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This chapter presents some of the recent results on the
identification of nonparametric econometric models,
concentrating on nonadditive models.

It complements many current existent surveys that cover
nonparametric identification, such as the books by Horowitz
(1998), Pagan and Ullah (1999), and Yatchew (2003), articles
in recent volumes of this Handbook by Härdle and Linton
(1994), Matzkin (1994), Powell (1994), and van den Berg
(2001), recent survey articles on semiparametric and
nonparametric identification, such as Blundell and Powell
(2003), Florens (2003), and Chesher (2007), and other
chapters in this volume, such as the ones by X.Chen, Heckman
and Vytlacil, and Ridder and Moffit.
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The objective of this chapter is to provide insight into some
recent techniques that have been developed to identify
nonparametric models, rather than on presenting a complete
survey of the literature.

As a consequence, many very important related works have
been left out of the presentation and the references.
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When estimating an element in a model, it is necessary to
determine first the identification of such an element.

The study of identification in parametric econometric models
dates back to the works by Workings (1925, 1927), Tinbergen
(1930), Frisch (1934, 1938), Haavelmo (1943, 1944),
Koopmans (1949), Hurwicz (1950), Koopmans and Reiersol
(1950), Koopmans, Rubin and Leipnik (1950), Wald (1950),
Fisher (1959, 1965, 1966), Wegge (1965), Rothenberg (1971),
and Bowden (1973).

(See Hausman (1983) and Hsiao (1983) in Volume 1 of this
Handbook, for early review articles.)

Matzkin Nonparametric Identification



Introduction The econometric model Identification Ways of achieving identification Conclusions

Lately, the analysis of identification in econometric models has
been developing in several directions.

One of these directions is the econometric analysis of systems
of equations that require few or no parametric assumptions on
the functions and distributions in the system.

All the recent review articles mentioned above treat this topic.
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Imposing parametric specifications for functions and
distributions had been the standard procedure in a world where
large data sets were rarely available and computers could not
easily handle estimation methods that require complicated
computational algorithms.

In such a world, estimating models with only a few parameters
was part of the standard procedure.

As computers processing power became faster and cheaper and
the availability to deal with large data sets increased, it became
possible to consider estimation of increasingly complicated
functions, with increasing numbers of parameters.
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This, in turn, drove attention to the analysis of identification of
functions and distributions that do not necessarily belong to
parametric families.

The emphasis was originally on estimation of probability
densities and conditional expectations, but, later, more
complicated models were considered.

Rather than asking whether some parameters were identified,
the question of interest became whether a function or
distribution was identified within a general set of functions or
distributions.

Establishing such a nonparametric identification was recognized
as an important first step in the econometric analysis of even
parametric models.
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Establishing that a function or distribution is nonparametrically
identified within a set of nonparametric functions or
distributions implies its identification within any subset of the
set of nonparametric functions.

In particular, if the subset is defined as the set of functions that
satisfy a parametric structure, such as being linear or quadