts and redefining the parameter of interest away from a level
parameter like ATE or TT to a slope parameter like LATE
which differences out the unidentified constants.
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Alternatively, if we define the parameter of interest to be LATE
or MTE, we can use the selection model without invoking
identification at infinity.

The IV estimator is model dependent, just like the selection
estimator, but in application, the model does not have to be
fully specified to obtain ∆IV using Z (or J(Z)).
However, the distribution of P (Z) and the relationship between
P (Z) and J (Z) generates the weights.
The interpretation placed on ∆IV in terms of weights on ∆MTE

depends crucially on the specification of P (Z).
In both control function and IV approaches for the general
model of heterogeneous responses, P (Z) plays a central role.
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Two economists using the same instrument will obtain the
same point estimate using the same data.

Their interpretation of that estimate will differ depending on
how they specify the arguments in P(Z), even if neither uses
P(Z) as an instrument.
By conditioning on P (Z) , the control function approach makes
the dependence of estimates on the specification of P (Z)
explicit.
The IV approach is less explicit and masks the assumptions
required to economically interpret the empirical output of an IV
estimation.
We now turn to some empirical examples of LIV.
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Empirical Examples: “The effect” of high school graduation on
wages and using IV to estimate “the effect” of the GED

The previous examples illustrate logical possibilities.

This subsection shows that these logical possibilities arise in
real data.
We analyze two examples: (a) the effect of graduating high
school on wages, and (b) the effect of obtaining a GED on
wages.
We first analyze the effect of graduating high school on wages.
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Empirical Example Based on LATE: Using IV to Estimate “The
Effect” of High School Graduation on Wages

We first study the effects of graduating from high school on
wages using data from the National Longitudinal Survey of
Youth 1979 (NLSY79).

This survey gathers information at multiple points in time on
the labor market activities for men and women born in the
years 1957–1964.
We estimate LATE using log hourly wages at age 30 as the
outcome measure.
Following a large body of research (see ?), we use the number
of siblings and residence in the south at age 14 as instruments.
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Figure 13 plots the weights on LATE using the estimated P(Z).

The procedure used to derive the estimates is explained in ?.
The weights are derived from equation (26).
The LATE parameters are both positive and negative.
The weights using siblings as an instrument are both positive
and negative.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

Figure 13 plots the weights on LATE using the estimated P(Z).
The procedure used to derive the estimates is explained in ?.
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The procedure used to derive the estimates is explained in ?.
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Figure 13 plots the weights on LATE using the estimated P(Z).
The procedure used to derive the estimates is explained in ?.
The weights are derived from equation (26).
The LATE parameters are both positive and negative.

The weights using siblings as an instrument are both positive
and negative.
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Figure 13 plots the weights on LATE using the estimated P(Z).
The procedure used to derive the estimates is explained in ?.
The weights are derived from equation (26).
The LATE parameters are both positive and negative.
The weights using siblings as an instrument are both positive
and negative.
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Figure 13: IV Weights - The Effect of Graduating from High School,
Sample of High School Dropouts and High School Graduates, White
Males - NLSY79

A. Weights: Number of Siblings as Instrument B. Weights: Propensity Score as Instrument
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C. The Local Average Treatment Effects
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IV Estimates
(boostrap std. errors in parentheses - 100 replications)

Instrument Value
Number of Siblings in 1979 0.115

(0.695)
Propensity Score 0.316

(0.110)

Joint Probability Distribution of (Z1, Z2) and the Propensity Score
(joint probabilities Pr(Z1 = z1, Z2 = z2) in ordinary type; propensity score Pr (D = 1|Z1 = z1, Z2 = z2) in italics)

Z2\Z1 0 1 2 3 4
0 0.07 0.03 0.47 0.121 0.06

1.0 0.54 0.86 0.72 0.61
1 0.039 0.139 0.165 0.266 0.121

0.94 0.89 0.90 0.85 0.93
Cov(Z1, Z2) = −0.066 - Number of Observations = 1, 702

Source: Heckman, Urzua and Vytlacil (2006)
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The weights using P(Z) as an instrument are positive, as they
must be following the analysis of ?.

The two IV estimates differ from each other because the
weights are different.
The overall IV estimate is a crude summary of the underlying
component LATEs that are both large and positive and large
and negative.
We next turn to analysis of the GED.
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Effect of the GED on Wages

The GED test is used to certify high school dropouts as high
school equivalents.

Numerous studies document that the economic return to the
GED is low (see ??).
It is estimated by the method described in ?.
In this example, we study the effect of the GED on the wages
of recipients compared to wages of dropouts.
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We use data from the National Longitudinal Survey of Youth
1979 (NLSY79) which gathers information at multiple points in
time on the labor market activities for men and women born in
the years 1957–1964.

We estimate the MTE for the GED and also consider the IV
weights for various instruments for a sample of males at age 25.
Figure 14 shows the sample support of P (Z) for both GEDs
and high school dropouts.
It is not possible to estimate the MTE over its full support.
Thus the Average Treatment Effect (ATE) and Treatment on
the Treated (TT) cannot be estimated from these data.
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Figure 14: Frequency of the Propensity Score by Final Schooling
Decision, Dropouts and GEDs–Males of the NLSY at Age 25
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Note: The propensity score (P(D = 1|Z)) is computed using as controls (Z): Father’s Highest Grade Completed, Mother’s
Highest Grade Completed, Number of Siblings, GED testing fee by state between 1993 and 2000, Family Income in 1979,
Dropout’s local wage at age 17, and High School Graduate’s local unemployment at age 17. We also include two dummy

variables controlling for the place of residence at age 14 (south and urban), and a set of dummies controlling for the year of
birth (1957-1963).
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The list of Z variables is presented in Table 363 along with IV
estimates.

The IV estimates fluctuate from positive to negative.
Using P (Z) as an instrument, the GED effect on log wages is
in general negative.
For other instruments, the signs and magnitudes vary.
Figure 15 plots the estimated MTE.
Details of the nonparametric estimation procedure used to
produce these estimates are shown in an appendix in ?.
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The list of Z variables is presented in Table 363 along with IV
estimates.
The IV estimates fluctuate from positive to negative.
Using P (Z) as an instrument, the GED effect on log wages is
in general negative.
For other instruments, the signs and magnitudes vary.

Figure 15 plots the estimated MTE.
Details of the nonparametric estimation procedure used to
produce these estimates are shown in an appendix in ?.
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in general negative.
For other instruments, the signs and magnitudes vary.
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Table 8: Instrumental Variables Estimatesa

Sample of GED and Dropouts - Males at Age 25b

Instruments IV-MTE
Father’s Highest Grade Completed 0.146

(0.251)
Mother’s Highest Grade Completed -0.052

(0.179)
Number of Siblings -0.052

(0.160)
GED Cost -0.053

(0.156)
Family Income in 1979 -0.047

(0.177)
Dropout’s Local Wage at Age 17 -0.013

(0.218)
High School Graduate’s Local Wage at Age 17 -0.049

(0.182)
Dropout’s Local Unemployment Rate at Age 17 0.443

(1.051)
High School Graduate’s Local Unemployment Rate at Age 17 -0.563

(0.577)
Propensity Scorec -0.058

(0.164)

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .... .. .. .. .



Notes: aThe IV estimates are computed by taking the weighted sum of the
MTE. The standard deviations (in parentheses) are computed using
bootstrapping (50 draws).
bWe excluded the oversample of poor whites and the military sample. The cost
of the GED corresponds to the average testing fee per GED battery by state
between 1993 and 2000 (Source: GED Statistical Report). Average local wage
for dropouts and high school graduates correspond to the average in the place
of residence for each group, respectively, and local unemployment rate
corresponds to the unemployment rate in the place of residence. Average local
wages, local unemployment rates, mother’s and father’s education refer to the
level at age 17.
cThe propensity score (P(D = 1|Z = z)) is computed using as controls the
instruments presented in the table, as well as two dummy variables controlling
for the place of residence at age 14 (south and urban), and a set of dummy
variables controlling for the year of birth (1957-1963).
Source: Heckman, Urzua and Vytlacil (2004).

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .... .. .. .. .



Figure 15: MTE of the GED with Confidence Interval, Dropouts and
GEDs–Males of the NLSY at Age 25
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Note: The dependent variable in the outcome equation is the log of the average hourly wage reported between ages 24 and
26. The controls in the outcome equations are tenure, tenure squared, experience, corrected AFQT, black (dummy), Hispanic

(dummy), marital status, and years of schooling. Let D = 0 denote dropout status and D = 1 denote GED status. The
model for D (choice model) includes as controls the corrected AFQT, number of siblings, father’s education, mother’s

education, family income at age 17, local GED costs, broken home at age 14, average local wage at age 17 for dropouts and
high school graduates, local unemployment rate at age 17 for dropouts and high school graduates, the dummy variables for

black and Hispanic, and a set of dummy variables controlling for year of birth. We also include two dummy variables
controlling for the place of residence at age 14 (south and urban). The choice model is estimated using a probit model. In

computing the MTE, the bandwidths are selected using the “leave one out” cross-validation method. We use biweight kernel
functions. The confidence interval is computed from bootstrapping using 50 draws.
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Local linear regression is used to estimate the MTE
implementing equation (19).

While the standard error band is large, the estimated ∆MTE is
in general negative, suggesting a negative marginal treatment
effect for most participants.
However, we observe that for small values of uD the point
estimates of the marginal effect are positive.
This analysis indicates that for people who are more likely to
take the GED exam in terms of their unobservables (i.e., for
people at the margin of indifference associated with a small
uD), the marginal effect is in fact positive.

Heckman and Vytlacil Using the Marginal Treatment Effect
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It is instructive to examine the various IV estimates using the
one instrument at a time strategy favored by many applied
economists who like to do sensitivity analysis.

Many of the variables used in the analysis are determined by
age 17.
Both father’s highest grade completed and local unemployment
rate among high school dropouts produce positive (if not
precisely determined) IV estimates.
A negative MTE weighted by negative IV weights produces a
positive IV.
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rate among high school dropouts produce positive (if not
precisely determined) IV estimates.
A negative MTE weighted by negative IV weights produces a
positive IV.
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A naive application of IV could produce the wrong causal
inference, i.e., that GED certification raises wages.

Our estimates show that our theoretical examples have real
world counterparts.
? present an extensive empirical analysis of the wage returns to
college attendance.
They show how to unify and interpret diverse instruments
within a common framework using the MTE and the weights
derived in ???.
They show negative weights on the MTE for commonly used
instruments.
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? use the MTE and the derived weights to identify the ranges
of the MTE identified by different instruments in their analysis
of the costs of breast cancer.

We next discuss the implications of relaxing separability in the
choice equations.
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Monotonicity, Uniformity, Nonseparability, Independence and Policy
Invariance: The Limits of Instrumental Variables

The analysis of this section and the entire recent literature on
instrumental variables estimators for models with
heterogeneous responses (i.e., models with outcomes of the
forms (5) and (6)) relies critically on the assumption that the
treatment choice equation has a representation in the additively
separable form (7).

From ?, we know that under assumptions (A-1)– (A-5),
separability is equivalent to the assumption of monotonicity or
uniformity, (IV-3).
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This uniformity condition imparts an asymmetry to the entire
instrumental variable enterprise.

Responses are permitted to be heterogeneous in a general way,
but choices of treatment are not.
In this section, we relax the assumption of additive separability
in (7).
We establish that in the absence of additive separability or
uniformity, the entire instrumental variable identification
strategy in this section and the entire recent literature collapses.
Parameters can be defined as weighted averages of an MTE.
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MTE and the derived parameters cannot be identified using any
instrumental variable strategy.

Appendix, Slide 1049, presents a comprehensive discussion,
which we summarize in this subsection.
One natural benchmark nonseparable model is a random
coefficient model of choice D = 1 [Zγ ≥ 0], where γ is a
random coefficient vector and γ ⊥⊥ (Z,U0,U1).
If γ is a random coefficient with a nondegenerate distribution
and with components that take both positive and negative
values, uniformity is clearly violated.
However, it can be violated even when all components of γ are
of the same sign if Z is a vector.
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Relax the additive separability assumption of equation (7) to
consider a more general case

D∗ = µD (Z,V) , (29a)

where µD (Z,V) is not necessarily additively separable in Z and
V, and V is not necessarily a scalar.

In the random coefficient example, V = γ and µD = zγ.

D = 1 [D∗ ≥ 0] . (29b)
We maintain assumptions (A-1)–(A-5) and (A-7).
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In special cases, (29a) can be expressed in an additively
separable form.

For example, if D∗ is weakly separable in Z and V,
D∗ = µD (θ (Z) ,V) for any V where θ (Z) is a scalar function,
µD is increasing in θ (Z), and V is a scalar, then we can write
(29b) in the same form as (7):

D = 1
[
θ (Z) ≥ Ṽ

]
,

where Ṽ = µ−1
D (0;V) and Ṽ ⊥⊥ Z | X, and the inverse function

is expressed with respect to the first argument (see ?).
? shows that any model that does not satisfy uniformity (or
“monotonicity”) will not have a representation in this form.
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]
,

where Ṽ = µ−1
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In the additively separable case, the MTE (8) has three
equivalent interpretations.

(i) UD = FV (V) is the only unobservable in the first stage
decision rule, and MTE is the average effect of treatment given
the unobserved characteristics in the decision rule (V = v).
(ii) A person with V = v would be indifferent between
treatment or not if P (Z) = uD, where P(Z) is a mean scale
utility function.
Thus, the MTE is the average effect of treatment given that
the individual would be indifferent between treatment or not if
P (Z) = uD.
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(iii) One can also view the additively separable form (7) as
intrinsic in the way we are defining the parameter and interpret
the MTE (equation (8)) as an average effect conditional on the
additive error term from the first stage choice model.

Under all interpretations of the MTE and under the
assumptions used in the preceding sections of this chapter,
MTE can be identified by LIV; the MTE does not depend on Z
and hence it is policy invariant and the MTE integrates up to
generate all treatment effects, policy effects and all IV
estimands.
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The three definitions are not the same in the general
nonseparable case (29a).

? extend MTE in the nonseparable case using interpretation (i).
MTE defined this way is policy invariant to changes in Z .
Appendix, Slide 1049, which summarizes their work, shows that
LIV is a weighted average of the MTE with possibly negative
weights and does not identify MTE.
If uniformity does not hold, the definition of MTE allows one to
integrate MTE to obtain all of the treatment effects, but the
instrumental variables estimator breaks down.
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Alternatively, one could define MTE based on (ii):

∆MTE
ii (z) = E (Y1 − Y0 | V ∈ {v : µD(z, v) = 0}) .

This is the average treatment effect for individuals who would
be indifferent between treatment or not at a given value of z
(recall that we keep the conditioning on X implicit).

? show that in the nonseparable case LIV does not identify this
MTE and that MTE does not change when the distribution of
Z changes, provided that the support of MTE does not change.
In general, this definition of MTE does not allow one to
integrate up MTE to obtain the treatment parameters.
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A third possibility is to force the index rule into an additive
form by taking µ∗

D (Z) = E (µD (Z,V) | Z), defining
V∗ = µD (Z,V)− E (µD (Z,V) | Z) and define MTE as
E (Y1 − Y0 | V∗ = v∗).

Note that V∗ is not independent of Z, is not policy invariant
and is not structural.
LIV does not estimate this MTE.
With this definition of the MTE it is not possible, in general, to
integrate up MTE to obtain the various treatment effects.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

A third possibility is to force the index rule into an additive
form by taking µ∗

D (Z) = E (µD (Z,V) | Z), defining
V∗ = µD (Z,V)− E (µD (Z,V) | Z) and define MTE as
E (Y1 − Y0 | V∗ = v∗).
Note that V∗ is not independent of Z, is not policy invariant
and is not structural.

LIV does not estimate this MTE.
With this definition of the MTE it is not possible, in general, to
integrate up MTE to obtain the various treatment effects.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

A third possibility is to force the index rule into an additive
form by taking µ∗

D (Z) = E (µD (Z,V) | Z), defining
V∗ = µD (Z,V)− E (µD (Z,V) | Z) and define MTE as
E (Y1 − Y0 | V∗ = v∗).
Note that V∗ is not independent of Z, is not policy invariant
and is not structural.
LIV does not estimate this MTE.

With this definition of the MTE it is not possible, in general, to
integrate up MTE to obtain the various treatment effects.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

A third possibility is to force the index rule into an additive
form by taking µ∗

D (Z) = E (µD (Z,V) | Z), defining
V∗ = µD (Z,V)− E (µD (Z,V) | Z) and define MTE as
E (Y1 − Y0 | V∗ = v∗).
Note that V∗ is not independent of Z, is not policy invariant
and is not structural.
LIV does not estimate this MTE.
With this definition of the MTE it is not possible, in general, to
integrate up MTE to obtain the various treatment effects.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

For any version of the nonseparable model, except those that
can be transformed to separability, index sufficiency fails.

To see this, assume that µD (Z,V) is continuous.
Define Ω (z) = {v : µD (z, v) ≥ 0}.
In the additively separable case,
P (z) ≡ Pr (D = 1 | Z = z) = Pr (UD ∈ Ω (z)) ,
P (z) = P (z′) ⇔ Ω (z) = Ω (z′).
This produces index sufficiency.
In the more general case of (29a), it is possible to have (z, z′)
such that P (z) = P (z′) and Ω (z) ̸= Ω(z′) so index sufficiency
does not hold.
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Implications of Nonseparability

This section develops generalization (i), leaving development of
the other interpretations for later research.

We focus on an analysis of PRTE, comparing two policies
p, p′ ∈ P .
Here “p” denotes a policy and not a realization of P(Z) as in
the previous sections.
This is our convention when we discuss PRTE.
The analysis of the other treatment parameters follows by
parallel arguments.
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For any v in the support of the distribution of V, define
Ω = {z : µD(z, v) ≥ 0}.

For example, in the random coefficient case, with V ≡ γ and
D = 1[Zγ ≥ 0], we have Ωg = {z : zg ≥ 0}, where g is a
realization of γ.
Define 1A(t) to be the indicator function for the event t ∈ A.
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For any v in the support of the distribution of V, define
Ω = {z : µD(z, v) ≥ 0}.
For example, in the random coefficient case, with V ≡ γ and
D = 1[Zγ ≥ 0], we have Ωg = {z : zg ≥ 0}, where g is a
realization of γ.

Define 1A(t) to be the indicator function for the event t ∈ A.
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Then, making the X explicit, Appendix, Slide 1049, derives the
result that

E(Yp)− E(Yp′ ) = E
[
E(Yp|X)− E(Yp′ | X)

]
(30)

=

∫ [∫
E(∆MTE | X = x,V = v) (31)

×
(

Pr[Zp ∈ Ω | X = x]
−Pr[Zp′ ∈ Ω | X = x]

)
dFV|X(v|x)

]
dFX(x).

Thus, without additive separability, we can still derive an
expression for PRTE and by similar reasoning the other
treatment parameters.
However, to evaluate the expression requires knowledge of
MTE, of Pr[Zp ∈ Ω | X = x] and Pr[Zp′ ∈ Ω | X = x] for every
(v, x) in the support of the distribution of (V,X), and of the
distribution of V.
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In general, if no structure is placed on the µD function, one can
normalize V to be unit uniform (or a vector of unit uniform
random variables) so that FV|X will be known.

However, in this case, the Ω = {z : µD(z, v) ≥ 0} sets will not
in general be identified.
If structure is placed on the µD function, one might be able to
identify the Ω = {z : µD(z, v) ≥ 0} sets but then one needs to
identify the distribution of V (conditional on X).
If structure is placed on µD, one cannot in general normalize
the distribution of V to be unit uniform without undoing the
structure being imposed on µD.
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In particular, consider the random coefficient model
D = 1[Zγ ≥ 0] where V = γ is a random vector, so that
Ωγ = {z : zγ ≥ 0}.

In this case, if all of the other assumptions hold, including
Z ⊥⊥ γ | X, and the policy change does not affect
(Y1,Y0,X, γ), the PRTE is given by

E(Yp)− E(Yp′ ) = E
[
E(Yp|X)− E(Yp′ | X)

]
=

∫ [∫
E(∆MTE | X = x, γ = g)

×
(

Pr [Zp ∈ Ωg | X = x]
−Pr

[
Zp′ ∈ Ωg | X = x

] ) dFγ|X (g | x)
]

dFX(x).
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Because structure has been placed on the µD(Z, γ) function,
the sets Ωγ are known.

However, evaluating the function requires knowledge of the
distribution of γ which will not in general be identified without
further assumptions.
Normalizing the distribution of γ to be a vector of unit uniform
random variables produces the distribution of γ but eliminates
the assumed linear index structure on µD and results in Ωγ sets
that are not identified.
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Even if the weights are identified, ? show that it is not possible
to use LIV to identify MTE without additive separability
between Z and V in the selection rule index.

Appendix, Slide 1119, develops this point for the random
coefficient model.
Without additive separability in the latent index for the
selection rule, we can still create an expression for PRTE (and
the other treatment parameters) but both the weights and the
MTE function are no longer identified using instrumental
variables.
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One superficially plausible way to avoid these problems would
be to define µ̃D(Z) = E(µD(Z,V) | Z) and
Ṽ = µD(Z,V)− E(µD(Z,V) | Z), producing the model
D = 1[µ̃D(Z) + Ṽ ≥ 0].

We keep the conditioning on X implicit.
One could redefine MTE using Ṽ and proceed as if the true
model possessed additive separability between observables and
unobservables in the latent index.
This is the method pursued in approach (iii).
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For two reasons, this approach does not solve the problem of
providing an adequate generalization of MTE.

First, with this definition, Ṽ is a function of (Z,V), and a policy
that changes Z will then also change Ṽ.
Thus, policy invariance of the MTE no longer holds.
Second, this approach generates a Ṽ that is no longer
statistically independent of Z so that assumption (A-1) no
longer holds when Ṽ is substituted for V even when (A-1) is
true for V.
Lack of independence between observables and unobservables
in the latent index both invalidates our expression for PRTE
(and the expressions for the other treatment effects) and
causes LIV to no longer identify MTE.
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Thus, policy invariance of the MTE no longer holds.

Second, this approach generates a Ṽ that is no longer
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First, with this definition, Ṽ is a function of (Z,V), and a policy
that changes Z will then also change Ṽ.
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The nonseparable model can also restrict the support of P (Z).

For example, consider a standard normal random coefficient
model with a scalar regressor (Z = (1,Z1)).
Assume γ0 ∼ N

(
0, σ2

0
)
, γ1 ∼ N

(
γ̄1, σ

2
1
)
, and γ0 ⊥⊥ γ1.

Then

P (z1) = Φ

(
γ̄1z1√

σ2
0 + σ2

1z2
1

)
,

where Φ is the standard cumulative normal distribution.
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If the support of z1 is R, then in the standard additive model,
σ2

1 = 0 and P (z1) has support [0, 1].

When σ2
1 > 0, the support is strictly within the unit interval.

In the special case when σ2
0 = 0, the support is one point(

P (z) = Φ
(

γ̄1
σ1

))
.

We cannot, in general, identify ATE, TT or any treatment
effect requiring the endpoints 0 or 1.
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Thus the general models of nonuniformity presented in this
section do not satisfy the index sufficiency property, and the
support of the treatment effects and estimators is, in general,
less than full.

The random coefficient model for choice may explain the
empirical support problems for P(Z) found in ? and many other
evaluation studies.
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Implications of Dependence

We next consider relaxing the independence assumption (A-1)
to allow Z ⊥�⊥ V | X while maintaining the assumption that
Z ⊥⊥ (Y0,Y1) | (X,V).

We maintain the other assumptions, including additive
separability between Z and V in the latent index for the
selection rule (equation (7)) and the assumption that the policy
changes Z but does not change (V,Y0,Y1,X).
Thus we assume that the policy shift does not change the MTE
function (policy invariance).
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Given these assumptions, we derive in Appendix, Slide 1082,
the following expression for PRTE in the nonindependent case
for policies p, p′ ∈ P :

E (Yp)− E
(
Yp′
)
= E

[
E (Yp | X)− E

(
Yp′ | X

)]
(32)

=

∫ [∫
E
(
∆MTE

∣∣∣∣ X = x,
V = v

)
(33)

×
(

Pr[µD(Zp′ ) < v | X = x,V = v]
−Pr[µD(Zp) < v | X = x,V = v]

)
dFV|X(v | x)

]
dFX(x).

Notice that “p” denotes a policy and not a realized value of
P(Z).
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Although we can derive an expression for PRTE without
requiring independence between Z and V, to evaluate this
expression requires knowledge of MTE and of
Pr[µD(Zp′) < v | X = x,V = v] and of
Pr[µD(Zp) < v | X = x,V = v] for every (x, v) in the support of
the distribution of (X,V).

This requirement is stronger than what is needed in the case of
independence since the weights no longer depend only on the
distribution of Pp(Zp) and Pp′(Zp′) conditional on X.
To evaluate these weights requires knowledge of the function
µD and of the joint distribution of (V,Zp) and (V,Zp′)
conditional on X, and these will in general not be identified
without further assumptions.
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Even if the weights are identified, ? show that it is not possible
to use LIV to identify MTE without independence between Z
and V conditional on X.

Thus, without conditional independence between Z and V in
the latent index for the decision rule, we can still create an
expression for PRTE but both the weights and the MTE
function are no longer identified without invoking further
assumptions.
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One superficially appealing way to avoid these problems is to
define Ṽ = FV|X,Z(V) and µ̃D(Z) = FV|X,Z(µD(Z)), so
D = 1[µD(Z)− V ≥ 0] = 1[µ̃D(Z)− Ṽ ≥ 0] with Ṽ ∼Unif[0, 1]
conditional on X and Z and so Ṽ is independent of X and Z.

It might seem that the previous analysis would carry over.
However, by defining Ṽ = FV|X,Z(V) , we have defined Ṽ in a
way that depends functionally on Z and X, and hence we
violate invariance of the MTE with respect to the shifts in the
distribution of Z given X.
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way that depends functionally on Z and X, and hence we
violate invariance of the MTE with respect to the shifts in the
distribution of Z given X.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

One superficially appealing way to avoid these problems is to
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The Limits of Instrumental Variable Estimators

The treatment effect literature focuses on a class of policies
that move treatment choices in the same direction for everyone.

General instruments do not have universally positive weights on
∆MTE.
They are not guaranteed to shift everyone in the same direction.
They do not necessarily estimate gross treatment effects.
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However, the effect of treatment is not always the parameter of
policy interest.

Thus, in the housing subsidy example developed in Slide 268,
migration is the vehicle through which the policy operates.
One might be interested in the effect of migration (the
treatment effect) or the effect of the policy (the housing
subsidy).
These are separate issues unless the policy is the treatment.
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Generalizing the MTE to the case of a nonseparable choice
equation that violates the monotonicity condition, we can
define but cannot identify the policy parameters of interest
using ordinary instrumental variables or our extension LIV.

If we make the model symmetrically heterogeneous in outcome
and choice equations, the method of instrumental variables and
our extensions of it break down in terms of estimating
economically interpretable parameters.
? and ? restore symmetry in the IV analysis of treatment
choice and outcome equations by imposing uniformity on both
outcome and choice equations.
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The general case of heterogeneity in both treatment and choice
equations is beyond the outer limits of the entire IV literature,
although it captures intuitively plausible phenomena.

More general structural methods are required.
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Regression Discontinuity Estimators and LATE

? developed the regression discontinuity design which is now
widely used.

(See an early discussion of this estimator in econometrics by ?).
? present an exposition of the regression discontinuity
estimator within a LATE framework.
This section exposits the regression discontinuity method
within our MTE framework.
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Suppose assumptions (A-1)–(A-5) hold except that we relax
independence assumption (A-1) to assume that (Y1 − Y0,UD)
is independent of Z conditional on X.

We do not impose the condition that Y0 is independent of Z
conditional on X.
Relaxing the assumption that Y0 is independent of Z
conditional on X causes the standard LIV estimand to differ
from the MTE.
We show that the LIV estimand in this case equals MTE plus a
bias term that depends on ∂

∂pE(Y0|X = x,P(Z) = p).
Likewise, we show that the discrete-difference IV formula will
no longer correspond to LATE, but will now correspond to
LATE plus a bias term.
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A regression discontinuity design allows analysts to recover a
LATE parameter at a particular value of Z.

If E(Y0|X = x,Z = z) is continuous in z, while P(z) is
discontinuous in z at a particular point, then it will be possible
to use a regression discontinuity design to recover a LATE
parameter.
While the regression discontinuity design does have the
advantage of allowing Y0 to depend on Z conditional on X, it
only recovers a LATE parameter at a particular value of Z and
cannot in general be used to recover either other treatment
parameters such as the average treatment effect or the answers
to policy questions such as the PRTE.
The following discussion is motivated by the analysis of ?.
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For simplicity, assume that Z is a scalar random variable.

First, consider LIV while relaxing independence
assumption (A-1) to assume that (Y1 − Y0,UD) is independent
of Z conditional on X but without imposing that Y0 is
independent of Z conditional on X.
In order to make the comparison with the regression
discontinuity design easier, we will condition on Z instead of
P(Z).
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Using Y = Y0 + D(Y1 − Y0), we obtain:
E(Y|X = x,Z = z) = E(Y0|X = x,Z = z) + E(D(Y1 − Y0)|X = x,Z = z)

= E(Y0|X = x,Z = z) +
∫ P(z)

0
E(Y1 − Y0|X = x,UD = uD)duD.

So
∂
∂z E(Y|X = x,Z = z)

∂
∂z P(z)

=
∂
∂z E(Y0|X = x,Z = z)

∂
∂z P(z)

+ E(Y1 − Y0|X = x,UD = P(z))

where we have assumed that ∂
∂zP(z) ̸= 0 and that

E(Y0|X = x,Z = z) is differentiable in z.
Notice that under our stronger independence condition (A-1),
∂
∂zE(Y0|X = x,Z = z) = 0 so that we identify MTE as before.
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With Y0 possibly dependent on Z conditional on X, we now get
MTE plus the bias term that depends on ∂

∂zE(Y0|X = x,Z = z).

Likewise, if we consider the discrete change form of IV:

E(Y|X = x,Z = z)− E(Y|X = x,Z = z′)
P(z)− P(z′)

=
E(Y0|X = x,Z = z)− E(Y0|X = x,Z = z′)

P(z)− P(z′)︸ ︷︷ ︸
Bias for LATE

+E(Y1 − Y0|X = x,P(z) > UD > P(z′))︸ ︷︷ ︸
LATE

so that we now recover LATE plus a bias term.
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Now consider a regression discontinuity design.

Suppose that there exists an evaluation point z0 for Z such that
P(·) is discontinuous at z0, and suppose that
E(Y0|X = x,Z = z) is continuous at z0.
Suppose that P(·) is increasing in a neighborhood of z0.
Let

P(z0−) = lim
ϵ↓0

P(z0 − ϵ),

P(z0+) = lim
ϵ↓0

P(z0 + ϵ),

and note that the conditions that P(·) is increasing in a
neighborhood of z0 and discontinuous at z0 imply that
P(z0+) > P(z0−).
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Let
µ(x, z0−) = lim

ϵ↓0
E(Y|X = x,Z = z0 − ϵ)

µ(x, z0+) = lim
ϵ↓0

E(Y|X = x,Z = z0 + ϵ),

and note that

µ(x, z0−) = E(Y0|X = x,Z = z0)+

∫ P(z0−)

0
E(Y1−Y0|X = X,UD = uD)duD

and

µ(x, z0+) = E(Y0|X = x,Z = z0)+

∫ P(z0+)

0
E(Y1−Y0|X = x,UD = uD)duD,

where we use the fact that E(Y0|X = x,Z = z) is continuous
at z0.
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Thus,

µ(x, z0+)−µ(x, z0−) =

∫ P(z0+)

P(z0−)

E(Y1−Y0|X = x,UD = uD)duD

⇒ µ(x, z0+)− µ(x, z0−)

P(z0+)− P(z0−)
= E(Y1 − Y0|X = x,P(z0+) ≥ UD > P(z0−))

so that we now recover a LATE parameter for a particular
point of evaluation.
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Note that if P(z) is only discontinuous at z0, then we only
identify E(Y1 − Y0|X = x,P(z0+) ≥ UD > P(z0−)) and not
any LATE or MTE at any other evaluation points.

While this discussion assumes that Z is a scalar, it is
straightforward to generalize the discussion to allow for Z to be
a vector.
For more discussion of the regression discontinuity design
estimator and an example, see ?.
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Policy Evaluation, Out-of-Sample Policy Forecasting,
Forecasting the Effects of New Policies and Structural
Models Based on the MTE

We have thus far focused on policy problem P-1, the problem of
“internal validity”. We have shown how to identify a variety of
parameters but have not put them to use in evaluating policies.

This section discusses policy evaluation and out-of-sample
forecasting.
We discuss two distinct evaluation and forecasting problems.
The first problem uses the MTE to develop a cost benefit
analysis.
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Corresponding to the gross benefit parameters analyzed in
Slides 90–152, there is a parallel set of cost parameters that
emerge from the economics of the generalized Roy model.

This part of our analysis works in the domain of problem P-1 to
construct a cost-benefit analysis for programs in place.
However, these tools can be extended to new environments
using the other results established in this section.
The second topic is the problem of constructing the PRTE in
new environments in a more general way.
This addresses policy problems P-2 and P-3 and considers large
scale changes in policies and forecasts of new policies.
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Econometric Cost Benefit Analysis Based on the MTE

This section complements the analysis of Slide 90.

There we developed gross outcome measures for a generalized
Roy model.
Here we define a parallel set of treatment parameters for the
generalized Roy model corresponding to the average cost of
participating in a program.
The central feature of the generalized Roy model is that the
agent chooses treatment if the benefit exceeds the subjective
cost perceived by the agent.
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This creates a simple relationship between the cost and benefit
parameters that can be exploited for identifying or bounding the
cost parameters by adapting the results of the previous sections.

The main result of this section is that cost parameters in the
generalized Roy model can be identified or bounded without
direct information on the costs of treatment.
Our analysis complements and extends the analysis of ? who
first noted this duality.
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Assume the outcomes (Y0,Y1) are generated by the additively
separable system (2).

Let C denote the individual-specific subjective cost of selecting
into treatment.
We assume that C is generated by C = µC (W) + UC, where W
is a (possibly vector-valued) observed random variable and UC
is an unobserved random variable.
We assume that the agent selects into treatment if the benefit
exceeds the cost, using the structure of the generalized Roy
model where D = 1[Y1 − Y0 ≥ C] and C = µC (W) + UC,
where µC (W) is nondegenerate and integrable; UC is
continuous and Z = (W,X) is independent of (UC,U0,U1).
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is an unobserved random variable.
We assume that the agent selects into treatment if the benefit
exceeds the cost, using the structure of the generalized Roy
model where D = 1[Y1 − Y0 ≥ C] and C = µC (W) + UC,
where µC (W) is nondegenerate and integrable; UC is
continuous and Z = (W,X) is independent of (UC,U0,U1).
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We do not assume any particular functional form for the
functions µ0, µ1 and µC, and we do not assume that the
distribution of U0, U1, or UC is known.

Let V ≡ UC − (U1 − U0) and let FV denote the distribution
function of V . As before, we use the convention that UD is the
probability integral transformation of the latent variable
generating choices so that UD = FV (V).
Let P(z) ≡ Pr(D = 1|Z = z) so that
P(z) = FV(µ1(x)− µ0(x)− µC(w)).
For convenience, we will assume that FV is strictly increasing so
that FV will be invertible, though this assumption is not
required.
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We work with UD = FV (V) instead of working directly with V
to link our analysis to that in Slide 90.

In this section we make explicit the conditioning on X, Z, and
W because it plays an important role in the analysis.
Corresponding to the treatment parameters defined in Slide 12
and tables 2A and 2B, we can define analogous cost
parameters.
We define the marginal cost of treatment for a person with
characteristics W = w and UD = uD as

CMTE(w, uD) ≡ E(C|W = w,UD = uD).

This is a cost version of the marginal treatment effect.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

We work with UD = FV (V) instead of working directly with V
to link our analysis to that in Slide 90.
In this section we make explicit the conditioning on X, Z, and
W because it plays an important role in the analysis.

Corresponding to the treatment parameters defined in Slide 12
and tables 2A and 2B, we can define analogous cost
parameters.
We define the marginal cost of treatment for a person with
characteristics W = w and UD = uD as

CMTE(w, uD) ≡ E(C|W = w,UD = uD).

This is a cost version of the marginal treatment effect.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

We work with UD = FV (V) instead of working directly with V
to link our analysis to that in Slide 90.
In this section we make explicit the conditioning on X, Z, and
W because it plays an important role in the analysis.
Corresponding to the treatment parameters defined in Slide 12
and tables 2A and 2B, we can define analogous cost
parameters.

We define the marginal cost of treatment for a person with
characteristics W = w and UD = uD as

CMTE(w, uD) ≡ E(C|W = w,UD = uD).

This is a cost version of the marginal treatment effect.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

We work with UD = FV (V) instead of working directly with V
to link our analysis to that in Slide 90.
In this section we make explicit the conditioning on X, Z, and
W because it plays an important role in the analysis.
Corresponding to the treatment parameters defined in Slide 12
and tables 2A and 2B, we can define analogous cost
parameters.
We define the marginal cost of treatment for a person with
characteristics W = w and UD = uD as

CMTE(w, uD) ≡ E(C|W = w,UD = uD).

This is a cost version of the marginal treatment effect.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

Likewise, we have an analogue average cost:

CATE(w) ≡ E(C|W = w)

=

∫ 1

0
E(C|W = w,UD = uD)duD, (34)

recalling that dFUD (uD) = duD because UD is uniform.

This is the mean subjective cost of treatment as perceived by
the average agent.
We next consider

CTT(w,P(z)) ≡ E(C | W = w,P(Z) = P(z),D = 1)

=
1

P(z)

∫ P(z)

0
E(C | W = w,UD = uD)duD.
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This is the mean subjective cost of treatment as perceived by
the treated with a given value of P(z).

Removing the conditioning on P(z),

CTT(w) ≡ E(C|W = w,D = 1)

=

∫ 1

0
E(C|W = w,UD = uD)gw(uD)duD,

where gw(uD) =
1−FP(Z)|W=w(uD)∫
(1−FP(Z)|W=w(t))dt and FP(Z)|W=w denotes the

distribution of P(Z) conditional on W = w.
This is the mean subjective cost of treatment for the treated.
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Finally, we can derive a LATE version of the cost:

CLATE(w,P(z),P(z′)) ≡ 1
P(z)− P(z′)

∫ P(z)

P(z′)
E(C|W = w,UD = uD)duD.

This is the mean subjective cost of switching states for those
induced to switch status by a change in the instrument.
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The generalized Roy model makes a tight link between the cost
of treatment and the benefit of treatment.

Thus one might expect a relationship between the gross benefit
and cost parameters.
We show that the benefit and cost parameters coincide for
MTE.
This relationship can be used to infer information on the
subjective cost of treatment by the use of local instrumental
variables.
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Define ∆LIV(x,P(z)) as in equation (19):

∆LIV(x,P(z)) ≡ ∂E(Y|X = x,P(Z) = P(z))
∂P(z) .

Under assumptions (A-1)–(A-5), LIV identifies MTE:

∆LIV(x,P(z)) = ∆MTE(x,P(z)).

Note that

∆MTE(x,P(z)) = E (∆ | X = x,UD = P(z))
= E (∆ | X = x,∆(x) = C(w))
= E (∆(x) | ∆(x) = C(w)) ,

(35)

where ∆(x) = µ1(x)− µ0(x) + U1 − U0, and
C(w) = µC(w) + UC.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

(∆(x) and C(w) are, respectively, the benefit and cost for the
agent if the X and W are externally set to x and w without
changing (U1,U0,UD) values.) We thus obtain:

E (∆(x) | ∆(x) = C(w)) = E (C(w) | ∆(x) = C(w))
= E (C(w) | W = w,UD = P(z))
= CMTE(w,P(z)).

(36)

Thus,
∆LIV(x,P(z)) = ∆MTE(x,P(z)) = CMTE(w,P(z)). (37)

where ∆LIV(w,P(z)) is ∆LIV(x,P(z)) defined for the support
where ∆(x) = C(w).

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

The benefit and cost parameters coincide for the MTE
parameter because at the margin, the marginal cost should
equal the marginal benefit.

The benefit to treatment for an agent indifferent between
treatment and no treatment is equal to the cost of treatment,
and thus the two parameters coincide.
Suppose that one has access to a large sample of (Y,D,X,W)
observations.
Since ∆LIV(x,P(z)) = ∂E(Y|X=x,P(Z)=P(z))

∂P(z) , ∆LIV(x,P(z)) can be
identified for any (x,P(z)) in the support of (X,P(Z)), and thus
the corresponding ∆MTE(x,P(z)) and CMTE(w,P(z))
parameters can also be identified.
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and thus the two parameters coincide.
Suppose that one has access to a large sample of (Y,D,X,W)
observations.

Since ∆LIV(x,P(z)) = ∂E(Y|X=x,P(Z)=P(z))
∂P(z) , ∆LIV(x,P(z)) can be

identified for any (x,P(z)) in the support of (X,P(Z)), and thus
the corresponding ∆MTE(x,P(z)) and CMTE(w,P(z))
parameters can also be identified.
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One can thus identify the marginal cost parameter without
direct information on the cost of treatment by using the
structure of the Roy model and by identifying the marginal
benefit parameter.

? establish conditions under which ∆LIV can be used to identify
∆ATE and ∆TT given large support conditions, and to bound
those parameters without large support conditions if the
outcome variables are bounded.
We review their results on bounds in Slide 938.
We surveyed their results on identification of ∆ATE and ∆TT in
Slides 90 and 152.
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From (34) and (37), we can use the same arguments to use
CMTE to identify or bound CATE and CTT.

Thus, CMTE can be used to identify CATE(w) if the support of
P(Z) conditional on W = w is the full unit interval.
If the support of P(Z) conditional on W = w is a proper subset
of the full unit interval, then CMTE can be used to bound
CATE(x) if C is bounded.
One can thus identify or bound the average cost of treatment
or the cost of treatment on the treated without direct
information on the cost of treatment.
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We next consider what information is available on the
underlying benefit functions µ0 and µ1 and the underlying cost
function µC (w).

From the definitions,

∆MTE(x,P(z)) = E (∆ | X = x,UD = P(z))
= µ1(x)− µ0(x) + Υ(P(z)) (38)

with Υ(P(z)) = E(U1 − U0|UD = P(z)).
Likewise,

CMTE(w,P(z)) = E (C | W = w,UD = P(z))
= µC(w) + Γ(P(z)), (39)

with Γ(P(z)) = E(UC|UD = P(z)).
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Let ∆LIV(z) = ∆LIV(x,P(z)), and recall from the preceding
analysis that ∆LIV(z) = ∆MTE(x,P(z)) = CMTE(w,P(z)).

Consider two points of evaluation
(
z, z′) such that

P(z) = P(z′
).

Using equation (37), we obtain:

∆LIV(z)−∆LIV(z′
) = (µ1(x)− µ0(x))−

(
µ1(x

′
)− µ0(x

′
)
)
= µC(w)−µC(w′).

Assuming that X and W each have at least one component not
in the other, we can identify µC(w) up to constants within the
support of W conditional on P(Z) = P(z) using ∆LIV(z).
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Shifting z while conditioning on P(z) shifts (µ1(x)− µ0(x)) and
µC(w) along the line (µ1(x)− µ0(x))− µC(w) = F−1

V (p) . Thus,
conditional on P(z), a shift in the benefit, µ1(X)− µ0(X), is
associated with the same shift in the cost, µC(w).

For any p ∈ (0, 1), let Ωp = {z : P(z) = p} = {(w, x) :
(µ1(x)− µ0(x))− µC(w) = F−1

V (p)}.
As we vary z within the set Ωp, we trace out changes in µC(w)
and µ1(x)− µ0(x), where the changes in µC(w) equal the
changes in µ1(x)− µ0(x).
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For the special case of the generalized Roy model where UC is
degenerate, ∆LIV(z) = µC(w).

Thus, in the case of a deterministic cost function, LIV identifies
µC(w).
We plot this case in figures 5A–5C for the country policy
adoption example where the cost C is a constant across all
countries.
In the case where UC is nondegenerate but U1 − U0 is
degenerate, Y1 − Y0 = µ1(X)− µ0(X), (β = β̄ in the context
of the model of Slide 12) and there is no variation in the gross
benefit from participating in the program conditional on X.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

For the special case of the generalized Roy model where UC is
degenerate, ∆LIV(z) = µC(w).
Thus, in the case of a deterministic cost function, LIV identifies
µC(w).

We plot this case in figures 5A–5C for the country policy
adoption example where the cost C is a constant across all
countries.
In the case where UC is nondegenerate but U1 − U0 is
degenerate, Y1 − Y0 = µ1(X)− µ0(X), (β = β̄ in the context
of the model of Slide 12) and there is no variation in the gross
benefit from participating in the program conditional on X.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

For the special case of the generalized Roy model where UC is
degenerate, ∆LIV(z) = µC(w).
Thus, in the case of a deterministic cost function, LIV identifies
µC(w).
We plot this case in figures 5A–5C for the country policy
adoption example where the cost C is a constant across all
countries.

In the case where UC is nondegenerate but U1 − U0 is
degenerate, Y1 − Y0 = µ1(X)− µ0(X), (β = β̄ in the context
of the model of Slide 12) and there is no variation in the gross
benefit from participating in the program conditional on X.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

For the special case of the generalized Roy model where UC is
degenerate, ∆LIV(z) = µC(w).
Thus, in the case of a deterministic cost function, LIV identifies
µC(w).
We plot this case in figures 5A–5C for the country policy
adoption example where the cost C is a constant across all
countries.
In the case where UC is nondegenerate but U1 − U0 is
degenerate, Y1 − Y0 = µ1(X)− µ0(X), (β = β̄ in the context
of the model of Slide 12) and there is no variation in the gross
benefit from participating in the program conditional on X.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

In that case, ∆LIV(z) = µ1(x)− µ0(x) = β̄, where we keep the
conditioning on X implicit in defining ∆ LIV (z).

Thus, in the case of a deterministic benefit from participation,
LIV identifies the benefit function.
If UD and U1 − U0 are both degenerate, then ∆LIV(z) is not
well defined.
In summary, the generalized Roy model structure can be
exploited to identify cost parameters without direct information
on the cost of treatment.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

In that case, ∆LIV(z) = µ1(x)− µ0(x) = β̄, where we keep the
conditioning on X implicit in defining ∆ LIV (z).
Thus, in the case of a deterministic benefit from participation,
LIV identifies the benefit function.

If UD and U1 − U0 are both degenerate, then ∆LIV(z) is not
well defined.
In summary, the generalized Roy model structure can be
exploited to identify cost parameters without direct information
on the cost of treatment.
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The MTE parameter for cost is immediately identified within
the proper support, and can be used to identify or bound the
average cost of treatment and the cost of treatment on the
treated.

In addition, the MTE parameter allows one to infer how the
cost function shifts in response to a change in observed
covariates, and to completely identify the cost function if the
cost of treatment is deterministic conditional on observable
covariates.
Thus we can compute the costs and benefits of alternative
programs for various population averages.
? develop this analysis to consider marginal extensions of the
policy relevant treatment effect (PRTE).
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Constructing the PRTE in New Environments

In this section, we present conditions for constructing PRTE for
new environments and for new programs using historical data
for general changes in policies and environments.

We consider general changes in the environment and policies
and not just the marginal perturbations of the P (Z) considered
in the previous section.
We address policy problems (P-2), forecasting the effects of
existing policies to new environments and (P-3), forecasting the
effects of new policies, never previously implemented.
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Let p ∈ P denote a policy characterized by random vector Zp.
The usage of “p” in this section is to be distinguished from a
realized value of P(Z) as in most other sections in this chapter.

Let e ∈ E denote an environment characterized by random
vector Xe.
A history, H, is a collection of policy-environment (p, e) pairs
that have been experienced and documented.
We assume that the environment is autonomous so the choice
of p does not affect Xe.
Letting Xe,p denote the value of Xe under policy p, autonomy
requires that
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(A-8)
Xe,p = Xe, ∀p, e (Autonomy).
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Autonomy is a more general notion than the no-feedback
assumption introduced in (A-6).

They are the same when the policy is a treatment.
General equilibrium feedback effects can cause a failure of
autonomy.
In this section, we will assume autonomy, in accordance with
the partial equilibrium tradition in the treatment effect
literature.
Autonomy is a version of Hurwicz’s policy invariance postulate
but for a random variable and not a function.
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Evaluating a particular policy p′ in environment e′ is
straightforward if (p′, e′) ∈ H.

One simply looks at the associated outcomes and treatment
effects formed in that policy environment and applies the
methods previously discussed to obtain internally valid
estimates.
The challenge comes in forecasting the impacts of policies (p′)
in environments (e′) for (p′, e′) not in H.
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We show how ∆MTE plays the role of a policy-invariant
functional that aids in creating counterfactual states never
previously experienced.

We focus on the problem of constructing the policy relevant
treatment effect ∆PRTE but our discussion applies more
generally to the other treatment parameters.
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Given the assumptions invoked in Slide 90, ∆MTE can be used
to evaluate a whole menu of policies characterized by different
conditional distributions of Pp′ .

In addition, given our assumptions, we can focus on how policy
p′, which is characterized by Zp′ , produces the distribution
FPp′ |X which weights an invariant ∆MTE without having to
conduct a new investigation of (Y,X,Z) relationships for each
proposed policy.
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Constructing Weights for New Policies in a Common Environment

The problem of constructing ∆PRTE for policy p′ (compared to
baseline policy p̄) in environment e when (p′, e) /∈ H entails
constructing E (Υ (Yp′)).

We maintain the assumption that the baseline policy is
observed, so (p̄, e) ∈ H.
We also postulate instrumental variable assumptions
(A-1)–(A-5), presented in Slide 90, and the policy invariance
assumption (A-7), presented in Slide 139 and embedded in
assumption (A-8).
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assumption (A-7), presented in Slide 139 and embedded in
assumption (A-8).
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We use separable choice equation (7) to characterize choices.

The policy is assumed not to change the distribution of
(Y0,Y1,UD) conditional on X.
Under these conditions, Equation (10) is a valid expression for
PRTE and constructing PRTE only requires identification of
∆MTE and constructing FPp′ |Xe from the policy histories He,
defined as the elements of H for a particular environment e,
He = {p : (p, e) ∈ H}.
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Associated with the policy histories p ∈ He is a collection of
policy variables {Zp : p ∈ He}.

Suppose that a new policy p′ can be written as Zp′ = Tp′,j(Zj)
for some j ∈ He, where Tp′,j is a known deterministic
transformation and Zp′ has the same list of variables as Zj.
Examples of policies that can be characterized in this way are
tax and subsidy policies on wages, prices and incomes that
affect unit costs (wages or prices) and transfers.
Tuition might be shifted upward for everyone by the same
amount, or tuition might be shifted according to a nonlinear
function of current tuition, parents’ income, and other
observable characteristics in Zj.
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Constructing FPp′ |Xe from data in the policy history entails two
distinct steps.

From the definitions,

Pr(Pp′ ≤ t | Xe) = Pr ({Zp′ : Pr(Dp′ = 1 | Zp′ ,Xe) ≤ t} | Xe) .

If (i) we know the distribution of Zp′ , and (ii) we know the
function Pr(Dp′ = 1 | Zp′ = z,Xe = x) over the appropriate
support, we can then recover the distribution of Pp′ conditional
on Xe.
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Given that Zp′ = Tp′,j(Zj) for a known function Tp′,j(·), step (i)
is straightforward since we recover the distribution of Zp′ from
the distribution of Zj by using the fact that
Pr(Zp′ ≤ t | Xe) = Pr ({Zj : Tp′,j(Zj) ≤ t} | Xe).

Alternatively, part of the specification of the policy p′ might be
the distribution Pr(Zp′ ≤ t | Xe).
We now turn to the second step, recovering the function
Pr(Dp′ = 1 | Zp′ = z,Xe = x) over the appropriate support.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

Given that Zp′ = Tp′,j(Zj) for a known function Tp′,j(·), step (i)
is straightforward since we recover the distribution of Zp′ from
the distribution of Zj by using the fact that
Pr(Zp′ ≤ t | Xe) = Pr ({Zj : Tp′,j(Zj) ≤ t} | Xe).
Alternatively, part of the specification of the policy p′ might be
the distribution Pr(Zp′ ≤ t | Xe).

We now turn to the second step, recovering the function
Pr(Dp′ = 1 | Zp′ = z,Xe = x) over the appropriate support.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

Given that Zp′ = Tp′,j(Zj) for a known function Tp′,j(·), step (i)
is straightforward since we recover the distribution of Zp′ from
the distribution of Zj by using the fact that
Pr(Zp′ ≤ t | Xe) = Pr ({Zj : Tp′,j(Zj) ≤ t} | Xe).
Alternatively, part of the specification of the policy p′ might be
the distribution Pr(Zp′ ≤ t | Xe).
We now turn to the second step, recovering the function
Pr(Dp′ = 1 | Zp′ = z,Xe = x) over the appropriate support.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

If Zp′ and Zj contain the same elements though possibly with
different distributions, then a natural approach to forecasting
the new policy is to postulate that

Pj(z) = Pr(Dj = 1 | Zj = z,Xe) (40)
= Pr(Dp′ = 1 | Zp′ = z,Xe) = Pp′(z), (41)

i.e., that over a common support for Zj and Zp′ the known
conditional probability function and the desired conditional
probability function agree.

Condition (40) will hold, for example, if
Dj = 1[µD(Zj)− V ≥ 0], Dp′ = 1[µD(Zp′)− V ≥ 0],
Zj ⊥⊥ V | Xe, and Zp′ ⊥⊥ UD | Xe, recalling that UD = FV|X (V).
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Even if condition (40) is satisfied on a common support, the
support of Zj and Zp′ may not be the same.

If the support of the distribution of Zp′ is not contained in the
support of the distribution of Zj, then some form of
extrapolation is needed.
Alternatively, if we strengthen our assumptions so that (40)
holds for all j ∈ He, we can identify Pp′(z) for all z in⋃

j∈He
Supp(Zj).

However, there is no guarantee that the support of the
distribution of Zp′ will be contained in

⋃
j∈He

Supp(Zj), in which
case some form of extrapolation is needed.
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If extrapolation is required, one approach is to assume a
parametric functional form for Pj(·).

Given a parametric functional form, one can use the joint
distribution of (Dj,Zj) to identify the unknown parameters of
Pj(·) and then extrapolate the parametric functional form to
evaluate Pj(·) for all evaluation points in the support of Zp′ .
Alternatively, if there is overlap between the support of Zp′ and
Zj, so there is some overlap in the historical and policy p′

supports of Z, we may use nonparametric methods presented in
? and extended by her in ?, based on functional restrictions
(e.g., homogeneity) to construct the desired probabilities on
new supports or to bound them.
Under the appropriate conditions, we may use analytic
continuation to extend Pr(Dj = 1|Zj = z,Xe = x) to a new
support for each Xe = x (?).
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The approach just presented is based on the assumption stated
in equation (40).

That assumption is quite natural when Zp′ and Zj both contain
the same elements, say they both contain tuition and parent’s
income.
However, in some cases Zp′ might contain additional elements
not contained in Zj.
As an example, Zp′ might include new user fees while Zj
consists of taxes and subsidies but does not include user fees.
In this case, the assumption stated in equation (40) is not
expected to hold and is not even well defined if Zp′ and Zj
contain a different number of elements.
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However, in some cases Zp′ might contain additional elements
not contained in Zj.

As an example, Zp′ might include new user fees while Zj
consists of taxes and subsidies but does not include user fees.
In this case, the assumption stated in equation (40) is not
expected to hold and is not even well defined if Zp′ and Zj
contain a different number of elements.
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A more basic approach analyzes a class of policies that operate
on constraints, prices and endowments arrayed in vector Q.

Given the preferences and technology of the agent, a given
Q = q, however arrived at, generates the same choices for the
agent.
Thus a wage tax offset by a wage subsidy of the same amount
produces a wage that has the same effect on choices as a
no-policy wage.
Policy j affects Q (e.g., it affects prices paid, endowments and
constraints).
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Define a map Φj : Zj −→ Qj which maps a policy j, described
by Zj, into its consequences (Qj) for the baseline,
fixed-dimensional vector Q.

A new policy p′, characterized by Zp′ , produces Qp′ that is
possibly different from Qj for all previous policies j ∈ He.
To construct the random variable Pp′ = Pr (Dp′ = 1 | Zp′ ,Xe),
we postulate that

Pr
(

Dj = 1 | Zj ∈ Φ−1
j (q),Xe = x

)
= Pr (Dj = 1 | Qj = q,Xe = x)

= Pr
(
Dp′ = 1 | Qp′ = q,Xe = x

)
= Pr

(
Dp′ = 1 | Zp′ ∈ Φ−1

p′ (q),Xe = x
)
,

where Φ−1
j (q) = {z : Φj(z) = q} and

Φ−1
p′ (q) = {z : Φp′(z) = q}.
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Given these assumptions, our ability to recover
Pr (Dp′ = 1 | Zp′ = z,Xe = x) for all (z, x) in the support of
(Zp′ ,Xe) depends on what Φj functions have been historically
observed and the richness of the histories of Qj, j ∈ He . For
each zp′ evaluation point in the support of the distribution of
Zp′ , there is a corresponding q = Φp′(zp′) evaluation point in
the support of the distribution of Qj = Φj(Zj).

If, in the policy histories, there is at least one j ∈ He such that
Φj(zj) = q for a zj with (zj, x) in the support of the distribution
of (Zj,Xe), then we can construct the probability of the new
policy from data in the policy histories.
The methods used to extrapolate Pp′(·) over new regions,
discussed previously, apply here.
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If the distribution of Qp′ (or Φp′ and the distribution of Zp′) is
known as part of the specification of the proposed policy, the
distribution of FPp′ |Xe can be constructed using the constructed
Pp′ .

Alternatively, if we can relate Qp′ to Qj by Qp′ = Ψp′,j(Qj) for a
known function Ψp′,j or if we can relate Zp′ to Zj by
Zp′ = Tp′,j(Zj) for a known function Tp′,j, and the distributions
of Qj and/or Zj are known for some j ∈ He, we can apply the
method previously discussed to derive FPp′ |Xe and hence the
policy weights for the new policy.
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This approach assumes that a new policy acts on components
of Q like a policy in He, so it is possible to forecast the effect
of a policy with nominally new aspects.

The essential idea is to recast the new aspects of policy in
terms of old aspects previously measured.
Thus in a model of schooling, let D = 1 [Y1 − Y0 − B ≥ 0]
where Y1 − Y0 is the discounted gain in earnings from going to
school and B is the tuition cost.
In this example, a decrease in a unit of cost (B) has the same
effect on choice as an increase in return (Y1 − Y0).
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Historically, we might only observe variation in Y1 − Y0 (say
tuition has never previously been charged).

But B is on the same footing (has the same effect on choice,
except for sign) as Y1 − Y0.
The identified historical variation in Y1 − Y0 can be used to
nonparametrically forecast the effect of introducing B, provided
that the support of Pp′ is in the historical support generated by
the policy histories in He.
Otherwise, some functional structure (parametric or
semiparametric) must be imposed to solve the support problem
for Pp′ .
We used this basic principle in constructing our econometric
cost benefit analysis in Slide 414.
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As another example, following ?, consider the introduction of
wage taxes in a world where there has never before been a tax.

This example is analyzed in ?.
Let Zj be the wage without taxes.
We seek to forecast a post-tax net wage Zp′ = (1 − τ)Zj + b
where τ is the tax rate and b is a constant shifter.
Thus Zp′ is a known linear transformation of policy Zj.
We can construct Zp′ from Zj.
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We seek to forecast a post-tax net wage Zp′ = (1 − τ)Zj + b
where τ is the tax rate and b is a constant shifter.
Thus Zp′ is a known linear transformation of policy Zj.
We can construct Zp′ from Zj.
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We can forecast under (A-1) using
Pr (Dj = 1 | Zj = z) = Pr (Dp′ = 1 | Zp′ = z).

This assumes that the response to after tax wages is the same
as the response to wages at the after tax level.
The issue is whether Pp′|Xe lies in the historical support, or
whether extrapolation is needed.
Nonlinear versions of this example can be constructed.
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As a final example, environmental economists use variation in
one component of cost (e.g., travel cost) to estimate the effect
of a new cost (e.g., a park registration fee).

See ?.
Relating the costs and characteristics of new policies to the
costs and characteristics of old policies is a standard, but
sometimes controversial, method for forecasting the effects of
new policies.
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In the context of our model, extrapolation and forecasting are
confined to constructing Pp′ and its distribution.

If policy p′ , characterized by vector Zp′ , consists of new
components that cannot be related to Zj, j ∈ He, or a base set
of characteristics whose variation cannot be identified, the
problem is intractable.
Then Pp′ and its distribution cannot be formed using
econometric methods applied to historical data.
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When it can be applied, our approach allows us to simplify the
policy forecasting problem and concentrate our attention on
forecasting choice probabilities and their distribution in solving
the policy forecasting problem.

We can use choice theory and choice data to construct these
objects to forecast the impacts of new policies, by relating new
policies to previously experienced policies.
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Forecasting the Effects of Policies in New Environments

When the effects of policy p are forecast for a new environment
e′ from baseline environment e, and Xe ̸= Xe′ , in general both
∆MTE (x, uD) and FPp|Xe will change.

In general, neither object is environment invariant.
The new Xe′ may have a different support than Xe or any other
environment in H.
In addition, the new (Xe′ ,UD) stochastic relationship may be
different from the historical (Xe,UD) stochastic relationship.
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Constructing FPp|Xe′ from FPp|Xe and FZp|Xe′ from FZp|Xe can be
done using (i) functional form (including semiparametric
functional restrictions) or (ii) analytic continuation methods.

Notice that the maps Tp,j and Φp may depend on Xe and so
the induced changes in these transformations must also be
modelled.
There is a parallel discussion for ∆MTE (x, uD).
The stochastic dependence between Xe′ and (U0,U1,UD) may
be different from the stochastic dependence between Xe and
(U0,U1,UD).
We suppress the dependence of U0 and U1 on e and p only for
convenience of exposition and make it explicit in the next
paragraph.
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Forecasting new stochastic relationships between Xe′ and
(U0,U1,UD) is a difficult task.

Some of the difficulty can be avoided if we invoke the
traditional exogeneity assumptions of classical econometrics:

(A-9)
(U0,e,p,U1,e,p,UD,e,p) ⊥⊥ (Xe,Zp) ∀e, p.
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Under (A-9), we only encounter the support problems for ∆MTE

and the distribution of Pr (Dp = 1 | Zp,Xe) in constructing
policy counterfactuals.
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Conditions (A-7), (A-8) and (A-9) are unnecessary if the only
goal of the analysis is to establish internal validity, the standard
objective of the treatment effect literature.

This is problem P-1.
Autonomy and exogeneity conditions become important issues
if we seek external validity.
An important lesson from this analysis is that as we try to
make the treatment effect literature do the tasks of structural
econometrics (i.e., make out-of-sample forecasts), common
assumptions are invoked in the two literatures.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

Conditions (A-7), (A-8) and (A-9) are unnecessary if the only
goal of the analysis is to establish internal validity, the standard
objective of the treatment effect literature.
This is problem P-1.

Autonomy and exogeneity conditions become important issues
if we seek external validity.
An important lesson from this analysis is that as we try to
make the treatment effect literature do the tasks of structural
econometrics (i.e., make out-of-sample forecasts), common
assumptions are invoked in the two literatures.
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A Comparison of Three Approaches to Policy Evaluation

Table 9 compares the strengths and limitations of the three
approaches to policy evaluation that we have discussed in this
Handbook chapter and our contribution in Part I: the structural
approach, the conventional treatment effect approach, and the
approach to treatment effects based on the MTE function
developed by ???.
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Table 9: Comparison of Alternative Approaches to Program Evaluation
Structural Econometric Treatment Effect Approach Based

Approach Approach on MTE

Interpretability Well defined economic Link to economics Interpretable in terms of
parameters and and welfare willingness to pay;
welfare comparisons comparisons obscure weighted averages of the

MTE answer well-posed
economic questions

Range of Questions Answers many Focuses on one With support conditions,
Addressed counterfactual questions treatment effect or generates all

narrow range of effects treatment parameters

Extrapolation to Provides ingredients for Evaluates one program Can be partially extrapolated;
New Environments extrapolation in one environment extrapolates to new policy environments

with different distributions of the
probability of participation due solely
to differences in distributions of Z

Comparability Policy invariant parameters Not generally Partially comparable;
Across Studies comparable across studies comparable comparable across environments

with different distributions of the
probability of participation due solely
to differences in distributions of Z

Key Econometric Exogeneity, policy invariance Selection bias Selection bias: exogeneity and policy
Problems and selection bias invariance if used for forecasting

Range of Policies Programs with either partial Programs with partial Programs with partial coverage
that can be or universal coverage, coverage
Evaluated depending on variation (treatment and (treatment and

in data (prices/endowments) control groups) control groups)

Extension to Need to link to time series Difficult because link to Can be linked to nonparametric
General Equilibrium data; parameters compatible economics is not general equilibrium models under
Evaluation with general equilibrium theory precisely specified exogeneity and policy invariance

Source: Heckman and Vytlacil (2005). .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .... .. .. .. .
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The approach based on the MTE function and the structural
approach share interpretability of parameters.

Like the structural approach, it addresses a range of policy
evaluation questions.
The MTE parameter is less comparable and less easily
extrapolated across environments than are structural
parameters, unless nonparametric versions of invariance and
exogeneity assumptions are made.
However, ∆MTE is comparable across populations with different
distributions of P (conditional on Xe) and results from one
population can be applied to another population under the
conditions presented in this section.
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Analysts can use ∆MTE to forecast a variety of policies.

This invariance property is shared with conventional structural
parameters.
Our framework solves the problem of external validity, which is
ignored in the standard treatment effect approach.
The price of these advantages of the structural approach is the
greater range of econometric problems that must be solved.
They are avoided in the conventional treatment approach at
the cost of producing parameters that cannot be linked to
well-posed economic models and hence do not provide building
blocks for an empirically motivated general equilibrium analysis
or for investigation of the impacts of new public policies.
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∆MTE estimates the preferences of the agents being studied
and provides a basis for integration with well posed economic
models.

If the goal of a study is to examine one policy in place (the
problem of internal validity), the stronger assumptions invoked
in this section of the chapter, and in structural econometrics,
are unnecessary.
Even if this is the only goal of the analysis, however, our
approach allows the analyst to generate all treatment effects
and IV estimands from a common parameter and provides a
basis for unification of the treatment effect literature.
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Extension of MTE to the Analysis of More than Two
Treatments and Associated Outcomes

We have thus far analyzed models with two potential outcomes
associated with receipt of binary treatments (D = 0 or D = 1).

Focusing on this simple case allows us to develop main ideas.
However, models with more than two outcomes are common in
empirical work.
? analyze an ordered choice model with a single instrument
that shifts people across all margins.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

Extension of MTE to the Analysis of More than Two
Treatments and Associated Outcomes

We have thus far analyzed models with two potential outcomes
associated with receipt of binary treatments (D = 0 or D = 1).
Focusing on this simple case allows us to develop main ideas.

However, models with more than two outcomes are common in
empirical work.
? analyze an ordered choice model with a single instrument
that shifts people across all margins.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

Extension of MTE to the Analysis of More than Two
Treatments and Associated Outcomes

We have thus far analyzed models with two potential outcomes
associated with receipt of binary treatments (D = 0 or D = 1).
Focusing on this simple case allows us to develop main ideas.
However, models with more than two outcomes are common in
empirical work.

? analyze an ordered choice model with a single instrument
that shifts people across all margins.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

Extension of MTE to the Analysis of More than Two
Treatments and Associated Outcomes

We have thus far analyzed models with two potential outcomes
associated with receipt of binary treatments (D = 0 or D = 1).
Focusing on this simple case allows us to develop main ideas.
However, models with more than two outcomes are common in
empirical work.
? analyze an ordered choice model with a single instrument
that shifts people across all margins.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

We generalize their analysis in several ways.

We consider vectors of instruments, some of which may affect
choices at all margins and some of which affect choices only at
certain margins.
We then analyze a general unordered choice model.
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Background for our Analysis of the Ordered Choice Model

? extend their analysis of LATE to an ordered choice model
with outcomes generated by a scalar instrument that can
assume multiple values.

From their analysis of the effect of schooling on earnings, it is
unclear even under a strengthened “monotonicity” condition
whether IV estimates the effect of a change of schooling on
earnings for a well defined margin of choice.
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To summarize their analysis, let S̄ be the number of possible
outcome states with associated outcomes Ys and choice
indicators Ds, s = 1, . . . , S̄.

The s, in their analysis, correspond to different levels of
schooling.
For any two instrument values Z = zi and Z = zj with zi > zj,
we can define associated indicators {Ds(zi)}S̄

s=1 and
{Ds(zj)}S̄

s=1, where Ds(zi) = 1 if a person assigned instrument
value zi chooses state s.
As in the two-outcome model, the instrument Z is assumed to
be independent of the potential outcomes {Ys}S̄

s=1 as well as
the associated indicator functions defined by fixing Z at zi and
zj.
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the associated indicator functions defined by fixing Z at zi and
zj.
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Observed schooling for instrument zj is S(zj) =
∑S̄

s=1 sDs(zj).

Observed outcomes with this instrument are
Y(zj) =

∑S̄
s=1 YsDs(zj).

Angrist and Imbens show that IV (with Z = zi and Z = zj)
applied to S in a two stage least squares regression of Y on S
identifies a “causal parameter”

∆IV =
S̄∑

s=2
{E (Ys − Ys−1 | S(zi) ≥ s > S(zj))} ·

Pr (S(zi) ≥ s > S(zj))∑S̄
s=2 Pr (S(zi) ≥ s > S(zj))

. (42)

This “causal parameter” is a weighted average of the gross
returns from going from s − 1 to s for persons induced by the
change in the instrument to move from any schooling level
below s to any schooling level s or above.
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Thus the conditioning set defining the sth component of IV
includes people who have schooling below s − 1 at instrument
value Z = zj and people who have schooling above level s at
instrument value Z = zi.

In expression (42), the average return experienced by some of
the people in the conditioning set for each component
conditional expectation does not correspond to the average
outcome corresponding to the gain in the argument of the
expectation.
In the case where S̄ = 2, agents face only two choices and the
margin of choice is well defined.
Agents in each conditioning set are at different margins of
choice.
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The weights are positive but, as noted by ?, persons can be
counted multiple times in forming the weights.

When they generalize their analysis to multiple-valued
instruments, they use the ? weights.
Whereas the weights in equation (42) can be constructed
empirically using nonparametric discrete choice theory (see,
e.g., our analysis in appendix B of Part I or ?), the terms in
braces cannot be identified by any standard IV procedure.
We present decompositions with components that are
recoverable, whose weights can be estimated from the data and
that are economically interpretable.
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In this section, we generalize LATE to a multiple outcome case
where we can identify agents at different well defined margins
of choice.

Specifically, we (1) analyze both ordered and unordered choice
models; (2) analyze outcomes associated with choices at
various well defined margins; and (3) develop models with
multiple instruments that can affect different margins of choice
differently.
With our methods, we can define and estimate a variety of
economically interpretable parameters.
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In contrast, the Angrist-Imbens analysis produces a single
“causal parameter” (42) that does not answer any well defined
policy question such as that posed by the PRTE.

We first consider an explicit ordered choice model and
decompose the IV into policy-useful (identifiable) components.
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Analysis of an Ordered Choice Model

Ordered choice models arise in many settings.

In schooling models, there are multiple grades.
One has to complete grade s − 1 to proceed to grade s.
The ordered choice model has been widely used to fit data on
schooling transitions (??).
Its nonparametric identifiability has been studied (??).
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It can also be used as a duration model for dynamic treatment
effects with associated outcomes as in ?.

It also represents the “vertical” model of the choice of product
quality (???).
Our analysis generalizes the analysis for the binary model in a
parallel way.
Write potential outcomes as

Ys = µs(X,Us) s = 1, . . . , S̄.

The S̄ could be different schooling levels or product qualities.
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We define latent variables D∗
S = µD(Z)− V where

Ds = 1[Cs−1(Ws−1) < µD(Z)− V ≤ Cs(Ws)], s = 1, . . . , S̄,

and the cutoff values satisfy

Cs−1(Ws−1) ≤ Cs(Ws), C0(W0) = −∞ and CS̄(WS̄) = ∞.

The cutoffs used to define the intervals are allowed to depend
on observed (by the economist) regressors Ws.

In Appendix, Slide 1127, we extend the analysis presented in the
text to allow the cutoffs to depend on unobserved regressors as
well, following structural analysis along these lines by ? and ?.

Observed outcomes are: Y =
∑S̄

s=1 YsDs.
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Ds = 1[Cs−1(Ws−1) < µD(Z)− V ≤ Cs(Ws)], s = 1, . . . , S̄,

and the cutoff values satisfy

Cs−1(Ws−1) ≤ Cs(Ws), C0(W0) = −∞ and CS̄(WS̄) = ∞.

The cutoffs used to define the intervals are allowed to depend
on observed (by the economist) regressors Ws.
In Appendix, Slide 1127, we extend the analysis presented in the
text to allow the cutoffs to depend on unobserved regressors as
well, following structural analysis along these lines by ? and ?.

Observed outcomes are: Y =
∑S̄

s=1 YsDs.
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The Z shift the index generally; the Ws affect s-specific
transitions.

Thus, in a schooling example, Z could include family
background variables while Ws could include college tuition or
opportunity wages for unskilled labor.
Collect the Ws into W = (W1, . . . ,WS̄), and the Us into
U = (U1, . . . ,US̄).
Larger values of Cs(Ws) make it more likely that Ds = 1.
The inequality restrictions on the Cs(Ws) functions play a
critical role in defining the model and producing its statistical
implications.
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Analogous to the assumptions made for the binary outcome
model, we assume

(OC-1)
(Us,V) ⊥⊥ (Z,W)|X, s = 1, . . . , S̄. (Conditional Independence of
the Instruments).

(OC-2)
µD(Z) is a nondegenerate random variable conditional on X and W.
(Rank Condition).
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(OC-3)
The distribution of V is continuous.

(OC-4)
E(|Ys|) < ∞, s = 1, . . . , S̄. (Finite Means).

(OC-5)
0 < Pr(Ds = 1|X) < 1 for s = 1, . . . , S̄ for all X. (In large
samples, there are some persons in each treatment state).

(OC-6)
For s = 1, . . . , S̄ − 1, the distribution of Cs (Ws) conditional on X, Z
and the other Cj (Wj), j = 1, . . . , S̄, j ̸= s, is nondegenerate and
continuous.
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Assumptions (OC-1)–(OC-5) play roles analogous to their
counterparts in the two-outcome model, (A-1)–(A-5).

(OC-6) is a new condition that is key to identification of the
∆MTE defined below for each transition.
It assumes that we can vary the choice sets of agents at
different margins of schooling choice without affecting other
margins of choice.
A necessary condition for (OC-6) to hold is that at least one
element of Ws is nondegenerate and continuous conditional on
X,Z and Cj(Wj) for j ̸= s.
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Intuitively, one needs an instrument (or source of variability) for
each transition.

The continuity of the regressor allows us to differentiate with
respect to Cs(Ws), like we differentiated with respect to P(Z)
to estimate the MTE in the analysis of the two-outcome model.
The analysis of ? discussed in the introduction to this section
makes independence and monotonicity assumptions that
generalize their earlier work.
They do not consider estimation of transition-specific
parameters as we do, or even transition-specific LATE.
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We present a different decomposition of the IV estimator where
each component can be recovered from the data, and where
the transition-specific MTEs answer well defined and
economically interpretable policy evaluation questions.

The probability of Ds = 1 given X,Z and W is generated by an
ordered choice model:

Pr (Ds = 1 | Z,W,X) ≡ Ps(Z,W,X)
= Pr (Cs−1(Ws−1) < µD(Z)− V ≤ Cs(Ws) | X) .

Analogous to the binary case, we can define UD = FV|X(V) so
UD ∼ Uniform [0, 1] under our assumption that the distribution
of V is absolutely continuous with respect to Lebesgue measure.
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The probability integral transformation used extensively in the
binary choice model is somewhat less useful for analyzing
ordered choices, so we work with both UD and V in this section
of the chapter.

Monotonic transformations of V induce monotonic
transformations of µD (Z)− Cs (Ws), but one is not free to
form arbitrary monotonic transformations of µD (Z) and
Cs (Ws) separately.
Using the probability integral transformation, the expression for
choice s is Ds =1[FV|X(µD(Z)− Cs−1(Ws−1)) > UD ≥
FV|X(µD(Z)− Cs(Ws))].
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Keeping the conditioning on X implicit, we define
Ps(Z,W) = FV(µD(Z)− Cs−1(Ws−1))− FV(µD(Z)− Cs(Ws)).

It is convenient to work with the probability that S > s,
πs(Z,Ws) = FV(µD(Z)− Cs(Ws)) =

Pr
( ∑S̄

j=s+1 Dj = 1
∣∣∣ Z,Ws

)
, πS̄(Z,WS̄) = 0, π0(Z,W0) = 1

and Ps(Z,W) = πs−1(Z,Ws−1)− πs(Z,Ws).
The transition-specific ∆MTE for the transition from s to s + 1
is defined in terms of UD.

∆MTE
s,s+1(x, uD) = E(Ys+1 − Ys | X = x,UD = uD), s = 1, . . . , S̄ − 1.
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Alternatively, one can condition on V.

Analogous to the analysis of the earlier sections of this chapter,
when we set uD = πs(Z,Ws), we obtain the mean return to
persons indifferent between s and s + 1 at mean level of utility
πs(Z,Ws).
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πs(Z,Ws).
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In this notation, keeping X implicit, the mean outcome Y,
conditional on (Z,W), is the sum of the mean outcomes
conditional on each state weighted by the probability of being
in each state summed over all states:

E(Y|Z,W) =
S̄∑

s=1
E(Ys | Ds = 1,Z,W) Pr(Ds = 1 | Z,W) (43)

=
S̄∑

s=1

∫ πs−1(Z,Ws−1)

πs(Z,Ws)
E(Ys | UD = uD)duD,

where we use conditional independence assumption (OC-1) to
obtain the final expression.
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Analogous to the result for the binary outcome model, we
obtain the index sufficiency restriction
E(Y|Z,W) = E(Y | π(Z,W)), where π(Z,W) = [π1(Z,W1), . . . ,
πS̄−1(Z,WS̄−1)].

The choice probabilities encode all of the influence of (Z,W)
on outcomes.
We can identify πs(z,ws) for (z,ws) in the support of the
distribution of (Z,Ws) from the relationship
πs(z,ws) = Pr(

∑S̄
j=s+1 Dj = 1 | Z = z,Ws = ws).

Thus E(Y | π(Z,W) = π) is identified for all π in the support
of π(Z,W).
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Assumptions (OC-1), (OC-3), and (OC-4) imply that
E(Y | π(Z,W) = π) is differentiable in π.

So ∂
∂π

E(Y | π(Z,W) = π) is well-defined.
Thus analogous to the result obtained in the binary case

∂E(Y | π(Z,W) = π)

∂πs
= ∆MTE

s,s+1(UD = πs) (44)

= E(Ys+1 − Ys | UD = πs).

Equation (44) is the basis for identification of the
transition-specific MTE from data on (Y,Z,X).
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From index sufficiency, we can express (43) as

E (Y | π(Z,W) = π) =
S̄∑

s=1
E(Ys | πs ≤ UD < πs−1)(πs−1 − πs) (45)

=

S̄−1∑
s=1

[
E(Ys+1 | πs+1 ≤ UD < πs)
−E(Ys | πs ≤ UD < πs−1)

]
πs

+E (Y1 | π1 ≤ UD < 1)

=

S̄−1∑
s=1

{ms+1(πs+1, πs)− ms(πs, πs−1)}πs

+E (Y1 | π1 ≤ UD < 1)

where ms(πs, πs−1) = E[Ys | πs ≤ UD < πs−1].
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In general, this expression is a nonlinear function of (πs, πs−1).

This model has a testable restriction of index sufficiency in the
general case: E(Y|π(Z,W) = π) is a nonlinear function that is
additive in functions of (πs, πs−1) so there are no interactions
between πs and πs′ if |s − s′| > 1, i.e.,

∂2E(Y | π(Z,W) = π)

∂πs∂πs′
= 0 if |s − s′| > 1.

Observe that if UD ⊥⊥ Us for s = 1, . . . , S̄,

E (Y | π(Z,W) = π) =
S̄∑

s=1
E(Ys)(πs−1 − πs)

=
S̄−1∑
s=1

[E(Ys+1)− E(Ys)] πs + E(Y1).
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Defining E(Ys+1)− E(Ys) = ∆ATE
s,s+1,

E(Y | π(Z,W) = π) =
∑S̄−1

s=1 ∆ATE
s,s+1πs + E(Y1).

Thus, under full independence, we obtain linearity of the
conditional mean of Y in the πs, s = 1, . . . , S̄.
This result generalizes the test for the presence of essential
heterogeneity presented in Slide 152 to the ordered case.
We can ignore the complexity induced by the model of essential
heterogeneity if E (Y | π (Z,W) = π) is linear in the πs and can
use conventional IV estimators to identify well-defined
treatment effects.
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The Policy Relevant Treatment Effect for the Ordered Choice Model

The policy relevant treatment effect compares the mean
outcome under one policy regime p with the mean outcome
under policy regime p′.

It is defined analogously to the way it is defined in the binary
case in Slide 139 and in ??.
Policies (p, p′) are assumed to induce different distributions of
(Z,W), Fp(Z,W).
Forming Ep(Y) =

∫
E(Y | Z = z,W = w)dFp

Z,W(z,w) for each
policy p, the policy relevant treatment effect is Ep′(Y)− Ep(Y).
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We can represent the PRTE as a weighted average of pairwise
MTE:

∆PRTE
p,p′ = Ep′(Y)− Ep(Y) =

S̄−1∑
s=1

∫
E (Ys+1 − Ys | V = v)ωp,p′(v)dF(v).

(46)
The weights are known functions of the data.

See Appendix, Slide 1139, for a derivation of the weights and
expression (46).
Using the probability integral transform, we can alternatively
express this in terms of UD = FV|X (V).
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expression (46).
Using the probability integral transform, we can alternatively
express this in terms of UD = FV|X (V).
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What do Instruments Identify in the Ordered Choice Model?

We now characterize what scalar instrument J(Z,W) identifies.

When Y is log earnings, it is common practice to regress Y on
S where S is completed years of schooling and call the
coefficient on S a rate of return.
We seek an expression for the instrumental variables estimator
of the effect of S on Y in the ordered choice model:

Cov(J(Z,W),Y)
Cov(J(Z,W),D)

, (47)

where S =
∑S̄

s=1 sDs is the number of years of schooling
attainment.
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We keep the conditioning on X implicit.

We now analyze the weights for IV.
Their full derivation is presented in Appendix, Slide 1142.
Define Ks(v) =
E
(

J̃(Z,W) | µD(Z)− Cs(Ws) > v
)
Pr (µD(Z)− Cs(Ws) > v),

where J̃(Z,W) = J(Z,W)− E(J(Z,W)).
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Thus,

∆IV
J =

Cov(J,Y)
Cov(J, S) (48)

=
S̄−1∑
s=1

∫
E(Ys+1 − Ys | V = v)ω(s, v) fV(v)dv,

where

ω(s, v) =
Ks(v)∑S̄

s=1s
∫
[Ks−1(v)− Ks(v)] fV(v)dv

=
Ks (v)∑S̄−1

s=1
∫

Ks (v) fV (v) dv
,

and clearly
∑S̄−1

s=1
∫
ω(s, v) fV (v) dv = 1, ω(0, v) = 0, and

ω(S̄, v) = 0.
Heckman and Vytlacil Using the Marginal Treatment Effect
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We can rewrite this result in terms of the MTE, expressed in
terms of uD

∆MTE
s,s+1(uD) = E (Ys+1 − Ys | UD = uD)

so that
Cov(J,Y)
Cov(J, S) =

S̄−1∑
s=1

∫ 1

0
∆MTE

s,s+1(uD)ω̃(s, uD) duD,

where

ω̃(s, uD) =
K̃s(uD)∑S̄

s=1s
∫ 1

0

[
K̃s−1(uD)− K̃s(uD)

]
duD

(49)

=
K̃s (uD)∑S̄−1

s=1
∫ 1

0 K̃s (uD) duD

and
K̃s(uD) = E

(
J̃(Z,W) | πs(Z,Ws) ≥ uD

)
Pr (πs(Z,Ws) ≥ uD) . (50)
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Compare equations (49) and (50) for the ordered choice model
to equations (23) and (24) for the binary choice model.

The numerator of the weights for the ∆MTE in the ordered
choice model for a particular transition is exactly the numerator
of the weights for the binary choice model, substituting
πs(Z,Ws) = Pr(S > s | Z,Ws) for P(Z) = Pr(D = 1 | Z).
The numerator for the weights for IV in the binary choice model
is driven by the connection between the instrument and P(Z).
The numerator for the weights for IV in the ordered choice
model for a particular transition is driven by the connection
between the instrument and πs(Z,Ws).
The denominator of the weights is the covariance between the
instrument and D (or S) for the binary (or ordered) case,
respectively.
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However, in the binary case the covariance between the
instrument and D is completely determined by the covariance
with S between the instrument and P(Z), while in the ordered
choice case the covariance depends on the relationship between
the instrument and the full vector
[π1(Z,W1), . . . , πS̄−1(Z,WS̄−1)].

Comparing our decomposition of ∆IV to decomposition (42),
ours corresponds to weighting up marginal outcomes across
well defined and adjacent boundary values experienced by
agents having their instruments manipulated whereas the
Angrist-Imbens decomposition corresponds to outcomes not
experienced by some of the persons whose instruments are
being manipulated.
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From equation (50), the IV estimator using J(Z,W) as an
instrument satisfies the following properties.

(a) The numerator of the weights on ∆MTE
s,s+1(uD) is

non-negative for all uD if E(J(Z,Ws) | πs(Z,Ws) ≥ πs) is
weakly monotonic in πs.
For example, if Cov(πs(Z,Ws), S) > 0, setting
J(Z,W) = πs(Z,Ws) will lead to nonnegative weights on
∆MTE

s,s+1(uD), though it may lead to negative weights on other
transitions.
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A second property (b) is that the support of the weights on
∆MTE

s,s+1 using πs(Z,Ws) as the instrument is (πMin
s , πMax

s )

where πMin
s and πMax

s are the minimum and maximum values
in the support of πs(Z,Ws), respectively, and the support of the
weights on ∆MTE

s,s+1 using any other instrument is a subset of
(πMin

s , πMax
s ).

A third property (c) is that the weights on ∆MTE
s,s+1 implied by

using J(Z,W) as an instrument are the same as the weights on
∆MTE

s,s+1 implied by using E(J(Z,W) | πs(Z,Ws)) as the
instrument.
Our analysis generalizes that of ? and ? by considering
multiple instruments and by introducing both transition-specific
instruments (the W) and general instruments (Z) across all
transitions.
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In general, the method of linear instrumental variables applied
to S does not estimate anything that is economically
interpretable.

It is not guaranteed to estimate a positive number even if the
MTE is everywhere positive since the weights can be negative.
In contrast, we can use our generalization of LIV presented in
equation (44) under conditions (OC-1)–(OC-6) to apply LIV to
identify ∆MTE for each transition, which can be used to build
up ∆PRTE using weights that can be estimated.
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MTE is everywhere positive since the weights can be negative.
In contrast, we can use our generalization of LIV presented in
equation (44) under conditions (OC-1)–(OC-6) to apply LIV to
identify ∆MTE for each transition, which can be used to build
up ∆PRTE using weights that can be estimated.
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Some Theoretical Examples of the Weights in the Ordered Choice
Model

Suppose that the distributions of Ws, s = 1, . . . , S̄, are
degenerate so that the Cs are constants satisfying
C1 < · · · < CS̄−1.

This is the classical ordered choice model.
In this case, πs(Z,Ws) = FV(µD(Z)− Cs) for any s = 1, . . . , S̄.
For this special case, using J as an instrument will lead to
nonnegative weights on all transitions if J(Z,W) is a monotonic
function of µD(Z).
For example, note that µD(Z)− Cs > v can be written as
µD(Z) > Cs + F−1

V (uD).
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Using µD(Z) as the instrument leads to weights on ∆MTE
s,s+1(uD)

of the form specified above with K̃s(uD) =

[
E(µD(Z) | µD(Z) >

F−1
V (uD) + Cs)− E(µD(Z))

]
Pr(µD(Z) > F−1

V (uD) + Cs).

Clearly, these weights will be nonnegative for all points of
evaluation and will be strictly positive for any evaluation point
uD such that 1 > Pr(µD(Z) > F−1

V (uD) + Cs) > 0.
Next consider the case where Cs(Ws) = Ws, a scalar, for
s = 1, . . . , S̄ − 1, and where µD(Z) = 0.
Consider J(Z,W) = Ws, a purely transition-specific instrument.
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In this case, the weight on ∆MTE
s,s+1(uD) is of the form given

above, with

K̃s(uD) =

[
E(Ws | Ws > F−1

V (uD))−E(Ws)

]
Pr(Ws > F−1

V (uD)),

which will be nonnegative for all evaluation points and strictly
positive for any evaluation point such that
1 > Pr(Ws > F−1

V (uD)) > 0.

What are the implied weights on ∆ MTE
s′,s′+1(uD) for s′ ̸= s?

First, consider the case where Ws is independent of Ws′ for
s ̸= s′.
This independence of Ws and Ws′ is not in conflict with the
requirement Ws > Ws′ for s > s′ if the supports do not overlap
for any s′ ̸= s.
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In this case, the weight on ∆MTE
s′,s′+1(uD) for s′ ̸= s is of the form

given above with

K̃s′(uD) =

[
E(Ws | Ws′ > F−1

V (uD))− E(Ws)

]
Pr(Ws′ > F−1

V (uD)) = 0.

Thus, in this case, the instrument only weights the ∆MTE for
the s to s + 1 transition.

Note that this result relies critically on the assumption that Ws
is independent of Ws′ for s′ ̸= s.
Consider another version of this example where Cs(Ws) = Ws,
s = 1, . . . , S̄ − 1, with Ws a scalar, but now allow µD(Z) to
have a nondegenerate distribution and allow there to be
dependence across the Ws.
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In particular, consider the case where W =
(
W1, . . . ,WS̄−1

)
is

a continuous random vector with a density given by∏S̄−1
i=1 fi(wi)1[w1<w2<···<wS̄−1]∫

···
∫ [

1[w1<w2<···<wS̄−1]
∏S̄−1

i=1 fi(wi)
]

dw1···dwS̄−1
for some marginal

density functions f1 (w1) , f2 (w2) , . . . , fS̄−1
(
wS̄−1

)
.

In this case, using Wj as the instrument, we have
ω(s, v) =

( ∫

· · ·

∫

−∞<w1<···<wS̄−1<∞

(

wj − E(wj )
)(

1 − FµD(Z)(ws + v)
)

× f1(w1) · · · fS̄−1(wS̄−1) dw1 · · · dwS̄−1 fV (v) dv

)

×

(

S̄−1
∑

s=1

∫ ∫

· · ·

∫

−∞<w1<···<wS̄−1<∞

(

wj − E(wj )
)(

1 − FµD(Z)(ws + v)
)

× f1(w1) · · · fS̄−1(wS̄−1) dw1 · · · dwS̄−1 fV (v) dv

)−1

.
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In the special case where µD(Z) ∼ Uniform(−K,K), with
Z ⊥⊥ Ws for s = 1, . . . , S̄ − 1, assuming −K < ws + v < K for
all ws, v in the support of Ws and V respectively, the numerator

is

∫

· · ·

∫

−∞<w1<···<wS̄−1
<∞

(

wj − E(wj )
)

×
(ws + v + K)

2K
f1(w1) · · · fS̄−1

(wS̄−1
) dw1 · · · dwS̄−1

fV (v) dv

Observe that when the latent Wj,Ws are independently
distributed for all j, s, by Bickel’s Theorem (?), we know that
this expression is positive.

(This is trivial when j = s.) The ordering W1 < · · · < WS̄−1
implies that Wl is stochastically increasing in Wj for l < j (the
lower boundary is shifted to the right).
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implies that Wl is stochastically increasing in Wj for l < j (the
lower boundary is shifted to the right).
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Hence, because of the order on the W implied by the ordered
discrete choice model, a positive weighting is produced.

This result can be overturned when F(w) has a general
structure.
The positive dependence induced by the order on the
components of W can be reversed by negative dependence in
the structure of F(w).
We present examples of these phenomena in our discussions in
figures 19 and 20 below.
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Some Numerical Examples of the IV Weights

Figures 16–18 plot the transition-specific MTEs and the IV
weights for the models and distributions of the weights at the
base of each of the figures.

We consider a three outcome (S̄ = 3) model with common
instruments (Z) and transition-specific (Ws) instruments.
The Z and Ws, s = 1, . . . , S̄, are assumed to be independent.
The exact specification is given in the notes below figure 16.
In this example, Ds can be interpreted as an indicator of
schooling.
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base of each of the figures.
We consider a three outcome (S̄ = 3) model with common
instruments (Z) and transition-specific (Ws) instruments.
The Z and Ws, s = 1, . . . , S̄, are assumed to be independent.

The exact specification is given in the notes below figure 16.
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The Z and Ws, s = 1, . . . , S̄, are assumed to be independent.
The exact specification is given in the notes below figure 16.
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Some Numerical Examples of the IV Weights

Figures 16–18 plot the transition-specific MTEs and the IV
weights for the models and distributions of the weights at the
base of each of the figures.
We consider a three outcome (S̄ = 3) model with common
instruments (Z) and transition-specific (Ws) instruments.
The Z and Ws, s = 1, . . . , S̄, are assumed to be independent.
The exact specification is given in the notes below figure 16.
In this example, Ds can be interpreted as an indicator of
schooling.
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Figure 16: Treatment Parameters and IV – The Generalized Ordered Choice
Roy Model under Normality
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B. W1 as Instrument
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Outcomes Choice Model
Y1 = α + β1 + U1 Ds = 1[Ws−1 < γZ − V 6 Ws]
Y2 = α + β2 + U2 s = 1, 2, 3
Y3 = α + β3 + U3

Parameterization

(U1, U2, U3, V) ∼ N (0, �UV) , (Z, W1, W2) ∼ N (µZW, �ZW) and W0 = −∞; W3 = ∞.

�UV =


1 0.16 0.2 −0.3

0.16 0.64 0.16 −0.32
0.2 0.16 1 −0.4
−0.3 −0.32 −0.4 1

 , µZW = (−0.6,−1.08, 0.08) and �ZW=

 0.1 0 0
0 0.1 0.09
0 0.09 0.25


Cov(U2 − U1, V) = −0.02 Cov(U3 − U2, V) = −0.08

β1 = 0; β2 = 0.025; β3 = 0.3, γ = 1

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .... .. .. .. .



IV Estimates and their Components∗
Parameter Value
∆IVZ 0.1487

∆
IVZ
12 0.0120

∆
IVZ
23 0.1367

∆
IVW1 0.1406

∆
IVW1
12 0.0126

∆
IVW1
23 0.1280

Treatment Parameters and their Values
Parameter Value

ATE12 = E (Y2 − Y1) 0.025
ATE23 = E (Y3 − Y2) 0.275

TT12 = E (Y2 − Y1|D2 = 1) 0.0282
TT23 = E (Y3 − Y2|D3 = 1) 0.1908

TUT12 = E (Y2 − Y1|D1 = 1) 0.0060
TUT23 = E (Y3 − Y2|D2 = 1) 0.2956

∗ IVZ is decomposed as:

IVZ =

∫
E (Y2 − Y1|V = v)ωZ(1, v)fV(v)dv +

∫
E (Y3 − Y2|V = v)ωZ(2, v)fV(v)dv

= IVZ
21 + IVZ

32.

An analogous decomposition applies to IVW1 .

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .... .. .. .. .
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Y1 is the potential earnings of the person as a dropout, Y2 is
the potential earnings of the person as a high school graduate,
and Y3 is the potential earnings of the person as a college
graduate.

There are two transitions: 1 → 2 and 2 → 3.
The IV estimates using Z1 and W1 as instruments are reported
transition by transition and overall decomposing IV
representation (48) into its transition-specific components.
The IV weights are defined by equations (49) and (50).
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Y1 is the potential earnings of the person as a dropout, Y2 is
the potential earnings of the person as a high school graduate,
and Y3 is the potential earnings of the person as a college
graduate.
There are two transitions: 1 → 2 and 2 → 3.

The IV estimates using Z1 and W1 as instruments are reported
transition by transition and overall decomposing IV
representation (48) into its transition-specific components.
The IV weights are defined by equations (49) and (50).
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Y1 is the potential earnings of the person as a dropout, Y2 is
the potential earnings of the person as a high school graduate,
and Y3 is the potential earnings of the person as a college
graduate.
There are two transitions: 1 → 2 and 2 → 3.
The IV estimates using Z1 and W1 as instruments are reported
transition by transition and overall decomposing IV
representation (48) into its transition-specific components.

The IV weights are defined by equations (49) and (50).
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Y1 is the potential earnings of the person as a dropout, Y2 is
the potential earnings of the person as a high school graduate,
and Y3 is the potential earnings of the person as a college
graduate.
There are two transitions: 1 → 2 and 2 → 3.
The IV estimates using Z1 and W1 as instruments are reported
transition by transition and overall decomposing IV
representation (48) into its transition-specific components.
The IV weights are defined by equations (49) and (50).
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In particular, when the first element of Z, Z1, is used as the
instrument, we can decompose IVZ1 as

IVZ1 =
2∑

s=1

∫
E (Ys+1 − Ys | V = v) ωZ1(s,v) fV(v) dv

=

∫
∆MTE

12 (v)ωZ1(1, v) fV(v) dv +
∫

∆MTE
23 (v)ωZ1(2, v) fV(v) dv

= IVZ1
21 + IVZ1

32.

The same logic applies for the decomposition of IVP which uses
P (Z) as an instrument.
These decompositions show in this case that an important
component of the total values of IVZ and IVW1 comes from the
2 → 3 transition.
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In particular, when the first element of Z, Z1, is used as the
instrument, we can decompose IVZ1 as

IVZ1 =
2∑

s=1

∫
E (Ys+1 − Ys | V = v) ωZ1(s,v) fV(v) dv

=

∫
∆MTE

12 (v)ωZ1(1, v) fV(v) dv +
∫

∆MTE
23 (v)ωZ1(2, v) fV(v) dv

= IVZ1
21 + IVZ1

32.

The same logic applies for the decomposition of IVP which uses
P (Z) as an instrument.

These decompositions show in this case that an important
component of the total values of IVZ and IVW1 comes from the
2 → 3 transition.
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In particular, when the first element of Z, Z1, is used as the
instrument, we can decompose IVZ1 as
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=

∫
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12 (v)ωZ1(1, v) fV(v) dv +
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The same logic applies for the decomposition of IVP which uses
P (Z) as an instrument.
These decompositions show in this case that an important
component of the total values of IVZ and IVW1 comes from the
2 → 3 transition.
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The bottom table presents the transition-specific treatment
parameters.

In figure 16, the shape of the IV weights for Z1 and W1 are
nearly identical.
The IV estimates reflect this.
The bottom table reveals that the IV estimates are far from
standard treatment parameters.
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The bottom table presents the transition-specific treatment
parameters.
In figure 16, the shape of the IV weights for Z1 and W1 are
nearly identical.

The IV estimates reflect this.
The bottom table reveals that the IV estimates are far from
standard treatment parameters.
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The bottom table presents the transition-specific treatment
parameters.
In figure 16, the shape of the IV weights for Z1 and W1 are
nearly identical.
The IV estimates reflect this.

The bottom table reveals that the IV estimates are far from
standard treatment parameters.
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The bottom table presents the transition-specific treatment
parameters.
In figure 16, the shape of the IV weights for Z1 and W1 are
nearly identical.
The IV estimates reflect this.
The bottom table reveals that the IV estimates are far from
standard treatment parameters.
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In figure 17, the IV weights for the Z1 and W1 are very
different.

So, correspondingly, are the IV estimates produced from each
instrument, which are far off the mark of the standard
treatment parameters shown in the bottom of the table.
Observe that the IV weight for W1 in the second transition is
negative for an interval of values.
This accounts for the dramatically lower IV estimate based on
W1 as the instrument.
Figure 18 shows a different configuration of (Z1,W1,W2).
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In figure 17, the IV weights for the Z1 and W1 are very
different.
So, correspondingly, are the IV estimates produced from each
instrument, which are far off the mark of the standard
treatment parameters shown in the bottom of the table.

Observe that the IV weight for W1 in the second transition is
negative for an interval of values.
This accounts for the dramatically lower IV estimate based on
W1 as the instrument.
Figure 18 shows a different configuration of (Z1,W1,W2).
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In figure 17, the IV weights for the Z1 and W1 are very
different.
So, correspondingly, are the IV estimates produced from each
instrument, which are far off the mark of the standard
treatment parameters shown in the bottom of the table.
Observe that the IV weight for W1 in the second transition is
negative for an interval of values.

This accounts for the dramatically lower IV estimate based on
W1 as the instrument.
Figure 18 shows a different configuration of (Z1,W1,W2).
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In figure 17, the IV weights for the Z1 and W1 are very
different.
So, correspondingly, are the IV estimates produced from each
instrument, which are far off the mark of the standard
treatment parameters shown in the bottom of the table.
Observe that the IV weight for W1 in the second transition is
negative for an interval of values.
This accounts for the dramatically lower IV estimate based on
W1 as the instrument.

Figure 18 shows a different configuration of (Z1,W1,W2).
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In figure 17, the IV weights for the Z1 and W1 are very
different.
So, correspondingly, are the IV estimates produced from each
instrument, which are far off the mark of the standard
treatment parameters shown in the bottom of the table.
Observe that the IV weight for W1 in the second transition is
negative for an interval of values.
This accounts for the dramatically lower IV estimate based on
W1 as the instrument.
Figure 18 shows a different configuration of (Z1,W1,W2).
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Figure 17: Treatment Parameters and IV – The Generalized Ordered Choice
Roy Model under Normality: Case I

A. Z as Instrument
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B. W1 as Instrument
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Outcomes Choice Model
Y1 = α + β1 + U1 Ds = 1[Ws−1 < γZ − V 6 Ws]
Y2 = α + β2 + U2 s = 1, 2, 3
Y3 = α + β3 + U3

Parameterization

(U1, U2, U3, V) ∼ N (0, �UV) , (Z, W1, W2) ∼ N (µZW, �ZW) and W0 = −∞; W3 = ∞.

�UV =


1 0.16 0.2 −0.3

0.16 0.64 0.16 −0.32
0.2 0.16 1 −0.4
−0.3 −0.32 −0.4 1

 , µZW = (−0.6,−1.08, 0.08) and �ZW=

 0.1 0 0
0 0.1 −0.09
0 −0.09 0.25


Cov(U2 − U1, V) = −0.02 Cov(U3 − U2, V) = −0.08

β1 = 0; β2 = 0.025; β3 = 0.3; γ = 1

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .... .. .. .. .



IV Estimates and Their Components∗
Parameter Value
∆IVZ 0.1489

∆
IVZ
12 0.0117

∆
IVZ
23 0.1372

∆
IVW1 0.0017

∆
IVW1
12 0.0325

∆
IVW1
23 −0.0308

Treatment Parameters and Their Values
Parameter Value

ATE12 = E (Y2 − Y1) 0.025
ATE23 = E (Y3 − Y2) 0.275

TT12 = E (Y2 − Y1|D2 = 1) 0.0271
TT23 = E (Y3 − Y2|D3 = 1) 0.1871

TUT12 = E (Y2 − Y1|D1 = 1) 0.0047
TUT23 = E (Y3 − Y2|D2 = 1) 0.2854

∗ ∆IVZ is decomposed as:

∆IVZ =

∫
E (Y2 − Y1|V = v)ωZ (1, v) fV (v) dv +

∫
E (Y3 − Y2|V = v)ωZ (2, v) fV (v) dv = ∆

IVZ
12 + ∆

IVZ
23

An analogous decomposition applies to ∆
IVW1 .

Source: Heckman, Urzua and Vytlacil (2006)

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .... .. .. .. .



Figure 18: A. Treatment Parameters and IV – The Generalized Ordered
Choice Roy Model under Normality: Case II: Z as Instrument
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B. W1 as Instrument
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Outcomes Choice Model
Y1 = α + β1 + U1 Ds = 1[Ws−1 < γZ − V 6 Ws]
Y2 = α + β2 + U2 s = 1, 2, 3
Y3 = α + β3 + U3

Parameterization

(U1, U2, U3, V ) ∼ N (0,ΣUV ) , (Z, W1, W2) ∼ N (µZW ,ΣZW ) and W0 = −∞; W3 = ∞.

ΣUV =









1 0.16 0.2 −0.3
0.16 0.64 0.16 −0.32
0.2 0.16 1 −0.4
−0.3 −0.32 −0.4 1









, µZW = (−0.6,−1.08, 0.08) and ΣZW =





0.1 0.092 −0.036
0.092 0.1 −0.09
−0.036 −0.09 0.25





Cov(U2 − U1, V ) = −0.02 Cov(U3 − U2, V ) = −0.08
β1 = 0; β2 = 0.025; β3 = 0.3; γ = 1

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .... .. .. .. .



IV Estimates and Their Components∗

Parameter Value
∆IVZ −1.8091

∆
IVZ
12 0.2866

∆
IVZ
23 -2.0957

∆
IVW1 −0.4284

∆
IVW1
12 0.0909

∆
IVW1
23 -0.5193

Treatment Parameters and Their Values
Parameter Value

ATE12 = E (Y2 − Y1) 0.025
ATE23 = E (Y3 − Y2) 0.275

TT12 = E (Y2 − Y1|D2 = 1) 0.0283
TT23 = E (Y3 − Y2|D3 = 1) 0.1754

TUT12 = E (Y2 − Y1|D1 = 1) 0.0025
TUT23 = E (Y3 − Y2|D2 = 1) 0.2898

∗ See the footnote below Figure 16 for details of the decomposition of ∆IVZ and ∆
IVW1 .

Source: Heckman, Urzua and Vytlacil (2006)
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Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

This produces negative weights for Z1 for both transitions and
a negative weight for W1 in the second transition.

For both instruments, IV is negative even though both MTEs
are positive throughout most of their range.
IV provides a misleading summary of the underlying marginal
treatment effects.
Comparing figures 16–18, it is important to recall that all are
based on the same structural model.
All have the same MTE and average treatment effects.
But the IV estimates are very different solely as a consequence
of the differences in the distributions of instruments across the
examples.

Heckman and Vytlacil Using the Marginal Treatment Effect
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This produces negative weights for Z1 for both transitions and
a negative weight for W1 in the second transition.
For both instruments, IV is negative even though both MTEs
are positive throughout most of their range.

IV provides a misleading summary of the underlying marginal
treatment effects.
Comparing figures 16–18, it is important to recall that all are
based on the same structural model.
All have the same MTE and average treatment effects.
But the IV estimates are very different solely as a consequence
of the differences in the distributions of instruments across the
examples.
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This produces negative weights for Z1 for both transitions and
a negative weight for W1 in the second transition.
For both instruments, IV is negative even though both MTEs
are positive throughout most of their range.
IV provides a misleading summary of the underlying marginal
treatment effects.

Comparing figures 16–18, it is important to recall that all are
based on the same structural model.
All have the same MTE and average treatment effects.
But the IV estimates are very different solely as a consequence
of the differences in the distributions of instruments across the
examples.
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This produces negative weights for Z1 for both transitions and
a negative weight for W1 in the second transition.
For both instruments, IV is negative even though both MTEs
are positive throughout most of their range.
IV provides a misleading summary of the underlying marginal
treatment effects.
Comparing figures 16–18, it is important to recall that all are
based on the same structural model.

All have the same MTE and average treatment effects.
But the IV estimates are very different solely as a consequence
of the differences in the distributions of instruments across the
examples.
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This produces negative weights for Z1 for both transitions and
a negative weight for W1 in the second transition.
For both instruments, IV is negative even though both MTEs
are positive throughout most of their range.
IV provides a misleading summary of the underlying marginal
treatment effects.
Comparing figures 16–18, it is important to recall that all are
based on the same structural model.
All have the same MTE and average treatment effects.

But the IV estimates are very different solely as a consequence
of the differences in the distributions of instruments across the
examples.
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This produces negative weights for Z1 for both transitions and
a negative weight for W1 in the second transition.
For both instruments, IV is negative even though both MTEs
are positive throughout most of their range.
IV provides a misleading summary of the underlying marginal
treatment effects.
Comparing figures 16–18, it is important to recall that all are
based on the same structural model.
All have the same MTE and average treatment effects.
But the IV estimates are very different solely as a consequence
of the differences in the distributions of instruments across the
examples.
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An alternative way to benchmark what IV estimates in the
ordered choice model is to compare IV estimates to the PRTE
for well defined policy experiments.

We consider two such experiments, corresponding to
proportional and fixed subsidies for attending different levels of
schooling.
We use the definition of the PRTE given in equation (46).
The baseline model is the one used to generate figure 17.
The weights can be constructed from data and are derived in
Appendix, Slide 1139.
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An alternative way to benchmark what IV estimates in the
ordered choice model is to compare IV estimates to the PRTE
for well defined policy experiments.
We consider two such experiments, corresponding to
proportional and fixed subsidies for attending different levels of
schooling.

We use the definition of the PRTE given in equation (46).
The baseline model is the one used to generate figure 17.
The weights can be constructed from data and are derived in
Appendix, Slide 1139.
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An alternative way to benchmark what IV estimates in the
ordered choice model is to compare IV estimates to the PRTE
for well defined policy experiments.
We consider two such experiments, corresponding to
proportional and fixed subsidies for attending different levels of
schooling.
We use the definition of the PRTE given in equation (46).

The baseline model is the one used to generate figure 17.
The weights can be constructed from data and are derived in
Appendix, Slide 1139.
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An alternative way to benchmark what IV estimates in the
ordered choice model is to compare IV estimates to the PRTE
for well defined policy experiments.
We consider two such experiments, corresponding to
proportional and fixed subsidies for attending different levels of
schooling.
We use the definition of the PRTE given in equation (46).
The baseline model is the one used to generate figure 17.

The weights can be constructed from data and are derived in
Appendix, Slide 1139.
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An alternative way to benchmark what IV estimates in the
ordered choice model is to compare IV estimates to the PRTE
for well defined policy experiments.
We consider two such experiments, corresponding to
proportional and fixed subsidies for attending different levels of
schooling.
We use the definition of the PRTE given in equation (46).
The baseline model is the one used to generate figure 17.
The weights can be constructed from data and are derived in
Appendix, Slide 1139.
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Figure 19 plots the weights for the PRTE for each transition for
a policy experiment.

We change the economy from the benchmark economy that
generates figure 17 to an economy where W2 is subsidized by a
proportional amount τ .
The PRTE weights for each transition are negative over certain
intervals.
The overall PRTE is close to zero and can be decomposed into
two components corresponding to a negative component on the
second transition.
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Figure 19 plots the weights for the PRTE for each transition for
a policy experiment.
We change the economy from the benchmark economy that
generates figure 17 to an economy where W2 is subsidized by a
proportional amount τ .

The PRTE weights for each transition are negative over certain
intervals.
The overall PRTE is close to zero and can be decomposed into
two components corresponding to a negative component on the
second transition.
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Figure 19 plots the weights for the PRTE for each transition for
a policy experiment.
We change the economy from the benchmark economy that
generates figure 17 to an economy where W2 is subsidized by a
proportional amount τ .
The PRTE weights for each transition are negative over certain
intervals.

The overall PRTE is close to zero and can be decomposed into
two components corresponding to a negative component on the
second transition.
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Figure 19 plots the weights for the PRTE for each transition for
a policy experiment.
We change the economy from the benchmark economy that
generates figure 17 to an economy where W2 is subsidized by a
proportional amount τ .
The PRTE weights for each transition are negative over certain
intervals.
The overall PRTE is close to zero and can be decomposed into
two components corresponding to a negative component on the
second transition.
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Figure 19: The Policy Relevant Treatment Effect Weights – The
Generalized Ordered Choice Roy Model under Normality
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Outcomes Choice Model
Y1 = α + β1 + U1 Ds = 1[Ws−1 < γZ − V 6 Ws]
Y2 = α + β2 + U2 s = 1, 2, 3
Y3 = α + β3 + U3

Parameterization
The benchmark model (regime p) is the same as the one presented below Figure 17.

Under the new regime (regime p′) we define Wp′
1 = Wp

1(1 − τ) with τ = 0.5. Thus, under regime p we have

µ
p
′

ZW = (−0.6,−0.54, 0.08) and �pZW=

 0.1 0 0
0 0.025 −0.045
0 −0.045 0.25


The other parameters remain at the values set under the regime p.

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .... .. .. .. .



PRTE Estimates and their Components1

Parameter Value
PRTEp′,p 0.0076
PRTEp′,p

21 -0.0032
PRTEp′,p

32 0.0109

1 PRTEp′,p is decomposed as:

PRTEp′,p =

∫
E (Y2 − Y1|V = v)ωp′,p (1, v) fV(v)dv

+

∫
E (Y3 − Y2|V = v)ωp′,p(2, v)fV(v)dv = PRTEp′,p

21 + PRTEp′,p
32 .

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .... .. .. .. .



IV Estimates and Treatment Parameters under Different Regimes2

Parameter Regime p Regime p′
IVZ 0.1489 0.1521

IVZ
12 0.0117 0.0174

IVZ
23 0.1372 0.1347

IVW1 0.0017 0.0804
IVW1

12 0.0325 0.0358
IVW1

23 -0.0308 0.0446
ATE12 0.025 0.025
ATE23 0.275 0.275
TT12 0.0271 0.0327
TT23 0.1871 0.1789

TUT12 0.0047 0.0103
TUT23 0.2854 0.3067

2 See footnote below Figure 16 for details of the decompositions of IVZ and IVW1 .

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .... .. .. .. .
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The IV for the benchmark regime (p) and new regime (p′) are
given in the bottom table.

The IV based on Z are far from the PRTE parameter.
In general, the IV estimands are far off the mark from the
PRTEs.
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The IV for the benchmark regime (p) and new regime (p′) are
given in the bottom table.
The IV based on Z are far from the PRTE parameter.

In general, the IV estimands are far off the mark from the
PRTEs.
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The IV for the benchmark regime (p) and new regime (p′) are
given in the bottom table.
The IV based on Z are far from the PRTE parameter.
In general, the IV estimands are far off the mark from the
PRTEs.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

We next present a comparison between what IV estimates and
the PRTE for a policy that consists of changing W2 to W2 − t
(t = 1.2 in the simulations).

This can be thought of as a college tuition reduction policy.
We compare the weights on PRTE with the weights on IV
using W1 (figure 20) and Z (figure 21) as instruments.
The case using W2 as an instrument is similar and for the sake
of brevity is not discussed.
In figure 20A, we plot the transition-specific MTE for the
values of the model presented at the base of the table.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

We next present a comparison between what IV estimates and
the PRTE for a policy that consists of changing W2 to W2 − t
(t = 1.2 in the simulations).
This can be thought of as a college tuition reduction policy.

We compare the weights on PRTE with the weights on IV
using W1 (figure 20) and Z (figure 21) as instruments.
The case using W2 as an instrument is similar and for the sake
of brevity is not discussed.
In figure 20A, we plot the transition-specific MTE for the
values of the model presented at the base of the table.
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We next present a comparison between what IV estimates and
the PRTE for a policy that consists of changing W2 to W2 − t
(t = 1.2 in the simulations).
This can be thought of as a college tuition reduction policy.
We compare the weights on PRTE with the weights on IV
using W1 (figure 20) and Z (figure 21) as instruments.

The case using W2 as an instrument is similar and for the sake
of brevity is not discussed.
In figure 20A, we plot the transition-specific MTE for the
values of the model presented at the base of the table.
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We next present a comparison between what IV estimates and
the PRTE for a policy that consists of changing W2 to W2 − t
(t = 1.2 in the simulations).
This can be thought of as a college tuition reduction policy.
We compare the weights on PRTE with the weights on IV
using W1 (figure 20) and Z (figure 21) as instruments.
The case using W2 as an instrument is similar and for the sake
of brevity is not discussed.

In figure 20A, we plot the transition-specific MTE for the
values of the model presented at the base of the table.
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We next present a comparison between what IV estimates and
the PRTE for a policy that consists of changing W2 to W2 − t
(t = 1.2 in the simulations).
This can be thought of as a college tuition reduction policy.
We compare the weights on PRTE with the weights on IV
using W1 (figure 20) and Z (figure 21) as instruments.
The case using W2 as an instrument is similar and for the sake
of brevity is not discussed.
In figure 20A, we plot the transition-specific MTE for the
values of the model presented at the base of the table.
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Figure 20: A. W2 − t where t = 1.2 and W1 is the instrument: Marginal
treatment effects by transition
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B. W2 − t where t = 1.2 and W1 is the instrument: Policy relevant
treatment effect vs. instrumental variables weights by transition.
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C. W2 − t where t = 1.2 and W1 is the instrument: Policy relevant
treatment effect vs. instrumental variables weights by transition.
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D. W2 − t where t = 1.2 and W1 is the instrument: Policy relevant
treatment effect vs. instrumental variables weights by transition.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5
x 10

-3

V

W
e

ig
h

ts

ω
PRTE

1,2
ω

PRTE
2,3

ω
IV

1,2

ωIV2,3

(G1-G2) ~ ,

µ·
0
0

¸
-

·
1 0
0 1

¸¶

#
(,%&= 0+110 >) = 0+210

Proportion Induced to Change from '1= 1 to '3= 1 = 27+5%

Proportion Induced to Change from '2= 1 to '3= 1 = 76+8%

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .... .. .. .. .



Figure 21: A. W2 − t where t = 1.2 and Z is the instrument: Marginal
treatment effects by transition.
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B. W2 − t where t = 1.2 and Z is the instrument: Policy relevant
treatment effect vs. instrumental variables weights by transition.

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .... .. .. .. .



C. W2 − t where t = 1.2 and Z is the instrument: Policy relevant
treatment effect vs. instrumental variables weights by transition.
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D. W2 − t where t = 1.2 and Z is the instrument: Policy relevant
treatment effect vs. instrumental variables weights by transition.
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These are identical to the transition-specific MTE plotted in
figure 21A.

Both of the ∆MTE parameters have the typical shape of
declining returns for people less likely to make the transition,
i.e., those who have a higher V = v.
Even though the levels are higher for outcomes 2 and 3, the
marginal returns are higher for the transition 1 → 2.
Figure 20B plots the policy weights for the two transitions for a
policy that lowers W2 (“reduces tuition”).

Heckman and Vytlacil Using the Marginal Treatment Effect
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These are identical to the transition-specific MTE plotted in
figure 21A.
Both of the ∆MTE parameters have the typical shape of
declining returns for people less likely to make the transition,
i.e., those who have a higher V = v.

Even though the levels are higher for outcomes 2 and 3, the
marginal returns are higher for the transition 1 → 2.
Figure 20B plots the policy weights for the two transitions for a
policy that lowers W2 (“reduces tuition”).

Heckman and Vytlacil Using the Marginal Treatment Effect
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These are identical to the transition-specific MTE plotted in
figure 21A.
Both of the ∆MTE parameters have the typical shape of
declining returns for people less likely to make the transition,
i.e., those who have a higher V = v.
Even though the levels are higher for outcomes 2 and 3, the
marginal returns are higher for the transition 1 → 2.

Figure 20B plots the policy weights for the two transitions for a
policy that lowers W2 (“reduces tuition”).

Heckman and Vytlacil Using the Marginal Treatment Effect
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These are identical to the transition-specific MTE plotted in
figure 21A.
Both of the ∆MTE parameters have the typical shape of
declining returns for people less likely to make the transition,
i.e., those who have a higher V = v.
Even though the levels are higher for outcomes 2 and 3, the
marginal returns are higher for the transition 1 → 2.
Figure 20B plots the policy weights for the two transitions for a
policy that lowers W2 (“reduces tuition”).
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It also plots the IV weights for the two ∆MTE functions for the
case where W1 is the instrument.

The correlation pattern for (W1,W2) is positive with specific
values given below the figure.
The policy studied in figure 20B shifts 42.8% of the D1 = 1
people into the category D3 = 1 and 92.4% of D2 people into
D3.
In this simulation, the IV weights are positive.
The IV weights and ∆PRTE weights are distinctly different and
the IV estimate is 0.201 vs. ∆PRTE of 0.166.

Heckman and Vytlacil Using the Marginal Treatment Effect
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It also plots the IV weights for the two ∆MTE functions for the
case where W1 is the instrument.
The correlation pattern for (W1,W2) is positive with specific
values given below the figure.

The policy studied in figure 20B shifts 42.8% of the D1 = 1
people into the category D3 = 1 and 92.4% of D2 people into
D3.
In this simulation, the IV weights are positive.
The IV weights and ∆PRTE weights are distinctly different and
the IV estimate is 0.201 vs. ∆PRTE of 0.166.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

It also plots the IV weights for the two ∆MTE functions for the
case where W1 is the instrument.
The correlation pattern for (W1,W2) is positive with specific
values given below the figure.
The policy studied in figure 20B shifts 42.8% of the D1 = 1
people into the category D3 = 1 and 92.4% of D2 people into
D3.

In this simulation, the IV weights are positive.
The IV weights and ∆PRTE weights are distinctly different and
the IV estimate is 0.201 vs. ∆PRTE of 0.166.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

It also plots the IV weights for the two ∆MTE functions for the
case where W1 is the instrument.
The correlation pattern for (W1,W2) is positive with specific
values given below the figure.
The policy studied in figure 20B shifts 42.8% of the D1 = 1
people into the category D3 = 1 and 92.4% of D2 people into
D3.
In this simulation, the IV weights are positive.

The IV weights and ∆PRTE weights are distinctly different and
the IV estimate is 0.201 vs. ∆PRTE of 0.166.
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It also plots the IV weights for the two ∆MTE functions for the
case where W1 is the instrument.
The correlation pattern for (W1,W2) is positive with specific
values given below the figure.
The policy studied in figure 20B shifts 42.8% of the D1 = 1
people into the category D3 = 1 and 92.4% of D2 people into
D3.
In this simulation, the IV weights are positive.
The IV weights and ∆PRTE weights are distinctly different and
the IV estimate is 0.201 vs. ∆PRTE of 0.166.
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When we change the correlation structure between W1 and W2
so that they are negatively correlated (figure 20C), the IV
weight for ∆MTE

2,3 becomes negative while that for ∆MTE
1,2

remains positive.

The contrast in these figures between negative and positive IV
weights depends on the correlation structure between W1 and
W2.
The stochastic order (W2 > W1) is a force toward positive
weights, which can be undone when the dependence induced by
the density (f(w1,w2)) is sufficiently negative.
The discord between the IV and ∆PRTE weights is substantial
and is reflected in the estimates (∆ PRTE = 0.159 vs.
∆IV = 0.296).

Heckman and Vytlacil Using the Marginal Treatment Effect
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When we change the correlation structure between W1 and W2
so that they are negatively correlated (figure 20C), the IV
weight for ∆MTE

2,3 becomes negative while that for ∆MTE
1,2

remains positive.
The contrast in these figures between negative and positive IV
weights depends on the correlation structure between W1 and
W2.

The stochastic order (W2 > W1) is a force toward positive
weights, which can be undone when the dependence induced by
the density (f(w1,w2)) is sufficiently negative.
The discord between the IV and ∆PRTE weights is substantial
and is reflected in the estimates (∆ PRTE = 0.159 vs.
∆IV = 0.296).
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When we change the correlation structure between W1 and W2
so that they are negatively correlated (figure 20C), the IV
weight for ∆MTE

2,3 becomes negative while that for ∆MTE
1,2

remains positive.
The contrast in these figures between negative and positive IV
weights depends on the correlation structure between W1 and
W2.
The stochastic order (W2 > W1) is a force toward positive
weights, which can be undone when the dependence induced by
the density (f(w1,w2)) is sufficiently negative.

The discord between the IV and ∆PRTE weights is substantial
and is reflected in the estimates (∆ PRTE = 0.159 vs.
∆IV = 0.296).
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When we change the correlation structure between W1 and W2
so that they are negatively correlated (figure 20C), the IV
weight for ∆MTE

2,3 becomes negative while that for ∆MTE
1,2

remains positive.
The contrast in these figures between negative and positive IV
weights depends on the correlation structure between W1 and
W2.
The stochastic order (W2 > W1) is a force toward positive
weights, which can be undone when the dependence induced by
the density (f(w1,w2)) is sufficiently negative.
The discord between the IV and ∆PRTE weights is substantial
and is reflected in the estimates (∆ PRTE = 0.159 vs.
∆IV = 0.296).
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As figure 20D illustrates, the weights on ∆PRTE are not
guaranteed to be positive either.

Thus neither the IV weights nor the weights on ∆PRTE are
guaranteed to be positive or negative and the relationship
between the two sets of weights can be quite weak.
Figures 21A–21D present a parallel set of simulations when Z is
used as an instrument.
Changes in Z shift persons across all transitions whereas W1 is
a transition-specific shifter.

Heckman and Vytlacil Using the Marginal Treatment Effect
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As figure 20D illustrates, the weights on ∆PRTE are not
guaranteed to be positive either.
Thus neither the IV weights nor the weights on ∆PRTE are
guaranteed to be positive or negative and the relationship
between the two sets of weights can be quite weak.

Figures 21A–21D present a parallel set of simulations when Z is
used as an instrument.
Changes in Z shift persons across all transitions whereas W1 is
a transition-specific shifter.

Heckman and Vytlacil Using the Marginal Treatment Effect
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As figure 20D illustrates, the weights on ∆PRTE are not
guaranteed to be positive either.
Thus neither the IV weights nor the weights on ∆PRTE are
guaranteed to be positive or negative and the relationship
between the two sets of weights can be quite weak.
Figures 21A–21D present a parallel set of simulations when Z is
used as an instrument.

Changes in Z shift persons across all transitions whereas W1 is
a transition-specific shifter.
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As figure 20D illustrates, the weights on ∆PRTE are not
guaranteed to be positive either.
Thus neither the IV weights nor the weights on ∆PRTE are
guaranteed to be positive or negative and the relationship
between the two sets of weights can be quite weak.
Figures 21A–21D present a parallel set of simulations when Z is
used as an instrument.
Changes in Z shift persons across all transitions whereas W1 is
a transition-specific shifter.
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Figure 21 reproduces the policy invariant ∆MTE parameters
from figure 20A.

Figure 21B shows that the IV weights for ∆MTE
1,2 assume both

positive and negative values.
The IV weights for ∆MTE

2,3 are positive but not monotonic.
In figure 21C, where there is negative dependence between W1
and W2, both sets of IV weights assume both positive and
negative values.
In the case where f(w1,w2) = f1(w1)f2(w2), the weights on
∆MTE

1,2 for ∆PRTE are negative.

Heckman and Vytlacil Using the Marginal Treatment Effect
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Figure 21 reproduces the policy invariant ∆MTE parameters
from figure 20A.
Figure 21B shows that the IV weights for ∆MTE

1,2 assume both
positive and negative values.

The IV weights for ∆MTE
2,3 are positive but not monotonic.

In figure 21C, where there is negative dependence between W1
and W2, both sets of IV weights assume both positive and
negative values.
In the case where f(w1,w2) = f1(w1)f2(w2), the weights on
∆MTE

1,2 for ∆PRTE are negative.
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Figure 21 reproduces the policy invariant ∆MTE parameters
from figure 20A.
Figure 21B shows that the IV weights for ∆MTE

1,2 assume both
positive and negative values.
The IV weights for ∆MTE

2,3 are positive but not monotonic.

In figure 21C, where there is negative dependence between W1
and W2, both sets of IV weights assume both positive and
negative values.
In the case where f(w1,w2) = f1(w1)f2(w2), the weights on
∆MTE

1,2 for ∆PRTE are negative.
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These simulations show a rich variety of shapes and signs for
the weights.

They illustrate a main point of this chapter — that standard IV
methods are not guaranteed to weight marginal treatment
effects positively or to produce estimates close to policy
relevant treatment effects or even to produce any gross
treatment effect.
Estimators based on LIV and its extension to the ordered model
(44) identify ∆MTE for each transition and answer policy
relevant questions.
We now turn to an analysis of a general unordered model.
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Extension to Multiple Treatments that are Unordered

The previous section analyzes a multiple treatment model where
the treatment choice equation is an ordered choice model.

In this section, we develop a framework for the analysis of
multiple treatments when the choice equation is a
nonparametric version of the classical multinomial choice model
with no order imposed.
Appendix B of Part I, and ? analyze nonparametric and
semiparametric identification of discrete choice models.
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With this framework, treatment effects can be defined as the
difference in the counterfactual outcomes that would have been
observed if the agent faced different general choice sets, i.e.,
the effect of the individual being forced to choose from one
choice set instead of another.

We define treatment parameters for a general multiple
treatment problem and present conditions for the application of
instrumental variables for identifying a variety of new treatment
parameters.
Our identification conditions are weaker than the ones used in
appendix B of Part I, which establishes conditions under which
it is possible to nonparametrically identify a full multinomial
selection model.
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Our use of choice theory is a unique aspect of our approach to
the analysis of treatment effects.

One particularly helpful result we draw on is the representation
of the multinomial choices in terms of the choice between a
particular choice and the best option among all other choices.
This representation is crucial for understanding why LIV allows
one to identify the MTE for the effect of one choice versus the
best alternative option.
The representation was introduced in ?, and has been used in
the analysis of parametric multinomial selection models by ?
and ?.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

Our use of choice theory is a unique aspect of our approach to
the analysis of treatment effects.
One particularly helpful result we draw on is the representation
of the multinomial choices in terms of the choice between a
particular choice and the best option among all other choices.

This representation is crucial for understanding why LIV allows
one to identify the MTE for the effect of one choice versus the
best alternative option.
The representation was introduced in ?, and has been used in
the analysis of parametric multinomial selection models by ?
and ?.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

Our use of choice theory is a unique aspect of our approach to
the analysis of treatment effects.
One particularly helpful result we draw on is the representation
of the multinomial choices in terms of the choice between a
particular choice and the best option among all other choices.
This representation is crucial for understanding why LIV allows
one to identify the MTE for the effect of one choice versus the
best alternative option.

The representation was introduced in ?, and has been used in
the analysis of parametric multinomial selection models by ?
and ?.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

Our use of choice theory is a unique aspect of our approach to
the analysis of treatment effects.
One particularly helpful result we draw on is the representation
of the multinomial choices in terms of the choice between a
particular choice and the best option among all other choices.
This representation is crucial for understanding why LIV allows
one to identify the MTE for the effect of one choice versus the
best alternative option.
The representation was introduced in ?, and has been used in
the analysis of parametric multinomial selection models by ?
and ?.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

Unlike those authors, we systematically explore treatment effect
heterogeneity, consider nonparametric identification, and
examine the application of the LIV methodology to such
models.

Our analysis proceeds as follows.
We first introduce our nonparametric, multinomial selection
model and state our assumptions in Slide 563.
In Slide 576, we define treatment effects in a general unordered
model as the differences in the counterfactual outcomes that
would have been observed if the agent faced different choice
sets, i.e., the effects observed if individuals are forced to choose
from one choice set instead of another.
We also define the corresponding treatment parameters.
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Treatment effects in this context exhibit a form of treatment
effect heterogeneity not present in the binary treatment case.

The new form of heterogeneity arises from agents facing
different choice sets, which we discuss in Slide 589.
Slide 596 establishes that LIV and the nonparametric Wald-IV
estimand produce identification of the MTE/LATE versions of
the effect of one choice versus the best alternative option
without requiring knowledge of the latent index functions
generating choices or large support assumptions.
Mean treatment effects comparing one option versus the best
alternative are the easiest treatment effects to study using
instrumental variable methods because we effectively collapse a
multiple outcome model to a series of two-outcome models,
picking one outcome relative to the rest.
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In Slide 621, we consider a more general case and state
conditions for identifying the mean effect of the outcome
associated with the best option in one choice set to the mean
effect of the best option not in that choice set.

We show that identification of the corresponding MTE/LATE
parameters requires knowledge of the latent index functions of
the multinomial choice model.
Thus, to identify the parameters by using IV or LIV requires the
formulation and estimation of an explicit choice model.
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In Slide 631, we analyze the identification of treatment
parameters corresponding to the mean effect of one specified
choice versus another specified choice.

Identification of marginal treatment parameters in this case
requires the use of identification at infinity arguments relying
on large support assumptions, but does not require knowledge
of the latent index functions of the multinomial choice problem.
This use of large support assumptions is closely related to the
need for large support assumptions to identify the full model
developed in Appendix B of Part I.
We summarize our analysis in Slide 645.
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Model and Assumptions

Consider the following model with multiple choices and
multiple outcome states for a general unordered model.

Let J denote the agent’s choice set, where J contains a finite
number of elements.
The value to the agent of choosing option j ∈ J is

Rj(Zj) = ϑj(Zj)− Vj, (51)

where Zj are the agent’s observed characteristics that affect the
utility from choosing choice j, and Vj is the unobserved shock
to the agent’s utility from choice j.
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We will sometimes suppress the argument and write Rj for
Rj(Zj).

Let Z denote the random vector containing all unique elements
of {Zj}j∈J , i.e., Z = ∪j∈J {Zj}j∈J .
We will also sometimes write Rj(Z) for Rj(Zj), leaving implicit
that Rj(·) only depends on those elements of Z that are
contained in Zj.
Let DJ ,j be an indicator variable for whether the agent would
choose option j if confronted with choice set J :

DJ ,j =

{
1 if Rj ≥ Rk ∀ k ∈ J
0 otherwise.
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Let IJ denote the choice that would be made by the agent if
confronted with choice set J :

IJ = j ⇐⇒ DJ ,j = 1.

Let YJ be the outcome variable that would be observed if the
agent faced choice set J , determined by

YJ =
∑
j∈J

DJ ,jYj,

where Yj is the potential outcome, observed only if option j is
chosen.
Yj is determined by

Yj = µj(Xj,Uj),

where Xj is a vector of the agent’s observed characteristics and
Uj is an unobserved random vector.
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Let X denote the random vector containing all unique elements
of {Xj}j∈J , i.e., X = ∪j∈J {Xj}j∈J .

(Z,X, IJ ,YJ ) is assumed to be observed.
Define RJ as the maximum obtainable value given choice set
J :

RJ = maxj∈J {Rj}
=

∑
j∈J

DJ ,jRj.

We thus obtain the traditional representation of the decision
process that choice j being optimal implies that choice j is
better than the “next best” option:

IJ = j ⇐⇒ Rj ≥ RJ\j.
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More generally, a choice from K being optimal is equivalent to
the highest value obtainable from choices in K being higher
than the highest value that can be obtained from choices
outside that set,

IJ ∈ K ⇐⇒ RK ≥ RJ\K.

As we will show, this simple representation is the key intuition
for understanding how nonparametric instrumental variables
estimate the effect of a given choice versus the “next best”
alternative.
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Analogous to our definition of RJ , we define RJ (z) to be the
maximum obtainable value given choice set J when
instruments are fixed at Z = z,

RJ (z) = max
j∈J

{Rj(z)}.

Thus, for example, a choice from K is optimal when
instruments are fixed at Z = z if RK(z) ≥ RJ\K(z).
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We make the following assumptions, which generalize
assumptions (A-1)–(A-5) invoked in ? and later used in ?, as
developed in Slide 12.

We present the assumptions in a fashion parallel to
(A-1)–(A-5) and (OC-1)–(OC-6).
For that reason, we present the second assumption, which
requires special attention, out of order.
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(B-1) {(Vj,Uj)}j∈J is independent of Z conditional on X.
(B-3) The distribution of ({Vj}j∈J ) is continuous.
(B-4) E(|Yj|) < ∞ for all j ∈ J .
(B-5) Pr(IJ = j|X) > 0 for all j ∈ J .
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Assumption (B-1) and (B-3) imply that Rj ̸= Rk w.p.1 for
j ̸= k, so that argmax{Rj} is unique w.p.1.

Assumption (B-4) is required for the mean treatment
parameters to be well defined.
It allows us to integrate to the limit, which will be a crucial
step for all identification analysis.
Assumption (B-5) requires that at least some individuals
participate in each program for all X.
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Assumption (B-1) and (B-3) imply that Rj ̸= Rk w.p.1 for
j ̸= k, so that argmax{Rj} is unique w.p.1.
Assumption (B-4) is required for the mean treatment
parameters to be well defined.
It allows us to integrate to the limit, which will be a crucial
step for all identification analysis.
Assumption (B-5) requires that at least some individuals
participate in each program for all X.
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Our definition and analysis of the treatment parameters only
require assumptions (B-1) and (B-3)–(B-5).

However, we will also impose an exclusion restriction for our
identification analysis.
Let Z[j] denote the jth components of Z that are in Zj but not
in Zk, k ̸= j.
Let Z[−j] denote all elements of Z except for the components in
Z[j].
We work with two alternative assumptions for the exclusion
restriction.
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Consider

(B-2a) For each j ∈ J , there exists at least one element of Z, say Z[j],
such that Z[j] is not an element of Zk, k ̸= j, and such that the
distribution of ϑj(Zj) conditional on (X,Z[−j]) is
nondegenerate,

Or consider

(B-2b) For each j ∈ J , there exists at least one element of Z, say Z[j],
such that Z[j] is not an element of Zk, k ̸= j, and such that the
distribution of ϑj(Zj) conditional on (X,Z[−j]) is continuous.
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Assumption (B-2a) imposes the requirement that the analyst
be able to independently vary the index for the given value
function.

This produces variation that affects only the value of the jth
value function and causes people to enter or exit sector j.
It imposes an exclusion restriction, that for any j ∈ J , Z
contains an element such that (i) it is contained in Zj; (ii) it is
not contained in any Zk for k ̸= j, and (iii) ϑj(·) is a nontrivial
function of that element conditional on all other regressors.
Assumption (B-2b) strengthens (B-2a) by adding a smoothness
assumption.
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A necessary condition for (B-2b) is for the excluded variable to
have a density with respect to Lebesgue measure conditional on
all other regressors and for ϑj(·) to be a continuous and
nontrivial function of the excluded variable.

Assumption (B-2a) will be used to identify a generalization of
the LATE parameter.
Assumption (B-2b) will be used to identify a generalization of
the MTE parameter.
For certain portions of the analysis, we strengthen (B-2b) to a
large support condition, though the large support assumption
will not be required for most of our analysis.
Assumptions (B-2a) and (B-2b) mirror (A-2) for the binary
choice model and are analogous to (OC-2) and (OC-6) in an
ordered choice model.
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Definition of Treatment Effects and Treatment Parameters

Treatment effects are defined as the difference in the
counterfactual outcomes that would have been observed if the
agent faced different choice sets.

For any two choice sets, K,L ⊂ J , define

∆K,L = YK − YL.

This is the effect of the individual being forced to choose from
choice set K versus choice set L.
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The conventional treatment effect is defined as the difference
in potential outcomes between two specified states,

∆k,l = Yk − Yl,

which is nested within this framework by taking K = {k},
L = {l}.

It is the effect for the individual of having no choice except to
choose state l.
∆K,L will be zero for agents who make the same choice when
confronted with choice set K and choice set L.
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Thus, IK = IL implies ∆K,L = 0, and we have

∆K,L = 1(IL ̸= IK)∆K\L,L (52)

= 1(IL ̸= IK)

∑
j∈K\L

DK,j∆j,L

 . (53)

Two examples will be of particular importance for our analysis.
First, consider choice set K = {k} versus choice set
L = J \ {k}.
In this case, ∆k,J\k is the difference between the agent’s
potential outcome in state k versus the outcome that would
have been observed if he or she had not been allowed to choose
state k.
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Thus, IK = IL implies ∆K,L = 0, and we have

∆K,L = 1(IL ̸= IK)∆K\L,L (52)

= 1(IL ̸= IK)

∑
j∈K\L

DK,j∆j,L

 . (53)

Two examples will be of particular importance for our analysis.
First, consider choice set K = {k} versus choice set
L = J \ {k}.

In this case, ∆k,J\k is the difference between the agent’s
potential outcome in state k versus the outcome that would
have been observed if he or she had not been allowed to choose
state k.
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If IJ = k, then ∆k,J\k is the difference between the outcome in
the agent’s preferred state and the outcome in the agent’s
“next-best” state.

Second, consider the set K = J versus choice set L = J \ {k}
. In this case, ∆J ,J\k is the difference between the agent’s best
outcome and what his or her outcome would have been if state
k had not been available.
Note that

∆J ,J\k = DJ ,k∆k,J\k.

Thus, there is a trivial connection between the two parameters,
∆J ,J\k and ∆k,J\k.
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We will focus on ∆k,J\k, the effect of being forced to choose
option k versus being denied option k.

However, one can use equation 52 to use the results for ∆k,J\k
to obtain results for ∆J ,J\k.
To fix ideas regarding these alternative definitions of treatment
effects, consider the following example concerning GED
certification.
The GED is an exam that certifies that high school dropouts
who pass the test are the equivalents of high school graduates.
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Example: GED Certification Consider studying the effect of GED
certification on later wages. Consider the case where J = {
{GED}, {HS Degree}, {Permanent Dropout} }. Let j = {GED},
k = {HS Degree}, and l ={Permanent Dropout}. Suppose one
wishes to study the effect of the GED. Then possible definitions of
the effect of the GED include:

∆j,k is the individual’s outcome if he or she received the GED
versus if he or she had graduated from High School;

∆j,l is the individual’s outcome if he or she received the GED
versus if he or she had been a permanent dropout;
∆j,J\j is the individual’s outcome if he or she had received the
GED versus what the outcome would have been if he or she
had not had the option of receiving the GED;
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∆J ,J\j is the individual’s outcome if he or she had the option
of receiving the GED versus the outcome if he or she did not
have the option of receiving the GED.

Notice that ∆J ,J\j is a version of an option value treatment
effect.
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We now define treatment parameters for a general unordered
model.
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Treatment Parameters

The conventional definition of the average treatment effect
(ATE) is

∆ATE
k,l (x, z) = E(∆k,l|X = x,Z = z),

which immediately generalizes to the class of parameters
discussed in this section as

∆ATE
K,L (x, z) = E(∆K,L|X = x,Z = z).

Notice that the treatment parameters now depend on the value
of Z.
We explain the source of this dependence below.
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The conventional definition of the treatment on the treated
(TT) parameter is

∆TT
k,l (x, z) = E(∆k,l|X = x,Z = z, IJ = k),

which we generalize to

∆TT
K,L(x, z) = E(∆K,L|X = x,Z = z, IJ ∈ K).

We also generalize the Marginal Treatment Effect (MTE) and
Local Average Treatment Effect (LATE) parameters considered
in ? . We generalize the MTE parameter to be the average
effect conditional on being indifferent between the best option
among choice set K versus the best option among choice set L
at some fixed value of the instruments, Z = z:

∆MTE
K,L (x, z) = E

(
∆K,L|X = x,Z = z,RK(z) = RL(z)

)
. (54)
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We generalize the LATE parameter to be the average effect for
someone for whom the optimal choice in choice set K is
preferred to the optimal choice in choice set L at Z = z̃, but
who prefers the optimal choice in choice set L to the optimal
choice in choice set K at Z = z:

∆LATE
K,L (x, z, z̃) = E

(
∆K,L|X = x,Z = z,RK(z̃) ≥ RL(z̃),RL(z) ≥ RK(z)

)
. (55)

An important special case of this parameter arises when z = z̃
except for elements that enter the index functions only for
choices in K and not for any choice in L.
In that special case, equation (55) simplifies to

∆LATE
K,L (x, z, z̃) = E

(
∆K,L|X = x,Z = z,RK(z̃) ≥ RL(z) ≥ RK(z)

)
,

since RL(z) = RL(z̃) in this special case.
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We have defined each of these parameters as conditional not
only on X but also on the “instruments” Z.

In general, the parameters depend on the Z evaluation point.
For example, ∆ATE

K,L (x, z) generally depends on the z evaluation
point.
To see this, note that YK =

∑
k∈K

DK,kYk, and YL =
∑
l∈L

DL,lYl.
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In general, the parameters depend on the Z evaluation point.
For example, ∆ATE

K,L (x, z) generally depends on the z evaluation
point.

To see this, note that YK =
∑
k∈K

DK,kYk, and YL =
∑
l∈L

DL,lYl.
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By conditional independence assumption (B-1),
Z ⊥⊥ {Yj}j∈J | X, but DK,k and DL,l depend on Z conditional
on X and thus YK − YL, in general, is dependent on Z
conditional on X.

In other words, even though Z is conditionally independent of
each individual potential outcome, it is correlated with the
indicator for the choice that is optimal within the sets K and L
and thus is related to YK − YL.
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Heterogeneity in Treatment Effects

Consider heterogeneity in the pairwise treatment effect ∆j,k
(with (j, k) ∈ J ) defined as

∆j,k = Yj − Yk = µj(Xj,Uj)− µk(Xk,Uk),

which in general will vary with both observables (X) and
unobservables (Uj,Uk).

Since we have not assumed that the error terms are additively
separable, the treatment effect will in general vary with
unobservables even if Uj = Uk.
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The mean treatment parameters for ∆j,k will differ if the effect
of treatment is heterogeneous and agents base participation
decisions, in part, on their idiosyncratic treatment effect.

In general, the ATE, TT, and the marginal treatment
parameters for ∆j,k will differ as long as there is dependence
between (Uj,Uk) and the decision rule, i.e., if there is
dependence between (Uj,Uk) and ({Vl}l∈J ).
If we impose that ({Vl}l∈J ) is independent of (Uj,Uk), then
the treatment effect will still be heterogeneous, but the average
treatment effect, average effect of treatment on the treated,
and the marginal average treatment effects will all coincide.
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The literature on treatment effects often imposes additive
separability in outcomes between observables and
unobservables.

In particular, it is commonly assumed that Uj and Uk are scalar
random variables and that Yj = µj(Xj) + Uj, Yk = µk(Xk) + Uk.
In that case, a common treatment effect model is produced if
the additive error term does not vary with the treatment state:
Uj = Uk.
Thus, in the special case of additive separability, the treatment
parameters for ∆j,k will be the same even if there is dependence
between {Vj}j∈J and (Uj,Uk) as long as Uj = Uk.
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There is an additional source of treatment heterogeneity in the
more general case of ∆K,L arising from heterogeneity in which
states are being compared.

Consider, for example, ∆j,J\j.
We have that

∆j,J\j =
∑

k∈J\j
DJ\j,k∆j,k,

which will vary over individuals even if each individual has the
same ∆j,k treatment effect.
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Consider the corresponding ATE and TT parameters:
�ATE

j,J \j (x, z)

= E(�j,J \j | X = x,Z = z)

=

∑

k∈J \j

Pr(IJ \j = k | X = x,Z = z)E(�j,k | X = x,Z = z, IJ \j = k)

and
�TT

j,J \j (x, z)

= E(�j,J \j | X = x,Z = z, IJ = j)

=

∑

k∈J \j

Pr(IJ \j = k | X = x,Z = z, IJ = j)

× E(�j,k | X = x,Z = z, IJ = j, IJ \j = k).
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Even in the case where {Uj}j∈J is independent of {Vj}j∈J , so
that E(∆j,k | X = x,Z = z, IJ\j = k) = E(∆j,k | X = x,Z =
z, IJ = j, IJ\j = k), it will still in general be the case that
∆ATE

j,J\j(x, z) ̸= ∆TT
j,J\j(x, z) since in general Pr(IJ\j = k | X =

x,Z = z) ̸= Pr(IJ\j = k | X = x,Z = z, IJ = j).

Thus, the ATE and TT parameters will differ in part because
they place different weights on the alternative pairwise
treatment effects, and thus will differ even in the case where
the pairwise (j versus k) treatment effects are common across
all individuals.
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In summary, ∆j,k will be heterogeneous depending on the
functional form of the µj(·) and µk(·) equations and on the
pairwise dependence between the Uj and Uk terms.

The ∆j,k mean treatment parameters will also vary depending
on the dependence between {Vl}l∈J and (Uj,Uk).
For ∆j,J\j, there is an additional source of heterogeneity arising
from the variability in the optimal option in the set J \ j.
Even if there is no heterogeneity in the pairwise ∆j,k terms,
there will still be heterogeneity in ∆j,J\j, and heterogeneity in
the corresponding mean treatment parameters.
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LIV and Nonparametric Wald Estimands for One Choice vs. the Best
Alternative

We first consider identification of treatment parameters
corresponding to averages of ∆j,J\j, the effect of choosing
option j versus the preferred option J if j is not available.

We analyze both a discrete change (Wald form for the
instrumental variables estimand) and the local instrumental
variables (LIV) estimand.
Using a concise notation, define Z[j] as the vector of elements
in Zj that do not enter any other choice index, and that Z[−j] is
a vector of elements of Z not in Z[j].
The Z[j] thus act as shifters attracting people into or out of
state j but not affecting the valuations in the arguments of the
other choice functions.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

LIV and Nonparametric Wald Estimands for One Choice vs. the Best
Alternative

We first consider identification of treatment parameters
corresponding to averages of ∆j,J\j, the effect of choosing
option j versus the preferred option J if j is not available.
We analyze both a discrete change (Wald form for the
instrumental variables estimand) and the local instrumental
variables (LIV) estimand.

Using a concise notation, define Z[j] as the vector of elements
in Zj that do not enter any other choice index, and that Z[−j] is
a vector of elements of Z not in Z[j].
The Z[j] thus act as shifters attracting people into or out of
state j but not affecting the valuations in the arguments of the
other choice functions.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

LIV and Nonparametric Wald Estimands for One Choice vs. the Best
Alternative

We first consider identification of treatment parameters
corresponding to averages of ∆j,J\j, the effect of choosing
option j versus the preferred option J if j is not available.
We analyze both a discrete change (Wald form for the
instrumental variables estimand) and the local instrumental
variables (LIV) estimand.
Using a concise notation, define Z[j] as the vector of elements
in Zj that do not enter any other choice index, and that Z[−j] is
a vector of elements of Z not in Z[j].

The Z[j] thus act as shifters attracting people into or out of
state j but not affecting the valuations in the arguments of the
other choice functions.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

LIV and Nonparametric Wald Estimands for One Choice vs. the Best
Alternative

We first consider identification of treatment parameters
corresponding to averages of ∆j,J\j, the effect of choosing
option j versus the preferred option J if j is not available.
We analyze both a discrete change (Wald form for the
instrumental variables estimand) and the local instrumental
variables (LIV) estimand.
Using a concise notation, define Z[j] as the vector of elements
in Zj that do not enter any other choice index, and that Z[−j] is
a vector of elements of Z not in Z[j].
The Z[j] thus act as shifters attracting people into or out of
state j but not affecting the valuations in the arguments of the
other choice functions.
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For this case, we can develop an analysis of IV parallel to that
given for the binary case or the ordered choice case if we
condition on Z[−j].

We obtain monotonicity or uniformity in this model if the
movements among states induced by Z[j] are the same for all
persons conditional on Z[−j] = z[−j] and X = x.
For example, ceteris paribus if Z[j] = z[j] increases, Rj (Zj)
increases but the Rk (Zk) are not affected, so the flow is toward
state j.
Let DJ ,j be an indicator variable denoting whether option j is
selected.
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DJ ,j = 1
(

Rj (Zj) ≥ max
ℓ̸=j

{Rℓ (Zℓ)}
)

(56)

= 1
(
ϑj (Zj) ≥ Vj +max

ℓ̸=j
{Rℓ (Zℓ)}

)
= 1

(
ϑj (Zj) ≥ Ṽj

)
,

where Ṽj = Vj +maxℓ ̸=j {Rℓ (Zℓ)}.

Thus we obtain DJ ,j = 1
(
Pj (Zj) ≥ UDj

)
, where

UDj = FṼj|Z[−j](Vj +maxℓ ̸=j {Rℓ (Zℓ)} | Z[−j] = z[−j]), where
FṼj|Z[−j] is the cdf of Ṽj given Z[−j] = z[−j].
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In a format parallel to the binary model, we write

Y = DJ ,jYj + (1 − DJ ,j)YJ\j, (57)

where YJ\j is the outcome that would be observed if option j
were not available.

This case is just a version of the binary case developed in
previous sections of the paper.
There is one crucial difference, however, and that is that the
distributions of the Ṽj now depend on the excluded Z = z.
Thus instruments and parameters have to be defined
conditionally on Z = z.
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We can define MTE as

E
(
Yj − YJ\j | X = x,Z = z, ϑj (zj)− Vj = RJ\j (z)

)
.

We have to condition on Z = z because the choice sets are
defined over the max of elements in J \ j (see equation (56)).

We now show that our identification strategies presented in the
preceding part of this paper extend naturally to the
identification of treatment parameters for ∆j,J\j.
In particular, it is possible to recover LATE and MTE
parameters for ∆j,J\j by use of discrete change IV methods and
local instrumental variable methods, respectively.
Averages of the effect of option j versus the next best
alternative are the easiest effects to study using instrumental
variable methods and are natural generalizations of our
two-outcome analysis.
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The discrete change instrumental variables estimand will allow
us to recover a version of the local average treatment effect
(LATE) parameter.

Invoke assumption (B-2a).
Assuming only one excluded variable Z[j] in Zj.
If there are more, pick any one that satisfies (B-2a).
Let Z[−j] denote the excluded variable for option j with
properties assumed in (B-2a).

We let Z =
[
Z[−j],Z[j]] and Z̃ =

[
Z̃[−j], Z̃[j]

]
be two values

where we only manipulate scalar Z[j].
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∆Wald
j (x, z[−j], z[j], z̃[j]) = E(Y|X = x,Z = z̃)− E(Y|X = x,Z = z)

Pr(DJ ,j = 1|X = x,Z = z̃)− Pr(DJ ,j = 1|X = x,Z = z)
,

where for notational convenience we are assuming that Z[j] is
the last element of Z.

Note that all components of z and z̃ are the same except for
the jth component.
Without loss of generality, we assume that ϑj(z̃) > ϑj(z).
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If there were no X regressors, and if Z were a scalar, binary
random variable, then ∆Wald

j (x, z[−j], z[j], z̃[j]) would be the
probability limit of the Wald form of two-stage least squares
regression (2SLS).

With X regressors, and with Z a vector possibly including
continuous components, it no longer corresponds to a
Wald/2SLS, but rather to a nonparametric version of the Wald
estimator where the analyst nonparametrically conditions on X
and on Z taking one of two specified values.
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and on Z taking one of two specified values.
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The local instrumental variables estimator (LIV) estimand
introduced in ?, and developed further in ??? and ?, will allow
us to recover a version of the Marginal Treatment Effect
(MTE) parameter.

Impose (B-2b), and let Z[j] denote the excluded variable for
option j with properties assumed in (B-2b).
Because of the index structure, the LIV estimand will be
invariant to which particular variable in Z[j] satisfying (B-2b) is
used if there is more than one variable with the property
assumed in (B-2b).
The effects are not invariant to variables in Z[−j].
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Define

∆LIV
j (x, z) ≡ ∂

∂z[j] E(Y|X = x,Z = z)
/

∂
∂z[j] Pr(DJ ,j = 1|X = x,Z = z).

∆LIV
j (x, z) is thus the limit form of ∆Wald

j (x, z[−j], z[j], z̃[j]) as z̃[j]
approaches z[j].
Given our previous assumptions, one can easily show that this
limit exists w.p.1.
LIV corresponds to a nonparametric, local version of indirect
least squares.
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It is a function of the distribution of the observable data, and it
can be consistently estimated using any nonparametric
estimator of the derivative of a conditional expectation.

Given these definitions, we have the following identification
theorem.
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Theorem 6
1 Assume (B-1), (B-3)–(B-5), and (B-2a). Then

∆Wald
j (x, z[−j], z[j], z̃[j]) = ∆LATE

j,J\j (x, z, z̃)
where z̃ = (z[−j], z̃[j]).

2 Assume (B-1), (B-3)–(B-5), and (B-2b). Then
∆LIV

j (x, z) = ∆ MTE
j,J\j (x, z).
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Proof.
See Appendix, Slide 1148.
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The intuition underlying the proof is simple.

Under (B-1), (B-3)–(B-5), and (B-2a), we can convert the
problem of comparing the outcome under j with the outcome
under the next best option.
This is an IV version of the selection modeling of ?.
∆LATE

j,J\j (x, z, z̃) is the average effect of switching to state j from
state IJ\j for individuals who would choose IJ\j at Z = z but
would choose j at Z = z̃.
∆MTE

j,J\j(x, z) is the average effect of switching to state j from
state IJ\j (the best option besides state j) for individuals who
are indifferent between state j and IJ\j at the given values of
the selection indices (at Z = z, i.e., at {ϑk(Zk) = ϑk(zk)}k∈J ).
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The mean effect of state j versus state IJ\j (the next best
option) is a weighted average over k ∈ J \ j of the effect of
state j versus state k, conditional on k being the next best
option, weighted by the probability that k is the next best
option.

For example, for the LATE parameter,

∆LATE
j,J\j(x, z, z̃) = E

(
∆j,J\j|X = x,Z = z,Rj(z̃) ≥ RJ\j(z) ≥ Rj(z)

)
=
∑

k∈J\j

[
Pr
(
IJ\j = k|Z ∈ {z, z̃} ,X = x,Rj(z̃) ≥ RJ\j(z) ≥ Rj(z)

)
× E

(
∆j,k|X = x,Z ∈ {z, z̃} ,Rj(z̃) ≥ RJ\j(z) ≥ Rj(z), IJ\j = k)

]
.

where we use the result that RJ\j(z) = RJ\j(z̃) since z = z̃
except for one component that only enters the index for the jth
option.
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The higher ϑk (zk), holding the other indices constant, the
larger the weight given to k as the base state.

Thus, how heavily each option is weighted in this average
depends on the switching probability
Pr
(
IJ\j = k|Z = z,X = x,Rj(z̃j) ≥ Rk(zk) ≥ Rj(zj)

)
, which in

turn depends on {ϑk(zk)}k∈J\j.
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The LIV and Wald estimands depend on the z evaluation point.

Alternatively, one can define averaged versions of the LIV and
Wald estimands that will recover averaged versions of the MTE
and LATE parameters,∫

∆Wald
j (x, z[−j], z[j], z̃[j]) dFZ[−j](z[−j])

=

∫
∆LATE

j,J\j (x, z, z̃) dFZ[−j](z[−j])

= E
(
∆j,J\j | X = x,Rj(Z[−j], z̃[j]) ≥ RJ\j(Z[−j]) ≥ Rj(Z[−j], z[j])

)
,

and∫
∆LIV

j (x, z)dFZ(z) =

∫
∆MTE

j,J\j(x, z)dFZ(z)

= E
(
∆j,J\j|X = x,Rj(Z) = RJ\j(Z)

)
.
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Thus far we have only considered identification of marginal
treatment effect parameters, LATE and MTE, and not of the
more standard treatment parameters like ATE and TT.

However, following ??, LATE can approximate ATE or TT
arbitrarily well given the appropriate support conditions.
Theorem 6 shows that we can use Wald estimands to identify
LATE for ∆j,J\j, and we can thus adapt the analysis of ??, as
reviewed in Slide 152, to identify ATE or TT for ∆j,J\j.
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Theorem 6 shows that we can use Wald estimands to identify
LATE for ∆j,J\j, and we can thus adapt the analysis of ??, as
reviewed in Slide 152, to identify ATE or TT for ∆j,J\j.
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Suppose that Z[j] denotes the excluded variable for option j
with properties assumed in (B-2a), and suppose that: (i) the
support of the distribution of Z[j] conditional on all other
elements of Z is the full real line; (ii) ϑj(zj) → ∞ as z[j] → ∞,
and ϑj(zj) → −∞ as z[j] → −∞.

Then ∆ATE
j,J\j(x, z) and ∆LATE

j (x, z[−j], z[j], z̃[j]) are arbitrarily close
when evaluated at a sufficiently large value of z̃[j] and a
sufficiently small value of z[j].
Following ?, ∆TT

j,J\j(x, z) and ∆LATE
j (x, z[−j], z[j], z̃[j]) are

arbitrarily close for sufficiently small z[j].
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Using Theorem 6, we can use Wald estimands to identify the
LATE parameters, and thus can use the Wald estimand to
identify the ATE and TT parameters provided that there is
sufficient support for the Z.

While this discussion has used the Wald estimands,
alternatively we could also follow ?, as summarized in Slide 90,
in expressing ATE and TT as integrated versions of MTE.
By Theorem 6, we can use LIV to identify MTE and can thus
express ATE and TT as integrated versions of the LIV
estimand.
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For a general instrument J
(
Z[j],Z[−j]) constructed from(

Z[j],Z[−j]), which we denote as J[j], we can obtain a parallel
construction to the characterization of standard IV given in
Slide 221:

∆IV
J[j] =

∫ 1

0
∆MTE (x, z, uDj

)
ωJ[j]

IV
(
uDj

)
duDj , (58)

where

ωJ[j]
IV (uDj ) =

E
[
J[j] − E

(
J[j]
)
| Pj (Z) ≥ uDj

]
Pr
(

Pj (Z) ≥ uDj | Z[−j] = z[−j]
)

Cov(Z[j],DJ ,j)
, (59)

where uDj is defined at the beginning of this subsection and
where we keep the conditioning on X = x implicit.
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Note that from Theorem 6, we obtain that
∂

∂z[j] E [Y | X = x,Z = z]
∂Pj(z)
∂z[j]

=
∂E[Y | X = x,Z = z]

∂Pj(z)

= E
[
Yj − YJ\j | X = x,Z = z, ϑj (Zj)− Vj = RJ\j (Z)

]
so LIV identifies MTE and linear IV is a weighted average of

LIV with the weights summing to one.

These results mirror the results established in the binary case.
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In the literature on the effects of schooling (S =
∑

j∈J jDJ ,j)
on earnings (YJ ), it is conventional to instrument S.

The website of ? presents an analysis of this case.
For the general unordered case,

∆IV
J[j] =

Cov(J[j],YJ )

Cov(J[j], S)

can be decomposed into economically interpretable components
where the weights can be identified but the objects being
weighted cannot be identified using local instrumental variables
or LATE without making large support assumptions.
However, the components can be identified using a structural
model.
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The trick we have used in this subsection comparing outcomes
in j to the next best option converts a general unordered
multiple outcome model into a two-outcome setup.

This effectively partitions YJ into two components, as in (57).
Thus we write

YJ = DJ ,jYj + (1 − DJ ,j) YJ\j,

where
YJ\j =

∑
ℓ̸=j
ℓ∈J

DJ ,ℓ

1 − DJ ,j
Yℓ · 1 (DJ ,j ̸= 1) .

In the more general unordered case with three or more choices,
to analyze IV estimates of the effect of S on YJ , we must work
with YJ =

∑
k∈J DJ ,kYk and make multiple comparisons

across potential outcomes.
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This requires us to move outside of the LATE/LIV framework,
which is inherently based on binary comparisons.

We turn to that analysis next.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

This requires us to move outside of the LATE/LIV framework,
which is inherently based on binary comparisons.
We turn to that analysis next.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

Identification: Effect of Best Option in K Versus Best Option not in
K

We just presented an analysis of identification for treatment
parameters defined as averages of ∆j,J\j, the effect of choosing
option j versus the preferred option in J if j were not available.

We now consider identification of ∆K,J\K, the effect of
choosing the preferred choice among set K versus the preferred
choice among J if no option in K were available.
This is an effect where we compare sets of options, and not
just a single option compared to the rest.
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We first start with an analysis that varies the {ϑk(·)}k∈J
indices directly.

This analysis would be useful if one first identifies the index
function, e.g., through an identification at infinity argument
using the analysis in ?, as in Appendix B of Part I or ?.
We then perform an analysis shifting Z directly.
We show that it is possible to identify MTE and LATE
averages of the ∆K,J\K effect if one has knowledge of the
{ϑk(·)}k∈J index functions but is not possible using shifts in Z
without knowledge of the index functions.
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The one exception to this result is the special case already
considered, when K = k, i.e., the set only contains one
element, in which case it is possible to identify the marginal
parameters using shifts in Z directly without knowledge of the
index functions.

Let ϑJ (Z) denote a random vector stacking the indices,

ϑJ (Z) = ∪k∈J {ϑk(Z) : k ∈ J }.

Let ϑJ be a vector denoting a potential evaluation point of
ϑJ (Z), ϑJ = {ϑk : k ∈ J }, so that ϑJ (Z) = ϑJ denotes the
event {ϑk(Z) = ϑk : k ∈ J }.
Let ϑJ + h denote {ϑk + h : k ∈ J }, where h ∈ R.
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We now define a version of the Wald estimand that uses the
indices directly as instruments instead of using Z as
instruments,
�̃Wald

K
(x, ϑJ , h)

≡
[

E
(

Y
∣

∣ X = x, ϑK(Z) = ϑK + h, ϑJ \K(Z) = ϑJ \K

)

− E
(

Y
∣

∣ X = x, ϑJ (Z) = ϑJ

)]

×
[

Pr
(

IJ ∈ K
∣

∣ X = x, ϑK(Z) = ϑK + h, ϑJ \K(Z) = ϑJ \K

)

− Pr
(

IJ ∈ K
∣

∣ X = x, ϑJ (Z) = ϑJ

)]−1
.

∆̃Wald
K (x, ϑJ , h) corresponds to the effect of a shift in each index

in K upward by h while holding each index in J \ K constant.
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Using indices, we define a version of the LIV estimand using
indices ∆̃LIV

K (x, ϑJ ) through a limit expression:

∆̃LIV
K (x, ϑJ ) = lim

h→0
∆̃Wald

K (x, ϑJ , h).

Likewise, we define versions of the LATE and MTE parameters
that are functions of the ϑ indices instead of functions of z
evaluation points,

∆̃LATE
K,L (x, ϑJ , h) = E

(
∆K,L|X = x, ϑJ (Z) = ϑJ ,RK(Z) + h ≥ RL(Z) ≥ RK(Z)

)
∆̃MTE

K,L (x, ϑJ ) = E
(
∆K,L|X = x, ϑJ (Z) = ϑJ ,RK(Z) = RL(Z)

)

We state the following identification theorem:
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Theorem 7
1 Assume (B-1), (B-3)–(B-5), and (B-2a).
2 Then:

∆̃Wald
K (x, ϑJ , h) = ∆̃LATE

K,J\K(x, ϑJ , h),
3 Assume (B-1), (B-3)–(B-5), and (B-2b).
4 Then:

∆̃LIV
K (x, ϑJ ) = ∆̃MTE

K,J\K(x, ϑJ )
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Proof.
Follows with trivial modifications from the proof of Theorem 6.
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Now consider the same analysis shifting Z directly instead of
shifting the indices.

First consider LATE.
If one knew what shifts in Z corresponded to shifting each
index in K upward by the same amount while holding each
index in J \ K constant, then one could immediately follow the
preceding analysis to recover E

(
∆K,J\K|X = x, ϑJ (Z) =

ϑJ ,RK(Z) + h ≥ RJ\K(Z) ≥ RK(Z)
)
.

However, unless K is a singleton, without knowledge of the
index functions one does not know what shifts in Z will have
this property.
One possible approach would be to only shift elements of Z
that are elements of Zj for j ∈ K but are excluded from Zj for
j ∈ J \ K.
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However, unless the shifts move the indices for choices in K all
by the same amount, the shift in Z will result in movement not
only from the set J \ K to the set K but also cause movement
between choices within K.

Thus, one can use shifts in Z to recover a LATE-type parameter
for ∆K,J\K only if either (i) the index functions are known, or
(ii) K = {k} , i.e., the set K contains only one element.
Our analysis establishes a fundamental role for choice theory in
recovering the indices needed to perform IV analysis.
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Thus far, we have only considered identification of marginal
treatment effect parameters for ∆K,J\K and not of the more
standard treatment parameters ATE and TT for ∆K,J\K.

As in the immediately preceding section, we can follow ? in
expressing ATE and TT as integrated versions of MTE or show
that ATE and TT can be approximated arbitrarily well by LATE
parameters.
Given appropriate support conditions, we can again identify
MTE over the appropriate range or identify the appropriate
LATE parameters and thus identify ATE and TT given the
required support conditions.
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Identification: Effect of One Fixed Choice Versus Another

Consider evaluating the effect of fixed option j versus fixed
option k, ∆j,k, i.e., the effect for the individual of having no
choice except to choose state j versus no choice except to
choose state k.

We show that it is possible to identify averages of ∆j,k if one
has sufficient support conditions.
These conditions supplement the standard IV conditions
developed for the binary case (?) with the conditions more
commonly used in semiparametric estimation.
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choice except to choose state j versus no choice except to
choose state k.
We show that it is possible to identify averages of ∆j,k if one
has sufficient support conditions.
These conditions supplement the standard IV conditions
developed for the binary case (?) with the conditions more
commonly used in semiparametric estimation.
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We start by considering the analysis if one knows the ϑ index
functions, say from a semiparametric analysis of discrete
choice, and then show that knowledge of the ϑ index functions
is not necessary.

For notational purposes, for any j, k,∈ J , define
Uj,k = Uj − Uk, and let ϑj,k(Z) = ϑj(Zj)− ϑk(Zk).
One might try to follow our previous strategy to identify
treatment parameters for ∆j,k if one could shift ϑj − ϑk = ϑj,k
while holding constant {ϑl,m}(l,m)∈J×J\{j,k}, i.e., while holding
all other utility contrasts fixed.
However, given the structure of the latent variable model
determining choices, these are incompatible conditions.
To see this, note that ϑj,k = ϑl,k − ϑl,j for any l, and thus ϑj,k
cannot be shifted while holding ϑl,j and ϑl,k constant.
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To bypass this problem, we develop a limit strategy to make
the consequences of shifting ϑj,k negligible.

Our strategy relies on an identification at infinity argument.
For example, consider the case where J = {1, 2, 3}, and
consider identification of the MTE parameter for option 3
versus option 1.
Recall that DJ\3,l is an indicator variable for whether option l
would be chosen if option 3 were not available, so that
DJ\3,l∆3,J\3 = DJ\3,l∆3,l.
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Since 1 and 2 are the only options if 3 is not available, it follows
that ∆3,J\3 = DJ\3,1∆3,1 + DJ\3,2∆3,2, and we have that

E
(
∆3,J\3 | X = x, ϑJ (Z) = ϑJ ,R3(Z) = RJ\3(Z)

)
= E

(
DJ\3,1∆3,1 | X = x, ϑJ (Z) = ϑJ ,R3(Z) = RJ\3(Z)

)
+ E

(
DJ\3,2∆3,2 | X = x, ϑJ (Z) = ϑJ ,R3(Z) = RJ\3(Z)

)
.

The smaller ϑ2 is (holding ϑ1 and ϑ3 fixed), the larger the
probability that the “next best option” is 1 and not 2.
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Note that E (∆3,1 | X = x, ϑJ (Z) = ϑJ ,R3(Z) = R1(Z)) does
not depend on the ϑ2 evaluation point given independence
assumption (B-1), so that

E (∆3,1 | X = x, ϑJ (Z) = ϑJ ,R3(Z) = R1(Z))
= E

(
∆3,1 | X = x, ϑJ\2(Z) = ϑJ\2,R3(Z) = R1(Z)

)
.
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Thus, by assumptions (B-1) and (B-3) and the Dominated
Convergence Theorem, we have that

lim
ϑ2→−∞

E
(
DJ\3,1∆3,1 | X = x, ϑJ (Z) = ϑJ ,R3(Z) = RJ\3(Z)

)
= E

(
∆3,1 | X = x, ϑJ\2(Z) = ϑJ\2,R3(Z) = R1(Z)

)
while

lim
ϑ2→−∞

E
(
DJ\3,2∆3,2 | X = x, ϑJ (Z) = ϑJ ,R3(Z) = RJ\3(Z)

)
= 0,

so that

lim
ϑ2→−∞

E
(
∆3,J\3 | X = x, ϑJ (Z) = ϑJ ,R3(Z) = RJ\3(Z)

)
= E

(
∆3,1 | X = x, ϑJ\2(Z) = ϑJ\2,R3(Z) = R1(Z)

)
.
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In other words, as the value of option 2 becomes arbitrarily
small, the probability of the “next best option” being 1
becomes arbitrarily close to one.

Thus the MTE parameter for option 3 versus the next best
option becomes arbitrarily close to the MTE parameter for
option 3 versus option 1.
We can identify the MTE parameter for option 3 versus the
next best option using the LIV estimand as in Theorem 6, and
thus conditioning on ϑ2 arbitrarily small we have that the LIV
estimand is arbitrarily close to the MTE parameter for option 3
versus option 1.
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This analysis requires the appropriate support conditions in
order for the limit operations to be well defined.

The following Theorem formalizes this idea, and is for the more
general case where J is a general finite set.
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This analysis requires the appropriate support conditions in
order for the limit operations to be well defined.
The following Theorem formalizes this idea, and is for the more
general case where J is a general finite set.
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Theorem 8

Assume (B-1), (B-3)–(B-5), and (B-2b). Assume that, for any
t ∈ R,

Pr
(
ϑl(Zl) ≤ t

∣∣ϑj(Zj), ϑk(Zk)
)
≥ 0 ∀ l ∈ J \ {j, k}.

Then

lim
max

l∈J\{j,k}
{ϑl}→−∞

∆̃LIV
j (x, ϑJ ) = E

(
∆j,k

∣∣X = x, ϑj,k(Z) = ϑj,k,Rj(Z) = Rk(Z)
)

for any

x ∈ lim
t→−∞

Supp(X|ϑj(Zj) = ϑj, ϑk(Zk) = ϑk, max
l∈J\{j,k}

{ϑl(Z)} ≤ t).
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Proof.
By a trivial modification to the proof of Theorem 6, we have that
∆̃LIV

j (x, ϑJ ) = E(∆j,J\j|X = x, ϑJ (Z) = ϑJ ,Rj(Z) = RJ\j(Z)
)
. The

remainder of the proof follows from an immediate extension of the
3-option case just analyzed.
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Thus, for x values in the appropriate limit support, we can
approximate E

(
∆j,k

∣∣X = x, ϑ{j,k}(Z) = ϑ{j,k},Rj(z) = Rk(z)
)

arbitrarily well by ∆LIV
j (x, ϑJ ) for an arbitrarily small

maxl∈J\{j,k}{ϑl}.

This analysis uses the ϑ index functions directly, but the results
can be restated without using the ϑ functions directly.
Again consider the three-choice example.
The central aspect of the identification strategy is to
“zero-out” the second choice by making ϑ2 arbitrarily small,
allowing one to then use the LIV estimand to identify the MTE
parameter for the first option versus the third as if the second
choice were not an option.
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Thus, for x values in the appropriate limit support, we can
approximate E

(
∆j,k

∣∣X = x, ϑ{j,k}(Z) = ϑ{j,k},Rj(z) = Rk(z)
)

arbitrarily well by ∆LIV
j (x, ϑJ ) for an arbitrarily small

maxl∈J\{j,k}{ϑl}.
This analysis uses the ϑ index functions directly, but the results
can be restated without using the ϑ functions directly.
Again consider the three-choice example.
The central aspect of the identification strategy is to
“zero-out” the second choice by making ϑ2 arbitrarily small,
allowing one to then use the LIV estimand to identify the MTE
parameter for the first option versus the third as if the second
choice were not an option.
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If we do not know the ϑ2 function, we cannot condition on it.

However, if we know that ϑ2 is decreasing in a particular
element of Z , say Z[j′], where Z[j′] does not enter the index
function for choices 1 and 3 and where ϑ2(z2) → 0 as
z[j′] → −∞, then we can follow the same strategy as if we
knew the ϑ2 index except we condition on Z[j′] being small
instead of conditioning on ϑ2 being small.
The idea naturally extends to the case of more than three
options.
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We can follow ? in following a two step identification strategy
for ATE and TT parameters of ∆j,k.

We first identify the appropriate MTE or LATE parameters and
then use them to identify ATE and TT given the appropriate
support conditions.
Notice that the required support conditions are now stronger
than those required for the ATE and TT parameters of ∆j,J\j.
For identification of the ATE and TT parameters of ∆j,J\j, we
require a large support assumption only on the jth index.
In particular, we require that it be possible to condition on Z
values that make ϑj arbitrarily small or arbitrarily large while
holding the remaining indices fixed.
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In contrast, for identification of the ATE and TT parameters of
∆j,k, we require a large support assumption on each index.

We require that for each index we can condition on Z values
that make the index arbitrarily small or arbitrarily large while
holding the remaining indices fixed.
The reason for this stronger condition is that for identification
of ∆j,k we need to use an identification at infinity strategy on all
but the j and k indices to even obtain the marginal parameters.
We then need an additional identification at infinity step to use
the marginal parameters to recover the ATE and TT
parameters.
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Summarizing the Results for the Unordered Model

We have obtained the following results on the unordered choice
model in this section:
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E
(
∆j,J\j|X = x,Z = z,Rj(z) = RJ\j(z)

)
and

E
(
∆j,J\j|X = x,Z = z,Rj(z̃) ≥ RJ\j(z̃) ≥ Rj(z)

)
can be

identified without a limit argument.
E
(
∆j,k|X = x, {ϑk}k∈J ,Rj(z) = Rk(z)

)
and

E
(
∆j,k|X = x, {ϑk}k∈J ,Rj(z̃) ≥ Rk(z̃) ≥ Rj(z)

)
can be

identified with a limit argument on each index in J \ {j, k}.
∆ATE

j,J\j(x, z) and ∆TT
j,J\j(x, z) can be identified with a limit

argument using the ϑj index.
∆ATE

j,k (x, z) and ∆TT
j,k (x, z) can be identified with a limit

argument using each index.
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These results establish the central role of choice theory (via
{ϑk}k∈J ) and identification at infinity in using an IV strategy
to identify a variety of treatment parameters and their
extensions to a general multiple choice model.

Our analysis extends the analysis of ordered outcome models
developed in the preceding section to a general unordered case.
Local instrumental variables identify the marginal treatment
effect corresponding to the effect of one option versus the best
alternative option without requiring large support assumptions
or knowledge of the parameters of the choice model.
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This result preserves the spirit of the ? LATE analysis and the
analysis of ??? . More generally, LIV can provide identification
of the marginal treatment effect corresponding to the effect of
choosing between one choice set versus not having that choice
set available.

However, identification of the more general parameters requires
knowledge (identification) of the structural, latent index
functions of the multinomial choice model.
LIV can also provide identification of the effect of one specified
choice versus another, requiring large support assumptions but
not knowledge of the latent index functions.
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In order to identify some treatment parameters, we require
identification of the latent index functions generating the
multinomial choice model or else having large support
assumptions.

This connects the LIV analysis in this paper to the more
ambitious but demanding identification conditions for the full
multinomial selection model developed in ?, ?, and appendix B
of Part I.
We next develop the case of the continuum of outcomes.
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Continuous Treatment

Thus far we have considered the case of a treatment variable
taking a finite number of values.

Now consider the case where the treatment variable D can take
a continuum of values.
Suppose that

Y = µ(D,X,U)
D = ϑ(Z,V),

with D a continuous random variable.
We do not in general need to restrict U or V to be scalar
random variables.
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We can rewrite this model in potential outcome notation by
defining

Yd ≡ µd(X,U) ≡ µ(d,X,U).
For ease of exposition, we will assume that X is exogenous in
addition to Z being exogenous, so that (X,Z) ⊥⊥ (U,V).

We assume that µ(d, x, u) is continuous in its first argument.
Equivalently, we assume that {Yd} is continuous in d for any
realization.
Implicit in the continuity assumption is an ordering, that two
treatments that are close to one another have associated
outcomes that are close to one another.
The restriction is qualitatively different from any restriction we
have considered thus far.
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In the previous sections, there are no restrictions connecting Yd
to Yd′ .

Equivalently, there are no restrictions connecting µd(X,U) and
µd′(X,U).
In the case of a continuum of treatments, we now tightly link
counterfactual values that correspond to treatments that are
close to one another.
The literature analyzing continuous endogenous regressors
often defines the object of interest not as a treatment effect
but instead as the “Average Structural Function” (ASF).
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Following ?, the ASF is defined as:

µ(d, x) = E(Yd|X = x) =
∫

µ(d, x, u)dFU(u)

In other words, the ASF is defined as the average value of Y
that would result from assigning treatment d to all individuals
with X = x.

If D is endogenous, the ASF does not in general equal the
conditional expected value of Y in the data,
E(Yd|X = x) ̸= E(Y|D = d,X = x), since∫
µ(d, x, u)dFU(u) ̸=

∫
µ(d, x, u)dFU|X,D(u|x, d).

This is just a version of the distinction between fixing and
conditioning introduced in ? and discussed in Part I.
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Instead of working with the ASF, we can follow the lead of ?
and define treatment effect parameters for a continuous
treatment.

Suppose that µ(d, x, u) is differentiable in d for any (x, u).
We can define the average treatment effect as

∆ATE
d (x) = E( ∂

∂dYd|X = x) =
∫

∂

∂dµ(d, x, u)dFU(u),

which is the average effect of a marginal increase in in the
treatment if individuals were randomly assigned treatment level
d.
Note that in this expression the average treatment effect
depends on the base treatment level, d, and for any of the
continuum of possible base treatment levels we have a different
average treatment effect.
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The average treatment effect is the derivative of the Blundell
and Powell ASF:

∆ATE
d (x) = ∂

∂dµ(d, x).

? define treatment on the treated as

∆TT
d (x) = E( ∂

∂d1
Yd1 |D = d2,X = x)

∣∣∣∣
d=d1=d2

=

∫ [
∂

∂d1
µ(d1, x, u)

∣∣∣∣
d=d1

]
dFU|X,D(u|x, d).

which is the average effect among those currently choosing
treatment level d of an incremental increase in the treatment
while leaving their unobservables fixed.
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Likewise, define the marginal treatment effect as

∆MTE
d (x, v) = E( ∂

∂dYd|V = v,X = x)

=

∫
∂

∂dµ(d, x, u)dFU|V(u|v).

To illustrate these definitions, suppose D is schooling level
measured as a continuous variable, and suppose Y is wages.
Then, e.g., Y12 would be the potential wage corresponding to
receiving exactly 12 years of schooling and µ12 = E(Y12) is the
average wage if individuals were exogenously assigned exactly
12 years of schooling.
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∆ATE
12 is the average effect on wages of being assigned

marginally more than 12 years of schooling versus being
assigned exactly 12 years of schooling, and ∆TT

12 would be the
average effect of obtaining marginally more schooling for those
who self-select to obtain exactly 12 years of schooling.

One approach to identification of the treatment parameters is
to impose more structure on the outcome equation while
allowing the treatment selection equation to be unspecified.
The nonparametric instrumental variable approach of ?, ?, and
? requires that the unobservables in the outcome equation (U)
be a scalar random variable and that the outcome be an
additive function of the unobservables — ? surveys this
literature.
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Their additivity assumption imposes the restriction of no
treatment effect heterogeneity (conditional on X), so that all
treatment effect parameters coincide.

In exchange for this restriction on the outcome equation, they
do not require any structure on the first stage equation so that
D does not need to be increasing in V and V is not required to
be a scalar random variable.
Furthermore, they only require that U be mean independent of
(X,Z), not that (U,V) be fully independent of (X,Z).
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The additive error term assumption is relaxed by ?, who impose
the stronger requirement that the outcome is a strictly
increasing function of the error term (i.e., µ(x, d, u) strictly
increasing in u), while strengthening the required independence
property to be (Z,X) ⊥⊥ U.

The restriction of a scalar error term with the outcome strictly
increasing in this error term is again a strong restriction on the
forms of treatment effect heterogeneity that are possible in the
model.
Suppress X for ease of exposition.
Under their restriction, if µ(d, u) > µ(d, u′) at some treatment
level d, then µ(d̃, u) > µ(d̃, u′) for all treatment levels d̃.
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In other words, if individual one has a higher potential outcome
at some value of the treatment than a second individual, than
that first individual has a higher potential outcome for any
value of the treatment than the second individual.

Under this restriction, treatment cannot change the rank
ordering of outcomes across individuals.
These restrictions are in contrast with the Roy model and
generalized Roy model, where one individual may have a higher
with-treatment potential outcome but a lower
without-treatment potential outcome compared to a second
individual.
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In contrast to these approaches, control variate approaches
impose more structure on the selection equation, imposing that
the unobservables in the treatment selection equation (V) be a
scalar random variable, and that the treatment is an additive
function of the unobservables or more generally a strictly
increasing function of the unobservables.

Such approaches thus impose strong restrictions on the
heterogeneity in the treatment selection equation.
In exchange for these restrictions, such approaches do not
require Y to be increasing in U and do not require U to be a
scalar random variable.
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? consider identification and estimation of the average
structural function in a nonparametric model using the control
variate approach, building on the work of ? and ?.

Their approach does not impose any further restrictions on the
outcome equation, but does require a large support assumption.
Another recent contribution to the control function literature is
?, who restrict Y to be determined by a stochastic polynomial
in D but do not require a large support assumption.
We now further discuss both approaches.
? proceed as follows.
They assume that ϑ(z, v) is strictly monotonic in v.
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Suppose that (U,V) ⊥⊥ (X,Z), and without loss of generality
normalize V to be unit uniform.

Then V is immediately identified (up to the normalization)
from V = F(Y|X,Z).
Given identification of V, they can identify E(Y|D,X,V).
Their independence assumptions imply that U ⊥⊥ D | (X,V), so
that

E(Y|D = d,X = x,V = v) = E(Yd|X = x,V = v).

E(Yd|X = x,V = v) corresponds to the marginal treatment
effect except that it is the conditional expectation in level
instead of the derivative of the conditional expectation.
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Then, in parallel to the way ? integrate up the MTE to recover
the ATE, Imbens and Newey integrate up E(Yd|X = x,V = v)
to obtain the ASF:

E(Yd|X = x) =
∫

E(Yd|X = x,V = v)dFV(v) =
∫

E(Y|D = d,X = x,V = v)dFV(v)

Imbens and Newey do not explicitly consider the ATE, TT, or
MTE, but we can adapt the ? weighting analysis summarized
in Slide 90 to obtain these parameters as a slight modification
of the Imbens and Newey analysis.

First consider the MTE.
We have that

∂

∂dE(Y|D = d,X = x,V = v) = E( ∂
∂dYd|X = x,V = v),

so that the MTE is identified.
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Integrating up the MTE we obtain ATE,

E( ∂
∂dYd|X = x) =

∫
E( ∂

∂dYd|X = x,V = v)dFV(v)

=

∫
∂

∂dE(Y|D = d,X = x,V = v)dFV(v)

and TT

E

(

∂

∂d1

Yd1

∣

∣

∣
D = d2, X = x

)∣

∣

∣

∣

d=d1=d2

=

∫

E

(

∂

∂d
Yd

∣

∣

∣
X = x, V = v

)

dFV |D=d2,X(v | x)

=

∫

∂

∂d
E(Y | D = d,X = x, V = v) dFV |D=d2,X(v | x).
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Note the strong connection between the control variate
approach and the LIV/MTE approach of ?.

They both proceed by identifying an expectation conditional on
the first stage error term, and then integrating that expectation
up to obtain the parameter of interest.
The primary distinction is that, in the control variate approach
with a continuous endogenous treatment, it is possible to
assume that the treatment is a strictly increasing function of an
error term that is independent of the instruments, to identify
this error term, and then to explicitly include the identified
first-stage error term as a regressor in the second stage
regression for the outcome.
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assume that the treatment is a strictly increasing function of an
error term that is independent of the instruments, to identify
this error term, and then to explicitly include the identified
first-stage error term as a regressor in the second stage
regression for the outcome.
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In contrast, with a discrete endogenous treatment, it is not
possible to characterize the treatment as a strictly increasing
function of an error term that is independent of the
instruments.

It is thus not possible to identify the first-stage error term, and
thus not possible to explicitly include an identified first-stage
error term in the second stage.
The LIV strategy is the approach in the discrete case that
by-passes the need to explicitly identify the first stage error
term.
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In order to be able to integrate
E(Y|D = d,X = x,V = v) = E(Yd|X = x,V = v) up to obtain
the ASF (or to integrate MTE to obtain ATE), it is necessary
to evaluate E(Y|D = d,X = x,V = v) at all values of v in the
support of the distribution of V conditional on X.

This is a nontrivial requirement.
To show this, suppress X for ease of exposition.
One can only evaluate E(Y|D = d,V = v) at values of v in the
support of the distribution of V conditional on D = d, so that
the requirement is that the support of the distribution of V
conditional on D = d equal the support of the unconditional
distribution.
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This requires, in turn, a large support assumption on an
element of Z.

For example, suppose that ϑ(Z,V) = P(Z) + V, so that
D = P(Z) + V.
Let P denote the support of the distribution of P(Z).
Then

Supp(V|D = d) = Supp(V|P(Z) + V = d)
= Supp(V|V = d − P(Z)) = {d − p : p ∈ P}

where the last equality uses Z ⊥⊥ V.
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For example, if P = [a, b], then
{d − p : p ∈ [a, b]} = [d − b, d − a] which does not depend on
d if and only if a = −∞ and b = ∞, i.e., if and only if P = R.

For standard models, this requirement in turn necessitates a
regressor with unbounded support, analogous to the
identification at infinity requirement in selection models shown
by ?.
We have noted the central role played by identification at
infinity assumptions in many different settings throughout this
Handbook.
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Next consider the analysis of ?.

They assume that (U,V) ⊥⊥ (X,Z).
They impose additional structure on the outcome equation, in
particular that the outcome equation can be expressed by a
finite order stochastic polynomial in the treatment variable:

Y = µ(D,X) +
K∑

j=0
DjUj

so that

Yd = µd(X) +
K∑

j=0
djUj.
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This specification can be seen as a nonparametric extension of
the random coefficient models of ? and ??.

As a consequence of the structure on the outcome equation, ?
are able to identify the ATE without requiring the large support
assumption of ?.
Instead of a large support assumption, they require measurable
separability of D and V conditional on X.
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Measurable separability is the requirement that any function of
D and X that almost surely equals a function of V and X must
be a function of X only.

This assumption can be shown to be equivalent to requiring
that D not lie in a subset of its support if and only if V lies in a
subset of its support (conditional on X).
As shown by ?, measurable separability between D and V
follows from the independence assumption (U,V) ⊥⊥ (X,Z)
along with mild regularity conditions.
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Thus the ? approach allows for identification of the average
treatment effect with continuous endogenous regressors
without requiring large support assumptions in exchange for
requiring a finite-order, stochastic polynomial assumption on
the outcome equation.

We next consider the method of matching, which is based on
the assumption of conditional independence that is assumed to
characterize data structures.
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Matching

The method of matching assumes selection of treatment based
on potential outcomes

(Y0,Y1)⊥�⊥D,

so Pr (D = 1 | Y0,Y1) depends on Y0,Y1.

It assumes access to variables Q such that conditioning on Q
removes the dependence:

(Y0,Y1) ⊥⊥ D | Q. (Q-1)

Thus,
Pr (D = 1 | Q,Y0,Y1) = Pr (D = 1 | Q) .
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Comparisons between treated and untreated can be made at all
points in the support of Q such that

0 < Pr (D = 1 | Q) < 1. (Q-2)

The method does not explicitly model choices of treatment or
the subjective evaluations of participants, nor is there any
distinction between the variables in the outcome equations (X)
and the variables in the choice equations (Z) that is central to
the IV method and the method of control functions.
In principle, condition (Q-1) can be satisfied using a set of
variables Q distinct from all or some of the components of X
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From condition (Q-1), we recover the distributions of Y0 and
Y1 given Q, Pr (Y0 ≤ y0 | Q = q) = F0 (y0 | Q = q) and
Pr (Y1 ≤ y1 | Q = q) = F1 (y1 | Q = q), but not the joint
distribution
F (y0, y1 | Q = q), because we do not observe the same persons
in the treated and untreated states.

This is a standard evaluation problem common to all
econometric estimators.
Methods for determining which variables belong in Q rely on
untested exogeneity assumptions which we discuss in this
section.
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OLS is a special case of matching that focuses on the
identification of certain conditional means.

In OLS, linear functional forms are maintained as exact
representations or valid approximations.
Considering a common coefficient model, OLS writes

Y = Qα + Dβ + U, (Q-3)
where α is the treatment effect and

E (U | Q,D) = 0. (Q-4)
The assumption is made that the variance-covariance matrix of
(Q,D) is of full rank:

Var (Q,D) full rank. (Q-5)
Under these conditions, we can identify β even though D and U
are dependent: D ⊥�⊥ U.
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Controlling for the observable Q eliminates any spurious mean
dependence between D and U: E (U | D) ̸= 0 but
E (U | D,Q) = 0.

(Q-4) is the linear regression counterpart to (Q-1).
(Q-4) is the linear regression counterpart to (Q-2).
Failure of (Q-5) would mean that using a nonparametric
estimator, we might perfectly predict D given Q, and that
Pr (D = 1 | Q = q) = 1 or 0.
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(Q-5)′ : If the goal of the analysis is to identify β, in
place of (Q-4), we can get by with

(Q − 4)′ : E(U|Q,D) = E(U|Q).

Assuming Var(D | Q) > 0, we can identify β even
if we cannot separate αQ from E(U|Q).
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Matching can be implemented as a nonparametric method.

When this is done, the procedure does not require specification
of the functional form of the outcome equations.
It enforces the requirement that (Q-2) be satisfied by
estimating functions pointwise in the support of Q.
To link our notation in this section to that in the rest of the
chapter, we assume that Q = (X,Z) and that X and Z are the
same except where otherwise noted.
Thus we invoke assumptions (M-1) and (M-2) presented in
Slide 12, even though in principle we can use a more general
conditioning set.
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Assumptions (M-1) and (M-2) introduced in Section 2 or (Q-1)
and (Q-2) rule out the possibility that after conditioning on X
(or Q), agents possess more information about their choices
than econometricians, and that the unobserved information
helps to predict the potential outcomes.

Put another way, the method allows for potential outcomes to
affect choices but only through the observed variables, Q, that
predict outcomes.
This is the reason why ?? call the method selection on
observables.
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This section establishes the following points.

(1) Matching assumptions (M-1) and (M-2) generically imply a
flat MTE in uD, i.e., they assume that
E(Y1 − Y0 | X = x,UD = uD) does not depend on uD.
Thus the unobservables central to the Roy model and its
extensions and the unobservables central to the modern IV
literature are assumed to be absent once the analyst conditions
on X.
(M-1) implies that all mean treatment parameters are the same.
(2) Even if we weaken (M-1) and (M-2) to mean independence
instead of full independence, generically the MTE is flat in uD
under the assumptions of the nonparametric generalized Roy
model developed in Slide 90, so again all mean treatment
parameters are the same.
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(2) Even if we weaken (M-1) and (M-2) to mean independence
instead of full independence, generically the MTE is flat in uD
under the assumptions of the nonparametric generalized Roy
model developed in Slide 90, so again all mean treatment
parameters are the same.
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(3) We show that IV and matching make distinct identifying
assumptions even though they both invoke conditional
independence assumptions.

(4) We compare matching with IV and control function
(sample selection) methods.
Matching assumes that conditioning on observables eliminates
the dependence between (Y0,Y1) and D.
The control function principle models the dependence.
(5) We present some examples that demonstrate that if the
assumptions of the method of matching are violated, the
method can produce substantially biased estimators of the
parameters of interest.
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(6) We show that standard methods for selecting the
conditioning variables used in matching assume exogeneity.

This is a property shared with many econometric estimators, as
noted in Part I, section 5.2.
Violations of the exogeneity assumption can produce biased
estimators.
Nonparametric versions of matching embodying (M-2) avoid
the problem of making inferences outside the support of the
data.
This problem is implicit in any application of least squares.
Figure 22 shows the support problem that can arise in linear
least squares when the linearity of the regression is used to
extrapolate estimates determined in one empirical support to
new supports.
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(6) We show that standard methods for selecting the
conditioning variables used in matching assume exogeneity.
This is a property shared with many econometric estimators, as
noted in Part I, section 5.2.
Violations of the exogeneity assumption can produce biased
estimators.
Nonparametric versions of matching embodying (M-2) avoid
the problem of making inferences outside the support of the
data.
This problem is implicit in any application of least squares.
Figure 22 shows the support problem that can arise in linear
least squares when the linearity of the regression is used to
extrapolate estimates determined in one empirical support to
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Figure 22: The Least Squares Extrapolation Problem Avoided by Using
Nonparametric Regression or Matching
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Careful attention to support problems is a virtue of any
nonparametric method, including, but not unique to,
nonparametric matching.

? show that the bias from neglecting the problem of limited
support can be substantial.
See also the discussion in ?.
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We now show that matching implies that conditional on X, the
marginal return is assumed to be the same as the average
return (marginal = average).

This is a strong behavioral assumption implicit in statistical
conditional independence assumption (M-1).
It says that the marginal participant has the same return as the
average participant.
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Matching Assumption (M-1) Implies a Flat MTE

An immediate consequence of (M-1) is that the MTE does not
depend on UD.

This is so because (Y0,Y1) ⊥⊥ D | X implies that
(Y0,Y1) ⊥⊥ UD | X and hence that

∆MTE(x, uD) = E(Y1 − Y0 | X = x,UD = uD) = E(Y1 − Y0 | X = x). (60)
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This, in turn, implies that ∆MTE conditional on X is flat in uD,
so that matching invokes assumption (C-1) invoked in
Slide 197.
Under our assumptions for the generalized Roy model, it
assumes that E (Y | P (Z) = p) is linear in p . Thus the method
of matching assumes that mean marginal returns and average
returns are the same and all mean treatment effects are the
same given X.
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However, one can still distinguish marginal from average effects
of the observables (X) using matching.

See ?.
It is sometimes said that the matching assumptions are “for
free” (See, e.g., ?) because one can always replace unobserved
F1(Y1 | X = x,D = 0) with observed F1(Y1 | X = x,D = 1) and
unobserved F0(Y0 | X = x,D = 1) with observed
F0(Y0 | X = x,D = 0).
Such substitutions do not contradict any observed data.
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While the claim is true, it ignores the counterfactual states
generated under the matching assumptions.

The assumed absence of selection on unobservables is not a
“for free” assumption, and produces fundamentally different
counterfactual states for the same model under matching and
selection assumptions.
To explore these issues in depth, consider a nonparametric
regression model more general than the linear regression model
(Q-3).

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

While the claim is true, it ignores the counterfactual states
generated under the matching assumptions.
The assumed absence of selection on unobservables is not a
“for free” assumption, and produces fundamentally different
counterfactual states for the same model under matching and
selection assumptions.

To explore these issues in depth, consider a nonparametric
regression model more general than the linear regression model
(Q-3).

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

While the claim is true, it ignores the counterfactual states
generated under the matching assumptions.
The assumed absence of selection on unobservables is not a
“for free” assumption, and produces fundamentally different
counterfactual states for the same model under matching and
selection assumptions.
To explore these issues in depth, consider a nonparametric
regression model more general than the linear regression model
(Q-3).

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

Without assumption (M-1), a nonparametric regression of Y on
D conditional on X identifies a nonparametric mean difference:

∆OLS(X) = E(Y1 | X,D = 1)− E(Y0 | X,D = 0)
= E(Y1 − Y0 | X,D = 1) + {E(Y0 | X,D = 1)− E(Y0 | X,D = 0)} .(61)

The term in braces in the second expression arises from
selection on pre-treatment levels of the outcome.

OLS identifies the parameter treatment on the treated (the
first term in the second line of (61)) plus a bias term in braces
corresponding to selection on the levels.
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The OLS estimator can be represented as a weighted average
of ∆MTE.

The weight is given in table 2B where U1 and U0 for the OLS
model are defined as deviations from conditional expectations,
U1 = Y1 − E(Y1 | X), U0 = Y0 − E(Y0 | X).
Unlike the weights for ∆TT and ∆ATE, the OLS weights do not
necessarily integrate to one and they are not necessarily
nonnegative.
Application of IV eliminates the contribution of the second
term of equation (61).
The weights for the first term are the same as the weights for
∆TT and hence they integrate to one.
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The OLS weights for our generalized Roy model example are
plotted in figure 2B.

The negative component of the OLS weight leads to a smaller
OLS treatment estimate compared to the other treatment
effects in table 3.
This table shows the estimated OLS treatment effect for the
generalized Roy example.
The large negative selection bias in this example is consistent
with comparative advantage as emphasized by ? and detected
empirically by ? and ?.
People who are good in sector 1 (i.e., receive treatment) may
be very poor in sector 0 (those who receive no treatment).
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Hence the bias in OLS for the parameter treatment on the
treated may be negative
(E (Y0 | X,D = 1)− E (Y0 | X,D = 0) < 0).

The differences among the policy relevant treatment effects,
the conventional treatment effects and the OLS estimand are
illustrated in figure 4A and table 3 for the generalized Roy
model example.
As is evident from table 3, it is not at all clear that the
instrumental variable estimator, with instruments that satisfy
classical properties, performs better than nonparametric OLS in
identifying the policy relevant treatment effect in this example.
While IV eliminates the term in braces in (61), it reweights the
MTE differently from what might be desired for many policy
analyses.
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If there is no selection on unobserved variables conditional on
covariates, UD ⊥⊥ (Y0,Y1) | X, then
E(U1 | X,UD) = E(U1 | X) = 0 and
E(U0 | X,UD) = E(U0 | X) = 0 so that the OLS weights are
unity and OLS identifies both ATE and the parameter
treatment on the treated (TT), which are the same under this
assumption.

This condition is an implication of matching condition (M-1).
Given the assumed conditional independence in terms of X, we
can identify ATE and TT without use of any instrument Z
satisfying assumptions (A-1)–(A-2).
If there is such a Z, the conditional independence condition
implies under (A-1)–(A-5) that E(Y | X,P(Z) = p) is linear in
p.
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The conditional independence assumption invoked in the
method of matching has come into widespread use for much
the same reason that OLS has come into widespread use.

It is easy to implement with modern software and makes little
demands of the data because it assumes the existence of X
variables that satisfy the conditional independence assumptions.
The crucial conditional independence assumption is not
testable.
As we note below, additional assumptions on the X are required
to test the validity of the matching assumptions.
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If the sole interest is to identify treatment on the treated, ∆TT,
it is apparent from representation (61) that we can weaken
(M-1) to

(M-1)′ Y0 ⊥⊥ D | X.

This is possible because E (Y1 | X,D = 1) is known from data
on outcomes of the treated and only need to construct
E (Y0 | X,D = 1).
In this case, MTE is not restricted to be flat in uD and all
treatment parameters are not the same.
A straightforward implication of (M-1)′ in the Roy model,
where selection is made solely on the gain, is that persons must
sort into treatment status positively in terms of levels of Y1.
We now consider more generally the implications of assuming
mean independence of the errors rather than full independence.
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If the sole interest is to identify treatment on the treated, ∆TT,
it is apparent from representation (61) that we can weaken
(M-1) to

(M-1)′ Y0 ⊥⊥ D | X.
This is possible because E (Y1 | X,D = 1) is known from data
on outcomes of the treated and only need to construct
E (Y0 | X,D = 1).
In this case, MTE is not restricted to be flat in uD and all
treatment parameters are not the same.

A straightforward implication of (M-1)′ in the Roy model,
where selection is made solely on the gain, is that persons must
sort into treatment status positively in terms of levels of Y1.
We now consider more generally the implications of assuming
mean independence of the errors rather than full independence.
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Matching and MTE Using Mean Independence Conditions

To identify all mean treatment parameters, one can weaken the
assumption (M-1) to the condition that Y0 and Y1 are mean
independent of D conditional on X.

However, (Y0,Y1) will be mean independent of D conditional
on X without UD being independent of Y0,Y1 conditional on X
only if fortuitous balancing occurs, with regions of positive
dependence of (Y0,Y1) on UD and regions of negative
dependence of (Y0,Y1) on UD just exactly offsetting each other.
Such balancing is not generic in the Roy model and in the
generalized Roy model.
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In particular, assume that Yj = µj(X) + Uj for j = 0, 1 and
further assume that D = 1[Y1 − Y0 ≥ C(Z) + UC].

Let V = UC − (U1 − U0).
Assume (U0,U1,V) ⊥⊥ (X,Z).
Then if V ⊥⊥ (U1 − U0), and UC has a log concave density,
then E(Y1 − Y0|X,V = v) is decreasing in v,
∆TT(x) > ∆ATE(x), and the matching conditions do not hold.
If V ⊥⊥ (U1 − U0) but V does not have a log concave density,
then it is still the case that (U1 − U0,V) is negative quadrant
dependent.
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One can show that (U1 − U0,V) being negative quadrant
dependent implies that ∆TT(x) > ∆ATE(x), and thus again that
the matching conditions cannot hold.

We now develop a more general analysis.
Suppose that we assume selection model (7) so that
D = 1[P(Z) ≥ UD], where Z is independent of (Y0,Y1)
conditional on X, where UD = FV|X (V) and
P (Z) = FV|X (µD (Z)).
Consider the weaker mean independence assumptions in place
of assumption (M-1):
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(M-4)

E(Y1|X,D) = E(Y1|X), E(Y0|X,D) = E(Y0|X).
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This assumption is all that is needed to identify the mean
treatment parameters because under it

E(Y|X = x,Z = z,D = 1) = E(Y1|X = x,Z = z,D = 1) = E(Y1|X = x)

and
E(Y|X = x,Z = z,D = 0) = E(Y0|X = x,Z = z,D = 0) = E(Y0|X = x).

Thus we can identify all the mean treatment parameters over
the support that satisfies (M-2).
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Recalling that ∆ = Y1 − Y0, (M-3) implies in terms of UD that

E(∆|X = x,Z = z,UD ≤ P(z)) = E(∆|X = x)
⇔ E(∆MTE(X,UD)|X = x,UD ≤ P(z)) = E(∆|X = x),

and hence
E(∆MTE(X,UD)|X = x,UD ≤ P(z)) = E(∆MTE(X,UD)|X = x,UD > P(z)).

If the support of P(Z) is the full unit interval conditional on
X = x, then ∆MTE(X,UD) = E(∆|X = x) for all UD.

If the support of P(Z) is a proper subset of the full unit
interval, then generically (M-3) will hold only if
∆MTE(X,UD) = E(∆|X = x) for all UD, though positive and
negative parts could balance out for any particular value of X.
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To see this, note that

EZ
(
E(∆MTE(X,UD)|X = x,UD ≤ P(z))|X = x,D = 1

)
= EZ(E(∆MTE(X,UD)|X = x,UD > P(z))|X = x,D = 0).

Working with V = F−1
V|X (UD), suppose that

D = 1[µD(Z,V) ≥ 0].
Let Ω(z) = {v : µD(z, v) ≥ 0].
Then (M-3) implies that

E(∆MTE(X,V)|X = x,V ∈ Ω(z)) = E(∆MTE(X,V)|X = x,V ∈ (Ω(z))c)

so we expect that generically under assumption (M-3) we
obtain a flat MTE in terms of V = F−1

V|X (UD).
We conduct a parallel analysis for the nonseparable choice
model in Appendix, Slide 1155, and obtain similar conditions.
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model in Appendix, Slide 1155, and obtain similar conditions.
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To see this, note that
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so we expect that generically under assumption (M-3) we
obtain a flat MTE in terms of V = F−1
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model in Appendix, Slide 1155, and obtain similar conditions.
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Matching assumes a flat MTE, i.e., that marginal returns
conditional on X and V do not depend on V (alternatively, that
marginal returns do not depend on UD given X).

We already noted in Slide 12 that IV and matching invoke very
different assumptions.
Matching requires no exclusion restrictions whereas IV is based
on the existence of exclusion restrictions.
Superficially, we can bridge these literatures by invoking
matching with an exclusion condition: (Y0,Y1) ⊥�⊥ D | X but
(Y0,Y1) ⊥⊥ D | X,Z.
This looks like an IV condition, but it is not.
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We explore the relationship between matching with exclusion
and IV in Appendix, Slide 1163, and demonstrate a
fundamental contradiction between the two identifying
conditions.

For an additively separable representation of the outcome
equations U1 = Y1 − E(Y1|X) and U0 = Y0 − E(Y0|X), we
establish that if (U0,U1) is mean independent of D conditional
on (X,Z), as required by IV, but (U0,U1) is not mean
independent of D conditional on X alone, then U0 is dependent
on Z conditional on X , contrary to all assumptions used to
justify instrumental variables.
We next consider how to implement matching.
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Implementing the Method of Matching

We draw on ? and ? to describe the mechanics of matching.??
presents a comprehensive treatment of the main issues and a
guide to software.
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To operationalize the method of matching, we assume two
samples: “t” for treatment and “c” for comparison group.

Treatment group members have D = 1 and control group
members have D = 0.
Unless otherwise noted, we assume that observations are
statistically independent within and across groups.
Simple matching methods are based on the following idea.
For each person i in the treatment group, we find some group
of “comparable” persons.
The same individual may be in both treated and control groups
if that person is treated at one time and untreated at another.
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We denote outcomes for person i in the treatment group by Yt
i

and we match these outcomes to the outcomes of a subsample
of persons in the comparison group to estimate a treatment
effect.

In principle, we can use a different subsample as a comparison
group for each person.
In practice, we can construct matches on the basis of a
neighborhood ξ(Xi), where Xi is a vector of characteristics for
person i.
Neighbors to treated person i are persons in the comparison
sample whose characteristics are in neighborhood ξ(Xi).
Suppose that there are Nc persons in the comparison sample
and Nt in the treatment sample.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

We denote outcomes for person i in the treatment group by Yt
i

and we match these outcomes to the outcomes of a subsample
of persons in the comparison group to estimate a treatment
effect.
In principle, we can use a different subsample as a comparison
group for each person.

In practice, we can construct matches on the basis of a
neighborhood ξ(Xi), where Xi is a vector of characteristics for
person i.
Neighbors to treated person i are persons in the comparison
sample whose characteristics are in neighborhood ξ(Xi).
Suppose that there are Nc persons in the comparison sample
and Nt in the treatment sample.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

We denote outcomes for person i in the treatment group by Yt
i

and we match these outcomes to the outcomes of a subsample
of persons in the comparison group to estimate a treatment
effect.
In principle, we can use a different subsample as a comparison
group for each person.
In practice, we can construct matches on the basis of a
neighborhood ξ(Xi), where Xi is a vector of characteristics for
person i.

Neighbors to treated person i are persons in the comparison
sample whose characteristics are in neighborhood ξ(Xi).
Suppose that there are Nc persons in the comparison sample
and Nt in the treatment sample.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

We denote outcomes for person i in the treatment group by Yt
i

and we match these outcomes to the outcomes of a subsample
of persons in the comparison group to estimate a treatment
effect.
In principle, we can use a different subsample as a comparison
group for each person.
In practice, we can construct matches on the basis of a
neighborhood ξ(Xi), where Xi is a vector of characteristics for
person i.
Neighbors to treated person i are persons in the comparison
sample whose characteristics are in neighborhood ξ(Xi).

Suppose that there are Nc persons in the comparison sample
and Nt in the treatment sample.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

We denote outcomes for person i in the treatment group by Yt
i

and we match these outcomes to the outcomes of a subsample
of persons in the comparison group to estimate a treatment
effect.
In principle, we can use a different subsample as a comparison
group for each person.
In practice, we can construct matches on the basis of a
neighborhood ξ(Xi), where Xi is a vector of characteristics for
person i.
Neighbors to treated person i are persons in the comparison
sample whose characteristics are in neighborhood ξ(Xi).
Suppose that there are Nc persons in the comparison sample
and Nt in the treatment sample.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

Thus the persons in the comparison sample who are neighbors
to i, are persons j for whom Xj ∈ ξ(Xi), i.e., the set of persons
Ai = {j | Xj ∈ ξ(Xi)}.

Let W(i, j) be the weight placed on observation j in forming a
comparison with observation i and further assume that the
weights sum to one,

Nc∑
j=1

W(i, j) = 1, and that 0 ≤ W(i, j) ≤ 1.

Form a weighted comparison group mean for person i, given by

Ȳc
i =

Nc∑
j=1

W(i, j)Yc
j . (62)

The estimated treatment effect for person i is Yi − Ȳc
i .
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This selects a set of comparison group members associated
with i and the mean of their outcomes.

Unlike IV or the control function approach, the method of
matching identifies counterfactuals for each treated member.
? and ? survey a variety of alternative matching schemes
proposed in the literature.
?? provides a comprehensive survey.
In this chapter, we briefly consider two widely-used methods.
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? and ? survey a variety of alternative matching schemes
proposed in the literature.
?? provides a comprehensive survey.
In this chapter, we briefly consider two widely-used methods.
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The nearest-neighbor matching estimator defines Ai such that
only one j is selected so that it is closest to Xi in some metric:

Ai = {j | min
j∈{1,...,Nc}

∥Xi − Xj∥},

where “∥ ∥” is a metric measuring distance in the X
characteristics space.

The Mahalanobis metric is one widely used metric for
implementing the nearest neighbor matching estimator.
This metric defines neighborhoods for i as

∥ ∥ = (Xi − Xj)
′
∑−1

c
(Xi − Xj),

where
∑

c is the covariance matrix in the comparison sample.
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The weighting scheme for the nearest neighbor matching
estimator is

W(i, j) =
{

1 if j ∈ Ai,
0 otherwise.

The nearest neighbor in the metric “∥·∥” is used in the match.

A version of nearest-neighbor matching, called “caliper”
matching (?), makes matches to person i only if

∥Xi − Xj∥ < ε,

where ε is a pre-specified tolerance.
Otherwise, person i is bypassed and no match is made to him
or her.
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Kernel matching uses the entire comparison sample, so that
Ai = {1, . . . ,Nc}, and sets

W(i, j) = K(Xj − Xi)
Nc∑
j=1

K(Xj − Xi)

,

where K is a kernel.

Kernel matching is a smooth method that reuses and weights
the comparison group sample observations differently for each
person i in the treatment group with a different Xi.
Kernel matching can be defined pointwise at each sample point
Xi or for broader intervals.
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For example, the impact of treatment on the treated can be
estimated by forming the mean difference across the i:

∆̂TT =
1
Nt

Nt∑
i=1

(Yt
i − Ȳc

i ) =
1
Nt

Nt∑
i=1

(Yt
i −

Nc∑
j=1

W(i, j)Yc
j ). (63)

We can define this mean for various subsets of the treatment
sample defined in various ways.

More efficient estimators weight the observations accounting
for the variance (?????) .
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Matching assumes that conditioning on X eliminates selection
bias.

The method requires no functional form assumptions for
outcome equations.
If, however, a functional form assumption is maintained, as in
the econometric procedure proposed by ?, it is possible to
implement the matching assumption using standard regression
analysis.
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Suppose, for example, that Y0 is linearly related to observables
X and an unobservable U0, so that

E(Y0 | X,D = 0) = Xα + E(U0 | X,D = 0),

and
E(U0 | X,D = 0) = E(U0 | X)

is linear in X (E(U | X) = φX).

Under these assumptions, controlling for X via linear regression
allows one to identify E(Y0 | X,D = 1) from the data on
nonparticipants.
Under assumption (Q-4)′, setting X = Q, this approach justifies
OLS equation (Q-3) for identifying treatment effects.
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Such functional form assumptions are not strictly required to
implement the method of matching.

Moreover, in practice, users of the method of ? do not impose
the common support condition (M-2) for the distribution of X
when generating estimates of the treatment effect.
The distribution of X may be very different in the treatment
group (D = 1) and comparison group (D = 0) samples, so that
comparability is only achieved by imposing linearity in the
parameters and extrapolating over different regions.
One advantage of the method of ? is that it uses data
parsimoniously.
If the X are high dimensional, the number of observations in
each cell when matching can get very small.
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Another solution to this problem that reduces the dimension of
the matching problem without imposing arbitrary linearity
assumptions is based on the probability of participation or the
“propensity score,” P(X) = Pr(D = 1 | X).

? demonstrate that under assumptions (M-1) and (M-2),

(Y0,Y1) ⊥⊥ D | P(X) for X ∈ χc, (64)

for some set χc, where it is assumed that (M-2) holds in the
set.
Conditioning either on P(X) or on X produces conditional
independence.
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Conditioning on P(X) reduces the dimension of the matching
problem down to matching on the scalar P(X).

The analysis of ? assumes that P(X) is known rather than
estimated.
?, ?, and ? present the asymptotic distribution theory for the
kernel matching estimator in the cases in which P(X) is known
and in which it is estimated both parametrically and
nonparametrically.
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Conditioning on P identifies all treatment parameters but as we
have seen, it imposes the assumption of a flat MTE.

Marginal returns and average returns are the same.
A consequence of (64) is that

E (Y1|D = 0,P (X)) = E (Y1|D = 1,P (X)) = E (Y1|P (X)) ,
E (Y0|D = 1,P (X)) = E (Y0|D = 0,P (X)) = E (Y0|P (X)) .
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Support condition (M-2) has the unattractive feature that if
the analyst has too much information about the decision of
who takes treatment, so that P (X) = 1 or 0, the method
breaks down at such values of X because people cannot be
compared at a common X.

The method of matching assumes that, given X, some
unspecified randomization in the economic environment
allocates people to treatment.
This jsutifies assumption (Q-5) in the OLS example.
The fact that the cases P (X) = 1 and P (X) = 0 must be
eliminated suggests that methods for choosing X based on the
fit of the model to data on D are potentially problematic, as we
discuss below.
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Offsetting these disadvantages, the method of matching with a
known conditioning set that produces condition (M-2) does not
require separability of outcome or choice equations, exogeneity
of conditioning variables, exclusion restrictions, or adoption of
specific functional forms of outcome equations.

Such features are commonly used in conventional selection
(control function) methods and conventional applications of IV
although as we have demonstrated in Slide 152, recent work in
semiparametric estimation relaxes these assumptions.
As noted in Slide 700, the method of matching does not
strictly require (M-1).
One can get by with weaker mean independence assumptions
(M-3) in the place of the stronger conditions (M-1).
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However, if (M-3) is invoked, the assumption that one can
replace X by P (X) does not follow from the analysis of ?, and
is an additional new assumption.

Methods for implementing matching are provided in ? and are
discussed extensively in ?.
See ??? for software and extensive discussion of the mechanics
of matching.
We now contrast the identifying assumptions used in the
method of control functions with those used in matching.
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Comparing Matching and Control Functions Approaches

The method of matching eliminates the dependence between
(Y0,Y1) and D, (Y0,Y1) ⊥�⊥ D, by assuming access to
conditioning variables X such that (M-1) is satisfied:
(Y0,Y1) ⊥⊥ D | X.

By conditioning on observables, one can identify the
distributions of Y0 and Y1 over the support of X satisfying
(M-2).
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Other methods model the dependence that gives rise to the
spurious relationship and in this way attempt to eliminate it.

IV involves exclusion and a different type of conditional
independence, (Y0,Y1) ⊥⊥ Z | X, as well as a rank condition
(Pr (D = 1 | X,Z) depends on Z).
The instrument Z plays the role of the implicit randomization
used in matching by allocating people to treatment status in a
way that does not depend on (Y0,Y1).
We have already established that matching and IV make very
different assumptions.
Thus, in general, a matching assumption that
(Y0,Y1) ⊥⊥ D | X,Z neither implies nor is implied by
(Y0,Y1) ⊥⊥ Z | X.
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One special case where they are equivalent is when treatment
status is assigned by randomization with full compliance
(letting ξ = 1 denote assignment to treatment, ξ = 1 ⇒ A = 1
and ξ = 0 ⇒ A = 0) and Z = ξ, so that the instrument is the
assignment mechanism.

A = 1 if the person actually receives treatment, and A = 0
otherwise.
The method of control functions explicitly models the
dependence between (Y0,Y1) and D and attempts to eliminate
it.
? provides a comprehensive review of these methods.
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In Slide 1005, we present a summary of some of the general
principles underlying the method of control functions, the
method of control variates, replacement functions, and proxy
approaches as they apply to the selection problem.

All of these methods attempt to eliminate the θ in (U-1) that
produces the dependence captured in (U-2).
In this section, we relate matching to the form of the control
function introduced in ? and ??.
This version was used in our analysis of local instrumental
variables (LIV) in Slide 152, where we compare LIV with
control function approaches and show that LIV and LATE
estimate derivatives of the control functions.
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We analyze conditional means because of their familiarity.

Using the fact that E (1 (Y ≤ y) | X) = F (y | X), the analysis
applies to marginal distributions as well.
Thus we work with conditional expectations of (Y0,Y1) given
(X,Z,D), where Z is assumed to include at least one variable
not in X.
Conventional applications of the control function method
assume additive separability, which is not required in matching.
Strictly speaking, additive separability is not required in the
application of control functions either.
What is required is a model relating the outcome unobservables
to the observables and the unobservables in the choice of
treatment equation.
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Various assumptions give operational content to (U-1) defined
in Slide 12.

For the additively separable case (2), the control function for
mean outcomes models the conditional expectations of Y1 and
Y0 given X, Z, and D as

E (Y1|Z,X,D = 1) = µ1 (X) + E(U1|Z,X,D = 1)
E (Y0|Z,X,D = 0) = µ0 (X) + E(U0|Z,X,D = 0).
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In the traditional method of control functions, the analyst
models E(U1|Z,X,D = 1) and E(U0|Z,X,D = 0).

If these functions can be independently varied against µ1 (X)
and µ0 (X) respectively, one can identify µ1 (X) and µ0 (X) up
to constant terms.
It is not required that X or Z be stochastically independent of
U1 or U0, although conventional methods often assume this.
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Assume that (U0,U1,V) ⊥⊥ (X,Z) and adopt equation (7) as
the treatment choice model augmented so that X and Z are
determinants of treatment choice, using V as the latent
variable that generates D given X,Z: D = 1(µD(Z) ≥ 0).

Let UD = FV|X (V) and P (Z) = FV|X (µD (Z)).
In this notation, the control functions are

E (U1|Z,D = 1) = E (U1|µD (Z) ≥ V) = E (U1 | P (Z) ≥ UD) = K1 (P (Z)) and
E (U0|Z,D = 0) = E (U0|µD (Z) < V) = E (U0 | P (Z) < UD) = K0 (P (Z)) ,

so the control function only depends on the propensity score
P(Z).
The key assumption needed to represent the control function
solely as a function of P (Z) is

(U0,U1,V) ⊥⊥ X,Z. (CF-1)
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This assumption is not strictly required but it is traditional and
useful in relating LIV and selection models (as in Slide 152)
and selection models and matching (this section).

Under this condition

E (Y1|Z,X,D = 1) = µ1 (X) + K1 (P (Z)) ,
E (Y0|Z,X,D = 0) = µ0 (X) + K0 (P (Z)) ,

with lim
P→1

K1 (P) = 0 and lim
P→0

K0 (P) = 0.

It is assumed that Z can be independently varied for all X, and
the limits are obtained by changing Z while holding X fixed.
These limit results state that when the values of X,Z are such
that the probability of being in a sample (D = 1 or D = 0,
respectively) is 1, there is no selection bias and one can
separate out µ1 (X) from K1 (P (Z)) and µ0 (X) from K0 (P (Z)).
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This is the same identification at infinity condition that is
required to identify ATE and TT in IV for models with
heterogeneous responses.

As noted in Slide 152, unlike the method of matching based on
(M-1), the method of control functions allows the marginal
treatment effect to be different from the average treatment
effect and from the conditional effect of treatment on the
treated.
Although conventional practice has been to derive the
functional forms of K0 (P) and K1 (P) by making distributional
assumptions about (U0,U1,V) such as normality or other
conventional distributional assumptions, this is not an intrinsic
feature of the method and there are many nonnormal and
semiparametric versions of this method.
See ? for a survey.
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In its semiparametric implementation, the method of control
functions requires an exclusion restriction (a variable in Z not
in X) to achieve nonparametric identification.

Without any functional-form assumptions one cannot rule out a
worst case analysis where, for example, if X = Z, then
K1 (P (X)) = τµ (X) where τ is a scalar.
In this situation, there is perfect collinearity between the
control function and the conditional mean of the outcome
equation, and it is impossible to separately identify either.
Even though this case is not generic, it is possible.
The method of matching does not require an exclusion
restriction, but at the cost of ruling out essential heterogeneity.
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In the general case, the method of control functions requires
that in certain limit sets of Z, P (Z) = 1 and P (Z) = 0 in order
to achieve full nonparametric identification.

The conventional method of matching does not invoke such
limit set arguments.
All methods of evaluation, including matching and control
functions, require that treatment parameters be defined on a
common support that is the intersection of the supports of X
given D = 1 and X given D = 0:
Supp (X|D = 1) ∩ Supp (X|D = 0).
This is the requirement for any estimator that seeks to identify
treatment effects by comparing samples of treated persons with
samples of untreated persons.
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In this version of the method of control functions, P (Z) is a
conditioning variable used to predict U1 conditional on D and
U0 conditional on D.

In the method of matching, it is used as a conditioning variable
to eliminate the stochastic dependence between (U0,U1) and D.
In the method of LATE or LIV, P (Z) is used as an instrument.
In the method of control functions, as conventionally applied,
(U0,U1) ⊥⊥ (X,Z), but this assumption is not intrinsic to the
method.
This assumption plays no role in matching if the correct
conditioning set is known.
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However, as noted below, exogeneity plays a key role in
devising algorithms to select the conditioning variables.

In addition, as noted in Slide 412, exogeneity is helpful in
making out-of-sample forecasts.
The method of control functions does not require that
(U0,U1) ⊥⊥ D | (X,Z) , which is a central requirement of
matching.
Equivalently, the method of control functions does not require

(U0,U1) ⊥⊥ V | (X,Z) , or that (U0,U1) ⊥⊥ V | X

whereas matching does and typically equates X and Z.
Thus matching assumes access to a richer set of conditioning
variables than is assumed in the method of control functions.
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The method of control functions allows for outcome
unobservables to be dependent on D even after conditioning on
(X,Z), and it models this dependence.

The method of matching assumes no such D dependence.
Thus in this regard, and maintaining all of the assumptions
invoked for control functions in this section, matching is a
special case of the method of control functions in which under
assumptions (M-1) and (M-2),

E (U1|X,D = 1) = E (U1|X)
E (U0|X,D = 0) = E (U0|X) .
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In the method of control functions, in the case where
(X,Z) ⊥⊥ (U0,U1,V), where the Z can include some or all of
the elements of X, the conditional expectation of Y given
X,Z,D is

E (Y|X,Z,D) = E (Y1|X,Z,D = 1)D + E (Y0|X,Z,D = 0) (1 − D) (65)
= µ0 (X) + [µ1 (X)− µ0 (X)]D

+E (U1|P (Z) ,D = 1)D + E (U0|P (Z) ,D = 0) (1 − D)

= µ0 (X) + K0 (P (Z)) + [µ1 (X)− µ0 (X) + K1 (P (Z))
−K0 (P (Z))]D.

The coefficient on D in the final equation combines
µ1 (X)− µ0 (X) with K1 (P (Z))− K0 (P (Z)).
It does not correspond to any treatment effect.
To identify µ1(X)− µ0(X), one must isolate it from
K1(P(Z))− K0(P(Z)).
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Under assumptions (M-1) and (M-2) of the method of
matching, the conditional expectation of Y conditional on
P (X) and D is

E (Y|P (X) ,D) = µ0 (P (X)) + E (U0|P (X)) (66)
+ [(µ1 (P (X))− µ0 (P (X))) + E (U1|P (X))− E (U0|P (X))]D.

The coefficient on D in this expression is now interpretable and
is the average treatment effect.

If we assume that (U0,U1) ⊥⊥ X, which is not strictly required,
we reach a more familiar representation

E (Y|P (X) ,D) = µ0 (P (X)) + [µ1 (P (X))− µ0 (P (X))]D, (67)

since E (U1|P (X)) = E (U0|P (X)) = 0.
A parallel derivation can be made conditioning on X instead of
P(X).

Heckman and Vytlacil Using the Marginal Treatment Effect
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Under the assumptions that justify matching, treatment effects
ATE or TT (conditional on P (X)) are identified from the
coefficient on D in either (66) or (67).

Condition (M-2) guarantees that D is not perfectly predictable
by X (or P (X)), so the variation in D identifies the treatment
parameter.
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The coefficient on D in equation (65) for the more general
control function model does not correspond to any treatment
parameter, whereas the coefficients on D in equations (66) and
(67) correspond to treatment parameters under the
assumptions of the matching model.

Under assumption (CF-1), µ1 (P (X))− µ0 (P (X)) = ATE and
ATE=TT=MTE, so the method of matching identifies all of
the (conditional on P (X)) mean treatment parameters.
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Under the assumptions justifying matching, when means of Y1
and Y0 are the parameters of interest, and X satisfies (M-1)
and (M-2), the bias terms vanish.

They do not vanish in the more general case considered by the
method of control functions.
This is the mathematical counterpart of the randomization
implicit in matching: conditional on X or P (X) , (U0,U1) are
random with respect to D.
The method of control functions allows these error terms to be
nonrandom with respect to D and models the dependence.
In the absence of functional form assumptions, it requires an
exclusion restriction (a variable in Z not in X) to separate out
K0 (P (Z)) from the coefficient on D.
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Matching produces identification without exclusion restrictions
whereas identification with exclusion restrictions is a central
feature of the control function method in the absence of
functional form assumptions.

The fact that the control function approach allows for more
general dependencies among the unobservables and the
conditioning variables than the matching approach allows is
implicitly recognized in the work of ? and ?.
Their “sensitivity analyses” for matching when there are
unobserved conditioning variables are, in their essence,
sensitivity analyses using control functions.
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?, ? and ? explicitly model the relationship between matching
and selection models using factor structure models, treating the
omitted conditioning variables as unobserved factors and
estimating their distribution.

Abbring and Heckman discuss this work in Part III.
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Comparing Matching and Classical Control Function Methods for a
Generalized Roy Model

Figure 10, developed in connection with our discussion of
instrumental variables, shows the contrast between the shape of
the MTE and the OLS matching estimand as a function of p
for the extended Roy model developed in Slide 152.

The MTE(p) shows its typical declining shape associated with
diminishing returns, and the assumptions justifying matching
are violated.
Matching attempts to impose a flat MTE(p) and therefore
flattens the estimated MTE(p) compared to its true value.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

Comparing Matching and Classical Control Function Methods for a
Generalized Roy Model

Figure 10, developed in connection with our discussion of
instrumental variables, shows the contrast between the shape of
the MTE and the OLS matching estimand as a function of p
for the extended Roy model developed in Slide 152.
The MTE(p) shows its typical declining shape associated with
diminishing returns, and the assumptions justifying matching
are violated.

Matching attempts to impose a flat MTE(p) and therefore
flattens the estimated MTE(p) compared to its true value.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

Comparing Matching and Classical Control Function Methods for a
Generalized Roy Model

Figure 10, developed in connection with our discussion of
instrumental variables, shows the contrast between the shape of
the MTE and the OLS matching estimand as a function of p
for the extended Roy model developed in Slide 152.
The MTE(p) shows its typical declining shape associated with
diminishing returns, and the assumptions justifying matching
are violated.
Matching attempts to impose a flat MTE(p) and therefore
flattens the estimated MTE(p) compared to its true value.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

It understates marginal returns at low levels of p (associated
with unobservables that make it likely to participate in
treatment) and overstates marginal returns at high levels of p.

To further illustrate the bias in matching and how the control
function eliminates it, we perform sensitivity analyses under
different assumptions about the parameters of the underlying
selection model.
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To further illustrate the bias in matching and how the control
function eliminates it, we perform sensitivity analyses under
different assumptions about the parameters of the underlying
selection model.
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In particular, we assume that the data are generated by the
model of equations 5 and 6, where µD(Z) = Zγ, µ0 (X) = µ0,
µ1 (X) = µ1, and

(U0,U1,V)′ ∼ N (0,Σ)
corr (Uj,V) = ρjV

Var (Uj) = σ2
j ; j = {0, 1} .

We assume in this section that D = 1 [µD (Z) + V ≥ 0], in
conformity with the examples presented in ?, from which we
draw.

This reformulation of choice model (7) simply entails a change
in the sign of V.
We assume that Z ⊥⊥ (U0,U1,V).
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Using the selection formulae derived in Appendix, Slide 1184,
we can write the biases conditional on P (Z) = p using
propensity score matching in a generalized Roy model as

Bias TT (Z = z) = Bias TT (P (Z) = p) = σ0ρ0VM(p)
Bias ATE (Z = z) = Bias ATE (P (Z) = p) = M(p) [σ1ρ1V (1 − p) + σ0ρ0V p] ,

where M(p) = ϕ(Φ−1(1−p))
p(1−p) , ϕ (·) and Φ (·) are the pdf and cdf

of a standard normal random variable and the propensity score
P (z) is evaluated at P (z) = p.

We assume that µ1 = µ0 so that the true average treatment
effect is zero.
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Using the selection formulae derived in Appendix, Slide 1184,
we can write the biases conditional on P (Z) = p using
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of a standard normal random variable and the propensity score
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We simulate the mean bias for TT (table 10) and ATE
(table 11) for different values of the ρjV and σj.

The results in the tables show that, as we let the variances of
the outcome equations grow, the value of the mean bias that
we obtain can become substantial.
With larger correlations between the outcomes and the
unobservables generating choices, come larger biases.
These tables demonstrate the greater generality of the control
function approach, which models the bias rather than assuming
it away by conditioning.
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We simulate the mean bias for TT (table 10) and ATE
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we obtain can become substantial.

With larger correlations between the outcomes and the
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We simulate the mean bias for TT (table 10) and ATE
(table 11) for different values of the ρjV and σj.
The results in the tables show that, as we let the variances of
the outcome equations grow, the value of the mean bias that
we obtain can become substantial.
With larger correlations between the outcomes and the
unobservables generating choices, come larger biases.

These tables demonstrate the greater generality of the control
function approach, which models the bias rather than assuming
it away by conditioning.
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We simulate the mean bias for TT (table 10) and ATE
(table 11) for different values of the ρjV and σj.
The results in the tables show that, as we let the variances of
the outcome equations grow, the value of the mean bias that
we obtain can become substantial.
With larger correlations between the outcomes and the
unobservables generating choices, come larger biases.
These tables demonstrate the greater generality of the control
function approach, which models the bias rather than assuming
it away by conditioning.
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Table 10: Mean Bias for Treatment on the Treated
ρ0V Average Bias (σ0 = 1) Average Bias (σ0 = 2)

-1.00 -1.7920 -3.5839
-0.75 -1.3440 -2.6879
-0.50 -0.8960 -1.7920
-0.25 -0.4480 -0.8960
0.00 0.0000 0.0000
0.25 0.4480 0.8960
0.50 0.8960 1.7920
0.75 1.3440 2.6879
1.00 1.7920 3.5839
Bias TT = ρ0V ∗ σ0 ∗ M(p)
M(p) = ϕ(Φ−1(1−p))

p∗(1−p) .

Source: Heckman and Navarro (2004)

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .... .. .. .. .



Table 11: Mean Bias for Average Treatment Effect
(σ0 = 1)

ρ0V -1.00 -0.75 -0.50 -0.25 0 0.25 0.50 0.75 1.00
ρ1V(σ1 = 1)

-1.00 -1.7920 -1.5680 -1.3440 -1.1200 -0.8960 -0.6720 -0.4480 -0.2240 0
-0.75 -1.5680 -1.3440 -1.1200 -0.8960 -0.6720 -0.4480 -0.2240 0 0.2240
-0.50 -1.3440 -1.1200 -0.8960 -0.6720 -0.4480 -0.2240 0 0.2240 0.4480
-0.25 -1.1200 -0.8960 -0.6720 -0.4480 -0.2240 0 0.2240 0.4480 0.6720

0 -0.8960 -0.6720 -0.4480 -0.2240 0 0.2240 0.4480 0.6720 0.8960
0.25 -0.6720 -0.4480 -0.2240 0 0.2240 0.4480 0.6720 0.8960 1.1200
0.50 -0.4480 -0.2240 0 0.2240 0.4480 0.6720 0.8960 1.1200 1.3440
0.75 -0.2240 0 0.2240 0.4480 0.6720 0.8960 1.1200 1.3440 1.5680
1.00 0 0.2240 0.4480 0.6720 0.8960 1.1200 1.3440 1.5680 1.7920

ρ1V(σ1 = 2)
-1.00 -2.6879 -2.2399 -1.7920 -1.3440 -0.8960 -0.4480 0 0.4480 0.8960
-0.75 -2.4639 -2.0159 -1.5680 -1.1200 -0.6720 -0.2240 0.2240 0.6720 1.1200
-0.50 -2.2399 -1.7920 -1.3440 -0.8960 -0.4480 0 0.4480 0.8960 1.3440
-0.25 -2.0159 -1.5680 -1.1200 -0.6720 -0.2240 0.2240 0.6720 1.1200 1.5680

0 -1.7920 -1.3440 -0.8960 -0.4480 0 0.4480 0.8960 1.3440 1.7920
0.25 -1.5680 -1.1200 -0.6720 -0.2240 0.2240 0.6720 1.1200 1.5680 2.0159
0.50 -1.3440 -0.8960 -0.4480 0 0.4480 0.8960 1.3440 1.7920 2.2399
0.75 -1.1200 -0.6720 -0.2240 0.2240 0.6720 1.1200 1.5680 2.0159 2.4639
1.00 -0.8960 -0.4480 0 0.4480 0.8960 1.3440 1.7920 2.2399 2.6879
Bias ATE = ρ1V ∗ σ1 ∗ M1(p)− ρ0V ∗ σ0 ∗ M0(p)
M1(p) = ϕ(Φ−1(p))

1−p
M0(p) = −ϕ(Φ−1(1−p))

[1−p]

Source: Heckman and Navarro (2004)
. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .... .. .. .. .
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Even if the correlation between the observables and the
unobservables (ρjV) is small, so that one might think that
selection on unobservables is relatively unimportant, we still
obtain substantial biases if we do not control for relevant
omitted conditioning variables.

Only for special values of the parameters do we avoid bias by
matching.
These examples also demonstrate that sensitivity analyses can
be conducted for analysis based on control function methods
even when they are not fully identified.
? provides an example.
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be conducted for analysis based on control function methods
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? provides an example.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

Even if the correlation between the observables and the
unobservables (ρjV) is small, so that one might think that
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Only for special values of the parameters do we avoid bias by
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be conducted for analysis based on control function methods
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The Informational Requirements of Matching and the Bias When
They Are Not Satisfied

In this section, we present some examples of when matching
“works” and when it breaks down.

This section is based on ?.
In particular, we show how matching on some of the relevant
information but not all can make the bias using matching worse
for standard treatment parameters.
These examples also introduce factor models that play a key
role in the analysis of Abbring and Heckman in Part III.
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In this section, we present some examples of when matching
“works” and when it breaks down.
This section is based on ?.
In particular, we show how matching on some of the relevant
information but not all can make the bias using matching worse
for standard treatment parameters.
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role in the analysis of Abbring and Heckman in Part III.
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The Informational Requirements of Matching and the Bias When
They Are Not Satisfied

In this section, we present some examples of when matching
“works” and when it breaks down.
This section is based on ?.
In particular, we show how matching on some of the relevant
information but not all can make the bias using matching worse
for standard treatment parameters.
These examples also introduce factor models that play a key
role in the analysis of Abbring and Heckman in Part III.
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Slide 12 of this chapter discussed informational asymmetries
between the econometrician and the agents whose behavior
they are analyzing.

The method of matching assumes that the econometrician has
access to and uses all of the relevant information in the precise
sense defined there.
That means that the X that guarantees conditional
independence (M-1) is available and is used.
The concept of relevant information is a delicate one and it is
difficult to find the true conditioning set.
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Assume that the economic model generating the data is a
generalized Roy model of the form

D∗ =Zγ + V where
Z ⊥⊥ V and

V =αV1f1 + αV2f2 + εV

D =

{
1 if D∗ ≥ 0
0 otherwise ,

and

Y1 = µ1 + U1 where U1 = α11f1 + α12f2 + ε1,

Y0 = µ0 + U0 where U0 = α01f1 + α02f2 + ε0.

We remind the reader that contrary to the analysis throughout
the rest of this chapter we add V and do not subtract it in the
decision equation.

Heckman and Vytlacil Using the Marginal Treatment Effect
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This is the familiar representation.

By a change in sign in V, we can go back and forth between
the specification used in this section and the specification used
in other sections of the chapter.
In this specification, (f1, f2, εV, ε1, ε0) are assumed to be mean
zero random variables that are mutually independent of each
other and Z so that all the correlation among the elements of
(U0,U1,V) is captured by f = (f1, f2).
Models that take this form are known as factor models and
have been applied in the context of selection models by ?, ??,
and ?, among others.
We keep implicit any dependence on X which may be general.
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Generically, the minimal relevant information for this model
when the factor loadings are not zero (αij ̸= 0) is, for general
values of the factor loadings,

IR = {f1, f2} .

Recall that we assume independence between Z and all error
terms.

If the econometrician has access to IR and uses it, (M-1) is
satisfied conditional on IR.
Note that IR plays the role of θ in (U-1).
In the case where the economist knows IR, the economist’s
information set σ(IE) contains the relevant information
(σ(IE) ⊇ σ(IR)).
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The agent’s information set may include different variables.

If we assume that ε0, ε1 are shocks to outcomes not known to
the agent at the time treatment decisions are made, but the
agent knows all other aspects of the model, the agent’s
information is

IA = {f1, f2,Z, εV} .

Under perfect certainty, the agent’s information set includes ε1
and ε0:

IA = {f1, f2,Z, εV, ε1, ε0} .

In either case, all of the information available to the agent is
not required to satisfy conditional independence (M-1).
All three information sets guarantee conditional independence,
but only the first is minimal relevant.
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In the notation of Slide 12, the observing economist may know
some variables not in IA, IR∗ or IR but may not know all of the
variables in IR.

In the following subsections, we study what happens when the
matching assumption that σ (IE) ⊇ σ (IR) does not hold.
That is, we analyze what happens to the bias from matching as
the amount of information used by the econometrician is
changed.
In order to get closed form expressions for the biases of the
treatment parameters, we make the additional assumption that

(f1, f2, εV, ε1, ε0) ∼ N (0,Σ) ,

where Σ is a matrix with
(
σ2

f1 , σ
2
f2 , σ

2
εV , σ

2
ε1 , σ

2
ε0

)
on the diagonal

and zero in all the non-diagonal elements.
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This assumption links matching models to conventional normal
selection models of the sort developed in Part I and further
analyzed in Slide 12 of this Part.

However, the examples based on this specification illustrate
more general principles.
We now analyze various commonly encountered cases.
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The Economist Uses the Minimal Relevant Information:
σ (IR) ⊆ σ (IE)

We begin by analyzing the case in which the information used
by the economist is IE = {Z, f1, f2} , so that the econometrician
has access to a relevant information set and it is larger than the
minimal relevant information set.

In this case, it is straightforward to show that matching
identifies all of the mean treatment parameters with no bias.
The matching estimator has population mean

E (Y1|D = 1, IE)− E (Y0|D = 0, IE) = µ1 − µ0 + (α11 − α01) f1 + (α12 − α02) f2,

and all of the mean treatment parameters collapse to this
same expression since, conditional on knowing f1 and f2, there
is no selection because (ε0, ε1) ⊥⊥ V.
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Recall that, for arbitrary choices of α11, α01, α12, α02,
IR = {f1, f2} and the economist needs less information to
achieve (M-1) than is contained in IE.

In this case, the analysis of ? tells us that knowledge of
(Z, f1, f2) and knowledge of P (Z, f1, f2) are equally useful in
identifying all of the treatment parameters conditional on P.
If we write the propensity score as

P (IE) = Pr

(
εV
σεV

>
−Zγ − αV1f1 − αV2f2

σεV

)
= 1 − Φ

(
−Zγ − αV1f1 − αV2f2

σεV

)
= p,

the event
(

D∗ S 0, given f = f̃ and Z = z
)

can be written as
εV
σεV

S Φ−1
(

1 − P(z, f̃)
)

, where Φ is the cdf of a standard
normal random variable and f = (f1, f2).
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We abuse notation slightly by using z as the realized fixed value
of Z and f̃ as the realized value of f.

The population matching condition (M-1) implies that

E
(

Y1|D = 1,P (IE) = P(z, f̃)
)
− E

(
Y0|D = 0,P (IE) = P(z, f̃)

)
= µ1 − µ0 + E

(
U1|D = 1,P (IE) = P(z, f̃)

)
− E

(
U0|D = 0,P (IE) = P(z, f̃)

)
= µ1 − µ0 + E

(
U1|

εV
σεV

> Φ−1
(

1 − P(z, f̃)
))

− E
(

U0|
εV
σεV

≤ Φ−1
(

1 − P(z, f̃)
))

= µ1 − µ0.
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This expression is equal to all of the treatment parameters
discussed in this chapter, since

E
(

U1|
εV
σεV

> Φ−1
(

1 − P(z, f̃)
))

=
Cov (U1, εV)

σεV

M1

(
P(z, f̃)

)
and

E
(

U0|
εV
σεV

≤ Φ−1
(

1 − P(z, f̃)
))

=
Cov (U0, εV)

σεV

M0

(
P(z, f̃)

)
,

where

M1(P(z, f̃)) =
ϕ(Φ−1(1 − P(z, f̃)))

P(z, f̃)

M0(P(z, f̃)) = −ϕ(Φ−1(1 − P(z, f̃)))
1 − P(z, f̃)

,

where ϕ is the density of a standard normal random variable.
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As a consequence of the assumptions about mutual
independence of the errors

Cov (Ui, εV) = Cov (αi1f1 + αi2f2 + εi, εV) = 0, i = 0, 1.

In the context of the generalized Roy model, the case
considered in this subsection is the one matching is designed to
solve.
Even though a selection model generates the data, the fact
that the information used by the econometrician includes the
minimal relevant information makes matching a correct solution
to the selection problem.
We can estimate the treatment parameters with no bias since,
as a consequence of our assumptions, (U0,U1) ⊥⊥ D| (f,Z),
which is exactly what matching requires.
The minimal relevant information set is even smaller.
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For arbitrary factor loadings, we only need to know (f1, f2) to
secure conditional independence.

We can define the propensity score solely in terms of f1 and f2,
and the Rosenbaum-Rubin result still goes through.
Our analysis in this section focuses on treatment parameters
conditional on particular values of P(Z, f) = P(z, f̃), i.e., for
fixed values of p, but we could condition more finely.
Conditioning on P(z, f̃) defines the treatment parameters more
coarsely.
We can use either fine or coarse conditioning to construct the
unconditional treatment effects.
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In this example, using more information than what is in the
relevant information set (i.e., using Z) is harmless.

But this is not generally true.
If Z ⊥�⊥ (U0,U1,V), adding Z to the conditioning set can violate
conditional independence assumption (M-1):

(Y0,Y1) ⊥⊥ D | (f1, f2) ,

but
(Y0,Y1) ⊥�⊥ D | (f1, f2,Z).

Adding extra variables can destroy the crucial conditional
independence property of matching.
We present an example of this point below.
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We first consider a case where Z ⊥⊥ (U0,U1,V) but the analyst
conditions on Z and not (f1, f2).

In this case, there is selection on the unobservables that are not
conditioned on.
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The Economist does not Use All of the Minimal Relevant
Information

Next, suppose that the information used by the econometrician
is

IE = {Z} ,
and there is selection on the unobservable (to the analyst) f1
and f2, i.e., the factor loadings αij are all non zero.

Recall that we assume that Z and the f are independent.

In this case, the event
(

D∗ S 0,Z = z
)

is characterized by

αV1f1 + αV2f2 + εV√
α2

V1σ
2
f1 + α2

V2σ
2
f2 + σ2

εV

S Φ−1 (1 − P(z)) .
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Using the analysis presented in Appendix, Slide 1184, the bias
for the different treatment parameters is given by

Bias TT (Z = z) = Bias TT (P (Z) = P(z)) = η0M(P(z)),
(68)

where M(P(z)) = M1(P(z))− M0(P(z)).
Bias ATE (Z = z) = Bias ATE (P (Z) = P(z)) = M(P (z)){η1[1−P(z)]+η0P(z)}, (69)

where

η1 =
αV1α11σ

2
f1 + αV2α12σ

2
f2√

α2
V1σ

2
f1 + α2

V2σ
2
f2 + σ2

εV

η0 =
αV1α01σ

2
f1 + αV2α02σ

2
f2√

α2
V1σ

2
f1 + α2

V2σ
2
f2 + σ2

εV

.
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It is not surprising that matching on sets of variables that
exclude the relevant conditioning variables produces bias for the
conditional (on P(z) ) treatment parameters.

The advantage of working with a closed form expression for the
bias is that it allows us to answer questions about the
magnitude of this bias under different assumptions about the
information available to the analyst, and to present some
simple examples.
We next use expressions (68) and (69) as benchmarks against
which to compare the relative size of the bias when we enlarge
the econometrician’s information set beyond Z.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

It is not surprising that matching on sets of variables that
exclude the relevant conditioning variables produces bias for the
conditional (on P(z) ) treatment parameters.
The advantage of working with a closed form expression for the
bias is that it allows us to answer questions about the
magnitude of this bias under different assumptions about the
information available to the analyst, and to present some
simple examples.

We next use expressions (68) and (69) as benchmarks against
which to compare the relative size of the bias when we enlarge
the econometrician’s information set beyond Z.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

It is not surprising that matching on sets of variables that
exclude the relevant conditioning variables produces bias for the
conditional (on P(z) ) treatment parameters.
The advantage of working with a closed form expression for the
bias is that it allows us to answer questions about the
magnitude of this bias under different assumptions about the
information available to the analyst, and to present some
simple examples.
We next use expressions (68) and (69) as benchmarks against
which to compare the relative size of the bias when we enlarge
the econometrician’s information set beyond Z.
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Adding Information to the Econometrician’s Information Set IE:
Using Some but not All the Information from the Minimal Relevant
Information Set IR

Suppose that the econometrician uses more information but not
all of the information in the minimal relevant information set.

He still reports values of the parameters conditional on specific
p values but now the model for p has different conditioning
variables.
For example, the data set assumed in the preceding section
might be augmented or else the econometrician decides to use
information previously available.
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In particular, assume that the econometrician’s information set
is

I′E = {Z, f2} ,
and that he uses this information set.

Under conditions 1 and 2 presented below, the biases for the
treatment parameters conditional on values of P = p are
reduced in absolute value relative to their values in Slide 773 by
changing the conditioning set in this way.
But these conditions are not generally satisfied, so that adding
extra information does not necessarily reduce bias and may
actually increase it.
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To show how this happens in our model, we define expressions
comparable to η1 and η0 for this case:

η′1 =
αV1α11σ

2
f1√

α2
V1σ

2
f1 + σ2

εV

η′0 =
αV1α01σ

2
f1√

α2
V1σ

2
f1 + σ2

εV

.

We compare the biases under the two cases using formulae
(68)–(69), suitably modified, but keeping p fixed at a specific
value even though this implies different conditioning sets in
terms of (z, f̃).
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Condition 1 The bias produced by using matching to estimate TT
is smaller in absolute value for any given p when the new
information set σ (I′E) is used if

|η0| > |η′0| .
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There is a similar result for ATE:
Condition 2 The bias produced by using matching to estimate ATE
is smaller in absolute value for any given p when the new
information setσ (I′E) is used if

|η1 (1 − p) + η0p| > |η′1 (1 − p) + η′0p| .
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Proof.
These conditions are a direct consequence of formulae (68) and
(69), modified to allow for the different covariance structure
produced by the information structure assumed in this section
(replacing η0 with η

′
0, η1 with η

′
1).
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It is important to notice that we condition on the same value of
p in deriving these expressions although the variables in P are
different across different specifications of the model.

Propensity-score matching defines them conditional on P = p,
so we are being faithful to that method.
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These conditions do not always hold.

In general, whether or not the bias will be reduced by adding
additional conditioning variables depends on the relative
importance of the additional information in both the outcome
equations and on the signs of the terms inside the absolute
value.
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In general, whether or not the bias will be reduced by adding
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importance of the additional information in both the outcome
equations and on the signs of the terms inside the absolute
value.
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Consider whether Condition (1) is satisfied in general.

Assume η0 > 0 for all α02, αV2.
Then η0 > η′0 if

η0 =
αV1α01σ

2
f1 +

(
α2

V2
) (

α02
αV2

)
σ2

f2√
α2

V1σ
2
f1 + α2

V2σ
2
f2 + σ2

εV

>
αV1α11σ

2
f1√

α2
V1σ

2
f1 + σ2

εV

= η′0.

When α02
αV2

= 0, clearly η0 < η′0.
Adding information to the conditioning set increases bias.

We can vary
(

α02
αV2

)
holding all of the other parameters constant

and hence can make the left hand side arbitrarily large.
As α02 increases, there is some critical value α∗

02 beyond which
η0 > η′0.
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If we assumed that η0 < 0, however, the opposite conclusion
would hold, and the conditions for reduction in bias would be
harder to meet, as the relative importance of the new
information is increased.

Similar expressions can be derived for ATE and MTE, in which
the direction of the effect depends on the signs of the terms in
the absolute value.
Figures 23A and 23B illustrate the point that adding some but
not all information from the minimal relevant set might
increase the point-wise bias and the unconditional or average
bias for ATE and TT, respectively.
Values of the parameters of the model are presented at the
base of the figures.
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Figure 23: A. Bias for Treatment on the Treated
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B. Bias for Average Treatment Effect

P

Note: Using proxy Z̃ for f2 increases the bias. Correlation (Z̃, f2) = 0.5.
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Model:

V = Z + f1 + f2 + εV; Y1 = 2f1 + 0.1f2 + ε1; Y0 = f1 + 0.1f2 + ε0

εV ∼ N(0, 1); ε1 ∼ N(0, 1); ε0 ∼ N(0, 1)
f1 ∼ N(0, 1); f2 ∼ N(0, 1)

Source: Heckman and Navarro (2005)
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In these figures, we compare conditioning on P(z), which in
general is not guaranteed to eliminate bias, with conditioning
on P(z) and f2 but not f1.

Adding f2 to the conditioning increases bias.
The fact that the point-wise (and overall) bias might increase
when adding some but not all information from IR is a feature
that is not shared by the method of control functions.
Because the method of control functions models the stochastic
dependence of the unobservables in the outcome equations on
the observables, changing the variables observed by the
econometrician to include f2 does not generate bias.
It only changes the control function used.
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That is, by adding f2 we change the control function from

K1 (P (Z) = P(z)) = η1M1(P(z))
K0 (P (Z) = P(z)) = η0M0(P(z))

to

K′
1

(
P (Z, f2) = P(z, f̃2)

)
= η′1M1(P(z, f̃2))

K′
0

(
P (Z, f2) = P(z, f̃2)

)
= η′0M0(P(z, f̃2))

but do not generate any bias in using the control function
estimator.

This is a major advantage of this method.
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It controls for the bias of the omitted conditioning variables by
modeling it.

Of course, if the model for the bias term is not valid, neither is
the correction for the bias.
Semiparametric selection estimators are designed to protect the
analyst against model misspecification.
(See, e.g., ?).
Matching evades this problem by assuming that the analyst
always knows the correct conditioning variables and that they
satisfy (M-1).
In actual empirical settings, agents rarely know the relevant
information set.
Instead they use proxies.
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Adding Information to the Econometrician’s Information Set: Using
Proxies for the Relevant Information

Suppose that instead of knowing some part of the minimal
relevant information set, such as f2, the analyst has access to a
proxy for it.

In particular, assume that he has access to a variable Z̃ that is
correlated with f2 but that is not the full minimal relevant
information set.
That is, define the econometrician’s information to be

ĨE =
{

Z, Z̃
}

,

and suppose that he uses it so IE = ĨE.
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In order to obtain closed-form expressions for the biases we
assume that

Z̃ ∼ N
(
0, σ2

Z̃
)

corr
(

Z̃, f2
)

= ρ, and Z̃ ⊥⊥ (ε0, ε1, εV, f1) .

We define expressions comparable to η and η′ :

η̃1 =
α11αV1σ

2
f1 + α12αV2

(
1 − ρ2) σ2

f2√
α2

V1σ
2
f1 + α2

V2σ
2
f2 (1 − ρ2) + σ2

εV

η̃0 =
α01αV1σ

2
f1 + α02αV2

(
1 − ρ2) σ2

f2√
α2

V1σ
2
f1 + α2

V2σ
2
f2 (1 − ρ2) + σ2

εV

.
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By substituting for I′E by ĨE and η′j by η̃j (j = 0, 1) in
Conditions (1) and (2) of Slide 776, we can obtain results for
the bias in this case.

Whether ĨE will be bias-reducing depends on how well it spans
IR and on the signs of the terms in the absolute values in those
conditions in Slide 776.
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In this case, however, there is another parameter to consider:
the correlation ρ between Z̃ and f2, ρ.

If |ρ| = 1 we are back to the case of ĨE = I′E because Z̃ is a
perfect proxy for f2 . If ρ = 0, we are essentially back to the
case analyzed in Slide 776.
Because we know that the bias at a particular value of p might
either increase or decrease when f2 is used as a conditioning
variable but f1 is not, we know that it is not possible to
determine whether the bias increases or decreases as we change
the correlation between f2 and Z̃.
That is, we know that going from ρ = 0 to |ρ| = 1 might
change the bias in any direction.
Use of a better proxy in this correlational sense may produce a
more biased estimate.
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From the analysis of Slide 776, it is straightforward to derive
conditions under which the bias generated when the
econometrician’s information is ĨE is smaller than when it is I′E.

That is, it can be the case that knowing the proxy variable Z̃ is
better than knowing the actual variable f2.
Returning to the analysis of treatment on the treated as an
example (i.e., Condition (1)), the bias in absolute value (at a
fixed value of p) is reduced when Z̃ is used instead of f2 if∣∣∣∣∣∣ α01αV1σ

2
f1 + α02αV2

(
1 − ρ2) σ2

f2√
α2

V1σ
2
f1 + α2

V2σ
2
f2 (1 − ρ2) + σ2

εV

∣∣∣∣∣∣ <
∣∣∣∣∣∣ α01αV1σ

2
f1√

α2
V1σ

2
f1 + σ2

εV

∣∣∣∣∣∣ .
Figures 24A and 24B, use the same true model as used in the
previous section to illustrate the two points being made here.
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Figure 24: A. Bias for Treatment on the Treated

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .... .. .. .. .



B. Bias for Average Treatment Effect

Note: Using proxy Z̃ for f2 increases the bias. Correlation (Z̃, f2) = 0.5.

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .... .. .. .. .



Model:

V = Z + f1 + f2 + εV; Y1 = 2f1 + 0.1f2 + ε1; Y0 = f1 + 0.1f2 + ε0

εV ∼ N(0, 1); ε1 ∼ N(0, 1); ε0 ∼ N(0, 1)
f1 ∼ N(0, 1); f2 ∼ N(0, 1)

Source: Heckman and Navarro (2005)
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Namely, using a proxy for an unobserved relevant variable
might increase the bias.

On the other hand, it might be better in terms of bias to use a
proxy than to use the actual variable, f2.
However, as Figures 25A and 25B show, by changing α02 from
0.1 to 1, using a proxy might increase the bias versus using the
actual variable f2.
Notice that the bias need not be universally negative or positive
but depends on p.
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Figure 25: A. Bias for Treatment on the Treated
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B. Bias for Average Treatment Effect

Note: Using proxy Z̃ for f2 increases the bias. Correlation (Z̃, f2) = 0.5.
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Model:

V = Z + f1 + f2 + εV; Y1 = 2f1 + 0.1f2 + ε1; Y0 = f1 + f2 + ε0

εV ∼ N(0, 1); ε1 ∼ N(0, 1); ε0 ∼ N(0, 1)
f1 ∼ N(0, 1); f2 ∼ N(0, 1)

Source: Heckman and Navarro (2005)
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The point of these examples is that matching makes very
knife-edge assumptions.

If the analyst gets the right conditioning set, (M-1) is satisfied
and there is no bias.
But determining the correct information set is not a trivial task,
as we note in Slide 806.
Having good proxies in the standard usage of that term can
create substantial bias in estimating treatment effects.
Half a loaf may be worse than none.
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The Case of a Discrete Outcome Variable

? construct parallel examples for cases including discrete
dependent variables.

In particular, they consider nonnormal, nonseparable equations
for odds ratios and probabilities.
The proposition that matching identifies the correct treatment
parameter if the econometrician’s information set includes all
the minimal relevant information is true more generally,
provided that any additional extraneous information used is
exogenous in a sense to be defined precisely in the next section.
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On the Use of Model Selection Criteria to Choose Matching
Variables

We have already shown by way of example that adding more
variables from a minimal relevant information set, but not all
variables in it, may increase bias.

By a parallel argument, adding additional variables to the
relevant conditioning set may make the bias worse.
Although we have used our prototypical Roy model as our point
of departure, the point is more general.
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There is no rigorous rule for choosing the conditioning variables
that produce (M-1).

Adding variables that are statistically significant in the
treatment choice equation is not guaranteed to select a set of
conditioning variables that satisfies condition (M-1).
This is demonstrated by the analysis of Slide 776 that shows
that adding f2 when it determines D may increase bias at any
selected value of p.
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The existing literature (e.g., ?) proposes criteria based on
selecting a set of conditioning variables based on a goodness of
fit criterion (λ), where a higher λ means a better fit in the
equation predicting D.

The intuition behind such criteria is that by using some
measure of goodness of fit as a guiding principle one is using
information relevant to the decision process.
In the example of Slide 776, using f2 improves goodness of fit
of the model for D, but increases bias for the parameters.
In general, such a rule is deficient if f1 is not known or is not
used.
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An implicit assumption underlying such procedures is that the
added conditioning variables X are exogenous in the following
sense:
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(Y0,Y1) ⊥⊥ D|Iint,X (E-1)
where Iint is interpreted as the variables initially used as
conditioning variables before X is added.

Failure of exogeneity is a failure of (M-1) for the augmented
conditioning set, and matching estimators based on the
augmented information set (Iint,X ) are biased when the
condition is not satisfied.
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Exogeneity assumption (E-1) is not usually invoked in the
matching literature, which largely focuses on problem P-1,
evaluating a program in place, rather than extrapolating to new
environments (P-2).

Indeed, the robustness of matching to such exogeneity
assumptions is trumpeted as one of the virtues of the method.
In this section, we show some examples that illustrate the
general point that standard model selection criteria fail to
produce correctly specified conditioning sets unless some
version of exogeneity condition (E-1) is satisfied.
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In the literature, the use of model selection criteria is justified
in two different ways.

Sometimes it is claimed that they provide a relative guide.
Sets of variables with better goodness of fit in predicting D (a
higher λ in the notation of table 12) are alleged to be better
than sets of variables with lower λ in the sense that they
generate lower biases.
However, we have already shown that this is not true.
We know that enlarging the analyst’s information from
Iint = {Z} to I′int = {Z, f2} will improve fit since f2 is also in IA
and IR.
But, going from Iint to I′int might increase the bias.
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Table 12: Goodness of fit statistics λ
Goodness of fit statistics λ Average Bias

Variables in Probit Correct in-sample prediction rate Pseudo R2 TT ATE
Z 66.88% 0.1284 1.1380 1.6553

Z, f2 75.02% 0.2791 1.2671 1.9007
Z, f1, f2 83.45% 0.4844 0.0000 0.0000

Z, S1 77.38% 0.3282 0.9612 1.3981
Z, S2 92.25% 0.7498 0.9997 1.4541

Source: Heckman and Navarro (2004)

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .... .. .. .. .
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So it is not true that combinations of variables that increase
some measure of fit λ necessarily reduce the bias.

Table 12 illustrates this point using our normal example.
Going from row 1 to row 2 (adding f2) improves goodness of fit
and increases the unconditional or overall bias for all three
treatment parameters, because (E-1) is violated.
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The following rule of thumb argument is sometimes invoked as
an absolute standard against which to compare alternative
models.

In versions of the argument, the analyst asserts that there is a
combination of variables I′′ that satisfy (M-1) and hence
produces zero bias and a value of λ = λ′′ larger than that of
any other I.
In our examples, conditioning on {Z, f1, f2} generates zero bias.
We can exclude Z and still obtain zero bias.
Because Z is a determinant of D, this shows immediately that
the best fitting model does not necessarily identify the minimal
relevant information set.
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In this example including Z is innocuous because there is still
zero bias and the added conditioning variables satisfy (E-1)
where Iint = (f1, f2).

In general, such a rule is not innocuous if Z is not exogenous.
If goodness of fit is used as a rule to choose variables on which
to match, there is no guarantee it produces a desirable
conditioning set.
If we include in the conditioning set variables X that violate
(E-1), they may improve the fit of predicted probabilities but
worsen the bias.
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? produce a series of examples that have the following feature.

Variables S (shown at the base of table 12) are added to the
information set that improve the prediction of D but are
correlated with (U0,U1).
Their particular examples use imperfect proxies (S1, S2) for
(f1, f2).
The point is more general.
The S variables fail exogeneity and produce greater bias for TT
and ATE but they improve the prediction of D as measured by
the correct in-sample prediction rate and the pseudo-R2.
See the bottom two rows of table 12.
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We next turn to the method of randomization, which is
frequently held up to be an ideal approach for evaluating social
programs.

Randomization attempts to use a random assignment to
achieve the conditional independence assumed in matching.
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We next turn to the method of randomization, which is
frequently held up to be an ideal approach for evaluating social
programs.
Randomization attempts to use a random assignment to
achieve the conditional independence assumed in matching.
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Randomized Evaluations

This section analyzes randomized social experiments as tools
for evaluating social programs.

In the introduction to this chapter, we discussed an ideal
randomization where treatment status is randomly assigned.
In this section, we discuss actual social experiments, where
self-selection decisions often intrude on the randomization
decisions of experimenters.
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Two cases have been made for the application of social
experimentation.

One case is a classical argument in experimental design.
Inducing variation in regressors increases precision of estimates
and the power of tests.
The other case focuses on solving endogeneity and
self-selection problems.
Randomization is an instrumental variable.
The two cases are mutually compatible, but involve different
emphases.
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Both cases can be motivated within a linear regression model
for outcome Y with treatment indicator D and covariates X:

Y = Xα + Dβ + U, (70)

where U is an unobservable.

β may be the same for all observations (conditional on X) as in
the common coefficient setup, or it may be a variable
coefficient of the type extensively in this chapter.
D (and the X) may be statistically dependent on U.
We also entertain the possibility that when β is random it is
dependent on D , as in the generalized Roy model.
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Both cases for social experimentation seek to secure
identification of some parameters of (70) or parameters that
can be generated from (70).

Analysts advocating the first case for experimentation typically
assume a common coefficient model for α and β.
They address the problem that variation in (X,D) may be
insufficient to identify or precisely estimate (α, β).
Manipulating (X,D) through randomization, or more generally,
through controlled variation, can secure identification.
It is typically assumed that (X,D) is independent of U or at
least mean independent.
This is the traditional case analyzed in a large literature on
experimental design in statistics.
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Good examples in economics of experimentation designed to
increase the variation in the regressors are studies by ?, ?, and
???.

The papers by Conlisk show how experimental manipulation
can solve a multicollinearity problem.
In analyzing the effects of taxes on labor supply, it is necessary
to isolate the effect of wages (the substitution effect) from the
effect of pure asset income (the income effect) on labor supply.
In observational data, empirical measures of wages and asset
income are highly intercorrelated.
In addition, asset income is often poorly measured.
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By experimentally assigning these variables as in the negative
income tax experiments, it is possible to identify both income
and substitution effects in labor supply equations (see ?).

? shows how variation in the prices paid for electricity across
the day can identify price effects that cannot be identified in
regimes with uniform prices across all hours of the day.
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Random assignment is not essential to this approach.

Any regressor assignment rule based on variables Q that are
stochastically independent of U will suffice, although the
efficiency of the estimates will depend on the choice of Q and
care must be taken to avoid inducing multicollinearity by the
choice of an assignment rule.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

Random assignment is not essential to this approach.
Any regressor assignment rule based on variables Q that are
stochastically independent of U will suffice, although the
efficiency of the estimates will depend on the choice of Q and
care must be taken to avoid inducing multicollinearity by the
choice of an assignment rule.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

The second case for social experiments and the one that
receives the most attention in applied work in economics and in
this chapter focuses on the dependence between (X,D) and U
that invalidates least squares as an estimator of the causal
effect of X and D on Y.

This is the problem of least squares bias raised by ? and
extensively discussed in Part I.
In the second case, experimental variation in (X,D) is sought
to make it “exogenous” or “external” to U.
A popular argument in favor of experiments is that they
produce simple, transparent estimates of the effects of the
programs being evaluated in the presence of such biases.
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A quotation from ? is apt:

The beauty of randomized evaluations is that the results are what
they are: we compare the outcome in the treatment group with the
outcome in the control group, see whether they are different, and if
so by how much. Interpreting quasi-experiments sometimes requires
statistical legerdemain, which makes them less attractive . . .
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This argument assumes that interesting evaluation questions
can be answered by the marginal distributions produced from
experiments.

It also assumes that no economic model is needed to interpret
evidence, contrary to a main theme of this chapter.
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Randomization is an instrument.

As such, it shares all of the assets and liabilities of IV already
discussed.
In particular, randomization applied to a correlated random
coefficient (or a model of essential heterogeneity) raises the
same issues about the multiplicity of parameters identified by
different randomizations as were discussed there in connection
with the multiplicity of parameters identified by different
instruments.
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The two popular arguments for social experimentation are
closely related.

Exogenous variation in (X,D) can, if judiciously administered,
solve collinearity, precision, and endogeneity problems.
Applying the terminology of Part I to the analysis of model
(70), randomization can identify a model that can solve all
three policy evaluation problems: (P-1), the problem of internal
validity; (P-2), the problem of extrapolation to new
environments (by virtue of the linearity of (70)); and (P-3), the
problem of forecasting new policies that can be described by
identifiable functions of (X,D) and any external variables.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

The two popular arguments for social experimentation are
closely related.
Exogenous variation in (X,D) can, if judiciously administered,
solve collinearity, precision, and endogeneity problems.

Applying the terminology of Part I to the analysis of model
(70), randomization can identify a model that can solve all
three policy evaluation problems: (P-1), the problem of internal
validity; (P-2), the problem of extrapolation to new
environments (by virtue of the linearity of (70)); and (P-3), the
problem of forecasting new policies that can be described by
identifiable functions of (X,D) and any external variables.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

The two popular arguments for social experimentation are
closely related.
Exogenous variation in (X,D) can, if judiciously administered,
solve collinearity, precision, and endogeneity problems.
Applying the terminology of Part I to the analysis of model
(70), randomization can identify a model that can solve all
three policy evaluation problems: (P-1), the problem of internal
validity; (P-2), the problem of extrapolation to new
environments (by virtue of the linearity of (70)); and (P-3), the
problem of forecasting new policies that can be described by
identifiable functions of (X,D) and any external variables.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

As noted in the concluding section of Part I, the modern
literature tends to reject functional form assumptions such as
those embodied in equation (70).

It has evolved towards a more focused attempt to solve problem
P-1 to protect against endogeneity of D with respect to U.
Sometimes the parameter being identified is not clearly
specified.
When it is, this focus implements Marschak’s Maxim of doing
one thing well, as discussed in Part I.
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Common to the literature on IV estimation, proponents of
randomization often ignore the consequences of heterogeneity
in β and dependence of β on D — the problem of essential
heterogeneity.

Our discussion in the previous sections applies with full force to
randomization as an instrument.
Only if the randomization (instrument) corresponds exactly to
the policy that is sought to be evaluated will the IV
(randomization) identify the parameters of economic interest.
This section considers the case for randomization as an
instrumental variable to solve endogeneity problems.
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Randomization as an Instrumental Variable

The argument justifying randomization as an instrument
assumes that randomization (or more generally the treatment
assignment rule) does not alter subjective or objective potential
outcomes.

This is covered by assumption (PI-3) presented in Part I.
We also maintain absence of general equilibrium effects (PI-4)
throughout this section.
We discuss violations of (PI-3) when we discuss randomization
bias.
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To be explicit about particular randomization mechanisms, we
return to our touchstone generalized Roy model.

Potential outcomes are (Y0,Y1) and cost of participation is C.
Assume perfect certainty in the absence of randomization.
Under self-selection, the treatment choice is governed by

D = 1 (Y1 − Y0 − C ≥ 0) .

This model of program participation abstracts from the
important practical feature of many social programs that
multiple agents contribute to decisions about program
participation.
We consider a more general framework in Slide 882.
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We assume additive separability between the observables
(X,W) and the unobservables (U0,U1,UC) for convenience:

Y1 = µ1(X) + U1, Y0 = µ0(X) + U0,
C = µC(W) + UC, V = U1 − U0 − UC,

µI(X,W) = µ1(X)− µ0(X)− µC(W), Z = (X,W).

Only some components of X and/or W may be randomized.

Randomization can be performed unconditionally or conditional
on strata, Q, where the strata may or may not include
components of (X,W) that are not randomized.
Specifically, it can be performed conditional on X, just as in our
analysis of IV.
Parameters can be defined conditional on X.
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We assume additive separability between the observables
(X,W) and the unobservables (U0,U1,UC) for convenience:

Y1 = µ1(X) + U1, Y0 = µ0(X) + U0,
C = µC(W) + UC, V = U1 − U0 − UC,

µI(X,W) = µ1(X)− µ0(X)− µC(W), Z = (X,W).

Only some components of X and/or W may be randomized.
Randomization can be performed unconditionally or conditional
on strata, Q, where the strata may or may not include
components of (X,W) that are not randomized.
Specifically, it can be performed conditional on X, just as in our
analysis of IV.

Parameters can be defined conditional on X.
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Examples of treatments randomly assigned include the
tax/benefit plans of the negative income tax programs; the
price of electricity over the course of the day; variable tolls and
bonuses; textbooks to pupils; reducing class size.

Under invariance condition (PI-3), the functions µ0(X), µ1(X),
µC(W) (and hence µI(X,W)) are invariant to such
modifications.
The intervention is assumed to change the arguments of
functions without shifting the functions themselves.
Thus for the intervention of randomization, the functions are
assumed to be structural in the sense of ?.
The distributions of (U0,U1,UC) conditional on X, and hence
the distribution of V conditional on X, are also invariant.
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Under full compliance, the manipulated Z are the same as the
Z facing the agent.

We formalize this assumption:
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(R-4)
The Z assigned agent ω conditional on X are the Z realized and
acted on by the agent conditional on X.
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In terms of the generalized Roy model, this assumption states
that the Z assigned ω given X is the W that appears in the cost
function and the derived decision rule.
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Some randomizations alter the environments facing agents in a
more fundamental way by introducing new random variables
into the model instead of modifying the variables that would be
present in a pre-experimental environment.

Comparisons of these randomizations involve an implicit
dynamics, better exposited using the dynamic models presented
in Part III.
For simplicity and to present some main ideas, we initially
invoke an implicit dynamics suitable to the generalized Roy
model.
We develop a more explicit dynamic model of randomized
evaluation in Slide 882.
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The most commonly used randomizations restrict eligibility
either in advance of agent decisions about participation in a
program or after agent decisions are made, but before actual
participation begins.

Unlike statistical discussions of randomization, we build agent
choice front and center into our analysis.
Agents choose and experimenters can only manipulate choice
sets.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

The most commonly used randomizations restrict eligibility
either in advance of agent decisions about participation in a
program or after agent decisions are made, but before actual
participation begins.
Unlike statistical discussions of randomization, we build agent
choice front and center into our analysis.

Agents choose and experimenters can only manipulate choice
sets.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

The most commonly used randomizations restrict eligibility
either in advance of agent decisions about participation in a
program or after agent decisions are made, but before actual
participation begins.
Unlike statistical discussions of randomization, we build agent
choice front and center into our analysis.
Agents choose and experimenters can only manipulate choice
sets.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

Let ξ = 1 if an agent is eligible to participate in the program;
ξ = 0 otherwise.

ξ̃ = {0, 1} is the set of possible values of ξ.
Let D indicate participation under ordinary conditions.
In the absence of randomization, D is an indicator of whether
the agent actually participates in the program.
Let actual participation be A.
By construction, under invariance condition (PI-3) presented in
Part I,

A = Dξ. (71)
This assumes that eligibility is strictly enforced.
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There is a distinction between desired participation by the
agent (D) and actual participation (A).

This distinction is conceptually distinct from the ex-ante,
ex-post distinction.
At all stages of the application and enrollment process, agents
may be perfectly informed about their value of ξ and desire to
participate (D), but may not be allowed to participate.
On the other hand, the agent may be surprised by ξ after
applying to the program.
In this case, there is revelation of information and there is a
distinction between ex ante expectations and ex post
realizations.
Our analysis covers both cases.
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We consider two types of randomization of eligibility.

Randomization of Type 1. A random mechanism (possibly
conditional on (X,Z)) is used to determine ξ. The probability of
eligibility is Pr (ξ = 1 | X,Z).
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For this type of randomization, in the context of the
generalized Roy model, it is assumed that
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(e-1a) ξ ⊥⊥ (U0,U1,UC) | X,Z (Randomization of
Eligibility)

and
(e-1b) Pr (A = 1 | X,Z, ξ) depends on ξ.
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This randomization affects the eligibility of the agent for the
program but because agents still self-select, there is no
assurance that eligible agents will participate in the program.

This condition does not impose exogeneity on X,Z.
Thus Z can fail as an instrument but ξ remains a valid
instrument.
Alternatively, (e-1a) and (e-1b) may be formulated according to
the notation of ?.
Define A (z, e) to be the value of A when we set Z = z and
ξ = e.
Define Z as the set of admissible Z and ξ̃ as the set of
admissible ξ.
In this notation, we may rewrite assumptions (e-1a) and (e-1b)
as
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This randomization affects the eligibility of the agent for the
program but because agents still self-select, there is no
assurance that eligible agents will participate in the program.
This condition does not impose exogeneity on X,Z.

Thus Z can fail as an instrument but ξ remains a valid
instrument.
Alternatively, (e-1a) and (e-1b) may be formulated according to
the notation of ?.
Define A (z, e) to be the value of A when we set Z = z and
ξ = e.
Define Z as the set of admissible Z and ξ̃ as the set of
admissible ξ.
In this notation, we may rewrite assumptions (e-1a) and (e-1b)
as
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This randomization affects the eligibility of the agent for the
program but because agents still self-select, there is no
assurance that eligible agents will participate in the program.
This condition does not impose exogeneity on X,Z.
Thus Z can fail as an instrument but ξ remains a valid
instrument.

Alternatively, (e-1a) and (e-1b) may be formulated according to
the notation of ?.
Define A (z, e) to be the value of A when we set Z = z and
ξ = e.
Define Z as the set of admissible Z and ξ̃ as the set of
admissible ξ.
In this notation, we may rewrite assumptions (e-1a) and (e-1b)
as
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This randomization affects the eligibility of the agent for the
program but because agents still self-select, there is no
assurance that eligible agents will participate in the program.
This condition does not impose exogeneity on X,Z.
Thus Z can fail as an instrument but ξ remains a valid
instrument.
Alternatively, (e-1a) and (e-1b) may be formulated according to
the notation of ?.

Define A (z, e) to be the value of A when we set Z = z and
ξ = e.
Define Z as the set of admissible Z and ξ̃ as the set of
admissible ξ.
In this notation, we may rewrite assumptions (e-1a) and (e-1b)
as
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This randomization affects the eligibility of the agent for the
program but because agents still self-select, there is no
assurance that eligible agents will participate in the program.
This condition does not impose exogeneity on X,Z.
Thus Z can fail as an instrument but ξ remains a valid
instrument.
Alternatively, (e-1a) and (e-1b) may be formulated according to
the notation of ?.
Define A (z, e) to be the value of A when we set Z = z and
ξ = e.

Define Z as the set of admissible Z and ξ̃ as the set of
admissible ξ.
In this notation, we may rewrite assumptions (e-1a) and (e-1b)
as
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This randomization affects the eligibility of the agent for the
program but because agents still self-select, there is no
assurance that eligible agents will participate in the program.
This condition does not impose exogeneity on X,Z.
Thus Z can fail as an instrument but ξ remains a valid
instrument.
Alternatively, (e-1a) and (e-1b) may be formulated according to
the notation of ?.
Define A (z, e) to be the value of A when we set Z = z and
ξ = e.
Define Z as the set of admissible Z and ξ̃ as the set of
admissible ξ.

In this notation, we may rewrite assumptions (e-1a) and (e-1b)
as
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This randomization affects the eligibility of the agent for the
program but because agents still self-select, there is no
assurance that eligible agents will participate in the program.
This condition does not impose exogeneity on X,Z.
Thus Z can fail as an instrument but ξ remains a valid
instrument.
Alternatively, (e-1a) and (e-1b) may be formulated according to
the notation of ?.
Define A (z, e) to be the value of A when we set Z = z and
ξ = e.
Define Z as the set of admissible Z and ξ̃ as the set of
admissible ξ.
In this notation, we may rewrite assumptions (e-1a) and (e-1b)
as
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(e-1a)′ ξ ⊥⊥
(

Y0,Y1, {A (z, e)}(z,e)∈Z×ξ̃

)
| X,Z

and
(e-1b)′ Pr (A = 1 | X,Z, ξ) depends on ξ.
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A second type of randomization conditions on individuals
manifesting a desire to participate through their decision to
apply to the program.

This type of randomization is widely used.
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A second type of randomization conditions on individuals
manifesting a desire to participate through their decision to
apply to the program.
This type of randomization is widely used.
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Randomization of Type 2: Eligibility may be a function of D
(conditionally on some or all components of X,Z,Q or
unconditionally ). It is common to deny entry into programs among
people who applied and were accepted into the program (D = 1 ) so
the probability of eligibility is Pr (ξ = 1 | X,Z,Q,D = 1). This
assumes (PI-3) stated in Part I.
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For this type of randomization of eligibility, it is assumed that

(e-2a) ξ ⊥⊥ (U0,U1) | X,Z,Q,D = 1

and
(e-2b) Pr (A = 1 | X,Z,D = 1, ξ = 1) = 1;
Pr (A = 1 | X,Z,D = 1, ξ = 0) = 0.
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For this type of randomization of eligibility, it is assumed that
(e-2a) ξ ⊥⊥ (U0,U1) | X,Z,Q,D = 1

and
(e-2b) Pr (A = 1 | X,Z,D = 1, ξ = 1) = 1;
Pr (A = 1 | X,Z,D = 1, ξ = 0) = 0.
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Agent failure to comply with the eligibility rules or protocols of
experiments can lead to violations of (e-1) and/or (e-2).

An equivalent way to formulate (e-2a) and (e-2b) uses the
Imbens-Angrist notation for IV:
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Agent failure to comply with the eligibility rules or protocols of
experiments can lead to violations of (e-1) and/or (e-2).
An equivalent way to formulate (e-2a) and (e-2b) uses the
Imbens-Angrist notation for IV:
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(e-2a)′ ξ ⊥⊥ (Y0,Y1) | X,Z,Q,D = 1
and

(e-2b)′ Pr (A = 1 | X,Z,D = 1, ξ = 1) = 1;
Pr (A = 1 | X,Z,D = 1, ξ = 0) = 0.
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Both randomizations are instruments as defined in Slide 152.

Under the stated conditions, both satisfy (IV-1) and (IV-2),
suitably redefined for eligibility randomizations, replacing D by
A.
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Both randomizations are instruments as defined in Slide 152.
Under the stated conditions, both satisfy (IV-1) and (IV-2),
suitably redefined for eligibility randomizations, replacing D by
A.
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A variety of conditioning variables is permitted by these
definitions.

Thus, (e-1) and (e-2) allow for the possibility that the
conventional instruments Z fail (IV-1) and (IV-2), but
nonetheless the randomization generates a valid instrument ξ.
The simplest randomizations do not condition on any variables.
We next consider what these instruments identify.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

A variety of conditioning variables is permitted by these
definitions.
Thus, (e-1) and (e-2) allow for the possibility that the
conventional instruments Z fail (IV-1) and (IV-2), but
nonetheless the randomization generates a valid instrument ξ.

The simplest randomizations do not condition on any variables.
We next consider what these instruments identify.
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A variety of conditioning variables is permitted by these
definitions.
Thus, (e-1) and (e-2) allow for the possibility that the
conventional instruments Z fail (IV-1) and (IV-2), but
nonetheless the randomization generates a valid instrument ξ.
The simplest randomizations do not condition on any variables.

We next consider what these instruments identify.
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A variety of conditioning variables is permitted by these
definitions.
Thus, (e-1) and (e-2) allow for the possibility that the
conventional instruments Z fail (IV-1) and (IV-2), but
nonetheless the randomization generates a valid instrument ξ.
The simplest randomizations do not condition on any variables.
We next consider what these instruments identify.
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What Does Randomization Identify?

Under invariance assumption (PI-3) and under one set of
randomization assumptions just presented, IV is an instrument
that identifies some treatment effect for an ongoing program.

The question is: which treatment effect?
Following our discussion of IV with essential heterogeneity
presented in Slide 152, different randomizations (or
instruments) identify different parameters unless there is a
common coefficient model (Y1 − Y0 = β(X) is the same for
everyone given X ) or unless there is no dependence between
the treatment effect (Y1 − Y0) and the indicator D of the
agents’ desire to participate in the treatment.
In these two special cases, all mean treatment parameters are
the same.
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Under invariance assumption (PI-3) and under one set of
randomization assumptions just presented, IV is an instrument
that identifies some treatment effect for an ongoing program.
The question is: which treatment effect?

Following our discussion of IV with essential heterogeneity
presented in Slide 152, different randomizations (or
instruments) identify different parameters unless there is a
common coefficient model (Y1 − Y0 = β(X) is the same for
everyone given X ) or unless there is no dependence between
the treatment effect (Y1 − Y0) and the indicator D of the
agents’ desire to participate in the treatment.
In these two special cases, all mean treatment parameters are
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What Does Randomization Identify?

Under invariance assumption (PI-3) and under one set of
randomization assumptions just presented, IV is an instrument
that identifies some treatment effect for an ongoing program.
The question is: which treatment effect?
Following our discussion of IV with essential heterogeneity
presented in Slide 152, different randomizations (or
instruments) identify different parameters unless there is a
common coefficient model (Y1 − Y0 = β(X) is the same for
everyone given X ) or unless there is no dependence between
the treatment effect (Y1 − Y0) and the indicator D of the
agents’ desire to participate in the treatment.

In these two special cases, all mean treatment parameters are
the same.
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What Does Randomization Identify?

Under invariance assumption (PI-3) and under one set of
randomization assumptions just presented, IV is an instrument
that identifies some treatment effect for an ongoing program.
The question is: which treatment effect?
Following our discussion of IV with essential heterogeneity
presented in Slide 152, different randomizations (or
instruments) identify different parameters unless there is a
common coefficient model (Y1 − Y0 = β(X) is the same for
everyone given X ) or unless there is no dependence between
the treatment effect (Y1 − Y0) and the indicator D of the
agents’ desire to participate in the treatment.
In these two special cases, all mean treatment parameters are
the same.
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Using IV, we can identify the marginal distributions F0 (y0 | X)
and F1 (y1 | X).

In a model with essential heterogeneity, the instruments
generated by randomization can identify parameters that are far
from the parameters of economic interest.
Randomization of components of W (or Z given X) under (R-4)
and conditions (IV-1) and (IV-2) from Slide 12 produces
instruments with the same problems and possibilities as
analyzed in our discussion of instrumental variables.
Using W as an instrument may lead to negative weights on the
underlying LATEs or MTEs.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

Using IV, we can identify the marginal distributions F0 (y0 | X)
and F1 (y1 | X).
In a model with essential heterogeneity, the instruments
generated by randomization can identify parameters that are far
from the parameters of economic interest.

Randomization of components of W (or Z given X) under (R-4)
and conditions (IV-1) and (IV-2) from Slide 12 produces
instruments with the same problems and possibilities as
analyzed in our discussion of instrumental variables.
Using W as an instrument may lead to negative weights on the
underlying LATEs or MTEs.
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Using IV, we can identify the marginal distributions F0 (y0 | X)
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generated by randomization can identify parameters that are far
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Thus, unless we condition on the other instruments, the IV
defined by randomization can be negative even if all of the
underlying treatment effects or LATEs and MTEs generating
choice behavior are positive.

The weighted average of the MTE generated by the instrument
may be far from the policy relevant treatment effect.
Under (PI-3) and (e-1), or equivalently (e-1)′, the first type of
eligibility randomization identifies Pr (D = 1 | X,Z) (the choice
probability) and hence relative subjective evaluations, and the
marginal outcome distributions F0 (y0 | X,D = 0) and
F1 (y1 | X,D = 1) for the eligible population (ξ = 1).
Agents made eligible for the program self-select as usual.
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For those deemed ineligible (ξ = 0), under our assumptions, we
would identify the distribution of Y0, which can be partitioned
into components for those who would have participated in the
program had it not been for the randomization and
components for those who would not have participated if
offered the opportunity to do so:

F0 (y0 | X) = F0 (y0 | X,D = 0) Pr (D = 0 | X) + F0 (y0 | X,D = 1) Pr(D = 1 | X).

Since we know F0 (y0 | X,D = 0) and Pr(D = 1 | X) from the
eligible population, we can identify F0 (y0 | X,D = 1).
This is the new piece of information produced by the
randomization compared to what can be obtained from
standard observational data.
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In particular, we can identify the parameter TT,
E (Y1 − Y0 | X,D = 1), but without further assumptions, we
cannot identify the other treatment parameters ATE
(= E (Y1 − Y0 | X)) or the joint distributions F (y0, y1 | X) or
F (y0, y1 | X,D = 1).

To show that ξ is a valid instrument for A, form the Wald
estimand,

IV(e-1) =
E (Y | ξ = 1,Z,X)− E (Y | ξ = 0,Z,X)

Pr (A = 1 | ξ = 1,Z,X)− Pr (A = 1 | ξ = 0,Z,X) . (72)

Under invariance assumption (PI-3), Pr (D = 1 | Z,X) is the
same in the presence or absence of randomization.
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Assuming full compliance so that agents randomized to
ineligibility do not show up in the program,

Pr (A = 1 | ξ = 0,Z,X) = 0,

and

E (Y | ξ = 0,Z,X) = E (Y0 | Z,X)
= E (Y0 | D = 1,X,Z) Pr (D = 1 | X,Z)

+E (Y0 | D = 0,X,Z) Pr (D = 0 | X,Z) .

If Z also satisfies the requirement (IV-1) that it is an
instrument, then E (Y0 | Z,X) = E (Y0 | X).

Under (e-1) or (e-1)′ we do not have to assume that Z is a
valid instrument.
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Using (e-1) and assumption (PI-3), the first term in the
numerator of (72) can be written as

E (Y | ξ = 1,Z,X) = E (Y1 | D = 1,Z,X) Pr (D = 1 | Z,X)
+E (Y0 | D = 0,Z,X) Pr (D = 0 | Z,X) .

Substituting this expression into the numerator of equation
(72) and collecting terms, IV(e-1) identifies the parameter
treatment on the treated:

IV(e-1) = E (Y1 − Y0 | D = 1,Z,X) .

It does not identify the other mean treatment effects, such as
LATE or the average treatment effect ATE, unless the common
coefficient model governs the data or (Y1 − Y0) is mean
independent of D.
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Using the result that F (y | X) = E (1 (Y ≤ y) | X), IV(e-1) also
identifies F0 (y0 | X,D = 1), since we can compute conditional
means of 1 (Y ≤ y) for all y.

The distribution F1 (y1 | X,D = 1) can be identified from
observational data.
Thus we can identify the outcome distributions for Y0 and for
Y1 separately, conditional on D = 1,X,Z, but without
additional assumptions we cannot identify the joint distribution
of outcomes or the other treatment parameters.
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Randomization not conditional on (X,Z) (ξ ⊥⊥ (X,Z)) creates
an instrument ξ that satisfies the monotonicity or uniformity
conditions.

If the randomization is performed on (X,Z) strata, then the IV
must be used conditional on the strata variables to ensure
monotonicity is satisfied.
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The second type of eligibility randomization proceeds
conditionally on D = 1.

Accordingly, data generated from such experiments do not
identify choice probabilities (Pr (D = 1 | X,Z)) and hence do
not identify the subjective evaluations of agents (??).
Under (PI-3) and (e-2) (or equivalent conditions (e-2)′)
randomization identifies F0 (y0 | D = 1,X,Z) from the data on
the randomized-out participants.
This conditional distribution cannot be constructed from
ordinary observational data unless additional assumptions are
invoked.
From the data for the eligible (ξ = 1) population, we identify
F1 (y1 | D = 1,X,Z).
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The second type of eligibility randomization proceeds
conditionally on D = 1.
Accordingly, data generated from such experiments do not
identify choice probabilities (Pr (D = 1 | X,Z)) and hence do
not identify the subjective evaluations of agents (??).
Under (PI-3) and (e-2) (or equivalent conditions (e-2)′)
randomization identifies F0 (y0 | D = 1,X,Z) from the data on
the randomized-out participants.
This conditional distribution cannot be constructed from
ordinary observational data unless additional assumptions are
invoked.
From the data for the eligible (ξ = 1) population, we identify
F1 (y1 | D = 1,X,Z).
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The Wald estimator for mean outcomes in this case is

IV(e-2) =
E (Y | D = 1, ξ = 1,X,Z)− E (Y | D = 1, ξ = 0,X,Z)

Pr (A = 1 | D = 1, ξ = 1,X,Z)− Pr (A = 1 | D = 1, ξ = 0,X,Z)
.

Under (e-2)/(e-2)′,

Pr (A = 1 | D = 1, ξ = 1,X,Z) = 1,
Pr (A = 1 | D = 1, ξ = 0,X,Z) = 0,

E (Y | A = 0,D = 1, ξ = 0,X,Z) = E (Y0 | D = 1,X,Z) , and
E (Y | A = 1,D = 1, ξ = 1,X,Z) = E (Y1 | D = 1,X,Z) .

Thus,
IV(e-2) = E (Y1 − Y0 | D = 1,X,Z) .
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In the general model with essential heterogeneity, randomized
trials with full compliance that do not disturb the activity being
evaluated answer a limited set of questions, and do not in
general identify the policy relevant treatment effect (PRTE).

Randomizations have to be carefully chosen to make sure that
they answer interesting economic questions.
Their analysis has to be supplemented with the methods
previously analyzed to answer the full range of policy questions
addressed there.
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Thus far we have assumed that the randomizations do not
violate the invariance assumption (PI-3).

Yet many randomizations alter the environment they are
studying and inject what may be unwelcome sources of
uncertainty into agent decision making.
We now examine the consequences of violations of invariance.
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Randomization Bias

If randomization alters the program being evaluated, the
outcomes of a randomized trial may bear little resemblance to
the outcomes generated by an ongoing version of the program
that has not been subject to randomization.

In this case, assumption (PI-3) is violated.
Such violations are termed “Hawthorne effects” and are called
“Randomization Bias” in the economics literature.
The process of randomization may affect objective outcomes,
subjective outcomes or both.
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Even if (PI-3) is violated, randomization may still be a valid
instrument for the altered program.

Although the program studied may be changed, under the
assumptions made in Slide 856, randomization can produce
“internally valid” treatment effects for the altered program.
Thus randomization can answer policy question (P-1) for a
program changed by randomization, but not for the program as
it would operate in the absence of randomization.
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As noted repeatedly, a distinctive feature of the econometric
approach to social program evaluation is its emphasis on choice
and agent subjective evaluations of programs.

This feature accounts for the distinction between the
statistician’s invariance assumption (PI-1) and the economist’s
invariance assumption (PI-3).
(These are presented in Part I.) It is instructive to consider the
case where assumption (PI-1) is valid but assumption (PI-3) is
not.
This case might arise when randomization alters risk-averse
agent decision behavior but has no effects on potential
outcomes.
Thus the R (s, ω) are affected, but not the Y(s, ω).
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In this case, the parameter ATE(X) = E (Y1 − Y0 | X) is the
same in the ongoing program as in the population generated by
the randomized trial.

However, treatment parameters conditional on choices such as
TT(X) = E (Y1 − Y0 | X,D = 1),
TUT(X) = E (Y1 − Y0 | X,D = 0) are not, in general, invariant.
If the subjective valuations are altered, so are the parameters
based on choices produced by the subjective valuations.
Different random variables generate the conditioning sets in the
randomized and nonrandomized regimes and, in general, they
will have a different dependence structure with the outcomes
Y(s, ω).
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This arises because randomization alters the composition of
participants in the conditioning set that defines the treatment
parameter.

This analysis applies with full force to LATE.
LATE based on P(Z) for two distinct values of Z (Z = z and
Z = z′) is E (Y1 − Y0 | X,P(z′) ≤ UD ≤ P(z)).
In the randomized trial, violation of (PI-3) because of lack of
invariance of R(s, ω) changes UD and the values of P(Z) for the
same Z = z.
In general, this alters LATE.
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The case where (PI-1) holds, but (PI-3) does not, generates
invariant conditional (on choice) parameters if there is no
treatment effect heterogeneity or if there is such heterogeneity
that is independent of D.

These are the familiar conditions: (a) Y1 − Y0 is the same for
all people with the same X = x or (b) Y1 − Y0 is (mean)
independent of D given X = x.
In these cases, the MTE is flat in UD.
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In general, in a model with essential heterogeneity, even if the
Rubin invariance conditions (PI-1) and (PI-2) are satisfied, but
conditions (PI-3) and (PI-4) are not, treatment parameters
defined conditional on choices are not invariant to the choice of
randomization.

This insight shows the gain in clarity in interpreting what
experiments identify from adopting a choice-theoretic,
econometric approach to the evaluation of social programs, as
opposed to the conventional approach adopted by statisticians.
We now show another advantage of the economic approach in
an analysis of noncompliance and its implications for
interpreting experimental evidence.
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Compliance

The statistical treatment effect literature extensively analyzes
the problem of noncompliance.

Persons assigned to a treatment may not accept it.
In the notation of equation (72), let ξ = 1 if a person is
assigned to treatment, ξ = 0 otherwise.
Compliance is said to be perfect when ξ = 1 ⇒ A = 1 and
ξ = 0 ⇒ A = 0.
In the presence of self selection by agents, these conditions do
not, in general, hold.
People assigned to treatment may not comply (ξ = 1 but
D = 0).
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This is also called the “dropout” problem ( ?; ?).

In its formulation of this problem, the literature assumes that
outcomes are measured for each participant but that outcomes
realized are not always those intended by the randomizers.
In addition, people denied treatment may find substitutes for
the treatment outside of the program.
This is the problem of substitution bias.
Since self-selection is an integral part of choice models,
noncompliance, as the term is used by the statisticians, is a
feature of most social experiments.
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The econometric approach builds in the possibility of
self-selection as an integral part of model specification.

As emphasized in the econometric literature since the work of
?, ???, and ?, agent decisions to participate are informative
about their subjective evaluations of the program.
In the dynamic setting discussed in section 3 of Part III, agent
decisions to attrite from a program are informative about their
update of information about the program ( ?; ?; ?; and ?).
Noncompliance is a source of information about subjective
evaluations of programs.
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Noncompliance is a problem if the goal of the social experiment
is to estimate ATE(X) = E (Y1 − Y0 | X) without using the
econometric methods previously discussed.

We established in Slide 869 that in the presence of
self-selection, in a general case with essential heterogeneity,
experiments under assumptions (PI-3) and (PI-4) and (e-1) or
(e-2) identify E (Y1 − Y0 | X,D = 1) instead of ATE(X).
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Concerns about noncompliance often arise from adoption of the
Neyman-Cox-Rubin “causal model” discussed in Part I,
section 4.4.

Experiments are conceived as tools for direct allocation of
agricultural treatments.
For that reason, that literature elevates ATE to pre-eminence
as the parameter of interest because it is thought that this
parameter can be produced by experiments.
In social experiments, it is rare that the experimenter can force
anyone to do anything.
As the old adage goes, “you can lead a horse to water but you
cannot make it drink.” Agent choice behavior intervenes.
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as the parameter of interest because it is thought that this
parameter can be produced by experiments.

In social experiments, it is rare that the experimenter can force
anyone to do anything.
As the old adage goes, “you can lead a horse to water but you
cannot make it drink.” Agent choice behavior intervenes.
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Thus it is no accident that if they are not compromised, the
two randomizations most commonly implemented directly
identify parameters conditional on choices.

There is a more general version of the noncompliance problem
which requires a dynamic formulation.
Agents are assigned to treatment (ξ = 1) and some accept
(D = 1) but drop out of the program at a later stage.
We need to modify the formulation in this section to cover this
case.
We now turn to that modification.
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The Dynamics of Dropout and Program Participation

Actual programs are more dynamic in character than the
stylized program just analyzed.

Multiple actors are involved, such as the agents being studied
and the groups administering the programs.
People apply, are accepted, enroll, and complete the program.
A fully dynamic analysis, along the lines of the models
developed in Part III of our contribution to this Handbook,
analyzes each of these decisions, accounting for the updating of
agent and program administrators’ information.
This section briefly discusses some new issues that arise in a
more dynamic formulation of the dropout problem.
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?, ?, ?, and ?? discuss these issues in greater depth.

In this subsection, we analyze the effects of dropouts on
inferences from social experiments and assume no attrition.
Our analysis of this case is of interest both in its own right and
as a demonstration of the power of our approach.
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Consider a stylized multiple stage program.

In stage “0 ”, the agent (possibly in conjunction with program
officials) decides to participate or not to participate in the
program.
This is an enrollment phase prior to treatment.
Let D0 = 1 denote that the agent does not choose to
participate.
D0 = 0 denotes that the agent participates and receives some
treatment among J possible program levels beyond the no
treatment state.
The outcome associated with state “0” is Y0.
This assumes that acts of inquiry about a program or
registration in it have no effect on outcomes.
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One could disaggregate stage “0” into recruitment, application,
and acceptance stages, but for expositional simplicity we
collapse these into one stage.

If the J possible treatment stages are ordered, say, by the
intensity of treatment, then “1” is the least amount of
treatment and “J” is the greatest amount.
A more general model would allow people to transit to stage j
but not complete it.
The J distinct stages can be interpreted quite generally.
If a person no longer participates in the program after stage j,
j = 1, . . . , J, we set indicator Dj = 1.
The person is assumed to receive stage j treatment.
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DJ = 1 corresponds to completion of the program in all J
stages of its treatment phase.

Note that, by construction,
∑J

j=0 Dj = 1.
The sequential updating model developed below in Part III can
be used to formalize these decisions and their associated
outcomes.
We can also use the simple multinomial choice model
developed and analyzed in appendix B of Part I.
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Let {Dj (z)}z∈Z be the set of potential treatment choices for
choice j associated with setting Z = z.

For each Z = z,
∑J

j=0 Dj (z) = 1.
Using the methods exposited in Part III, we could update the
information sets at each stage.
We keep this updating implicit.
Different components of Z may determine different choice
indicators.
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Array the collections of choice indicators evaluated at each
Z = z into a vector

D (z) =
(
{D1 (z)}z∈Z , . . . , {DJ (z)}z∈Z

)
.

The potential outcomes associated with each of the J + 1
states are

Yj = µj (X,Uj) , j = 0, . . . , J.
Y0 is the no treatment state, and the Yj, j ≥ 1, correspond to
outcomes associated with dropping out at various stages of the
program.
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In the absence of randomization, the observed Y is

Y =
J∑

j=0
DjYj,

the Roy-Quandt switching regime model.

Let Ỹ = (Y0, . . . ,YJ) denote the vector of potential outcomes
associated with all phases of the program.
Through selection, the Yj for persons with Dj = 1 may be
different from the Yj for persons with Dj = 0.
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Appendix B of Part I gives conditions under which the
distributions of the Yj and the subjective evaluations Rj,
j = 0, . . . , J, that generate choices Dj are identified.

Using the tools for multiple outcome models developed in
Slide 471, we can use IV and our extensions of IV to identify
the treatment parameters discussed there.
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In this subsection, we consider what randomizations at various
stages identify.

We assume that the randomizations do not disturb the
program.
Thus we invoke assumption (PI-3).
Recall that we also assume absence of general equilibrium
effects (PI-4).
Let ξj = 1 denote whether the person is eligible to move
beyond stage j.
ξj = 0 means the person is randomized out of the program
after completing stage j.
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A randomization at stage j with ξj = 1 means the person is
allowed to continue on to stage j + 1, although the agent may
still choose not to.

We set ξJ ≡ 1 to simplify the notation.
The ξj are ordered in a natural way: ξj = 1 only if ξℓ = 1,
ℓ = 0, . . . , j − 1.
Array the ξj into a vector ξ and denote its support by ξ̃.
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Because of agent self-selection, a person who does not choose
to participate at stage j cannot be forced to do so.

For a person who would choose k (Dk = 1) in a
nonexperimental environment, Yk is observed if

∏k−1
ℓ=0 ξℓ = 1.

Otherwise, if ξk−1 = 0 but, say,
∏k′−1

ℓ=0 ξℓ = 1 and
∏k′

ℓ=0 ξℓ = 0
for k′ < k, we observe Yk′ for the agent.
From an experiment with randomization administered at
different stages, we observe

Y =
J∑

j=0
Dj

( j∑
k=0

(k−1∏
ℓ=0

ξℓ

)
(1 − ξk)Yk

)
.

To understand this formula, consider a program with three
stages (J = 3) after the initial participation stage.
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For a person who would like to complete the program
(D3 = 1), but is stopped by randomization after stage 2, we
observe Y2 instead of Y3.

If the person is randomized out after stage 1, we observe Y1
instead of Y3.
Let Ak be the indicator that we observe the agent with a stage
k outcome.
This can happen if a person would have chosen to stop at stage
k ( Dk = 1) and survives randomization through k
(
∏k−1

ℓ=0 ξℓ = 1), or if a person would have chosen to stop at a
stage later than k but was thwarted from doing so by the
randomization and settles for the best attainable state given
the constraint imposed by the randomization.
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(D3 = 1), but is stopped by randomization after stage 2, we
observe Y2 instead of Y3.
If the person is randomized out after stage 1, we observe Y1
instead of Y3.

Let Ak be the indicator that we observe the agent with a stage
k outcome.
This can happen if a person would have chosen to stop at stage
k ( Dk = 1) and survives randomization through k
(
∏k−1

ℓ=0 ξℓ = 1), or if a person would have chosen to stop at a
stage later than k but was thwarted from doing so by the
randomization and settles for the best attainable state given
the constraint imposed by the randomization.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

For a person who would like to complete the program
(D3 = 1), but is stopped by randomization after stage 2, we
observe Y2 instead of Y3.
If the person is randomized out after stage 1, we observe Y1
instead of Y3.
Let Ak be the indicator that we observe the agent with a stage
k outcome.

This can happen if a person would have chosen to stop at stage
k ( Dk = 1) and survives randomization through k
(
∏k−1

ℓ=0 ξℓ = 1), or if a person would have chosen to stop at a
stage later than k but was thwarted from doing so by the
randomization and settles for the best attainable state given
the constraint imposed by the randomization.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

For a person who would like to complete the program
(D3 = 1), but is stopped by randomization after stage 2, we
observe Y2 instead of Y3.
If the person is randomized out after stage 1, we observe Y1
instead of Y3.
Let Ak be the indicator that we observe the agent with a stage
k outcome.
This can happen if a person would have chosen to stop at stage
k ( Dk = 1) and survives randomization through k
(
∏k−1

ℓ=0 ξℓ = 1), or if a person would have chosen to stop at a
stage later than k but was thwarted from doing so by the
randomization and settles for the best attainable state given
the constraint imposed by the randomization.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

We can express Ak as

Ak = Dk

k−1∏
ℓ=0

ξℓ +
∑
j≥k

Dj

(k−1∏
ℓ=0

ξℓ

)
(1 − ξk) , k = 1, . . . , J.

If a person who chooses Dk = 1 survives all stages of
randomization through k − 1 and hence is allowed to transit to
k, we observe Yk for that person.

For persons who would choose Dj = 1, j > k, but get
randomized out at k, i.e.,

(∏k−1
ℓ=0 ξℓ

)
(1 − ξk) = 1, we also

observe Yk.
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We now state the conditions under which sequential
randomizations are instrumental variables for the Aj.

Let Ai (z, ei) be the value of Ai when Z = z and ξi = ei.
Array the Ai, i = 1, . . . , J, into a vector

A (z, e) = (A1 (z, e1) ,A2 (z, e2) , . . . ,AJ (z, eJ)) .

A variety of randomization mechanisms are possible in which
randomization depends on the information known to the
randomizer at each stage of the program.
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IV conditions for ξ are satisfied under the following sequential
randomization assumptions.

They parallel the sequential randomization conditions
developed in the dynamic models analyzed in Part III:
(e-3a): ξi ⊥⊥(

Ỹ, {A (z, e)}(z,e)∈Z×ξ̃ | X,Z,Dℓ = 1 for ℓ < i,
∏i−1

ℓ=0 ξℓ = 1
)

,
for i = 1, . . . , J,

and
(e-3b): Pr

(
Ai = 1 | X, Z, Dℓ = 1 for ℓ < i, ξi,

∏i−1
ℓ=0 ξℓ = 1

)
depends on ξi, for i = 1, . . . , J.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

IV conditions for ξ are satisfied under the following sequential
randomization assumptions.
They parallel the sequential randomization conditions
developed in the dynamic models analyzed in Part III:

(e-3a): ξi ⊥⊥(
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These expressions assume that the components of
Ỹ = (Y0, . . . ,YJ) that are realized are known to the randomizer
after the dropout decision is made, and thus cannot enter the
conditioning set for the sequential randomizations.
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To fix ideas, consider a randomization of eligibility ξ0, setting
ξ1 = · · · = ξJ = 1.

This is a randomization that makes people eligible for
participation at all stages of the program.
We investigate what this randomization identifies, assuming
invariance conditions (PI-3) and (PI-4) hold.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

To fix ideas, consider a randomization of eligibility ξ0, setting
ξ1 = · · · = ξJ = 1.
This is a randomization that makes people eligible for
participation at all stages of the program.

We investigate what this randomization identifies, assuming
invariance conditions (PI-3) and (PI-4) hold.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

To fix ideas, consider a randomization of eligibility ξ0, setting
ξ1 = · · · = ξJ = 1.
This is a randomization that makes people eligible for
participation at all stages of the program.
We investigate what this randomization identifies, assuming
invariance conditions (PI-3) and (PI-4) hold.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

For those declared eligible,

E (Y | ξ0 = 1) =
J∑

j=0
E (Yj | Dj = 1) Pr (Dj = 1) . (73)

For those declared ineligible,

E (Y | ξ0 = 0) =
J∑

j=0
E (Y0 | Dj = 1) Pr (Dj = 1) , (74)

since agents cannot participate in any stage of the program and
are all in the state “0” with outcome Y0.

From observed choice behavior, we can identify each of the
components of (73).
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We observe Pr (Dj = 1) from observed choices of treatment,
and we observe E (Yj | Dj = 1) from observed outcomes for
each treatment choice.

Except for the choice probabilities (Pr (Dj = 1), j = 0, . . . , J)
and E (Y0 | D0 = 1), we cannot identify individual components
of (74) for J > 1.
When J = 1, we can identify all of the components of ( 74).
The individual components of (74) cannot, without further
assumptions, be identified by the experiment, although the sum
can be.
Comparing the treatment group with the control group, we
obtain the “intention to treat” parameter with respect to the
randomization of ξ0 alone, setting ξ1 = · · · = ξJ = 1 for anyone
for whom ξ0 = 1.
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E (Y | ξ0 = 1)− E (Y | ξ0 = 0) =
J∑

j=1
E (Yj − Y0 | Dj = 1) Pr (Dj = 1) . (75)

For J > 1, this simple experimental estimator does not identify
the effect of full participation in the program for those who
participate (E (YJ − Y0 | DJ = 1)) unless additional
assumptions are invoked, such as the assumption that partial
participation has the same mean effect as full participation for
persons who drop out at the early stages, i.e.,
E (Yj − Y0 | Dj = 1) = E (YJ − Y0 | Dj = 1) for all j.
This assumption might be appropriate if just getting into the
program is all that matters — a pure signalling effect.
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program is all that matters — a pure signalling effect.
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A second set of conditions for identification of this parameter is
that E (Yj − Y0 | Dj = 1) = 0 for all j < J.

Under those conditions, if we divide the mean difference by
Pr (DJ = 1) , we obtain the “Bloom” estimator ( ?, ?)

IVBloom =
E (Y | ξ0 = 1)− E (Y | ξ0 = 0)

Pr (DJ = 1) ,

assuming Pr (DJ = 1) ̸= 0.
This is an IV estimator using ξ0 as the instrument for AJ.
In general, the mean difference between the treated and the
controlled identifies only the composite term shown in (75).
In this case, the simple randomization estimator identifies a
not-so-simple or easily interpreted parameter.
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More generally, if we randomize persons out after completing
stage k ([

∏k−1
ℓ=0 ξℓ] (1 − ξk) = 1) and for another group

establish full eligibility at all stages (
∏J

ℓ=0 ξℓ = 1), we obtain

E
[

Y
∣∣∣∣∣

J∏
ℓ=0

ξℓ = 1
]
− E

[
Y
∣∣∣∣∣
(k−1∏

ℓ=0
ξℓ

)
(1 − ξk) = 1

]

=
J∑

j=k
E (Yj − Yk | Dj = 1) Pr (Dj = 1) ,
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Hence, since we know E (Yk | Dk = 1) and Pr (Dk = 1) from
observational data, we can identify the combination of
parameters

J∑
j=k+1

E (Yk | Dj = 1) Pr (Dj = 1) , (76)

for each randomization that stops persons from advancing
beyond level k, k = 0, . . . , J − 1.
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Observe that a randomization of eligibility that prevents people
from going to stage J − 1 but not to stage J
([
∏J−2

ℓ=0 ξℓ] (1 − ξJ−1) = 1) identifies E(YJ − YJ−1 | DJ = 1):

E (Y | ξ0 = 1, . . . , ξJ−2 = 1, ξJ−1 = 0)

=

J−1∑
j=0

E (Yj | Dj = 1) Pr (Dj = 1)

+ E (YJ−1 | DJ = 1) Pr (DJ = 1) .

Thus,
E (Y | ξ0 = 1, . . . , ξJ = 1)− E (Y | ξ0 = 1, . . . , ξJ−1 = 1, ξJ = 0)

= E (YJ − YJ−1 | DJ = 1) Pr (DJ = 1) .

Since Pr (DJ = 1) is observed from choice data, as is
E (YJ | DJ = 1), we can identify E (YJ−1 | DJ = 1) from the
experiment.
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In the general case under assumptions (PI-3) and (PI-4), a
randomization that prevents agents from moving beyond stage
ℓ (ξ0 = 1, . . . , ξℓ−1 = 1, ξℓ = 0) directly identifies

E (Y | ξ0 = 1, . . . , ξℓ−1 = 1, ξℓ = 0) =

=
ℓ∑

j=0
E (Yj | Dj = 1) Pr (Dj = 1)

︸ ︷︷ ︸
all components known from observational data

+
J∑

j=ℓ+1
E (Yℓ | Dj = 1) Pr (Dj = 1)

︸ ︷︷ ︸
.

sum and probability weights known, but not individual E(Yℓ|Dj=1)

All of the components of the first set of terms on the
right-hand side are known from observational data.
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The probabilities in the second set of terms are known, but the
individual conditional expectations E (Yℓ | Dj = 1),
j = ℓ+ 1, . . . , J, are not known without further assumptions.

Randomization at stage ℓ is an IV.
To show this, decompose the observed outcome Y into
components associated with each value of Aj, the indicator
associated with observing a stage j outcome:

Y =
J∑

j=0
AjYj.

We can interpret ξℓ as an instrument for Aℓ.
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Keeping the conditioning on X,Z implicit, we obtain

IVξℓ =
E [Y | ξℓ = 0]− E [Y | ξℓ = 1]

Pr (Aℓ = 1 | ξℓ = 0)− Pr (Aℓ = 1 | ξℓ = 1)

=

J∑
j=ℓ+1

E [Yℓ − Yj | Dj = 1] Pr (Dj = 1)

J∑
j=ℓ+1

Pr (Dj = 1)
, ℓ = 0, . . . , J − 1.

By the preceding analysis, we know the numerator term but not
the individual components.
We know the denominator from choices measured in
observational data and invariance assumption (PI-3).
The IV formalism is less helpful in the general case.
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Table 13 summarizes the parameters or combinations of
parameters that can be identified from randomizations
performed at different stages.

It presents the array of factual and counterfactual conditional
mean outcomes E (Yj | Dℓ = 1), j = 0, . . . , J and ℓ = 0, . . . , J.
The conditional mean outcomes obtained from observational
data are on the diagonal of the table
(E(Yj | Dj = 1), j = 0, . . . , J).
Because of choices of agents, experiments do not directly
identify the elements in the table that are above the diagonal.
Under assumptions (PI-3) and (PI-4), experiments described at
the base of the table identify the combinations of the
parameters below the diagonal.
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Under assumptions (PI-3) and (PI-4), experiments described at
the base of the table identify the combinations of the
parameters below the diagonal.
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Table 13: Parameters and Combinations of Parameters That Can be
Identified by Different Randomizations

Choice Probabilities
(known) Outcome

Y0 Y1 · · · Yj · · · YJ−1 YJ

Pr(D0 = 1) D0 E(Y0 | D0 = 1) E(Y1 | D0 = 1) · · · E(Yj | D0 = 1) · · · E(YJ−1 | D0 = 1) E(YJ | D0 = 1)

Pr(D1 = 1) D1 E(Y0 | D1 = 1) E(Y1 | D1 = 1) · · · E(Yj | D1 = 1) · · · E(YJ−1 | D1 = 1) E(YJ | D1 = 1)

Pr(D2 = 1) D2 E(Y0 | D2 = 1) E(Y1 | D2 = 1) · · · E(Yj | D2 = 1) · · · E(YJ−1 | D2 = 1) E(YJ | D2 = 1)

C
...

...
...

...
...

...
h
o

Pr(Dj = 1) i Dj E(Y0 | Dj = 1) E(Y1 | Dj = 1) · · · E(Yj | Dj = 1) · · · E(YJ−1 | Dj = 1) E(YJ | Dj = 1)
c
e

...
...

...
...

...
...

Pr(DJ−1 = 1) DJ−1 E(Y0 | DJ−1 = 1) E(Y1 | DJ−1 = 1) · · · E(Yj | DJ−1 = 1) · · · E(YJ−1 | DJ−1 = 1) E(YJ | DJ−1 = 1)

Pr(DJ = 1) DJ E(Y0 | DJ = 1) E(Y1 | DJ = 1) · · · E(Yj | DJ = 1) · · · E(YJ−1 | DJ = 1) E(YJ | DJ = 1)

Randomization ξ0 = 0 ξ1 = 0 · · · ξj = 0 · · · ξJ−1 = 0 ξJ = 0

New Identified
Combinations of

Parameters

J
∑

ℓ=1

{E(Y0 | Dℓ = 1)

×Pr(Dℓ = 1)}

J
∑

ℓ=2

{E(Y1 | Dℓ = 1)

×Pr(Dℓ = 1)}
· · ·

J
∑

ℓ=j+1

{E(Yj | Dℓ = 1)

×Pr(Dℓ = 1)}

· · · E(YJ−1 | DJ = 1)

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .... .. .. .. .
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Recall that if ξℓ = 0, the agent cannot advance beyond stage ℓ.

If we randomly deny eligibility to move to J (ξJ−1 = 0), we
point identify E (YJ−1 | DJ = 1), as well as the parameters that
can be obtained from observational data.
In general, we can only identify the combinations of parameters
shown at the base of the table.
Following ?, ????, and ?, we can use the identified
combinations from different randomizations to bound the
admissible values of counterfactuals below the diagonal of the
table 13.
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? present a test for a strengthened version of the identifying
assumptions made by Bloom.

They perform a sensitivity analysis to analyze departures from
the assumption that dropouts have the same outcomes as
nonparticipants.
? apply the Manski bounds in carefully executed empirical
examples and show the difficulties involved in using the Bloom
estimator in experiments with multiple outcomes.
We next turn to some evidence on the importance of
randomization bias.
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Evidence on Randomization Bias

Violations of assumption (PI-3) in the general case with
essential heterogeneity affect the interpretation of the outputs
of social experiments.

They are manifestations of a more general problem termed
“Hawthorne effects” that arise from observing any population
(see ??) . How important is this theoretical possibility in
practice?
Surprisingly, very little is known about the answer to this
question for the social experiments conducted in economics.
This is so because randomized social experimentation has
usually only been implemented on “pilot projects” or
“demonstration projects” designed to evaluate new programs
never previously estimated.
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Disruption by randomization cannot be confirmed or denied
using data from these experiments.

In one ongoing program evaluated by randomization by the
Manpower Demonstration Research Corporation (MDRC),
participation was compulsory for the target population (?).
Hence randomization did not affect applicant pools or
assessments of applicant eligibility by program administrators.
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There is some information on the importance of randomization,
although it is indirect.

In the 1980s, the U.S. Department of Labor financed a
large-scale experimental evaluation of the ongoing, large-scale
manpower training program authorized under the Job Training
Partnership Act (JTPA).
A study by ? gives some indirect information from which it is
possible to determine whether randomization bias was present
in an ongoing program.
Job training in the United States is organized through
geographically decentralized centers.
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These centers receive incentive payments for placing
unemployed persons and persons on welfare in “high-paying”
jobs.

The participation of centers in the experiment was not
compulsory.
Funds were set aside to compensate job centers for the
administrative costs of participating in the experiment.
The funds set aside range from 5 percent to 10 percent of the
total operating costs of the centers.
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In attempting to enroll geographically dispersed sites, MDRC
experienced a training center refusal rate in excess of 90
percent.

The reasons for refusal to participate are given in table 14.
(The reasons stated there are not mutually exclusive.)
Leading the list are ethical and public relations objections to
randomization.
Major fears (items 2 and 3) were expressed about the effects of
randomization on the quality of applicant pool, which would
impede the profitability of the training centers.
By randomizing, the centers had to widen the available pool of
persons deemed eligible, and there was great concern about the
effects of this widening on applicant quality—precisely the
behavior ruled out by assumptions (PI-3) and (PI-4).
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In attempting to enroll geographically dispersed sites, MDRC
experienced a training center refusal rate in excess of 90
percent.
The reasons for refusal to participate are given in table 14.
(The reasons stated there are not mutually exclusive.)
Leading the list are ethical and public relations objections to
randomization.
Major fears (items 2 and 3) were expressed about the effects of
randomization on the quality of applicant pool, which would
impede the profitability of the training centers.

By randomizing, the centers had to widen the available pool of
persons deemed eligible, and there was great concern about the
effects of this widening on applicant quality—precisely the
behavior ruled out by assumptions (PI-3) and (PI-4).
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Table 14: Percentage of Local JTPA Agencies Citing Specific Concerns
About Participating in the Experiment

Percentage of
Training Centers

Concern Citing the Concern
1. Ethical and public relations implications of:

a. Random assignment in social programs 61.8
b. Denial of services to controls 54.4

2. Potential negative effect of creation of a control 47.8
group on achievement of client
recruitment goals

3. Potential negative impact on performance 25.4
standards

4. Implementation of the study when service 21.1
providers do intake

5. Objections of service providers to the study 17.5
6. Potential staff administrative burden 16.2
7. Possible lack of support by elected officials 15.8
8. Legality of random assignment and possible 14.5

grievances
9. Procedures for providing controls with referrals 14.0

to other services
10. Special recruitment problems for 10.5
out-of-school youth

Sample size 228

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .... .. .. .. .



Notes: Concerns noted by fewer than 5 percent of the training
centers are not listed. Percentages add up to more than 100.0
because training centers could raise more than one concern.
Source: Based on responses of 228 local JTPA agencies contacted
about possible participation in the National JTPA Study.
Source: Heckman (1992), based on Doolittle and Traeger (1990).
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In attempting to entice centers to participate, MDRC had to
reduce the randomized rejection probability from 1

2 to as low as
1
6 for certain centers.

The resulting reduction in the size of the control group impairs
the power of statistical tests designed to test the null
hypothesis of no program effect.
Compensation for participation was expanded sevenfold in order
to get any centers to participate in the experiment.

Heckman and Vytlacil Using the Marginal Treatment Effect
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The MDRC analysts conclude:

Implementing a complex random assignment research design in an
ongoing program providing a variety of services does inevitably
change its operation in some ways. The most likely difference arising
from a random assignment field study of program impacts is a
change in the mix of clients served. Expanded recruitment efforts,
needed to generate the control group, draw in additional applicants
who are not identical to the people previously served. A second
likely change is that the treatment categories may somewhat restrict
program staff’s flexibility to change service recommendations

(?, p. 121).
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These authors go on to note that

some [training centers] because of severe recruitment problems or
up-front services cannot implement the type of random assignment
model needed to answer the various impact questions without major
changes in procedures

(?, p. 123).
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This indirect evidence is hardly decisive even about the JTPA
experiment, much less all experiments.

Training centers may offer these arguments only as a means of
avoiding administrative scrutiny, and there may be no “real”
effect of randomization.
During the JTPA experiment conducted at Corpus Christi,
Texas, center administrators successfully petitioned the
government of Texas for a waiver of its performance standards
on the ground that the experiment disrupted center operations.
Self-selection likely guarantees that participant sites are the
least likely sites to suffer disruption.
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Such selective participation in the experiment calls into
question the validity of experimental estimates as a statement
about the JTPA system as a whole, as it clearly poses a threat
to external validity — problem (P-2) as defined in Part I.

? report similar problems in a randomized evaluation of a job
training program in Norway.
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? note that subjects in drug trials were less likely to participate
in randomized trials than in nonexperimental studies.

They discuss one study of drugs administered to children
afflicted with a disease.
The study had two components.
The nonexperimental phase of the study had a 4 percent
refusal rate, while 34 percent of a subsample of the same
parents refused to participate in a randomized subtrial,
although the treatments were equally nonthreatening.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

? note that subjects in drug trials were less likely to participate
in randomized trials than in nonexperimental studies.
They discuss one study of drugs administered to children
afflicted with a disease.

The study had two components.
The nonexperimental phase of the study had a 4 percent
refusal rate, while 34 percent of a subsample of the same
parents refused to participate in a randomized subtrial,
although the treatments were equally nonthreatening.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

? note that subjects in drug trials were less likely to participate
in randomized trials than in nonexperimental studies.
They discuss one study of drugs administered to children
afflicted with a disease.
The study had two components.

The nonexperimental phase of the study had a 4 percent
refusal rate, while 34 percent of a subsample of the same
parents refused to participate in a randomized subtrial,
although the treatments were equally nonthreatening.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

? note that subjects in drug trials were less likely to participate
in randomized trials than in nonexperimental studies.
They discuss one study of drugs administered to children
afflicted with a disease.
The study had two components.
The nonexperimental phase of the study had a 4 percent
refusal rate, while 34 percent of a subsample of the same
parents refused to participate in a randomized subtrial,
although the treatments were equally nonthreatening.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

These authors cite further evidence suggesting that refusal to
participate in randomization schemes is selective.

In a study of treatment of adults with cirrhosis, no effect of the
treatment was found for participants in a randomized trial.
But the death rates for those randomized out of the treatment
were substantially lower than among those individuals who
refused to participate in the experiment, despite the fact that
both groups were administered the same alternative treatment.
Part of any convincing identification strategy by randomization
requires that the agent document the absence of randomization
bias.
We next consider some evidence on the importance of dropping
out and noncompliance with experimental protocols.
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Evidence on Dropping Out and Substitution Bias

Dropouts are a feature of all social programs.

Randomization may raise dropout rates, but the evidence for
such effects is weak.
In addition, most social programs have good substitutes, so
that the estimated effect of a program as typically estimated
has to be defined relative to the full range of substitute
activities in which non-participants engage.
Experiments exacerbate this problem by creating a pool of
persons who attempt to take training who then flock to
substitute programs when they are placed in an experimental
control group (ξ = 0 in the simple randomization analyzed in
Slides 833 – 876).
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Table 15 (reproduced from ?) demonstrates the practical
importance of both dropout and substitution bias in
experimental evaluations.

It reports the rates of treatment group dropout and control
group substitution from a variety of social experiments.
It reveals that the fraction of treatment group members
receiving program services is often less than 0.7, and sometimes
less than 0.5.
Furthermore, the observed characteristics of the treatment
group members who drop out often differ from those who
remain and receive the program services.
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less than 0.5.

Furthermore, the observed characteristics of the treatment
group members who drop out often differ from those who
remain and receive the program services.
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Table 15: Fraction of Experimental Treatment and Control Groups
Receiving Services in Experimental Evaluations of Employment and
Training Programs

Fraction of Fraction of
treatments controls

Authors/time receiving receiving
Study period Target group(s) services services
1. NSW Hollister, et al. (1984) Long-term AFDC women 0.95 0.11

(9 months after RA) Ex-addicts NA 0.03
17-20 year old high NA 0.04
school dropouts

2. SWIM Friedlander and AFDC women: applicants
Hamilton (1993) and recipients
(Time period not a. Job search assistance 0.54 0.01
reported) b. Work experience 0.21 0.01

c. Classroom training/OJT 0.39 0.21
d. Any activity 0.69 0.30
AFDC-U unemployed
fathers
a. Job search assistance 0.60 0.01
b. Work experience 0.21 0.01
c. Classroom training/OJT 0.34 0.22
d. Any activity 0.70 0.23

3. JOBSTART Cave, et al. (1993) Youth high school
(12 months after RA) dropouts

Classroom training/OJT 0.90 0.26
4. Project Kemple, et al. (1995) AFDC women: applicants
Independence (24 months after RA) and recipients

a. Job search assistance 0.43 0.19
b. Classroom training/OJT 0.42 0.31
c. Any activity 0.64 0.40

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .... .. .. .. .



Table 15 [Continued]
Fraction of Fraction of
treatments controls

Authors/time receiving receiving
Study period Target group(s) services services
5. New Chance Quint, et al. (1994) Teenage single mothers

(18 months after RA) Any education services 0.82 0.48
Any training services 0.26 0.15
Any education or training 0.87 0.55

6. National JTPA Study Heckman and Self-reported from survey data
Smith (1998)
(18 months after RA) Adult males 0.38 0.24

Adult females 0.51 0.33
Male youth 0.50 0.32
Female youth 0.81 0.42

Combined Administrative Survey Data
Adult males 0.74 0.25
Adult females 0.78 0.34
Male youth 0.81 0.34
Female youth 0.81 0.42

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .... .. .. .. .



Notes: RA = random assignment. H.S. = high school. AFDC = Aid
to Families with Dependent Children. OJI = On the Job Training.
Service receipt includes any employment and training services. The
services received by the controls in the NSW study are CETA and
WIN jobs. For the Long Term AFDC Women, this measure also
includes regular public sector employment during the period.
Sources for data: Maynard and Brown (1980), p. 169, Table A14;
Masters and Maynard (1981), p. 148, Table A.15; Friedlander and
Hamilton (1993), p. 22, Table 3.1; Cave, et al. (1993), p. 95, Table
4.1; Quint, et al. (1994), p. 110, Table 4.9; and Kemple, et al.
(1995), p. 58, Table 3.5; Heckman and Smith (1998) and
calculations by the authors.
Source: Heckman, LaLonde and Smith (1999).

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .... .. .. .. .
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With regard to substitution bias, table 15 shows that as many
as 40% of the controls in some experiments received substitute
services elsewhere.

In a simple one treatment experiment with full compliance
(ξ = 1 ⇒ A = 1 and ξ = 0 ⇒ A = 0), all individuals assigned
to the treatment group receive the treatment and there is no
control group substitution, so that the difference between the
fraction of treatments and controls that receive the treatment
equals 1.0.
In practice, this difference is often well below 1.0.
Randomization reduced and delayed receipt of training in the
experimental control group but by no means eliminated it.
Many of the treatment group members received no treatment.

Heckman and Vytlacil Using the Marginal Treatment Effect
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control group substitution, so that the difference between the
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The extent of both substitution and dropout depends on the
characteristics of the treatment being evaluated and the local
program environment.

In the NSW study, where the treatment was relatively unique
and of high enough quality to be clearly perceived as valuable
by participants, dropout and substitution rates were low enough
to approximate the ideal case.
In contrast, for the NJS and for other programs that provide
low cost services widely available from other sources,
substitution and dropout rates are high.
In the NJS, the substitution problem is accentuated by the fact
that the program relied on outside vendors to provide most of
its training.

Heckman and Vytlacil Using the Marginal Treatment Effect
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Many of these vendors, such as community colleges, provided
the same training to the general public, often with subsidies
from other government programs such as Pell Grants.

In addition, in order to help in recruiting sites to participate in
the NJS, evaluators allowed them to provide control group
members with a list of alternative training providers in the
community.
Of the 16 sites in the NJS, 14 took advantage of this
opportunity to alert control group members to substitute
training opportunities.

Heckman and Vytlacil Using the Marginal Treatment Effect
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There are counterpart findings in the application of randomized
clinical trials.

For example, ? notes that AIDS patients denied potentially
life-saving drugs took steps to undo random assignment.
Patients had the pills they were taking tested to see if they
were getting a placebo or an unsatisfactory treatment, and
were likely to drop out of the experiment in either case or to
seek more effective medication, or both.
In the MDRC experiment, in some sites qualified trainees found
alternative avenues for securing exactly the same training
presented by the same subcontractors by using other methods
of financial support.
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? discuss a variety of other problems that sometimes plague
social experiments.

Our discussion up to this point has focused on point
identification of parameters over the empirical supports.
A large and emerging literature produces bounds on the
parameters and distributions when point identification is not
possible.
We now consider bounds on the parameters within the
framework of economic models of choice and the MTE.
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Bounding and Sensitivity Analysis

Thus far we have assumed full support conditions and have
presented conditions for identification over those supports.

We now consider partial identification in the context of the
MTE framework.
We return to the two-outcome model to develop the basic
approach in a simpler setting.
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The central evaluation problem is that we observe the
distribution of (Y,D,X,Z) = (DY1 + (1 − D)Y0,D,X,Z), but
do not observe the distribution of all of the components that
comprise it (Y1,Y0,D,X,Z).

Let η denote a distribution for (Y1,Y0,D,X,Z), and let it be
known that η belongs to the class H ⊂ F , where F is the
space of all probability distributions on (Y1,Y0,D,X,Z).
Let Pη denote the resulting distribution of
(DY1 + (1 − D)Y0,D,X,Z) if η is the distribution for
(Y1,Y0,D,X,Z).
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The central evaluation problem is that we observe the
distribution of (Y,D,X,Z) = (DY1 + (1 − D)Y0,D,X,Z), but
do not observe the distribution of all of the components that
comprise it (Y1,Y0,D,X,Z).
Let η denote a distribution for (Y1,Y0,D,X,Z), and let it be
known that η belongs to the class H ⊂ F , where F is the
space of all probability distributions on (Y1,Y0,D,X,Z).
Let Pη denote the resulting distribution of
(DY1 + (1 − D)Y0,D,X,Z) if η is the distribution for
(Y1,Y0,D,X,Z).
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Let η0 and Pη0 denote the corresponding true distributions.

Knowledge of the distribution of (DY1 + (1 − D)Y0,D,X,Z)
allows us to infer that η lies in the set {η ∈ H : Pη = Pη0}.
All elements of {η ∈ H : Pη = Pη0} are consistent with the
true distribution of the observed data.
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Let H0 = {η ∈ H : Pη = Pη0}.

Let Eη denote expectation with respect to the measure η, i.e.,
Eη(A) =

∫
Adη, so that E(A) = Eη0(A).

Consider inference for ATE, E(Y1 − Y0).
Knowledge of the distribution of the observed variables allows
us to infer that

E(Y1 − Y0) ∈ {Eη(Y1 − Y0) : η ∈ H0}.
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The identification analyses of the previous sections proceed by
imposing sufficient restrictions on H such that
{Eη(Y1 − Y0) : η ∈ H0} contains only one element and thus
E(Y1 − Y0) is point identified.

Bounding analysis proceeds by finding a set B such that
B ⊇ {Eη(Y1 − Y0) : η ∈ H0}.
One goal of bounding analysis is to construct B such that
B = {Eη(Y1 − Y0) : η ∈ H0} in which case the bounds are said
to be sharp.
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If the bounds are sharp, then the bounds exploit all information
and no smaller bounds can be constructed without imposing
additional structure.

In contrast, if {Eη(Y1 − Y0) : η ∈ H0} is a proper subset of B,
then smaller bounds can be constructed.
In every example we consider, the set {Eη(Y1 − Y0) : η ∈ H0}
is a closed interval, so that
{Eη(Y1 −Y0) : η ∈ H0} = [ inf

η∈H0
Eη(Y1 −Y0), sup

η∈H0
Eη(Y1 −Y0)].
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Sensitivity analysis is a commonly used procedure.

It varies the parameters fixed in a model and determines the
sensitivity of estimates to the perturbations of the parameter.
Sensitivity analysis is formally equivalent to bounding.
In particular, in sensitivity analysis, one parameterizes η and
then constructs bounds based on letting the parameters vary
over some set.
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Parameterize η as η(θ) for some parameter vector θ ∈ Θ, and
let θ0 be the “true” parameter value so that η0 = η(θ0).

θ is typically finite dimensional, though it need not be.
Let Θ0 = {θ ∈ Θ : Pη(θ) = Pη(θ0)}.
If θ is point identified given the observed variables, then Θ0 will
contain only one element, but if not all parameters are
identified given the observed data then Θ will contain more
than one element.
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Consider
{Eη(θ)(Y1 − Y0) : θ ∈ Θ0}.

This can trivially be seen as a special case of bounding analysis
by taking H = {η(θ) : θ ∈ Θ} and H0 = {η(θ) : θ ∈ Θ0}.
Likewise, by taking a proper parameterization, any bounding
analysis can be seen as a special case of sensitivity analysis.
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We consider bounds on ATE.

The corresponding bounds on treatment on the treated follow
with trivial modifications.
We focus on bounds that exploit instrumental variable type
assumptions or latent index assumptions, and we do not
attempt to survey the entire literature on bounds.
We begin by describing the bounds that only assume that the
outcome variables are bounded.
We then consider imposing additional assumptions.
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We consider imposing the assumption of comparative
advantage in the decision rule, then consider instead imposing
an instrumental variables type assumption, and conclude by
considering the combination of comparative advantage and
instrumental variables assumptions.

We examine the relative power of these alternative assumptions
to narrow the very wide bounds that result from only imposing
that the outcome variables are bounded.
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considering the combination of comparative advantage and
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to narrow the very wide bounds that result from only imposing
that the outcome variables are bounded.
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Outcome is Bounded

We first consider bounds on E(Y1 − Y0) that only assume that
the outcomes be bounded.

We consider this case as a point of contrast for the later
bounds that exploit instrumental variable conditions, and also
for the pedagogical purpose of showing the bounding
methodology in a simple context.
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We impose that the outcomes are bounded with probability 1,
Assumption B: Outcome is Bounded For j = 0, 1,
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In our notation this corresponds to

H = {η ∈ F : η[yl ≤ Y1 ≤ yu] = 1, η[yl ≤ Y0 ≤ yu] = 1}.

For example, if Y is an indicator variable, then the bounds are
yl = 0 and yu = 1.
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Following ? and ?, use the law of iterated expectations to
obtain,

E(Y1) = Pr[D = 1]E(Y1|D = 1) + (1 − Pr[D = 1])E(Y1|D = 0)

E(Y0) = Pr[D = 1]E(Y0|D = 1) + (1−Pr[D = 1])E(Y0|D = 0).
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Pr[D = 1], E(Y1|D = 1), and E(Y0|D = 0) are identified, while
E(Y0|D = 1) and E(Y1|D = 0) are bounded by yl and yu, so
that

Pr[D = 1]E(Y1 | D = 1) +
(

1 − Pr[D = 1]
)

yl

� E(Y1) � Pr[D = 1]E(Y1 | D = 1) +
(

1 − Pr[D = 1]
)

yu,

Pr[D = 1]yl
+

(

1 − Pr[D = 1]
)

E(Y0 | D = 0)

� E(Y0) � Pr[D = 1]yu
+

(

1 − Pr[D = 1]
)

E(Y0 | D = 0)
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Thus
B = [BL,BU],

with
BL

=
(

Pr[D = 1]E(Y | D = 1) +
(

1 − Pr[D = 1]
)

yl
)

−
(

Pr[D = 1]yu
+

(

1 − Pr[D = 1]
)

E(Y | D = 0)
)

,

BU
=

(

Pr[D = 1]E(Y | D = 1) +
(

1 − Pr[D = 1]
)

yu
)

−
(

Pr[D = 1]yl
+

(

1 − Pr[D = 1]
)

E(Y | D = 0)
)

with the width of these bounds given by

BU − BL = yu − yl.

For example, if Y = 0, 1, then the width of the bounds equals
1, BU − BL = 1.
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These bounds are sharp.

To show this, for any M ∈ [BL,BU], one can trivially construct
a distribution η of (Y0,Y1,D) which is consistent with the
observed data, consistent with the restriction that the
outcomes are bounded, and for which Eη(Y1 − Y0) = M, thus
showing that M ∈ [BL,BU].
Since this is true for any M ∈ [BL,BU], it follows that
[BL,BU] ⊆ {Eη(Y1 − Y0) : η ∈ H0}.
Since we have already shown that [BL,BU] are valid bounds,
[BL,BU] ⊇ {Eη(Y1 − Y0) : η ∈ H0}, we conclude that
[BL,BU] = {Eη(Y1 − Y0) : η ∈ H0} and thus that the bounds
are sharp.
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observed data, consistent with the restriction that the
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showing that M ∈ [BL,BU].
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outcomes are bounded, and for which Eη(Y1 − Y0) = M, thus
showing that M ∈ [BL,BU].
Since this is true for any M ∈ [BL,BU], it follows that
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This illustrates a common technique towards the construction
of sharp bounds: in a first step, construct a natural set of
bounds, and in a second step, use a proof by construction to
show that the bounds are sharp.

Note the following features of these bounds.
First, as noted by ?, these bounds always include zero.
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This illustrates a common technique towards the construction
of sharp bounds: in a first step, construct a natural set of
bounds, and in a second step, use a proof by construction to
show that the bounds are sharp.
Note the following features of these bounds.

First, as noted by ?, these bounds always include zero.
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This illustrates a common technique towards the construction
of sharp bounds: in a first step, construct a natural set of
bounds, and in a second step, use a proof by construction to
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Thus, bounds that only exploit that the outcomes are bounded
can never reject the null of zero average treatment effect.

The bounds themselves depend on the data, but the width of
the bounds, BU − BL = yu − yl, is completely driven by the
assumed bounds on Y1,Y0.
For example, if Y1 and Y0 are binary, the width of the bounds
is always 1.
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Thus, bounds that only exploit that the outcomes are bounded
can never reject the null of zero average treatment effect.
The bounds themselves depend on the data, but the width of
the bounds, BU − BL = yu − yl, is completely driven by the
assumed bounds on Y1,Y0.

For example, if Y1 and Y0 are binary, the width of the bounds
is always 1.
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Thus, bounds that only exploit that the outcomes are bounded
can never reject the null of zero average treatment effect.
The bounds themselves depend on the data, but the width of
the bounds, BU − BL = yu − yl, is completely driven by the
assumed bounds on Y1,Y0.
For example, if Y1 and Y0 are binary, the width of the bounds
is always 1.
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Latent Index Model: Roy Model

The bounds that only impose that the outcomes are bounded
are typically very wide, never provide point identification, and
can never reject the null of zero average treatment effect.

This lack of identifying power raises the question of whether
one can impose additional structure to narrow the bounds.
The central issue with bounding analysis is to explore the
trade-off between assumptions and width of the resulting
bounds.
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This lack of identifying power raises the question of whether
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The central issue with bounding analysis is to explore the
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Latent Index Model: Roy Model

The bounds that only impose that the outcomes are bounded
are typically very wide, never provide point identification, and
can never reject the null of zero average treatment effect.
This lack of identifying power raises the question of whether
one can impose additional structure to narrow the bounds.
The central issue with bounding analysis is to explore the
trade-off between assumptions and width of the resulting
bounds.
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In this section, we discuss bounds that follow from maintaining
Assumption B, that the outcomes are bounded, but also add
the assumption of a Roy model for selection into treatment.

Such an assumption substantially narrows the width of the
bounds compared to only imposing that the outcomes
themselves are bounded, but does not provide point
identification.
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Again impose Assumption B: the outcomes are bounded.

In addition, assume a model of comparative advantage, in
particular,

Assumption RM: Roy Model

D = 1[Y1 ≥ Y0]. (77)
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D = 1[Y1 ≥ Y0]. (77)
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Restriction RM imposes a special case of a latent index model,
D = 1[Y∗ ≥ 0] with Y∗ = Y1 − Y0.

Using the assumption of a Roy model while maintaining the
assumption that the outcomes are bounded, we can narrow the
bounds compared to the case where we only imposed that the
outcomes are bounded.
? constructs the sharp bounds for the competing risks model,
which is formally equivalent to a Roy model.
? constructs the same bounds for the Roy model.
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Restriction RM imposes a special case of a latent index model,
D = 1[Y∗ ≥ 0] with Y∗ = Y1 − Y0.
Using the assumption of a Roy model while maintaining the
assumption that the outcomes are bounded, we can narrow the
bounds compared to the case where we only imposed that the
outcomes are bounded.
? constructs the sharp bounds for the competing risks model,
which is formally equivalent to a Roy model.

? constructs the same bounds for the Roy model.
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Restriction RM imposes a special case of a latent index model,
D = 1[Y∗ ≥ 0] with Y∗ = Y1 − Y0.
Using the assumption of a Roy model while maintaining the
assumption that the outcomes are bounded, we can narrow the
bounds compared to the case where we only imposed that the
outcomes are bounded.
? constructs the sharp bounds for the competing risks model,
which is formally equivalent to a Roy model.
? constructs the same bounds for the Roy model.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

Following ? and ?, we have that

E[Y1|D = 1] = E[Y1|Y0 ≤ Y1]

≥ E[Y0|Y0 ≤ Y1]

= E[Y0|D = 1]

and by a parallel argument, E[Y0|D = 0] ≥ E[Y1|D = 0].

We thus have upper bounds on E(Y0|D = 1) and E(Y1|D = 0).
The lower bounds on E[Y0|D = 1] and E[Y1|D = 0] are the
same as for the bounds that only imposed that the outcomes
are bounded.
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We then have:
E(Y1 − Y0) ∈ B ≡ [BL,BU],

with
BL =

(
Pr[D = 1]E(Y|D = 1) + (1 − Pr[D = 1])yl

)
−
(
Pr[D = 1]E(Y|D = 1) + (1 − Pr[D = 1])E(Y|D = 0)

)

BU =

(
Pr[D = 1]E(Y|D = 1) + (1 − Pr[D = 1])E(Y|D = 0)

)
−
(
Pr[D = 1]yl + (1 − Pr[D = 1])E(Y|D = 0)

)
,

and we can rewrite these bounds as
BL =

(
1 − Pr[D = 1]

)(
yl − E(Y|D = 0)

)
BU = Pr[D = 1]

(
E(Y | D = 1)− yl

)
,

with the width of the bounds given by
BU − BL = E(Y)− yl.
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For example, if Y = 0, 1, then the width of the bounds is given
by BU − BL = Pr(Y = 1).

Following an argument similar to that presented in the previous
section, one can show that these bounds are sharp.
Note the following features of these bounds.
First, the bounds do not involve yu, and actually the same
bounds will hold if we were to weaken the maintained
assumption that Pr[yl ≤ Yj ≤ yu] = 1 for j = 0, 1, to instead
only require that Pr[yl ≤ Yj] = 1.
The width of the bounds imposing comparative advantage are
E(Y)− yl, so that the bounds will never provide point
identification (as long as E(Y) > yl).
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For example, if Y is binary, the width of the bounds is
Pr[Y = 1], the bounds will not provide point identification
unless all individuals have Y = 0.

However, the bounds will always improve upon the bounds that
impose only that the outcome is bounded – imposing
comparative advantage shrinks the width of the bounds from
yu − yl to E(Y)− yl, thus shrinking the bounds by an amount
equal to yu − E(Y).
For example, if Y is binary, then imposing the bounds shrinks
the width of the bounds from 1 to Pr[Y = 1].
Finally, note that the bounds will always include zero, so that
imposing comparative advantage does not by itself allow one to
ever reject the null of zero average treatment effect.
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Bounds that Exploit an Instrument

The previous section considered bounds that exploit knowledge
of the selection process, in particular that selection is
determined by a Roy model.

An alternative way to narrow the bounds over simply imposing
that the outcome is bounded is to assume access to an
instrument.
We now discuss bounds with various types of instrumental
variables assumptions.
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We begin with the ? analysis for bounds that exploit a
mean-independence condition, then consider the ? analysis for
bounds that exploit a full statistical independence condition,
and finally conclude with a discussion of ? who combine an
instrumental variable assumption with a nonparametric
selection model.
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Instrumental Variables: Mean Independence Condition

Again impose Assumption B so that the outcomes are bounded.

In addition, following ?, impose a mean-independence
assumption:
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Assumption IV:
E(Y1|Z = z) = E(Y1)

E(Y0|Z = z) = E(Y0)

for z ∈ Z where Z denotes the support of the
distribution of Z.
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For any z ∈ Z , following the exact same series of steps as for
the bounds that only imposed Assumption [B], we have that

E(DY|Z = z) + (1 − P(z))yl ≤ E(Y1|Z = z) ≤ E(DY|Z = z) + (1 − P(z))yu.

By the IV assumption, we have E(Y1|Z = z) = E(Y1).
Since these bounds hold for any z ∈ Z , we have

sup
z∈Z

{E(DY|Z = z) + (1 − P(z))yl} ≤ E(Y1) ≤ inf
z∈Z

{E(DY|Z = z) + (1 − P(z))yu}.
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Applying the same analysis for E(Y0), we have

E(Y1 − Y0) ∈ B = [BL,BU],

with BL = sup
z∈Z

{E(DY | Z =

z) + (1 − P(z))yl} − inf
z∈Z

{(E((1 − D)Y | Z = z) + P(z)yu},
BU = inf

z∈Z
{E(DY | Z = z) + (1 − P(z))yu} − sup

z∈Z
{(E((1 − D)Y |

Z = z) + P(z)yl}.
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As discussed by ?, these bounds are sharp under the
mean-independence condition.

As noted by ?, these bounds do not necessarily include zero, so
that it may be possible to use the bounds to test the null of
zero average treatment effect.
Let pu = supz∈Z Pr[D = 1 | Z = z],
pl = infz∈Z Pr[D = 1 | Z = z].
A trivial modification to Corollary 1 and Corollary 2 of
Proposition 6 of ? shows that
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As discussed by ?, these bounds are sharp under the
mean-independence condition.
As noted by ?, these bounds do not necessarily include zero, so
that it may be possible to use the bounds to test the null of
zero average treatment effect.
Let pu = supz∈Z Pr[D = 1 | Z = z],
pl = infz∈Z Pr[D = 1 | Z = z].
A trivial modification to Corollary 1 and Corollary 2 of
Proposition 6 of ? shows that
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1 pu ≥ 1
2 and pl ≥ 1

2 is a necessary condition for BL = BU, i.e.,
for point identification from the mean independence condition.

2 If Y1,Y0 are independent of D, then the width of the IV-bounds
is ((1 − pu) + pl)(yu − yl). Thus, if Y1,Y0 are independent of
D, the bounds will collapse to point identification if and only if
pu = 1, pl = 0.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

Note that it is neither necessary nor sufficient for P(z) to be a
nontrivial function of z for these bounds to improve upon the
bounds that only imposed that the outcome is bounded.

Likewise, comparing these bounds to the comparative
advantage bounds shows that neither set of bounds will in
general be narrower than the other.
Finally, note that these bounds are relatively complicated, and
to evaluate the bounds and the width of the bounds requires
use of P(z), E(YD | Z = z), and E(Y(1 − D) | Z = z) for all
z ∈ Z.
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Note that it is neither necessary nor sufficient for P(z) to be a
nontrivial function of z for these bounds to improve upon the
bounds that only imposed that the outcome is bounded.
Likewise, comparing these bounds to the comparative
advantage bounds shows that neither set of bounds will in
general be narrower than the other.
Finally, note that these bounds are relatively complicated, and
to evaluate the bounds and the width of the bounds requires
use of P(z), E(YD | Z = z), and E(Y(1 − D) | Z = z) for all
z ∈ Z .
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Instrumental Variables: Statistical Independence Condition

While Manski constructs sharp bounds for mean-independence
conditions, ? construct sharp bounds for the statistical
independence condition for the case where Y and Z are binary.

Balke and Pearl impose the same independence condition as
the ? LATE independence condition.
In particular, let D0, D1 denote the counterfactual choices that
would have been made had Z been set exogenously to 0 and 1
respectively, and impose the following assumption:

Assumption: IV-BP
(Y0,Y1,D0,D1) ⊥⊥ Z
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While Manski constructs sharp bounds for mean-independence
conditions, ? construct sharp bounds for the statistical
independence condition for the case where Y and Z are binary.
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Note that this strengthens the Manski conditions not only in
imposing that potential outcomes are statistically independent
of Z instead of mean-independent of Z, but also imposing that
the counterfactual choices are independent of Z.
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For the case of Z and Y binary, Balke and Pearl manage to
transform the problem of constructing sharp bounds into a
linear programming problem.

Assuming that the identified set is a closed interval, the sharp
bounds are by definition [BL,BU] with

BL = inf
η∈H0

Eη(Y1 − Y0)

BU = sup
η∈H0

Eη(Y1 − Y0).

In general, the constrained set of distributions, η ∈ H0 , may
be high dimensional and non-convex.
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Using the assumption that Z and Y are binary, they transform
the problem into the minimization of a linear function over a
finite dimensional vector space subject to a set of linear
constraints.

The resulting bounds are somewhat complex.
For some distributions of the observed data, they will coincide
with the Manski mean-independence bounds, but for other
distributions of the observed data they will be narrower than
the Manski mean-independence bounds.
Thus, imposing statistical independence does narrow the
bounds over the mean independence bounds.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

Using the assumption that Z and Y are binary, they transform
the problem into the minimization of a linear function over a
finite dimensional vector space subject to a set of linear
constraints.
The resulting bounds are somewhat complex.

For some distributions of the observed data, they will coincide
with the Manski mean-independence bounds, but for other
distributions of the observed data they will be narrower than
the Manski mean-independence bounds.
Thus, imposing statistical independence does narrow the
bounds over the mean independence bounds.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

Using the assumption that Z and Y are binary, they transform
the problem into the minimization of a linear function over a
finite dimensional vector space subject to a set of linear
constraints.
The resulting bounds are somewhat complex.
For some distributions of the observed data, they will coincide
with the Manski mean-independence bounds, but for other
distributions of the observed data they will be narrower than
the Manski mean-independence bounds.

Thus, imposing statistical independence does narrow the
bounds over the mean independence bounds.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

Using the assumption that Z and Y are binary, they transform
the problem into the minimization of a linear function over a
finite dimensional vector space subject to a set of linear
constraints.
The resulting bounds are somewhat complex.
For some distributions of the observed data, they will coincide
with the Manski mean-independence bounds, but for other
distributions of the observed data they will be narrower than
the Manski mean-independence bounds.
Thus, imposing statistical independence does narrow the
bounds over the mean independence bounds.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

It is not immediately clear how to generalize the Balke and
Pearl analysis to distributions with continuous Z or Y, or how
to construct sharp bounds under the statistical independence
condition for Z or Y continuous.

The appropriate generalization of Balke and Pearl’s analysis to
a more general setting remains an open question.
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Instrumental Variables: Nonparametric Selection Model/LATE
Conditions

We started with the mean independence version of the
instrumental variables condition, and then discussed
strengthening the instrumental variables condition to full
independence in the special case where Y and Z are binary.

The result of shifting from mean independence to full
independence is to sometimes reduce the width of the resulting
bounds but also to have an even more complicated form for the
bounds.
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We now consider further strengthening the instrumental
variables either by imposing a nonparametric selection model
for the first stage as in ? or by imposing instrumental variable
conditions of the form considered by ?.

The sharp bounds corresponding to these strengthened versions
of instrumental variables do not reduce the bounds compared
to imposing a weaker form of the instrumental variables
assumption but produces a much simpler form for the bounds.
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Let D (z) denote the counterfactual choices that would have
been made had Z been set exogenously to z.

Consider the LATE independence, rank, and monotonicity
conditions (IV-1), (IV-2), (IV-3) respectively of ? presented in
Slides 12 and 152.
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Note that the LATE monotonicity assumption (IV-3)
strengthens assumption [IV-BP]. The LATE independence
assumption (IV-1) is exactly the same as assumption [IV-BP]
except that the assumption is stated here without requiring Z
to be binary.

In their context of binary Z and Y, Balke and Pearl discuss the
LATE monotonicity condition and show that the LATE
monotonicity condition imposes constraints on the observed
data which imply that the ? bounds and the Manski
mean-independence bounds will coincide.
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Consider the nonparametric selection model of ?:
Nonparametric Selection Model S: D = 1[µ(Z) ≥ U] and

Z ⊥⊥ (Y0,Y1,U). This is a consequence of equations
(7) and assumptions (A-1)–(A-5) presented in
Slide 152.
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From ?, we have that the Imbens and Angrist conditions
(IV-1)–(IV-3) are equivalent to imposing a nonparametric
selection model of the form S.

Thus, the bounds derived under one set of assumptions will be
valid under the alternative set of assumptions, and bounds that
are sharp under one set will be sharp under the alternative set
of assumptions.
This equivalence implies that the Balke and Pearl result also
holds for the selection model: if Z and Y are binary, then the
sharp bounds under the nonparametric selection model coincide
with the sharp bounds under mean independence IV.
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We now consider the more general case where neither Z nor Y
need be binary.

? derived bounds on the average treatment effect under the
assumptions that the outcomes are generated from a bounded
outcome nonparametric selection model for treatment without
requiring that Z or Y be binary or any other restrictions on the
support of the distributions of Z and Y beyond the assumption
that the outcomes are bounded (Assumption [B]).
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In particular, they derived the following bounds on the average
treatment effect:

BL ≤ E(Y1 − Y0) ≤ BU,

with
BU = E(DY | P(Z) = pu) + (1 − pu)yu − E((1 − D)Y | P(Z) = pl)− plyl

BL = E(DY | P(Z) = pu) + (1 − pu)yl − E((1 − D)Y | P(Z) = pl)− plyu.
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Note that these bounds do not necessarily include zero.

The width of the bounds is

BU − BL = ((1 − pu) + pl)(yu − yl).

For example, if Y is binary then the width of the bounds is
simply BU − BL = ((1 − pu) + pl).
Trivially, pu = 1 and pl = 0 is necessary and sufficient for the
bounds to collapse to point identification, with the width of the
bounds linearly related to the distance between pu and 1 and
the distance between pl and 0.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

Note that these bounds do not necessarily include zero.
The width of the bounds is

BU − BL = ((1 − pu) + pl)(yu − yl).

For example, if Y is binary then the width of the bounds is
simply BU − BL = ((1 − pu) + pl).
Trivially, pu = 1 and pl = 0 is necessary and sufficient for the
bounds to collapse to point identification, with the width of the
bounds linearly related to the distance between pu and 1 and
the distance between pl and 0.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

Note that these bounds do not necessarily include zero.
The width of the bounds is

BU − BL = ((1 − pu) + pl)(yu − yl).

For example, if Y is binary then the width of the bounds is
simply BU − BL = ((1 − pu) + pl).

Trivially, pu = 1 and pl = 0 is necessary and sufficient for the
bounds to collapse to point identification, with the width of the
bounds linearly related to the distance between pu and 1 and
the distance between pl and 0.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

Note that these bounds do not necessarily include zero.
The width of the bounds is

BU − BL = ((1 − pu) + pl)(yu − yl).

For example, if Y is binary then the width of the bounds is
simply BU − BL = ((1 − pu) + pl).
Trivially, pu = 1 and pl = 0 is necessary and sufficient for the
bounds to collapse to point identification, with the width of the
bounds linearly related to the distance between pu and 1 and
the distance between pl and 0.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

Note that it is necessary and sufficient for P(z) to be a
nontrivial function of z for these bounds to improve upon the
bounds that only imposed that the outcomes are bounded.

Evaluating the width of the bounds only requires pu, pl.
The only additional information required to evaluate the bounds
themselves is E(DY | P(Z) = pu) and E((1 − D)Y | P(Z) = pl).
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? analyze how these bounds compare to the ? mean
independence bounds, and analyze whether these bounds are
sharp.

They show that the selection model imposes restrictions on the
observed data such that the ? mean independence bounds
collapse to the simpler ? bounds.
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In particular, given assumption S, they show that
inf

z∈Z
{E(DY | Z = z) + (1 − P(z))yu} = E(DY | P(Z) = pu) + (1 − pu)yu

sup
z∈Z

{(E((1 − D)Y | Z = z) + P(z)yl} = E((1 − D)Y | P(Z) = pl)− plyl

and thus the ? upper bound collapses to the ? upper bound
under assumption S.

The parallel result holds for the lower bounds.
Furthermore, ? establish that the ? bounds are sharp given
assumptions [B] and S.
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Thus, somewhat surprisingly, imposing the stronger assumption
of the existence of an instrument in a nonparametric selection
model does not narrow the bounds compared to the case of
imposing only the weaker assumption of mean independence,
but does impose structure on the data which substantially
simplifies the form of the the mean-independence bounds.

By the ? equivalence result, the same conclusion holds for the
LATE assumptions – imposing the LATE assumptions does not
narrow the bounds compared to only imposing the weaker
assumption of mean independence, but does impose restrictions
on the data that substantially simplify the form of the bounds.
? extend these bounds.
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Combining Comparative Advantage and Instrumental Variables

We have thus far examined bounds that impose a comparative
advantage model, and bounds that exploit an instrumental
variables assumption.

In general, neither restriction has more identifying power than
the other.
We now consider combining both types of assumptions.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

Combining Comparative Advantage and Instrumental Variables

We have thus far examined bounds that impose a comparative
advantage model, and bounds that exploit an instrumental
variables assumption.
In general, neither restriction has more identifying power than
the other.

We now consider combining both types of assumptions.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

Combining Comparative Advantage and Instrumental Variables

We have thus far examined bounds that impose a comparative
advantage model, and bounds that exploit an instrumental
variables assumption.
In general, neither restriction has more identifying power than
the other.
We now consider combining both types of assumptions.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

Assume D = 1[Y1 − Y0 ≥ C(Z)], with Z observed and
Z ⊥⊥ (Y0,Y1).

This is a Roy model with a cost C(Z) of treatment, with the
cost of treatment a function of an “instrument” Z.
For ease of exposition, assume that Z is a continuous scalar
random variable and that (Y0,Y1) are continuous random
variables.
Also for ease of exposition, assume that Z (the support of the
distribution Z) is compact and that C(·) is a continuous
function.
These assumptions are only imposed for ease of exposition.
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The model is a special case of the nonparametric selection
model considered by ?, but with more structure that we can
now exploit.

Begin by following steps similar to ?.
Using the fact that D = 1[Y1 − Y0 ≥ C(Z)] and that
Z ⊥⊥ (Y0,Y1), we have

P(Z) = 1 − FY1−Y0(C(Z))

where FY1−Y0 is the distribution function of Y1 − Y0.
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Given our assumptions, we have that there will exist zu and zl

such that
C(zu) = sup{C(z) : z ∈ Z}, P(zu) = 1 − FY1−Y0 (C(z

u)) = inf{P(Z) : z ∈ Z}

C(zl) = inf{C(z) : z ∈ Z}, P(zl) = 1 − FY1−Y0 (C(z
l)) = sup{P(Z) : z ∈ Z}

In other words, Z = zu is associated with the highest possible
cost of treatment and thus the lowest possible conditional
probability of D = 1, while Z = zl is associated with the lowest
possible cost of treatment and thus the highest possible
conditional probability of D = 1.
Since P(·) for z ∈ Z is identified, we have that zu and zl are
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Consider identification of C(z).

Using the model and the independence assumptions, we have
∂

∂z
E(Y|Z = z) = ∂

∂z
E(YD|Z = z) + ∂

∂z
E(Y(1 − D)|Z = z)

=
∂

∂z

∫ ∞

C(z)
E(Y1|Y1 − Y0 = t)dFY1−Y0 (t)

+
∂

∂z

∫ C(z)

−∞
E(Y0|Y1 − Y0 = t)dFY1−Y0 (t)

=−
[

E(Y1|Y1 − Y0 = C(z))− E(Y0|Y1 − Y0 = C(z))
]

× fY1−Y0 (C(z))C
′(z)

=− C(z)C′(z)fY1−Y0 (C(z))

and
∂

∂zP(z) =
∂

∂z

∫ ∞

C(z)
dFY1−Y0(t)

= −C′(z)fY1−Y0(C(z))
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Thus [
∂

∂zE(Y|Z = z)
/

∂

∂zP(z)
]
= C(z)

for any z ∈ Z such that ∂
∂zP(z) ̸= 0 , i.e for any z ∈ Z such

that C′ (z) ̸= 0 and FY1−Y0 (C (z)) ̸= 0.

We thus conclude that C(z) is identified for z ∈ Z .
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Our goal is to identify E(Y1 − Y0).

For any z ∈ Z, we have by the law of iterated expectations that

E(Yj) =

∫
E(Yj|Y1 − Y0 = t)dFY1−Y0 (t)

=

∫ C(z)

−∞
E(Yj|Y1 − Y0 = t)dFY1−Y0 (t) +

∫ ∞

C(z)
E(Yj|Y1 − Y0 = t)dFY1−Y0 (t)

for j = 0, 1.
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Using the model for D and the assumption that Z ⊥⊥ (Y0,Y1),
we have ∫ ∞

C(z)
E(Y1|Y1 − Y0 = t)dFY1−Y0 (t) = E

(
DY
∣∣∣∣Z = z

)
(78)

∫ C(z)

−∞
E(Y0|Y1 − Y0 = t)dFY1−Y0 (t) = E

(
(1 − D)Y

∣∣∣∣Z = z
)
. (79)

We identify the right hand sides of these equations for any
z ∈ Z, and thus identify the left hand sides for any z ∈ Z .
In particular, consider evaluating equation (78) at z = zl and
equation (79) at z = zu.
Then, to bound E(Y1 − Y0), we need to bound∫ C(zl)
−∞ E(Y1|Y1 − Y0 = t)dFY1−Y0(t) and∫∞
C(zu)E(Y0|Y1 − Y0 = t)dFY1−Y0 (t).
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We have∫ C(zl)

−∞
E(Y1|Y1 − Y0 = t)dFY1−Y0(t)

= (1− P(zl))E[Y1|Z = zl,Y1 ≤ Y0 + C(zl)]
≤ (1− P(zl))E[Y0 + C(zl)|Z = zl,Y1 ≤ Y0 + C(zl)]
= E[(1− D)Y|Z = zl] + (1− P(zl))C(zl)

= E[(1− D)Y|Z = zl]−
[

∂
∂z E(Y|Z = z)

/
∂
∂z ln(1− P(z))

]∣∣∣∣
z=zl

,

where the inequality arises from the conditioning
Y1 ≤ Y0 + C

(
zl).

The final expression follows from our derivation of C (z).
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Since Pr[yl ≤ Y1 ≤ yu] = 1 by assumption, we have

(1 − P(zl))yl ≤
∫ C(zl)

−∞
E(Y1|Y1 − Y0 = t)dFY1−Y0(t)

≤ E[(1−D)Y|Z = zl]−
[
∂

∂zE(Y|Z = z)
/

∂

∂z ln(1−P(z))
]∣∣∣∣

z=zl
.

By a parallel argument, we have

P(zu)yl ≤
∫ ∞

C(zu)
E(Y0|Y1 − Y0 = t)dFY1−Y0(t)

≤ E[DY|Z = zu] +

[
∂

∂zE(Y|Z = z)
/

∂

∂z lnP(z)
]∣∣∣∣

z=zu
.
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We thus have the bounds:

BL ≤ E(Y1 − Y0) ≤ BU,

with

BU =E
(
Y | Z = zl)

−
[
∂

∂zE(Y|Z = z)
/

∂

∂z ln(1− P(z))
]∣∣∣∣

z=zl

− E((1− D)Y|Z = zu)− P(zu)yl

BL =E(DY|Z = zl) + [1− P(zl)]yl − E (Y | Z = zu)

−
[
∂

∂zE(Y|Z = z)
/

∂

∂z lnP(z)
]∣∣∣∣

z=zu
.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

The last two terms in BU come from the lower bound for
E (Y0) and the first two terms come from the upper bound for
E (Y1) just derived.

The terms for BL are decomposed in an analogous fashion,
reversing the roles of the upper and lower bounds for E (Y1)
and E (Y0).
These bounds improve over the bounds that only impose a
nonparametric selection model (Assumption S) without
imposing the Roy model structure.
We next consider some alternative approaches to the solution
of selection and hence evaluation problems developed in the
literature using replacement functions, proxy functions, and
other conditions.
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Control Functions, Replacement Functions, and Proxy
Variables

This chapter analyzes the main tools used to evaluate social
programs in the presence of selection bias in observational data.

Yet many other tools have not been analyzed.
We briefly summarize these approaches.
? establishes conditions under which some of the methods we
discuss produce identification of econometric models.
We use some of these tools in Part III.
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The methods of replacement functions and proxy variables all start
from characterizations (U-1) and (U-2) which we repeat for
convenience:
(U-1)
(Y0,Y1) ⊥⊥ D | X,Z, θ,
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but
(U-2)
(Y0,Y1) ⊥�⊥ D | X,Z.

where θ is not observed by the analyst and (Y0,Y1) are not observed
directly but Y is observed as are the X,Y:

Y = DY1 + (1 − D)Y0.
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Missing variables θ produce selection bias which creates a
problem with using observational data to evaluate social
programs.

From (U-1), if we condition on θ, we would satisfy the
condition (M-1) for matching, and hence could identify the
parameters and distributions that can be identified if the
conditions required for matching are satisfied.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

Missing variables θ produce selection bias which creates a
problem with using observational data to evaluate social
programs.
From (U-1), if we condition on θ, we would satisfy the
condition (M-1) for matching, and hence could identify the
parameters and distributions that can be identified if the
conditions required for matching are satisfied.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro Princ Index IV LATE Eval Ext Matching Eval Bounding Cntl Summ

The most direct approach to controlling for θ is to assume
access to a function τ(X,Z,Q) that perfectly proxies θ:

θ = τ(X,Z,Q). (80)

This approach based on a perfect proxy is called the method
of replacement functions by ?.
In (U-1), we can substitute for θ in terms of observables
(X,Z,Q) . Then

(Y0,Y1) ⊥⊥ D | X,Z,Q.

We can condition nonparametrically on (X,Z,Q) and do not
have to know the exact functional form of τ although
knowledge of τ might reduce the dimensionality of the
matching problem.
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θ can be a vector and τ can be a vector of functions.

This method has been used in the economics of education for
decades (see the references in ?).
If θ is ability and τ is a test score, it is sometimes assumed that
the test score is a perfect proxy (or replacement function) for θ
and τ is entered into the regressions of earnings on schooling to
escape the problem of ability bias, typically assuming a linear
relationship between τ and θ.
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? discuss the literature that uses replacement functions in this
way.

? apply this method and consider nonparametric identification
of the τ function.
? provides a rigorous proof of identification for this approach in
a general nonparametric setting.
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The method of replacement functions assumes that (80) is a
perfect proxy.

In many applications, this assumption is far too strong.
More often, we measure θ with error.
This produces a factor model or measurement error model (?).
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? surveys this method.

We can represent the factor model in a general way by a
system of equations:

Yj = gj (X,Z,Q, θ, εj) , j = 1, . . . , J. (81)

A linear factor model separable in the unobservables writes

Yj = gj (X,Z,Q) + λjθ + εj, j = 1, . . . , J, (82)

where

(X,Z,Q) ⊥⊥ (θ, εj), εj ⊥⊥ θ, j = 1, . . . , J, (83)

and the εj are mutually independent.
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Observe that under (81) and (82), Yj controlling for X,Z,Q
only imperfectly proxies θ because of the presence of εj.

The θ are called factors, λj factor loadings and the εj
“uniquenesses” (see, e.g., ?).
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A large literature, partially reviewed in Part III, section 1, and
in ?, shows how to establish identification of econometric
models under factor structure assumptions.

?, ? and ? establish identification in nonlinear models of the
form (81).
The key to identification is multiple, but imperfect (because of
εj), measurements on θ from the Yj, j = 1, . . . , J and X,Z,Q,
and possibly other measurement systems that depend on θ.
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?, ?? and ?? apply and develop these methods.

Under assumption (83), they show how to nonparametrically
identify the econometric model and the distributions of the
unobservables Fθ(θ) and Fεj(εj).
In the context of classical simultaneous equations models,
identification is secured by using covariance restrictions across
equations exploiting the low dimensionality of vector θ
compared to the high dimensional vector of (imperfect)
measurements on it.
The recent literature (???) extends the linear model to a
nonlinear setting.
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unobservables Fθ(θ) and Fεj(εj).
In the context of classical simultaneous equations models,
identification is secured by using covariance restrictions across
equations exploiting the low dimensionality of vector θ
compared to the high dimensional vector of (imperfect)
measurements on it.

The recent literature (???) extends the linear model to a
nonlinear setting.
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The recent econometric literature applies in special cases the
idea of the control function principle introduced in ?.

This principle, versions of which can be traced back to ?,
partitions θ in (U-1) into two or more components, θ = (θ1, θ2),
where only one component of θ is the source of bias.
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Thus it is assumed that (U-1) is true, and (U-1)′ is also true:

(U-1)′

(Y0,Y1) ⊥⊥ D | X,Z, θ1,

and (U-2) holds.
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For example, in the normal selection model analyzed in Part I,
in Slide 819, we broke U1, the error term associated with Y1,
into two components:

U1 = E (U1 | V) + ε,

where V plays the role of θ1 and arises from the choice
equation.

Under normality, ε is independent of E (U1 | V).
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Further,
E (U1 | V) = Cov(U1,V)

Var(V) V, (84)

assuming E(U1) = 0 and E(V) = 0.

In that section, we show how to construct a control function in
the context of the choice model

D = 1 [µD(Z) ≥ V] .

Controlling for V controls for the component of θ1 in (U-1)′
that gives rise to the spurious dependence.
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The ?? application of the control function principle assumes
functional form (84 ) but assumes that V can be perfectly
proxied by a first stage equation.

Thus they use a replacement function in their first stage.
Their method does not work when one can only condition on D
rather than on D∗ = µD (Z)− V.
In the sample selection model, it is not necessary to use V.
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As developed in Part I and reviewed in Slide 338 and Slide 727
of this chapter, under additive separability for the outcome
equation for Y1, we can write

E (Y1 | X,Z,D = 1) = µ1(X) + E (U1 | µD(Z) ≥ V)︸ ︷︷ ︸
control function

so we “expect out” rather than solve out the effect of the
component of V on U1 and thus control for selection bias under
our maintained assumptions.
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In terms of the propensity score, under the conditions specified
in Part I, we may write the preceding expression in terms of
P(Z):

E (Y1 | X,Z,D = 1) = µ1(X) + K1(P(Z)),
where K1(P(Z)) = E(U1 | X,Z,D = 1).

It is not necessary to know V or be able to estimate it.
The ?? application of the control function principle assumes
that the analyst can condition on and estimate V.
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The Blundell-Powell method and the method of ? build heavily
on (84) and implicitly make strong distributional and functional
form assumptions that are not intrinsic to the method of
control functions.

As just noted, their method uses a replacement function to
obtain E(U1 | V) in the first step of their procedures.
The general control function method does not require a
replacement function approach.
The literature has begun to distinguish between the more
general control function approach and the control variate
approach that uses a first stage replacement function.
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? develops the method of unobservable instruments which is a
version of the replacement function approach applied to
nonlinear models.

Her unobservable instruments play the role of covariance
restrictions used to identify classical simultaneous equations
models (see ?).
Her approach is distinct from and therefore complementary
with linear factor models.
Instead of assuming (X,Z,Q) ⊥⊥ (θ, εj), she assumes in a two
equation system that (θ, ε1) ⊥⊥ Y2 | Y1,X,Z.
See the discussion in ?.
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We have not discussed panel data methods in this chapter.

The most commonly used panel data method is
difference-in-differences as discussed in ?, ?, ?, and ?, to cite
only a few key papers.
Most of the estimators we have discussed can be adapted to a
panel data setting.
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? develop difference-in-differences matching estimators.

? extends this work.
Separability between errors and observables is a key feature of
the panel data approach in its standard application.
? and ? present analyses of nonseparable panel data methods.
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Summary

This chapter summarizes the main methods used to identify
mean treatment effect parameters under semiparametric and
nonparametric assumptions.

We have used the marginal treatment effect as the unifying
parameter to straddle a diverse econometric literature
summarized in table 1 of this chapter.
For each estimator, we establish what it identifies, the
economic content of the estimand and the identifying
assumptions of the method.
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Appendices
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Relationships Among Parameters Using the Index Structure

Given the index structure, a simple relationship exists among
the parameters.

It is immediate from the definitions D = 1 (UD ≤ P(z)) and
∆ = Y1 − Y0 that

∆TT(x,P(z)) = E(∆|X = x,UD ≤ P(z)). (85)

Next consider ∆LATE(x,P(z),P(z′)).
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Note that E(Y|X = x,P(Z) = P(z))

= P(z)
[

E(Y1|X = x,P(Z) = P(z),D = 1)
]

+(1 − P(z))
[

E (Y0|X = x,P(Z) = P(z),D = 0)
]

=

∫ P(z)

0
E(Y1|X = x,UD = uD)duD +

∫ 1

P(z)
E(Y0|X = x,UD = uD)duD,

so that
E(Y|X = x,P(Z) = P(z))− E(Y|X = x,P(Z) = P(z′))

=

∫ P(z)

P(z′)
E(Y1|X = x,UD = uD)duD −

∫ P(z)

P(z′)
E(Y0|X = x,UD = uD)duD,

and thus

∆LATE(x,P(z),P(z′)) = E(∆|X = x,P(z′) ≤ UD ≤ P(z)).
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Notice that this expression could be taken as an alternative
definition of LATE.

Note that, in this expression, we could replace P (z) and P (z′)
with uD and u′

D.
No instrument needs to be available to define LATE.
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We can rewrite these relationships in succinct form in the
following way:

∆MTE(x, uD) = E(∆|X = x,UD = uD)
∆ATE(x) =

∫ 1
0E(∆|X = x,UD = uD)duD

P(z)[∆TT(x,P(z))] =
∫ P(z)

0 E(∆|X = x,UD = uD)duD
(P(z)− P(z′))[∆LATE(x,P(z),P(z′))] =

∫ P(z)
P(z′)E(∆|X = x,UD = uD)duD.

(86)

We stress that everywhere in these expressions we can replace
P (z) with uD and P (z′) with u′

D.
Each parameter is an average value of MTE,
E(∆ | X = x,UD = uD), but for values of UD lying in different
intervals and with different weighting functions.
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MTE defines the treatment effect more finely than do LATE,
ATE, or TT.

The relationship between MTE and LATE or TT conditional on
P(z) is analogous to the relationship between a probability
density function and a cumulative distribution function.
The probability density function and the cumulative distribution
function represent the same information, but for some purposes
the density function is more easily interpreted.
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Likewise, knowledge of TT for all P(z) evaluation points is
equivalent to knowledge of the MTE for all uD evaluation
points, so it is not the case that knowledge of one provides
more information than knowledge of the other.

However, in many choice-theoretic contexts it is often easier to
interpret MTE than the TT or LATE parameters.
It has the interpretation as a measure of willingness to pay on
the part of people on a specified margin of participation in the
program.
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Likewise, knowledge of TT for all P(z) evaluation points is
equivalent to knowledge of the MTE for all uD evaluation
points, so it is not the case that knowledge of one provides
more information than knowledge of the other.
However, in many choice-theoretic contexts it is often easier to
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∆MTE(x, uD) is the average effect for people who are just
indifferent between participation in the program (D = 1) or not
(D = 0) if the instrument is externally set so that P(Z) = uD.

For values of uD close to zero, ∆MTE(x, uD) is the average effect
for individuals with unobservable characteristics that make
them the most inclined to participate in the program (D = 1),
and for values of uD close to one it is the average treatment
effect for individuals with unobserved (by the econometrician)
characteristics that make them the least inclined to participate.
ATE integrates ∆MTE(x, uD) over the entire support of UD
(from uD = 0 to uD = 1).
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It is the average effect for an individual chosen at random from
the entire population.

∆TT(x,P(z)) is the average treatment effect for persons who
chose to participate at the given value of P(Z) = P(z); it
integrates ∆MTE(x, uD) up to uD = P(z).
As a result, it is primarily determined by the MTE parameter
for individuals whose unobserved characteristics make them the
most inclined to participate in the program.
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LATE is the average treatment effect for someone who would
not participate if P(Z) ≤ P(z′) and would participate if
P(Z) ≥ P(z).

The parameter ∆LATE(x,P(z),P(z′)) integrates ∆MTE(x, uD)
from uD = P(z′) to uD = P(z).
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Using the third expression in equation (86) to substitute into
equation (85), we obtain an alternative expression for the TT
parameter as a weighted average of MTE parameters:

∆TT(x) =
∫ 1

0

1
p

[∫ p

0
E(∆|X = x,UD = uD)duD

]
dFP(Z)|X,D(p|x,D = 1).

Using Bayes’ rule, it follows that

dFP(Z)|X,D(p|x, 1) =
Pr(D = 1|X = x,P(Z) = p)

Pr(D = 1|X = x) dFP(Z)|X(p|x).

Heckman and Vytlacil Using the Marginal Treatment Effect
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Since Pr(D = 1|X = x,P(Z) = p) = p, it follows that

∆TT(x) = 1
Pr(D = 1|X = x)

∫ 1

0

(∫ p

0
E(∆|X = x,UD = uD)duD

)
dFP(Z)|X(p|x). (87)
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Note further that since
Pr(D = 1|X = x) = E(P(Z)|X = x) =

∫ 1
0(1 − FP(Z)|X(t|x))dt,

we can reinterpret (87) as a weighted average of local IV
parameters where the weighting is similar to that obtained from
a length-biased, size-biased, or P-biased sample:
�TT(x) =

1

Pr(D = 1 | X = x)

×

∫

1

0

( ∫

1

0

1(uD � p)E(� | X = x,UD = uD) duD

)

dFP(Z)|X(p|x)

=
1

∫

(1 − FP(Z)|X(t |x)) dt

×

∫

1

0

( ∫

1

0

E(� | X = x,UD = uD)1(uD � p) dFP(Z)|X(p|x)

)

duD

=

∫

1

0

E(� | X = x,UD = uD)

(

1 − FP(Z)|X(uD|x)
∫

(1 − FP(Z)|X(t |x)) dt

)

duD

=

∫

1

0

E(� | X = x,UD = uD)gx(uD) duD,

where gx(uD) =
1−FP(Z)|X(uD|x)∫
(1−FP(Z)|X(t|x))dt .
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Thus gx(uD) is a weighted distribution (?).

Since gx(uD) is a nonincreasing function of uD, we have that
drawings from gx(uD) oversample persons with low values of
UD, i.e., values of unobserved characteristics that make them
the most likely to participate in the program no matter what
their value of P(Z).
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Since
∆MTE(x, uD) = E(∆|X = x,UD = uD)

it follows that

∆TT(x) =
∫ 1

0
∆MTE(x, uD)gx(uD)duD.

The TT parameter is thus a weighted version of MTE, where
∆MTE (x, uD) is given the largest weight for low uD values and
is given zero weight for uD ≥ pmax

x , where pmax
x is the maximum

value in the support of P(Z) conditional on X = x.
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Figure A-1 graphs the relationship between ∆MTE(uD), ∆ATE

and ∆TT(P(z)), assuming that the gains are the greatest for
those with the lowest UD values and that the gains decline as
UD increases.

The curve is the MTE parameter as a function of uD, and is
drawn for the special case where the outcome variable is binary
so that MTE parameter is bounded between −1 and 1.
The ATE parameter averages ∆MTE(uD) over the full unit
interval (i.e., is the area under A minus the area under B and C
in the figure).
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Figure A-1: MTE Integrates to ATE and TT Under Full Support (for
dichotomous outcome)
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∆TT(P(z)) averages ∆MTE(uD) up to the point P(z) (is the
area under A minus the area under B in the figure).

Because ∆MTE(uD) is assumed to be declining in uD, the TT
parameter for any given P(z) evaluation point is larger then the
ATE parameter.
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Equation (86) relates each of the other parameters to the MTE
parameter.

One can also relate each of the other parameters to the LATE
parameter.
This relationship turns out to be useful later on in this chapter
when we encounter conditions where LATE can be identified
but MTE cannot.
MTE is the limit form of LATE:

∆MTE(x, p) = lim
p′→p

∆LATE(x, p, p′).

Direct relationships between LATE and the other parameters
are easily derived.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Struct Relaxing PRTE Weights Mix LIV Ord PRTE Weights IV Weights Prf Flat Excl Selec

Equation (86) relates each of the other parameters to the MTE
parameter.
One can also relate each of the other parameters to the LATE
parameter.

This relationship turns out to be useful later on in this chapter
when we encounter conditions where LATE can be identified
but MTE cannot.
MTE is the limit form of LATE:

∆MTE(x, p) = lim
p′→p

∆LATE(x, p, p′).

Direct relationships between LATE and the other parameters
are easily derived.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Struct Relaxing PRTE Weights Mix LIV Ord PRTE Weights IV Weights Prf Flat Excl Selec

Equation (86) relates each of the other parameters to the MTE
parameter.
One can also relate each of the other parameters to the LATE
parameter.
This relationship turns out to be useful later on in this chapter
when we encounter conditions where LATE can be identified
but MTE cannot.

MTE is the limit form of LATE:

∆MTE(x, p) = lim
p′→p

∆LATE(x, p, p′).

Direct relationships between LATE and the other parameters
are easily derived.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Struct Relaxing PRTE Weights Mix LIV Ord PRTE Weights IV Weights Prf Flat Excl Selec

Equation (86) relates each of the other parameters to the MTE
parameter.
One can also relate each of the other parameters to the LATE
parameter.
This relationship turns out to be useful later on in this chapter
when we encounter conditions where LATE can be identified
but MTE cannot.
MTE is the limit form of LATE:

∆MTE(x, p) = lim
p′→p

∆LATE(x, p, p′).

Direct relationships between LATE and the other parameters
are easily derived.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Struct Relaxing PRTE Weights Mix LIV Ord PRTE Weights IV Weights Prf Flat Excl Selec

Equation (86) relates each of the other parameters to the MTE
parameter.
One can also relate each of the other parameters to the LATE
parameter.
This relationship turns out to be useful later on in this chapter
when we encounter conditions where LATE can be identified
but MTE cannot.
MTE is the limit form of LATE:

∆MTE(x, p) = lim
p′→p

∆LATE(x, p, p′).

Direct relationships between LATE and the other parameters
are easily derived.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Struct Relaxing PRTE Weights Mix LIV Ord PRTE Weights IV Weights Prf Flat Excl Selec

The relationship between LATE and ATE is immediate:

∆ATE(x) = ∆LATE(x, 0, 1).

Using Bayes’ rule, the relationship between LATE and TT is

∆TT(x) =
∫ 1

0
∆LATE(x, 0, p) p

Pr(D = 1|X = x)dFP(Z)|X(p|x).
(88)
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Relaxing Additive Separability and Independence

There are two central assumptions that underlie the latent
index representation used in this chapter: that V is independent
of Z, and that V and Z are additively separable in the index.

The latent index model with these two restrictions implies the
independence and monotonicity assumptions of ? and the
latent index model implied by those assumptions implies a
latent index model with a representation that satisfies both the
independence and the monotonicity assumptions.
In this appendix, we consider the sensitivity of the analysis
presented in the text to relaxation of either of these
assumptions.
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First, consider allowing V and Z to be nonseparable in the
treatment index:

D∗ = µD(Z,V)
D =

{
1 if D∗ ≥ 0
0 otherwise ,

while maintaining the assumption that Z is independent of
(V,U1,U0) . We do not impose any restrictions on the cross
partials of µD.

The monotonicity condition of ? is that for any (z, z′) pair,
µD(z, v) ≥ µD(z′, v) for all v, or µD(z, v) ≤ µD(z′, v) for all v.
? shows that monotonicity always implies one representation of
µD as µD(z, v) = µD(z) + v.
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We now reconsider the analysis in the text without imposing
the monotonicity condition by considering the latent index
model without additive separability.

Since we have imposed no structure on the µD(z, v) index, one
can easily show that this model is equivalent to imposing the
independence condition of ? without imposing their
monotonicity condition.
A random coefficient discrete choice model with µD = Zγ + ε
where γ and ε are random, and γ can assume positive or
negative values is an example of this case, i.e., V = (γ, ε).
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We impose the regularity condition that, for any z ∈ Supp(Z),
µD(z,V) is absolutely continuous with respect to Lebesgue
measure.

Let
Ω(z) = {v : µD(z, v) ≥ 0},

so that

P(z) ≡ Pr(D = 1|Z = z) = Pr(V ∈ Ω(z)).

Under additive separability, P(z) = P(z′) ⇔ Ω(z) = Ω(z′).
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This equivalence enables us to define the parameters in terms
of the P(z) index instead of the full z vector.

In the more general case without additive separability, it is
possible to have (z, z′) such that P(z) = P(z′) and
Ω(z) ̸= Ω(z′).
We present a random coefficient choice model example of this
case in Slide 381 in the text.
In this case, we can no longer replace Z = z with P(Z) = P(z)
in the conditioning sets.
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Define, using ∆ = Y1 − Y0,

∆MTE(x, v) = E(∆|X = x,V = v).

For ATE, we obtain the same expression as before:

∆ATE(x) =
∫ ∞

−∞
E (∆ | X = x,V = v) dFV|X (v) .

For TT, we obtain a similar but slightly more complicated
expression:

∆TT(x, z) ≡ E(∆|X = x,Z = z,D = 1)
= E(∆|X = x,V ∈ Ω(z))

=
1

P(z)

∫
Ω(z)

E(∆|X = x,V = v)dFV|X (v) .
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Because it is no longer the case that we can define the
parameter solely in terms of P(z) instead of z, it is possible to
have (z, z′) such that P(z) = P(z′) but ∆TT(x, z) ̸= ∆TT(x, z′).
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Following the same derivation as used in the text for the TT
parameter not conditional on Z,

∆TT(x) ≡E(∆|X = x,D = 1)

=

∫
E(∆|X = x,Z = z,D = 1)dFZ|X,D(z|x, 1)

=
1

Pr(D = 1|X = x)

×
∫ [∫ ∞

−∞
1[v ∈ Ω(z)]E(∆|X = x,V = v)dFV|X (v)

]
dFZ|X(z|x)

=
1

Pr(D = 1|X = x)

×
∫ ∞

−∞

[∫
1[v ∈ Ω(z)]E(∆|X = x,V = v)dFZ|X(z|x)

]
dFV|X (v)

=

∫ ∞

−∞
E(∆|X = x,V = v)gx(v)dv

where

gx(v) =

∫
1[v ∈ Ω(z)]dFZ|X(z|x)

Pr(D = 1|X = x)
=

Pr(D = 1|V = v,X = x)
Pr(D = 1|X = x)

.
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Thus the definitions of the parameters and the relationships
among them that are developed in the main text of this chapter
generalize in a straightforward way to the nonseparable case.

Separability allows us to define the parameters in terms of P(z)
instead of z and allows for slightly simpler expressions, but is
not crucial for the definition of parameters or the relationship
among them.
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Separability is, however, crucial to the form of LATE when we
allow V and Z to be additively nonseparable in the treatment
index.

For simplicity, we will keep the conditioning on X implicit.
Define the following sets

A(z, z′) = {v : µD(z, v) ≥ 0, µD(z′, v) ≥ 0}

B(z, z′) = {v : µD(z, v) ≥ 0, µD(z′, v) < 0}
C(z, z′) = {v : µD(z, v) < 0, µD(z′, v) < 0}
D(z, z′) = {v : µD(z, v) < 0, µD(z′, v) ≥ 0}.

Monotonicity implies that either B(z, z′) or D(z, z′) is empty.
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Suppressing the z, z′ arguments, we have:
E(Y|Z = z) = Pr(A

⋃
B)E(Y1|A

⋃
B) + Pr(C

⋃
D)E(Y0|C

⋃
D)

E(Y|Z = z′) = Pr(A
⋃

D)E(Y1|A
⋃

D) + Pr(B
⋃

C)E(Y0|B
⋃

C)

so that
E(Y|Z = z)− E(Y|Z = z′)

Pr(D = 1|Z = z)− Pr(D = 1|Z = z′)
=

E(Y|Z = z)− E(Y|Z = z′)
Pr(A

⋃
B)− Pr(A

⋃
D)

=
Pr(B)E(Y1 − Y0|B)− Pr(D)E(Y1 − Y0|D)

Pr(B)− Pr(D)

= wBE(∆|B)− wDE(∆|D)

with

wB =
Pr(B|B

⋃
D)

Pr(B|B
⋃

D)− Pr(D|B
⋃

D)

wD =
Pr(D|B

⋃
D)

Pr(B|B
⋃

D)− Pr(D|B
⋃

D)
.
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Under monotonicity, either Pr(B) = 0 and LATE identifies
E(∆|D) or Pr(D) = 0 and LATE identifies E(∆|B).

Without monotonicity, the IV estimator used as the sample
analogue to LATE converges to the above weighted difference
in the two terms, and the relationship between LATE and the
other treatment parameters presented in the text no longer
holds.
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Consider what would happen if we could condition on a given v.

For v ∈ A
⋃

C, the denominator is zero and the parameter is
not well defined.
For v ∈ B, the parameter is E(∆|V = v), for v ∈ D, the
parameter is E(∆|V = v).
If we could restrict conditioning to v ∈ B (or v ∈ D), we would
obtain monotonicity within the restricted sample.
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not well defined.

For v ∈ B, the parameter is E(∆|V = v), for v ∈ D, the
parameter is E(∆|V = v).
If we could restrict conditioning to v ∈ B (or v ∈ D), we would
obtain monotonicity within the restricted sample.
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Now consider LIV.

For simplicity, assume z is a scalar.
Assume µD(z, v) is continuously differentiable in (z, v), with
µj(z, v) denoting the partial derivative with respect to the jth
argument.
Assume that µD(Z,V) is absolutely continuous with respect to
Lebesgue measure.
Fix some evaluation point, z0.
One can show that there may be at most a countable number
of v points such that µD(z0, v) = 0.
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Let j ∈ J = {1, . . . , L} index the set of v evaluation points
such that µD(z0, v) = 0, where L may be infinity, and thus
write: µD(z0, vj) = 0 for all j ∈ J .

(Both the number of such evaluation points and the evaluation
points themselves depend on the evaluation point, z0, but we
suppress this dependence for notational convenience.) Assume
that there exists {Bk}k∈J ,

∑
k∈J Bk < ∞ such that∣∣∣µ1(z,vk)

µ2(z,vk)

∣∣∣ ≤ Bk for k ∈ J and all z in some neighborhood of z0.
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One can show that

∂

∂z

[
E(Y|Z = z)

]∣∣∣∣
z=z0

=
L∑

k=1

µ1(z0, vk)

|µ2(z0, vk)|
E(∆|V = vk)

and

∂

∂z [Pr(D = 1|Z = z)]
∣∣∣∣
z=z0

=
L∑

k=1

µ1(z0, vk)

|µ2(z0, vk)|

∣∣∣∣
z=z0

.

LIV is the ratio of these two terms, and does not in general
equal the MTE.
Thus, the relationship between LIV and MTE breaks down in
the nonseparable case.
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As an example, take the case where L is finite and µ1(z0,vk)
|µ2(z0,vk)|

does not vary with k.

For this case,

∆LIV(z0) = Pr(µ1(z0,V) > 0|µ(z0,V) = 0) · E
(
∆

∣∣∣∣µD(z0,V) = 0, µ1(z0,V) > 0
)

−Pr(µ1(z0,V) < 0|µ(z0,V) = 0)E
(
∆

∣∣∣∣µD(z0,V) = 0, µ1(z0,V) < 0
)

.

Thus, while the definition of the parameters and the
relationship among them does not depend crucially on the
additive separability assumption, the connection between the
LATE or LIV estimators and the underlying parameters crucially
depends on the additive separability assumption.
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Next consider the assumption that V and Z are separable in the
treatment index while allowing them to be stochastically
dependent:

D∗ = µD(Z)− V

D =

{
1 if D∗ ≥ 0
0 otherwise ,

with Z independent of (U0,U1), but allowing Z and V to be
stochastically dependent.

The analysis of ? can be easily adapted to show that the latent
index model with separability but without imposing
independence is equivalent to imposing the monotonicity
assumption of Imbens and Angrist without imposing their
independence assumption.
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We have
Ω(z) = {v : µD(z) ≥ v}

and

P(z) ≡ Pr(D = 1|Z = z) = Pr(V ∈ Ω(z)|Z = z).

Note that Ω(z) = Ω(z′) ⇒ µD(z) = µD(z′), but Ω(z) = Ω(z′)
does not imply P(z) = P(z′) since the distribution of V
conditional on Z = z need not equal the distribution of V
conditional on Z = z′.
Likewise, P(z) = P(z′) does not imply Ω(z) = Ω(z′).
As occurred in the nonseparable case, we can no longer replace
Z = z with P(Z) = P(z) in the conditioning sets.
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Consider the definition of the parameters and the relationship
among them.

The definition of MTE and ATE in no way involves Z, nor does
the relationship between them, so that both their definition and
their relationship remains unchanged by allowing Z and V to be
dependent.
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Now consider the TT parameter where now we make the
dependence of X explicit:

∆TT(x, z) = E(∆|X = x,Z = z,V ≤ µD(z))

= 1
P(z)

∫ µD(z)

−∞
E(∆ | X = x,V = v)dFV|Z,X(v | z, x)

= 1
P(z)

∫ µD(z)

−∞
E(∆ | X = x,V = v) fZ|V,X(z|v,x)

fZ|X(z|x)
dFV|X(v | x)

where fZ|X and fZ|V,X denote the densities corresponding to FZ|X
and FZ|V,X with respect to the appropriate dominating measure.
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We thus obtain
∆TT(x)
=E(∆|X = x,V ≤ µD(Z))

=
1

Pr(D = 1|X = x)

×
∫ [∫ µD(z)

−∞
E(∆|X = x,V = v)

[ fZ|U,X(z|v, x)
fZ|X(z|x)

dFV|X(v|x)
]

dFZ|X(z|x)
]

=
1

Pr(D = 1|X = x)

×
∫ ∞

−∞

[∫
1[v ≤ µD(z)]E(∆|X = x,V = v)

[ fZ|U,X(z|v, x)
fZ|X(z|x)

dFZ|X(z|x)
]

dFV|X(v|x)
]

=
1

Pr(D = 1|X = x)

×
∫ ∞

−∞

[∫
1[v ≤ µD(z)]E(∆|X = x,V = v)dFZ|V,X(z|v, x)

]
dFV|X(v|x)

=

∫ ∞

−∞
E(∆|X = x,V = v)gx(v)dv

where
gx(v) =

Pr(D = 1|V = v,X = x)
Pr(D = 1|X = x)

.
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Thus the definitions of parameters and the relationships among
the parameters that are developed in the text generalize
naturally to the case where Z and V are stochastically
dependent.

Independence (combined with the additive separability
assumption) allows us to define the parameters in terms of P(z)
instead of z and allows for slightly simpler expressions, but is
not crucial for the definition of parameters or the relationship
among them.
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We next investigate LATE when we allow V and Z to be
stochastically dependent.

We have
E(Y|X =x,Z = z)

=P(z)
[

E(Y1|X = x,Z = z,D = 1)
]

+ (1 − P(z))
[

E(Y0|X = x,Z = z,D = 0)
]

=

∫ µD(z)

−∞
E(Y1|X = x,V = v)dFV|X,Z(v|x, z)

+

∫ ∞

µD(z)
E(Y0|X = x,V = v)dFV|X,Z(v|x, z),
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For simplicity, take the case where µD(z) > µD(z′).

Then
E(Y|X = x,Z = z)− E(Y|X = x,Z = z′)

=

[∫ µD(z)

µD(z′)
E(Y1|X = x,V = v)dFV|X,Z(v|x, z)

−
∫ µD(z)

µD(z′)
E(Y0|X = x,V = v)dFV|X,Z(v|x, z′)

]

+

∫ µD(z′)

−∞
E(Y1|X = x,V = v)

(
dFV|X,Z(v|x, z)− dFV|X,Z(v|x, z′)

)
+

∫ ∞

µD(z)
E(Y0|X = x,V = v)

(
dFV|X,Z(v|x, z)− dFV|X,Z(v|x, z′)

)
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Thus
∆LATE(x, z, z′)

=δ0(z)E(Y1|X = x,Z = z, µD(z′) ≤ V ≤ µD(z))
− δ0(z′)E(Y0|X = x,Z = z′, µD(z′) ≤ V ≤ µD(z))

+

[
δ1(z)E(Y1|X = x,Z = z,V ≤ µD(z′))− δ1(z′)E(Y1|X = x,Z = z′,V ≤ µD(z′))

]
+

[
δ2(z)E(Y0|X = x,Z = z,V > µD(z))− δ2(z′)E(Y0|X = x,Z = z′,V > µD(z))

]
,

with

δ0(t) =
Pr(µD(z′) ≤ V ≤ µD(z)|Z = t)

Pr(V ≤ µD(z)|Z = z,X = x)− Pr(V ≤ µD(z′)|Z = z′,X = x)

δ1(t) =
Pr(V ≤ µD(z′)|Z = t)

Pr(V ≤ µD(z)|Z = z,X = x)− Pr(V ≤ µD(z′)|Z = z′,X = x)

δ2(t) =
Pr(V > µD(z)|Z = t)

Pr(V ≤ µD(z)|Z = z,X = x)− Pr(V ≤ µD(z′)|Z = z′,X = x)
.
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Note that δ0(z) = δ0(z′) = 1 and the two terms in brackets are
zero in the case where Z and V are independent.

In the more general case, δ0 may be bigger or smaller than 1,
and the terms in brackets are of unknown sign.
In general, LATE may be negative even when ∆ is positive for
all individuals.
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Now consider LIV.

For simplicity, take the case where Z is a continuous scalar r.v.
Let fV|Z(v|z) denote the density of V conditional on Z = z , and
assume that this density is differentiable in z.
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Now consider LIV.
For simplicity, take the case where Z is a continuous scalar r.v.
Let fV|Z(v|z) denote the density of V conditional on Z = z , and
assume that this density is differentiable in z.
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Then we obtain
∂E(Y|X = x,Z = z)

∂z
= E(∆|X = x,V = µD(z))µ′

D(z)fV|Z,X (v | x, µD (z))

+

[∫ µD(z)

−∞
E(Y1|X = x,V = v)

∂fV|Z,X(v|z, x)
∂z

dv

+

∫ ∞

µD(z)
E(Y0|X = x,V = v)

∂fV|Z,X(v|z, x)
∂z

dv
]
,

and
∂ Pr(D = 1|Z = z)

∂z
= fV|Z,X (v | x, µD (z))µ′

D(z) +
∫ µD(z)

−∞

∂fV|Z,X(v|z, x)
∂z

dv.

LIV is the ratio of the two terms.
Thus, without the independence condition, the relationship
between LIV and the MTE breaks down.
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Proof.
(Equation (30))

E (Yp | X) =

∫
E(Yp|X,V = v,Zp = z) dFV,Zp|X(v, z)

=

∫
(1Ω(z)E(Y1|X,V = v,Zp = z)

+1Ωc (z)E(Y0|X,V = v,Zp = z)) dFV,Zp|X(v, z)

=

∫
(1Ω(z)E(Y1|X,V = v) + 1Ωc (z)E(Y0|X,V = v)) dFV,Zp|X(v, z)

=

∫ [∫
(1Ω(z)E(Y1|X,V = v) + 1Ωc (z)E(Y0|X,V = v)) dFZp|X(z)

]
dFV|X(v)

=

∫
[Pr[Zp ∈ Ω | X]E(Y1|X,V = v)

+(1 − Pr[Zp ∈ Ω(z) | X])E(Y0|X,V = v)] dFV|X(v)

Q.E.D.
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Proof.
where Ωc(z) denotes the complement of Ω(z) and where the first
equality follows from the law of iterated expectations; the second
equality follows by plugging in our threshold crossing model for D;
the third equality follows from independence Z ⊥⊥ (Y1,Y0,V) | X;
the fourth and fifth equalities follow by an application of Fubini’s
Theorem and a rearrangement of terms. Fubini’s Theorem may be
applied by assumption (A-4). Thus comparing policy p to policy p′,
we obtain (30).

E(Yp | X)− E(Yp′ | X) =

∫
E(∆ | X,V = v)(Pr[Zp ∈ Ω | X]− Pr[Zp′ ∈ Ω | X]) dFV|X(v).
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Proof.
(Equation (32))

E (Yp | X) =

∫
E(Yp|X,V = v,Zp = z) dFV,Zp|X(v, z)

=

∫ [ 1[−∞,µD(z)](v)E(Y1 | X,Z = z,V = v)
+1(µD(z),∞](v)E(Y0 | X,Z = z,V = v)

]
dFV,Zp|X(v, z)

=

∫ [ 1[−∞,µD(z)](v)E(Y1 | X,V = v)
+1(µD(z),∞](v)E(Y0 | X,V = v)

]
dFV,Zp|X(v, z)

=

∫ [∫ ( 1[−∞,µD(z)](v)E(Y1 | X,V = v)
+1(µD(z),∞](v)E(Y0 | X,V = v)

)
dFZp|V(z | v)

]
dFV|X(v)

=

∫ [
(1 − Pr[µD(Zp) < v | V = v])E (Y1 | X,V = v)
+Pr [µD(Zp) < v | V = v]E (Y0 | X,V = v)

]
dFV|X(v),

Q.E.D.
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Proof.
where the first equality follows from the law of iterated
expectations; the second equality follows by plugging in our model
for D; the third equality follows from independence
Z ⊥⊥ (Y1,Y0) | X,V; the fourth equality follows by an application of
Fubini’s Theorem; and the final equality follows immediately. Thus
comparing policy p to policy p′, we obtain (32) in the text.
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Derivation of PRTE and Implications of Noninvariance for
PRTE
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Proof.
(Equation (10)) To simplify the notation, assume that Υ(Y) = Y.
Modifications required for the more general case are obvious. Define
1P(t) to be the indicator function for the event t ∈ P . Then
E (Yp | X)

=

∫ 1

0
E(Yp|X,Pp(Zp) = t) dFPp|X(t)

=

∫ 1

0

[∫ 1

0
[1[0,t](uD)E(Y1,p | X,UD = uD) + 1(t,1](uD)E(Y0,p | X,UD = uD) duD

]
dFPp|X(t)

=

∫ 1

0

[∫ 1

0
[1[uD,1](t)E(Y1,p | X,UD = uD) + 1(0,uD](t)E(Y0,p | X,UD = uD) dFPp|X(t)

]
duD

=

∫ 1

0

[
(1 − FPp|X(uD))E(Y1,p | X,UD = uD) + FPp|X(uD)E(Y0,p | X,UD = uD)

]
duD.

This derivation involves changing the order of integration. Q.E.D.
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Proof.
Note that from (A-4),

E|1[0,t](uD)E(Y1,p | X,UD = uD) + 1(t,1](uD)E(Y0,p | X,UD = uD)| ≤ E(|Y1|+ |Y0|) < ∞,

so the change in the order of integration is valid by Fubini’s
theorem. Comparing policy p to policy p′,

E (Yp | X)− E
(
Yp′ | X

)
=

∫ 1

0
E(∆ | X,UD = uD)(FPp′ |X(uD)− FPp|X(uD)) duD,

which gives the required weights. (Recall ∆ = Y1 − Y0 and from
(A-7) we can drop the p, p′ subscripts on outcomes and errors.)
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Relaxing (A-7): Implications of Noninvariance for PRTE.
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Suppose that all of the assumptions invoked up through
Slide 139 are satisfied, including additive separability in the
latent index choice equation (7) (equivalently, the monotonicity
or uniformity condition).

Impose the normalization that the distribution of UD is unit
uniform (UD = FV|X (V | X)).
Suppose however, contrary to (A-7), that the distribution of
(Y1,Y0,UD,X) is different under the two regimes p and p′.
Thus, let (Y1,p,Y0,p,UD,p,Xp) and (Y1,p′ ,Y0,p′ ,UD,p′ ,Xp′)
denote the random vectors under regimes p and p′, respectively.
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Following the same analysis as used to derive equation (10),
the PRTE conditional on X is given by

E(Yp | Xp = x)− E
(
Yp′ |Xp′ = x

)
=

∫ 1

0
E(Y1,p − Y0,p | Xp = x,UD,p = u)

[
FPp′ |Xp′

(u | x)− FPp|Xp (u | x)
]

du (I)

+

∫ 1

0

[
E(Y0,p | Xp = x,UD,p = u)− E(Y0,p′ | Xp′ = x,UD,p′ = u)

]
du (II)

+

∫ 1

0

[
(1 − FPp′ |Xp′

(u | x))
(
E(Y1,p − Y0,p | Xp = x,UD,p = u)

−E(Y1,p′ − Y0,p′ | Xp′ = x,UD,p′ = u)
)]

du . (III)
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Thus, when the policy affects the distribution of
(Y1,Y0,UD,X), the PRTE is given by the sum of three terms:
(I) the value of PRTE if the policy did not affect
(Y1,Y0,X,UD); (II) the weighted effect of the policy change on
E(Y0 | X,UD); and (III) the weighted effect of the policy
change on MTE.

Evaluating the PRTE requires knowledge of the MTE function
in both regimes, knowledge of E(Y0 | X = x,UD = u) in both
regimes, as well as knowledge of the distribution of P(Z) in
both regimes.
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Note, however, that if we assume that the distribution of
(Y1,p,Y0,p,UD,p) conditional on Xp = x equals the distribution
of (Y1,p′ ,Y0,p′ ,UD,p′) conditional on Xp′ = x, then
E(Y1,p | UD,p = u,Xp = x) = E(Y1,p′ | UD,p′ = u,Xp′ = x),
E(Y0,p | UD,p = u,Xp = x) = E(Y0,p′ | UD,p′ = u,Xp′ = x), and
thus the last two terms vanish and the expression for PRTE
simplifies to the expression of equation (10).
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Deriving the IV Weights on MTE

We consider instrumental variables conditional on X = x using
a general function of Z as an instrument.

To simplify the notation, we keep the conditioning on X
implicit.
Let J(Z) be any function of Z such that Cov(J(Z),D) ̸= 0.
Consider the population analogue of the IV estimator,

Cov (J (Z) ,Y)
Cov (J (Z) ,D)

.
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First consider the numerator of this expression,

Cov (J (Z) ,Y) = E ([J (Z)− E (J (Z))]Y)
= E ((J (Z)− E (J (Z))) (Y0 + D (Y1 − Y0)))

= E ((J (Z)− E (J (Z)))D (Y1 − Y0))

where the second equality comes from substituting in the
definition of Y and the third equality follows from conditional
independence assumption (A-1).

Define J̃(Z) ≡ J(Z)− E(J(Z)).

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Struct Relaxing PRTE Weights Mix LIV Ord PRTE Weights IV Weights Prf Flat Excl Selec

First consider the numerator of this expression,
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= E ((J (Z)− E (J (Z)))D (Y1 − Y0))
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Then
Cov (J (Z) ,Y) =E

(
J̃(Z) 1[UD ≤ P(Z)] (Y1 − Y0)

)
=E
(

J̃(Z) 1[UD ≤ P(Z)] E (Y1 − Y0 | Z,UD)
)

=E
(

J̃(Z) 1[UD ≤ P(Z)] E (Y1 − Y0 | UD)
)

=EUD

(
EZ

[
J̃(Z) 1[UD ≤ P(Z)]

∣∣∣∣ UD

]
E (Y1 − Y0 | UD)

)
=

∫ 1

0

{
E(J̃(Z) | P(Z) ≥ uD) Pr(P(Z) ≥ uD)E (Y1 − Y0 | UD = uD)

}
duD

=

∫ 1

0
∆MTE(x, uD)E(J̃(Z) | P(Z) ≥ uD) Pr(P(Z) ≥ uD)duD
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The first equality follows from plugging in the model for D; the
second equality follows from the law of iterated expectations
with the inside expectation conditional on (Z,UD); the third
equality follows from conditional independence assumption
(A-1); the fourth equality follows from Fubini’s Theorem and
the law of iterated expectations with the inside expectation
conditional on (UD = uD); (and implicitly on X); this allows to
reverse the order of integration in a multiple integral; the fifth
equality follows from the normalization that UD is distributed
unit uniform conditional on X; and the final equality follows
from plugging in the definition of ∆MTE.
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Next consider the denominator of the IV estimand.

Observe that by iterated expectations

Cov (J (Z) ,D) = Cov (J (Z) ,P (Z)) .

Thus, the population analogue of the IV estimator is given by∫ 1

0
∆MTE(uD)ω (uD) duD (89)

where

ω (uD) =
E(J̃(Z) | P(Z) ≥ uD) Pr(P(Z) ≥ uD)

Cov (J(Z),P (Z)) (90)

where by assumption Cov (J(Z),P (Z)) ̸= 0.
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If J(Z) and P(Z) are continuous random variables, then an
interpretation of the weight can be derived from (90) by noting
that∫

(j − E (J (Z)))
∫ 1

uD

fP,J(t, j) dt dj

=

∫
(j − E (J (Z))) fJ (j)

∫ 1

uD

fP|J (t | J(Z) = j) dt dj.

Write∫ 1

uD

fP|J (t | J(Z) = j) dt = 1 − FP|J (uD | J(Z) = j)

= SP|J (uD | J(Z) = j)

where SP|J (uD | J(Z) = j) is the probability of (P (Z) ≥ uD)
given J (Z) = j (and implicitly X = x).
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Likewise, Pr[P(Z) > UD | J(Z)] = SP|J (UD | J(Z)).

Using these results, we may write the weight as

ω (uD) =
Cov

(
J (Z) , SP|J(uD | J(Z)

)
Cov

(
J (Z) , SP|J(UD | J(Z)

) .
For fixed uD and x evaluation points, SP|J (uD | J(Z)) is a
function of the random variable J(Z).
The numerator of the preceding expression is the covariance
between J(Z) and the probability that the random variable P(Z)
is greater than the evaluation point uD conditional on J(Z).
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) .

For fixed uD and x evaluation points, SP|J (uD | J(Z)) is a
function of the random variable J(Z).
The numerator of the preceding expression is the covariance
between J(Z) and the probability that the random variable P(Z)
is greater than the evaluation point uD conditional on J(Z).
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SP|J (UD | J(Z)) is a function of the random variables UD and
J(Z).

The denominator of the above expression is the covariance
between J(Z) and the probability that the random variable P(Z)
is greater than the random variable UD conditional on J(Z).
Thus, it is clear that if the covariance between J (Z) and the
conditional probability that (P (Z) > uD) given J (Z) is positive
for all uD, then the weights are positive.
The conditioning is trivially satisfied if J (Z) = P (Z) , so the
weights are positive and IV estimates a gross treatment effect.
If the J (Z) and P (Z) are discrete valued, we obtain expressions
and (25) and (26) in the text.
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Yitzhaki’s Theorem and the IV Weights (?)

Assume (Y,X) i.i.d., E(|Y|) < ∞, E(|X|) < ∞,
g(X) = E(Y | X) , g′(X) exists and E (|g′ (x)|) < ∞.

Let µY = E(Y) and µX = E(X).
Then,

Cov(Y,X)
Var(X) =

∫ ∞

−∞
g′(t)ω(t) dt,

where

ω(t) =
1

Var(X)

∫ ∞

t
(x − µX) fX(x) dx

=
1

Var(X)E (X − µX | X > t) Pr (X > t) .
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Proof.

Cov(Y,X) = Cov (E(Y | X),X) = Cov (g(X),X)

=

∫ ∞

−∞
g(t)(t − µX) fX(t) dt.

Integration by parts implies that

= g(t)
∫ t

−∞
(x − µX) fX(x) dx

∣∣∣∣∞
−∞

−
∫ ∞

−∞
g′(t)

∫ t

−∞
(x − µX) fX(x) dx dt

=

∫ ∞

−∞
g′(t)

∫ ∞

t
(x − µX) fX(x) dx dt,

since E (X − µX) = 0 and the first term in the first expression
vanishes.
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Therefore,

Cov(Y,X) =
∫ ∞

−∞
g′(t)E (X − µX | X > t) Pr (X > t) dt,

so

ω(t) = 1
Var(X)E (X − µX | X > t) Pr (X > t) . �
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Notice that:
(i) The weights are non-negative (ω (t) ≥ 0).
(ii) They integrate to one (use an integration by parts

formula)
(iii) ω (t) → 0 when t → −∞, and ω (t) → 0 when t → ∞.
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We get the formula in the text when we use P(Z), with a
suitably defined domain, in place of X.

We apply Yitzhaki’s result to the treatment effect model:

Y = α + βD + ε,

E (Y | P(Z)) = α + E (β | D = 1,P(Z))P (Z)
= α + E (β | P(Z) > uD,P(Z))P (Z)
= g(P(Z)).

By the law of iterated expectations, we eliminate the
conditioning on D = 0.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Struct Relaxing PRTE Weights Mix LIV Ord PRTE Weights IV Weights Prf Flat Excl Selec

We get the formula in the text when we use P(Z), with a
suitably defined domain, in place of X.
We apply Yitzhaki’s result to the treatment effect model:

Y = α + βD + ε,

E (Y | P(Z)) = α + E (β | D = 1,P(Z))P (Z)
= α + E (β | P(Z) > uD,P(Z))P (Z)
= g(P(Z)).

By the law of iterated expectations, we eliminate the
conditioning on D = 0.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Struct Relaxing PRTE Weights Mix LIV Ord PRTE Weights IV Weights Prf Flat Excl Selec

We get the formula in the text when we use P(Z), with a
suitably defined domain, in place of X.
We apply Yitzhaki’s result to the treatment effect model:

Y = α + βD + ε,

E (Y | P(Z)) = α + E (β | D = 1,P(Z))P (Z)
= α + E (β | P(Z) > uD,P(Z))P (Z)
= g(P(Z)).

By the law of iterated expectations, we eliminate the
conditioning on D = 0.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Struct Relaxing PRTE Weights Mix LIV Ord PRTE Weights IV Weights Prf Flat Excl Selec

Using our previous results for OLS,

IV =
Cov (Y,P(Z))
Cov (D,P(Z)) =

∫
g′(t)ω(t) dt,

g′(t) = ∂ [E (β | D = 1,P(Z))]P (Z)
∂P(Z)

∣∣∣∣
P(Z)=t

,

ω(t) =
∫ 1

t [φ− E(P(Z))] fP (φ) dφ
Cov(P(Z),D)

.

Under (A-1) to (A-5) and separability, g′(t) = ∆MTE(t) but
g′(t) = LIV, for P (Z) as an instrument.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Struct Relaxing PRTE Weights Mix LIV Ord PRTE Weights IV Weights Prf Flat Excl Selec

Using our previous results for OLS,

IV =
Cov (Y,P(Z))
Cov (D,P(Z)) =

∫
g′(t)ω(t) dt,

g′(t) = ∂ [E (β | D = 1,P(Z))]P (Z)
∂P(Z)

∣∣∣∣
P(Z)=t

,

ω(t) =
∫ 1

t [φ− E(P(Z))] fP (φ) dφ
Cov(P(Z),D)

.

Under (A-1) to (A-5) and separability, g′(t) = ∆MTE(t) but
g′(t) = LIV, for P (Z) as an instrument.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Struct Relaxing PRTE Weights Mix LIV Ord PRTE Weights IV Weights Prf Flat Excl Selec

Relationship of our Weights to the Yitzhaki Weights

Under our assumptions the Yitzhaki weights and ours are
equivalent.

Using (22),

Cov (J (Z) ,Y) = E
(

Y · J̃
)
= E

(
E (Y | Z) · J̃ (Z)

)
= E

(
E (Y | P (Z)) · J̃ (Z)

)
= E

(
g (P (Z)) · J̃ (Z)

)
.

The third equality follows from index sufficiency and
J̃ = J (Z)− E (J (Z) | P (Z) ≥ uD), where
E (Y | P (Z)) = g (P (Z)).
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Writing out the expectation and assuming that J (Z) and P (Z)
are continuous random variables with joint density fP,J and that
J (Z) has support

[
J, J
]
,

Cov (J (Z) ,Y) =

∫ 1

0

∫ J

J
g (uD) j̃fP,J (uD, j) djduD

=

∫ 1

0
g (uD)

∫ J

J
j̃fP,J (uD, j) djduD .
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Using an integration by parts argument as in ? and as
summarized in ?, we obtain

Cov (J (Z) ,Y) =g (uD)
∫ uD

0

∫ J

J
j̃fP,J (p, j) djdp

∣∣∣∣∣
1

0

−
∫ 1

0
g′ (uD)

∫ uD

0

∫ J

J
j̃fP,J (p, j) djdpduD

=

∫ 1

0
g′ (uD)

∫ 1

uD

∫ J

J
j̃fP,J (p, j) djdpduD

=

∫ 1

0
g′ (uD)E

(
J̃ (Z) | P (Z) ≥ uD

)
Pr (P (Z) ≥ uD) duD,

which is then exactly the expression given in (22), where

g′ (uD) =
∂E (Y | P (Z) = p)

∂P (Z)

∣∣∣∣
p=uD

= ∆MTE (uD) .
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Derivation of the Weights for the Mixture of Normals
Example

Writing E1 as the expectation for group 1, letting µ1 be the
mean of Z for population 1 and µ11 be the mean of the first
component of Z,

E1(Z1 | γ′Z > v) = µ11 +
γ′Σ1

1
γ′Σ1γ

E1(Z1 − µ1|γ′Z > v)

= µ11 +
γ′Σ1

1
(γ′Σ1γ)

1/2 E1

(
γ′ (Z − µ1)

(γ′Σ1γ)
1/2 |

γ′ (Z − µ1)

(γ′Σ1γ)
1/2 >

(v − γ′µ1)

(γ′Σ1γ)
1/2

)

= µ11 +
γ′Σ1

1
(γ′Σ1γ)

1/2 λ

(
(v − γ′µ1)

(γ′Σ1γ)
1/2

)
,

where
λ (c) = 1√

2π
e−c2/2

Φ (−c) ,

where Φ (·) is the unit normal cumulative distribution function.
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By the same logic, in the second group:

E2(Z1 | γ′Z > v) = µ21 +
γ′Σ1

2

(γ′Σ2γ)
1/2λ

(
(v − γ′µ2)

(γ′Σ2γ)
1/2

)
.

Therefore for the overall population we obtain
E(Z1 − E(Z1) | γ′Z > v) Pr(γ′Z > v)

= (P1µ11 + P2µ21) Pr(γ
′Z > v) +

P1γΣ1
1

(γ′Σ1γ)
1/2 √2π

exp

−1
2

(
v − γ′µ1

(γ′Σ1γ)
1/2

)2


+
P2γΣ1

2
(γ′Σ2γ)

1/2 √2π
exp

−1
2

(
v − γ′µ2

(γ′Σ2γ)
1/2

)2
− (P1µ11 + P2µ21) Pr(γ

′Z > v)

=
P1γΣ1

1
(γ′Σ1γ)

1/2 √2π
exp

−1
2

(
v − γ′µ1

(γ′Σ1γ)
1/2

)2


+
P2γΣ1

2
(γ′Σ2γ)

1/2 √2π
exp

−1
2

(
v − γ′µ2

(γ′Σ2γ)
1/2

)2
 .
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We need Cov(D,Z1).

To obtain it, observe that

D = 1 [γ′Z − V > 0]
E(Z1D) = E(Z11(γ′Z − V ≥ 0)).

Let E1 denote the expectation for Group 1, and let E2 denote
the expectation for Group 2.
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E(Z1D) =

{
P1

[
µ11 +

γ′Σ1
1

γ′Σ1γ + σ2
V

E1(Z1 − µ11|γ′Z − V ≥ 0)
]

+P2

[
µ21 +

γ′Σ1
2

γ′Σ2γ + σ2
V

E2(Z1 − µ21|γ′Z − V ≥ 0)
]}

Pr
[
(γ′Z − V) > 0

]
=(P1µ11 + P2µ21) Pr(γ

′Z − V ≥ 0)

+
P1γ′Σ1

1(
γ′Σ1γ + σ2

V
)1/2 √2π

exp

−( −γ′µ1(
γ′Σ1γ + σ2

V
)1/2

)2


+
P2γ′Σ1

2(
γ′Σ2γ + σ2

V
)1/2 √2π

exp

−( −γ′µ2(
γ′Σ2γ + σ2

V
)1/2

)2
 .
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Because

E(D)E(Z1) = Pr(γ′Z − V ≥ 0) (P1µ11 + P2µ21)

and
Cov(D,Z1) = E(Z1D)− E(Z1)E(D)

∴ Cov(D,Z1) =
P1γ′Σ1

1(
γ′Σ1γ + σ2

V
)1/2 √2π

exp

−( −γ′µ1(
γ′Σ1γ + σ2

V
)1/2

)2


+
P2γ′Σ1

2(
γ′Σ2γ + σ2

V
)1/2 √2π

exp

−( −γ′µ2(
γ′Σ2γ + σ2

V
)1/2

)2
 .
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Thus the IV weights for this set-up are:

ω̃IV(v) =

{[

P1γ
′Σ1

1

(γ ′Σ1γ )1/2
exp

[

−
1

2

(

v − γ ′µ1

(γ ′Σ1γ )1/2

)2]

+
P2γ

′Σ1

2

(γ ′Σ2γ )1/2
exp

[

−
1

2

(

v − γ ′µ2

(γ ′Σ2γ )1/2

)2]]

fV (v)

}

×

{

P1γ
′Σ1

1

(γ ′Σ1γ + σ 2

V )1/2
exp

[

−

(

−γ ′µ1

(γ ′Σ1γ + σ 2

V )1/2

)2]

+
P2γ

′Σ1

2

(γ ′Σ2γ + σ 2

V )1/2
exp

[

−

(

−γ ′µ2

(γ ′Σ2γ + σ 2

V )1/2

)2]}−1

,

where σ2
V represents the variance of V.
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Clearly, ω̃IV(−∞) = 0, ω̃IV(∞) = 0 and the weights integrate
to one over the support of V = (−∞,∞).

Observe that the weights must be positive if P2 = 0.
Thus the structure of the covariances of the instrument with
the choice index γ′Z is a key determinant of the positivity of
the weights for any instrument.
It has nothing to do with the ceteris paribus effect of Z1 on γ′Z
or P(Z) in the general case.
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A necessary condition for ωIV < 0 over some values of v is that
sign

(
γ′Σ1

1
)
= −sign

(
γ′Σ1

2
)
, i.e., that the covariance between

Z1 and γ′Z be of opposite signs in the two subpopulations so
Z1 and P (Z) have different relationships in the two component
populations.

Without loss of generality, assume that γ′Σ1
1 > 0.

If it equals zero, we fail the rank condition in the first
population and we are back to a one subpopulation model with
positive weights.
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The numerator of the expression for ωIV(v) switches signs if for
some values of v,

P1γ′Σ1
1

(γ′Σ1γ)
1/2 exp

−1
2

(
v − γ′µ1

(γ′Σ1γ)
1/2

)2
 < −

P2γ′Σ1
2

(γ′Σ2γ)
1/2 exp

−1
2

(
v − γ′µ2

(γ′Σ2γ)
1/2

)2


while for other values the inequality is reversed.

Observe that the denominator is a constant.
Rewriting and taking logarithms, we obtain under the
assumption that sign

(
γ′Σ1

1
)
= − sign

(
γ′Σ1

2
)
, the following

expression:

1
2

[
(v − γ′µ2)

2

γ′Σ2γ
−

(v − γ′µ1)
2

γ′Σ1γ

]
< ln

(1 − P1
P1

)
+ ln

[
−γ′Σ1

2
γ′Σ1

1

]
+ ln

[
γ′Σ1γ

γ′Σ2γ

]
,

where we assume 0 < P1 < 1.
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Observe that 1−P1
P1

can be made as large or as small a
non-negative number as we like by varying P1.

Varying (µ1, µ2) does not affect the right hand side.
For µ1 = µ2 = 0, the inequality becomes

1
2

v2
[ 1
γ′Σ2γ

−
1

γ′Σ1γ

]
< ln

(1 − P1
P1

)
+ ln

[
−γ′Σ1

2
γ′Σ1

1

]
+ ln

[
γ′Σ1γ

γ′Σ2γ

]
.
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Observe that 1−P1
P1

can be made as large or as small a
non-negative number as we like by varying P1.
Varying (µ1, µ2) does not affect the right hand side.
For µ1 = µ2 = 0, the inequality becomes

1
2

v2
[ 1
γ′Σ2γ

−
1

γ′Σ1γ

]
< ln

(1 − P1
P1

)
+ ln

[
−γ′Σ1

2
γ′Σ1

1

]
+ ln

[
γ′Σ1γ

γ′Σ2γ

]
.
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Suppose that γ′Σ2γ < γ ′Σ1γ.

Then the left hand side is positive except when v = 0.
For any fixed γ,Σ1,Σ2 we can find a value of P1 sufficiently
small so that right hand side of the equation is positive and for
any such value of P1 there will be a v sufficiently small for the
inequality to be satisfied.
There is also a value of v that reverses the inequality.
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The inequality is satisfied for some v∗ ≥ 0.

But with v arbitrarily large, the inequality can be reversed so
that the weight will switch signs at some value of v.
The key necessary condition is that Cov(Z1, γ

′Z) be of opposite
signs in the two subpopulations.
Using Z1 as an IV, but not conditioning or controlling for the
other components of Z, produces sometimes negative and
sometimes positive movements in the components of
Z2, . . . ,Zk which can offset the ceteris paribus
(Z2 = z2, . . . ,Zk = zk) movements of Z1.
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Local Instrumental Variables for the Random Coefficient
Model

Consider the model:

D = 1[Zγ ≥ 0],

where γ is a random variable.

For ease of exposition, we leave implicit the conditioning on X
covariates.
Assume that (Y0,Y1, γ) ⊥⊥ Z.
Assume that γ has a density that is absolutely continuous with
respect to Lebesgue measure on RK.
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We have

E(Y | Z = z) = E(DY1 | Z = z) + E((1 − D)Y0 | Z = z).

To simplify the exposition, consider the first term,
E(DY1 | Z = z).
In this proof, let Z[K] denote the Kth element of Z and Z[−K]

denote all other elements of Z, and write Z = (Z[−K],Z[K]).
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Using the model, the independence assumption, and the law of
iterated expectations, we have

E(DY | Z = z) = E
(

1[zγ ≥ 0]Y1

)
= E

(
1[zγ ≥ 0]E(Y1 | γ)

)
= E

(
1
{

z[K]γ[K] ≥ −z[−K]γ[−K]

}
E(Y1 | γ)

)
,

where the final outer expectation is over γ.

Consider taking the derivative with respect to the Kth element
of Z assumed to be continuous.
Partition z, γ, and g as z = (z[−K], z[K]), γ = (γ[−K], γ[K]), and
g = (g[−K], g[K]), where z is a realization of Z and g is a
realization of γ.
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For simplicity, suppose that the Kth element of z is positive,
z[K] > 0.

We obtain

E(DY | Z = z) = E
[

E
(

1
{

z[K]γ[K] ≥ −z[−K]γ[−K]

}
E(Y1 | γ)

∣∣∣∣ γ[−K]

)]
= E

[
E
(

1
{
γ[K] ≥

−z[−K]γ[−K]

z[K]

}
E(Y1 | γ)

∣∣∣∣ γ[−K]

)]
,

where the inside expectation is over γ[K] conditional on γ[−K],
i.e., is over the Kth element of γ conditional on all other
components of γ.
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Computing the derivative with respect to z[K], we obtain

∂

∂z[K]
E(DY | Z = z) =

∫
E(Y1 | γ = M(g[−K]))w̃(g[−K])dg[−K],

where

M(g[−K]) = ((g[−K])′,
−z[−K]g[−K]

z[K]
)′

and w̃(g[−K]) =
z[−K]g[−K]

(z[K])2 f
(

g[−K],
−z[−K]g[−K]

z[K]

)
,

with f(·) the density of γ (with respect to Lebesgue measure),
and where for notational simplicity we suppress the dependence
of the function M(·) and the weights w̃(·) on the z evaluation
point.

In this expression, we are averaging over E(Y1 | γ = g), but
only over g evaluation points such that zg = 0.
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In particular, the expression averages over the K − 1 space of
g[−K], while for each potential realization of g[−K] it is filling in
the value of g[K] such that z[K]g[K] = −z[−K]g[−K] so that
z[K]g[K] + z[−K]g[−K] = 0.

Note that the weights w̃(g−K]) will be zero for any g[−K] such
that f(g[−K], −z[−K]g[−K]

z[K] ) = 0, i.e., the weights will be zero for
any g[−K] such that there does not exist g[K] in the conditional
support of γ[K] with z[K]g[K] = −z[−K]g[−K].
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Following the same logic for E((1 − D)Y0 | Z = z), we obtain
∂

∂z[K]
E((1− D)Y | Z = z) = −

∫
E(Y0 | γ = M(g[−K]))w̃(g[−K])dg[−K]

and likewise have
∂

∂z[K]
Pr(D = 1 | Z = z) =

∫
w̃(g[−K])dg[−K]

so that
∂

∂z[K] E(Y | Z = z)
∂

∂z[K] Pr (D = 1 | Z = z)
=

∫
E(Y1 − Y0 | γ = M(g[−K]))w(g[−K])dg[−K],

where
w(g[−K]) = w̃(g[−K])/

∫
w̃(g[−K])dg[−K].
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Now consider the question of whether this expression will have
both positive and negative weights.

Recall that w̃(g[−K]) = z[−K]g[−K]

(z[K])2 f(g[−K], −z[−K]g[−K]

z[K] ).
Thus,

w̃(g[−K]) ≥ 0 if z[−K]g[−K] > 0, w̃(g[−K]) ≤ 0 if z[−K]g[−K] < 0,

and will be nonzero if z[−K]g[−K] ̸= 0 and there exists g[K] in
the conditional support of γ[K] with z[K]g[K] = z[−K]g[−K], i.e.,
with zg = 0.
We thus have that there will be both positive and negative
weights on the MTE if there exist values of g in the support of
γ with both z[−K]g[−K] > 0 and zg = 0 , and there exist other
values of g in the support of γ with z[−K]g[−K] < 0 and zg = 0.
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Generalized Ordered Choice Model with Stochastic
Thresholds

The ordered choice model presented in the text with
parameterized, but nonstochastic, thresholds is analyzed in ?
who establish its nonparametric identifiability under the
conditions they specify.

Treating the Ws (or components of it) as unobservables, we
obtain the generalized ordered choice model analyzed in ? and
?.
In this appendix, we present the main properties of this more
general model.
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The thresholds are now written as Qs + Cs(Ws) in place of
Cs(Ws), where Qs is a random variable.

In addition to the order on the Cs(Ws) in the text, we impose
the order Qs +Cs (Ws) ≥ Qs−1 +Cs−1 (Ws−1), s = 2, . . . , S̄− 1.
We impose the requirement that QS̄ = ∞ and Q0 = −∞.
The latent index D∗

s is as defined in the text, but now

Ds = 1 [Cs−1(Ws−1) + Qs−1 < µD(Z)− V ≤ Cs(Ws) + Qs]

= 1[ls−1(Z,Ws−1)− Qs−1 > V ≥ ls(Z,Ws)− Qs],

where ls = µD(Z)− Cs(Ws).
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Using the fact that ls(Z,Ws)− Qs < ls−1(Z,Ws−1)− Qs−1, we
obtain

1[ls−1(Z,Ws−1)− Qs−1 > V ≥ ls(Z,Ws)− Qs] =

= 1[V + Qs−1 < ls−1(Z,Ws−1)]− 1[V + Qs ≤ ls(Z,Ws)].

The nonparametric identifiability of this choice model is
established in ? and ?.
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We retain assumptions (OC-2) – (OC-6), but alter (OC-1) to

(OC-1)′ (Qs,Us,V) ⊥⊥ (Z,W) | X, s = 1, . . . , S̄.
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? shows that this model with no transition specific instruments
(with Ws degenerate for each s) implies and is implied by the
independence and monotonicity conditions of ? for an ordered
model.

Define Q = (Q1, . . . ,QS̄).
Redefine πs(Z,Ws) = FV+Qs(µD(Z) + Cs(Ws)) and define
π(Z,W) = [π1(Z,W1), . . . , πS̄−1(Z,WS̄−1)].
Redefine UD,s = FV+Qs(V + Qs).
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We have that
E(Y | Z,W) =

=E

 S̄∑
s=1

1[ls−1(Z,Ws−1)− Qs−1 > V ≥ ls(Z,Ws)− Qs]Ys

∣∣∣∣∣∣ Z,W


=

S̄∑
s=1

(
E (1[V + Qs−1 < ls−1(Z,Ws−1)]Ys | Z,W)

− E (1[V + Qs ≤ ls(Z,Ws)]Ys | Z,W)

)

=
S̄∑

s=1

(∫ ls−1(Z,Ws−1)

−∞
E (Ys | V + Qs−1 = t) dFV+Qs−1 (t)

−
∫ ls(Z,Ws)

−∞
E (Ys | V + Qs = t) dFV+Qs (t)

)

=
S̄∑

s=1

(∫ πs−1(Z,Ws−1)

0
E
(
Ys | UD,s−1 = t

)
dt −

∫ πs(Z,Ws)

0
E
(
Ys | UD,s = t

)
dt
)

.
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We thus have the index sufficiency restriction that
E(Y | Z,W) = E(Y | π(Z,W)), and in the general case
∂
∂πs

E(Y | π(Z,W) = π) = E(Ys+1 − Ys | UD,s = πs).

Also, notice that we have the restriction that
∂2

∂πs∂πs′
E(Y | π(Z,W) = π) = 0 if |s − s′| > 1.

Under full independence between Us and V + Qs, s = 1, . . . , S̄,
we can test full independence for the more general choice
model by testing for linearity of E(Y | π(Z,W) = π) in π.
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Define

∆MTE
s+1,s(x, u) = E(Ys+1 − Ys | X = x,UD,s = u),

so that our result above can be rewritten as
∂

∂πs
E(Y | π(Z,W) = π) = ∆MTE

s+1,s(x, πs).

Since πs(Z,Ws) can be nonparametrically identified from

πs(Z,Ws) = Pr

 S̄∑
j=s+1

Dj = 1 | Z,Ws

 ,

we have identification of MTE for all evaluation points within
the appropriate support.
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Define

∆MTE
s+1,s(x, u) = E(Ys+1 − Ys | X = x,UD,s = u),
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∂
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The policy relevant treatment effect is defined analogously.

Hp
s is defined as the cumulative distribution function of

µD(Z)− Cs(Ws).
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The policy relevant treatment effect is defined analogously.
Hp

s is defined as the cumulative distribution function of
µD(Z)− Cs(Ws).
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We have that
Ep(Yp) =

=Ep (E(Y | V,Q,Z,W))

=Ep

 S̄∑
s=1

1[ls−1(Z,Ws−1)− Qs−1 > V ≥ ls(Z,Ws)− Qs]E(Ys | V,Q,Z,W)


=Ep

 S̄∑
s=1

1[ls−1(Z,Ws−1)− Qs−1 > V ≥ ls(Z,Ws)− Qs]E(Ys | V,Q)


=

S̄∑
s=1

Ep
(

E(Ys | V,Q){Hp
s (V + Qs)− Hp

s−1(V + Qs−1)}
)

=
S̄∑

s=1

∫ (
E(Ys | V = v,Q = q){Hp

s (v + qs)− Hp
s−1(v + qs−1)}

)
dFV,Q(v, q)

=
S̄∑

s=1

(∫
E(Ys | V + Qs = t)Hp

s (t)dFV+Qs (t)

=−
∫

E(Ys | V + Qs−1 = t)Hp
s−1(t)dFV+Qs−1 (t)

)
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V, Qs enter additively, and

∆PRTE
p,p′ = Ep′ (Y)− Ep(Y)

=

S̄−1∑
s=1

∫ (
E(Ys+1 − Ys | V + Qs = t){Hp

s (t)− Hp′
s (t)}

)
dFV+Qs (t).
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Alternatively, we can express this result in terms of MTE,

Ep(Yp) =
S̄∑

s=1

(∫
E(Ys | UD,s = t)H̃p

s (t)dt −
∫

E(Ys | UD,s−1 = t)H̃p
s−1(t)dt

)

so that
∆PRTE

p,p′ = Ep′ (Y)− Ep(Y)

=

S̄−1∑
s=1

∫ (
E(Ys+1 − Ys | UD,s = t){H̃p

s (t)− H̃p′
s (t)}

)
dt

where H̃p
s is the cumulative distribution function of the random

variable FUD,s(µD(Z)− Cs(Ws)).
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Derivation of PRTE Weights for the Ordered Choice Model

To derive the ωp,p′ weights used in expression (7.5), let
ls(Z,Ws) = µD(Z)− Cs(Ws), and let Hp

s (·) denote the
cumulative distribution function of ls(Z,Ws) under regime p,
Hp

s (t) =
∫

1[µD(z)− Cs(ws) ≤ t]dFp
Z,W(z,w).

Because C0(W0) = −∞ and CS̄(WS̄) = ∞, l0(Z,W0) = ∞ and
lS̄(Z,WS̄) = −∞, Hp

0(t) = 0 and Hp
S̄(t) = 1 for any policy p

and for all evaluation points.
Since ls−1(Z,Ws−1) is always larger than ls(Z,Ws), we obtain

1[ls(Z,Ws) ≤ V < ls−1(Z,Ws−1)] = 1[V < ls−1(Z,Ws−1)]− 1[V ≤ ls(Z,Ws)],

so that under assumption (OC-1),

Ep (1[ls(Z,Ws) ≤ V ≤ ls−1(Z,Ws−1)] | V) = Hp
s (V)− Hp

s−1(V).
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Collecting these results we obtain:

Ep(Y) =Ep [E(Y | V,Z,W)] =

=
S̄∑

s=1

∫ [
E(Ys|V = v){Hp

s (v)− Hp
s−1(v)}

]
fV(v)dv.
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Comparing two policies under p and p′, the policy relevant
treatment effect is ∆PRTE

p,p′ = Ep′(Y)− Ep(Y) =∑S̄−1
s=1
∫

E(Ys+1 − Ys|V = v)
[
Hp

s (v)− Hp′
s (v)

]
fV (v) dv.

Alternatively, we can express this in terms of ∆MTE:
∆PRTE

p,p′ =
∑S̄−1

s=1
∫
∆MTE

s,s+1(u)
[
H̃p

s (u)− H̃p′
s (u)

]
du where H̃p

s (t) is
the cumulative distribution function of FV(µD(Z)− Cs(Ws))
under policy p,
H̃p

s (t) =
∫

1[FV(µD(z)− Cs(ws)) ≤ t]dFp
Z,Ws(z,ws).
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Derivation of the Weights for IV in the Ordered Choice
Model

We first derive Cov(J(Z,W),Y).

Its derivation is typical of the other terms needed to form (47)
in the text.
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Defining J̃(Z,W) = J(Z,W)− E(J(Z,W)), we obtain, since
Cov(J(Z,W),Y) = E

(
J̃ (Z,W)Y

)
,

E(J̃(Z,W)Y) = E

J̃(Z,W)
S̄∑

s=1
1[ls(Z,Ws) ≤ V < ls−1(Z,Ws−1)]E(Ys|V,Z,W)


=

S̄∑
s=1

E
[
J̃(Z,W)1[ls(Z,Ws) ≤ V < ls−1(Z,Ws−1)]E(Ys|V)

]

where the first equality comes from the definition of Y and the
law of iterated expectations, and the second equality follows
from linearity of expectations and independence assumption
(OC-1).
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Let Hs(·) equal Hp
s (·) for p equal to the policy that

characterizes the observed data, i.e., Hs(·) is the cumulative
distribution function of ls(Z,Ws),

Hp
s (t) = Pr(ls(Z,Ws) ≤ t) = Pr(µD(Z)− Cs(Ws) ≤ t).
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Using the law of iterated expectations, we obtain

E(J̃(Z,W)Y) =

=
S̄∑

s=1
E
[

E
(

J̃(Z,W)

{
1[V < ls−1(Z,Ws−1)]− 1[V ≤ ls(Z,Ws)]

} ∣∣∣∣V)E(Ys|V)

]

=
S̄∑

s=1

∫
[E(Ys | V = v){Ks−1(v)− Ks(v)}] fV(v)dv

=

S̄−1∑
s=1

∫
[E(Ys+1 − Ys | V = v)Ks(v)] fV(v)dv

where Ks(v) = E
(

J̃(Z,W) | ls(Z,Ws) > v
)
(1 − Hs(v)) and we

use the fact that KS̄(v) = K0(v) = 0.
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Now consider the denominator of the IV estimand,
E(SJ̃(Z,W)) =

=E

J̃(Z,W)
S̄∑

s=1
s1[ls(Z,Ws) ≤ V < ls−1(Z,Ws−1)]


=

S̄∑
s=1

sE
[
J̃(Z,W)1[ls(Z,Ws) ≤ V < ls−1(Z,Ws−1)]

]

=
S̄∑

s=1
sEV

[
E
(

J̃(Z,W)

{
1[V < ls−1(Z,Ws−1)]− 1[V ≤ ls(Z,Ws)]

} ∣∣∣∣V)]

=
S̄∑

s=1
s
∫

[Ks−1(v)− Ks(v)] fV(v)dv =

S̄−1∑
s=1

∫
Ks (v) fV(v)dv.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Struct Relaxing PRTE Weights Mix LIV Ord PRTE Weights IV Weights Prf Flat Excl Selec

Collecting results, we obtain an expression for the IV estimand
(47 ):

Cov(J,Y)
Cov(J, S) =

S̄−1∑
s=1

∫
E(Ys+1 − Ys | V = v)ω(s, v) fV(v)dv

where

ω(s, v) = Ks(v)∑S̄
s=1s

∫
[Ks−1(v)− Ks(v)] fV(v)dv

=
Ks (v)∑S̄−1

s=1
∫

Ks (v) fV(v)dv

and clearly
S̄−1∑
s=1

∫
ω(s, v) fV(v)dv = 1, ω(0, v) = 0, and ω(S̄, v) = 0.
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Proof of Theorem 6

We now prove Theorem 6.
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Proof
The basic idea is that we can bring the model back to a two
choice set up of j versus the “next best” option.

We prove the result for the second assertion, that ∆LIV
j (x, z)

recovers the marginal treatment effect parameter.
The first assertion, that ∆Wald

j (x, z[−j], z[j], z̃[j]) recovers a LATE
parameter, follows from a trivial modification to the same proof
strategy.
Recall that RJ\j(z) = maxi∈J\j {Ri(z)} and that
IJ\j = argmaxi∈J\j (Ri(Z)).
We may write Y = YIJ\j + DJ ,j(Yj − YIJ\j).
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Proof
The basic idea is that we can bring the model back to a two
choice set up of j versus the “next best” option.
We prove the result for the second assertion, that ∆LIV

j (x, z)
recovers the marginal treatment effect parameter.
The first assertion, that ∆Wald

j (x, z[−j], z[j], z̃[j]) recovers a LATE
parameter, follows from a trivial modification to the same proof
strategy.
Recall that RJ\j(z) = maxi∈J\j {Ri(z)} and that
IJ\j = argmaxi∈J\j (Ri(Z)).

We may write Y = YIJ\j + DJ ,j(Yj − YIJ\j).
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We have

Pr (DJ ,j = 1 | X = x,Z = z) =Pr
(
Rj(zj) ≥ RJ\j(z) | X = x,Z = z

)
=Pr

(
ϑj(zj) ≥ RJ\j(z) + Vj | X = x,Z = z

)
.

Using independence assumption (B-1), RJ\j(z)− Vj is
independent of Z conditional on X, so that

Pr (DJ ,j = 1 | X = x,Z = z) = Pr
(
ϑj(zj) ≥ RJ\j(z) + Vj | X = x

)
.

ϑk(·) does not depend on z[j] for k ̸= j by assumption (B-2b),
and thus RJ\j(z) does not depend on z[j], and we will therefore
(with an abuse of notation) write RJ\j(z[−j]) for RJ\j(z).
Write F(·;X = x,Z[−j] = z[−j]) for the distribution function of
RJ\j(z[−j]) + Vj conditional on X = x.
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Then

Pr (DJ ,j = 1 | X = x,Z = z) = F(ϑj(zj); x, z[−j]),

and
∂

∂z[j]
Pr
(
DJ ,j = 1 | X = x,Z = z

)
=

[
∂

∂z[j]
ϑj(zj)

]
fX|Z[−j] (ϑj(zj);X = x,Z[−j] = z[−j]),

where fX|Z[−j](·;X = x,Z[−j] = z[−j]) is the density of
RJ\j(z[−j])− Vj conditional on X = x.

Consider
E (Y | X = x,Z = z) = E

(
YIJ\j | X = x,Z = z

)
+E
(

DJ ,j(Yj − YIJ\j ) | X = x,Z = z
)
.
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As a consequence of (B-1), (B-3)–(B-5), and (B-2b), we have
that E

(
YIJ\j | X = x,Z = z

)
does not depend on z[j].

Using the assumptions and the law of iterated expectations, we
may write

E
(

DJ ,j(Yj − YIJ\j ) | X = x,Z = z
)

=
∫ ϑj(z)
−∞ E(Yj − YIJ\j | X = x,Z = z,RJ\j(z[−j])

+Vj = t)fX|Z[−j] (t;X = x,Z[−j] = z[−j])dt
=

∫ ϑj(z)
−∞ E(Yj − YIJ\j | X = x,Z[−j] = z[−j],RJ\j(z[−j])

−Vj = t)fX|Z[−j] (t;X = x,Z[−j] = z[−j])dt.
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Thus,

∂

∂z[j]E (Y | X = x,Z = z)

= E
(

Yj − YIJ\j | X = x,Z[−j] = z[−j],Rj(z) = RJ\j(z)
)

×
[

∂

∂z[j]ϑj(zj)

]
fX|Z[−j](ϑj(zj) | X = x,Z[−j] = z[−j]).

Combining results, we have

∂

∂z[j]E(Y|X = x,Z = z)
/

∂

∂z[j]Pr(DJ ,j = 1|X = x,Z = z)

= E
(

Yj − YIJ\j | X = x,Z[−j] = z[−j],Rj(z) = RJ\j(z)
)
.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Struct Relaxing PRTE Weights Mix LIV Ord PRTE Weights IV Weights Prf Flat Excl Selec

Thus,

∂

∂z[j]E (Y | X = x,Z = z)

= E
(

Yj − YIJ\j | X = x,Z[−j] = z[−j],Rj(z) = RJ\j(z)
)

×
[

∂

∂z[j]ϑj(zj)

]
fX|Z[−j](ϑj(zj) | X = x,Z[−j] = z[−j]).

Combining results, we have

∂

∂z[j]E(Y|X = x,Z = z)
/

∂

∂z[j]Pr(DJ ,j = 1|X = x,Z = z)

= E
(

Yj − YIJ\j | X = x,Z[−j] = z[−j],Rj(z) = RJ\j(z)
)
.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Struct Relaxing PRTE Weights Mix LIV Ord PRTE Weights IV Weights Prf Flat Excl Selec

Finally, noting that

E
(

Yj − YIJ\j | X = x,Z[−j] = z[−j],Rj(z) = RJ\j(z)
)

= E
(

Yj − YIJ\j | X = x,Z = z,Rj(z) = RJ\j(z)
)

provides the stated result.

The proof for the LATE result follows from the parallel
argument using discrete changes in the instrument.
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Flat MTE within a General Nonseparable Matching
Framework

The result in the text that conditional mean independence of
Y0 and Y1 in terms of D given X implies a flat MTE holds in a
more general nonseparable model.

We establish this claim and also establish some additional
restrictions implied by an IV assumption.
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Assume a nonseparable selection model,
D = 1[µD(X,Z,V) ≥ 0], with Z independent of (Y0,Y1,V)
conditional on X.

Let Ω(x, z) = {v : µD(x, z, v) ≥ 0}.
Let Ω(x, z)c denote the complement of Ω(x, z).
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Consider the mean independence assumption

(M-3) E(Y1|X,D) = E(Y1|X), E(Y0|X,D) = E(Y0|X).

(M-3) implies that for △ = Y1 − Y0

E(∆|X = x,V ∈ Ω(X,Z)) = E(∆|X = x,V ∈ Ω(X,Z)c),

where c here denotes “complement”. Thus,

EZ|X
(
E(∆MTE(x,V)|X = x,V ∈ Ω(x,Z))|X = x

)
= EZ|X

(
E(∆MTE(x,V)|X = x,V ∈ Ω(x,Z)c) | X = x

)
for all x in the support of X.

(We assume 0 < Pr (D = 1|X) < 1 .)
This establishes that the MTE is flat.
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Now suppose that (M-3) holds, but suppose that there is an
instrument Z such that

(M-3)′ E(Y1|X,Z,D) ̸= E(Y1|X), E(Y0|X,Z,D) ̸= E(Y0|X).
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(Note: E(Yj|X,Z) = E(Yj|X) by assumption).

In this case, (M-3) implies that

EZ|X
(
E(∆MTE(X,V)|X = x,V ∈ Ω(x,Z)) | X = x

)
= EZ|X

(
E(∆MTE(X,V)|X = x,V ∈ (Ω(x,Z))c) | X = x

)
,

but (M-3)′ implies that there exists z in the support of Z
conditional on X such that

E(∆MTE(X,V)|X = x,V ∈ Ω(x, z)) ̸= E(∆MTE(X,V)|X = x)

and

E(∆MTE(X,V)|X = x,V ∈ Ω(x, z)c) ̸= E(∆ MTE(X,V)|X = x)

so that ∆MTE(X,V) is not constant in V.
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Note that, if E(Y1|X,Z = z,D = 1) ̸= E(Y1|X,Z = z′,D = 1)
for any z, z′ evaluation points in the support of Z conditional on
X, then E(Y1|X,Z,D) ̸= E(Y1|X).

Thus, (M-3)′ is testable, given the maintained assumption that
Z is a proper exclusion restriction.
Note that (M-3)′ implies (M-3), so it is a stronger condition.
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Now assume
(M-1)′ E(Y1|X,Z,D) = E(Y1|X), E(Y0|X,Z,D) = E(Y0|X).
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In this case, we get a stronger restriction on MTE than is
produced from (M-3).

We obtain

E(∆MTE(X,V)|X = x,V ∈ Ω(x, z)) = E(∆MTE(X,V)|X = x)

and

E(∆MTE(X,V)|X = x,V ∈ Ω(x, z)c) = E(∆MTE(X,V)|X = x)

for all (x, z) in the proper support.
Again, the MTE is not flat.
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The Relationship Between Exclusion Conditions in IV and
Exclusion Conditions in Matching

We now investigate the relationship between IV and matching
identification conditions.

They are very distinct.
We analyze mean treatment parameters.
We define (U0,U1) by U0 = Y0 − E(Y0|X) and
U1 = Y1 − E(Y1|X).
We consider standard IV as a form of matching where
matching does not hold conditional on X but does hold
conditional on (X,Z), where Z is the instrument.
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Consider the following two matching conditions based on an
exclusion restriction Z:
(M-4) (U0,U1) are mean independent of D conditional on

(X,Z) . (E (U0 | X,Z,D) = E (U0 | X,Z) and
E (U1 | X,Z,D) = E (U1 | X,Z).)

(M-5) (U0,U1) are not mean independent of D conditional on
X . (E (U0 | X,D) ̸= E (U0 | X) and
E (U1 | X,D) ̸= E (U1 | X).)
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(M-4) says that the matching conditions hold conditional on
(X,Z).

However, (M-5) says that the matching conditions do not hold
if one only conditions on X.
By the definitions of U0,U1, these conditions are equivalent to
stating that Y0,Y1 are mean independent of D conditional on
(X,Z) but not mean independent of D conditional on X.
These look like instrumental variable conditions.
We now consider whether these assumptions are compatible
with standard IV conditions as used by ?? and ? to use IV to
identify treatment parameters when responses are heterogenous
(the model of essential heterogeneity).
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For ATE, they show that standard IV identifies ATE if:
(ATE-1) U0 is mean independent of Z conditional on X.

(ATE-2) D(U1 −U0) is mean independent of Z conditional on X.
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They show that standard IV identifies TT if:
(TT-1) U0 is mean independent of Z conditional on X.
(TT-2) U1 − U0 is mean independent of Z conditional on

D = 1 and on X.
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The conventional assumption in means is that:
(IV-1)′ (U0,U1) are mean independent of Z conditional on X.
(IV-2) Rank condition (IV-2) is still required:

Pr (D = 1 | Z,X) is a nondegenerate function of Z.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Struct Relaxing PRTE Weights Mix LIV Ord PRTE Weights IV Weights Prf Flat Excl Selec

Condition (IV-1)′ is a commonly invoked instrumental variable
condition, even though ? and ? show it is neither necessary nor
sufficient to identify ATE or TT by linear IV.

In Slide 152, we used the stronger condition (IV-1):
(U0,U1) ⊥⊥ Z|X along with the rank conditions.
Clearly, (IV-1) implies (IV-1)′.
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We now show that assumptions (M-4) and (M-5) are
inconsistent with any of the sets of IV assumptions.

In particular, we show that assuming (M-4) and that U0 is
mean independent of Z conditional on X jointly imply that U0
is mean independent of D conditional on X.
If (M-4) and (M-5) hold, then Z cannot satisfy condition
(IV-1)′ (or stronger condition (IV-1)), (ATE-1) or (TT-1).
Thus matching based on an exclusion restriction and IV are
distinct conditions.

Heckman and Vytlacil Using the Marginal Treatment Effect



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Struct Relaxing PRTE Weights Mix LIV Ord PRTE Weights IV Weights Prf Flat Excl Selec

We now show that assumptions (M-4) and (M-5) are
inconsistent with any of the sets of IV assumptions.
In particular, we show that assuming (M-4) and that U0 is
mean independent of Z conditional on X jointly imply that U0
is mean independent of D conditional on X.

If (M-4) and (M-5) hold, then Z cannot satisfy condition
(IV-1)′ (or stronger condition (IV-1)), (ATE-1) or (TT-1).
Thus matching based on an exclusion restriction and IV are
distinct conditions.
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We show this by establishing a series of claims:

Claim
Condition (M-4) and (IV-1)′ jointly imply U0 is mean independent of
D conditional on X. Thus, (M-4) and [(IV-1)′ or (ATE-1) or
(TT-1)] jointly imply that (M-5) cannot hold.
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Proof.
Assume (M-4) and (IV-1)′. We have:

E(U0|D,X,Z) = E(U0|X,Z)
= E(U0|X)

where the first equality follows from (M-4) and the second equality
follows from (IV-1)′. Thus,

E(U0|D,X) = EZ[E(U0|D,X,Z)|D,X]
= EZ[E(U0|X)|D,X]
= E(U0|X)
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Thus (M-4) and (M-5) are inconsistent with any of the sets of
IV assumptions that we have considered.

However, this analysis raises the question of whether it is still
possible to invoke (M-5) and the assumption that U1 is not
mean independent of D conditional on X.
The following results show that it is not possible.
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Claim
(M-4) and (IV-1)′ imply U1 is mean independent of D conditional on
X.
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Proof.
Follows with trivial modification from the proof to Claim 1.
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A similar claim can be shown for (TT-1) and (TT-2).
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Claim
(M-4) and (TT-1), (TT-2) imply U1 is mean independent of D
conditional on X.
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Proof.
Assume (M-4) and (TT-1), (TT-2). We have:

(N-1)
E(U0|X,Z,D) = E(U0|X,Z) = E(U0|X)

where the first equality follows from (M-4) and the second equality
follows from (TT-1). Using the result from the proof of Claim 1, we
obtain
(N-2)

E(U0|X,Z,D) = E(U0|X,D)
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Proof.
By (TT-2), we have

E(U1|X,Z,D = 1)− E(U1|X,D = 1)
= E(U0|X,Z,D = 1)− E(U0|X,D = 1).

By equation (N-2), the right hand side of the preceding expression
is zero, and we thus have
(N-3)

E(U1|X,Z,D = 1) = E(U1|X,D = 1).

By (M-4), we have

(N-4)
E(U1|X,Z,D = 1) = E(U1|X,Z).
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Proof.
Combining equations (N-3) and (N-4), we obtain

E(U1|X,Z) = E(U1|X,D = 1).

Integrating both sides of this expression against the distribution of Z
conditional on X, we obtain

E(U1|X) = E(U1|X,D = 1).
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It is straightforward to show that (M-4) and (ATE-1), (ATE-2)
jointly imply that U1 is mean independent of D conditional on
X.
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In summary, (U0,U1) mean independent of D conditional on
(X,Z) but not conditional on X implies that U0 is dependent on
Z conditional on X in contradiction to all of the assumptions
used to justify instrumental variables.

Thus (U0,U1) mean independent of D conditional on (X,Z)
but not conditional on X implies that none of the three sets of
IV conditions will hold.
In addition, if we weaken these conditions to only consider U1,
so that we assume that U1 is mean independent of D
conditional on (X,Z) but not conditional on X, we obtain that
U1 is dependent on Z conditional on X.
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We have shown that this implies that (IV-1) does not hold, and
implies that (TT-1,TT-2) will not hold.

A similar line of argument shows that (ATE-1,ATE-2) will not
hold.
Thus, the exclusion conditioning in matching is not the same as
the exclusion conditioning in IV.
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Selection Formulae for the Matching Examples

Consider a generalized Roy model of the form Y1 = µ1 + U1;
Y0 = µ0 + U0; D∗ = µD (Z) + V; D = 1 if D∗ ≥ 0, = 0
otherwise; and Y = DY1 + (1 − D)Y0, where

(U0,U1,V)′ ∼ N (0,Σ) ; Var (Ui) = σ2
i i = 0, 1

Var (V) = σ2
V; Cov (U1,U0) = σ10

Cov (U1,V) = σ1V; Cov (U0,V) = σ0V.

Assume Z ⊥⊥ (U0,U1,V).
Let ϕ (·) and Φ (·) be the pdf and the cdf of a standard normal
random variable.
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Then, the propensity score for this model for Z = z is given by:

Pr (D∗ > 0|Z = z) = Pr (V > −µD (z)) = P(z) = Φ

(
µD (z)
σV

)
.

Thus µD(z)
σV

= Φ−1 (P (z)), and

−µD (z)
σV

= Φ−1 (1 − P(z)) .

The event
(

V S 0,Z = z
)

can be written as
V
σV

S −µD(z)
σV

⇔ V
σV

S Φ−1 (1 − P(z)).
We can write the conditional expectations required to get the
biases for the treatment parameters as a function of P(z) = p.
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For U1 :

E (U1|D∗ ≥ 0,Z = z) =
σ1V
σV

E
(

V
σV

| V
σV

≥ −µD (z)
σV

)
=

σ1V
σV

E
(

V
σV

| V
σV

≥ Φ−1 (1 − P(z))
)

= η1M1(P(z))

where
η1 =

σ1V
σV

.
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Similarly for U0 :

E (U0|D∗ > 0,Z = z) = η0M1(P(z))
E (U0|D∗ < 0,Z = z) = η0M0(P(z)),

where η0 = σ0V
σV

and M1 (P(z)) =
ϕ(Φ−1(1−P(z)))

P(z) and

M0 (P(z)) = −ϕ(Φ−1(1−P(z)))
1−P(z) are inverse Mills ratio terms.
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Substituting these into the expressions for the biases for the
treatment parameters conditional on z we obtain

Bias TT (P(z)) = η0M1(P(z))− η0M0(P(z))
= η0M(P(z)),

Bias ATE (P(z)) = η1M1(P(z))− η0M0(P(z))
= M(P(z)) (η1 (1 − P(z)) + η0P(z)) .

Heckman and Vytlacil Using the Marginal Treatment Effect


	Introduction
	The Basic Principles Underlying the Identification of the Major Econometric Evaluation Estimators
	An Index Model of Choice and Treatment Effects: Definitions and Unifying Principles
	Instrumental Variables
	Regression Discontinuity Estimators and LATE
	Policy Evaluation, Out-of-Sample Policy Forecasting, Forecasting the Effects of New Policies and Structural Models Based on the MTE
	Extension of MTE to the Analysis of More than Two Treatments and Associated Outcomes
	Matching
	Randomized Evaluations
	Bounding and Sensitivity Analysis
	Control Functions, Replacement Functions, and Proxy Variables
	Summary
	Appendix
	Relationships Among Parameters Using the Index Structure
	Relaxing Additive Separability and Independence 
	Derivation of PRTE and Implications of Noninvariance for PRTE 
	Deriving the IV Weights on MTE 
	Derivation of the Weights for the Mixture of Normals Example
	Local Instrumental Variables for the Random Coefficient Model
	Generalized Ordered Choice Model with Stochastic Thresholds
	Derivation of PRTE Weights for the Ordered Choice Model
	Derivation of the Weights for IV in the Ordered Choice Model
	Proof of Theorem 6
	Flat MTE within a General Nonseparable Matching Framework
	The Relationship Between Exclusion Conditions in IV and Exclusion Conditions in Matching
	Selection Formulae for the Matching Examples


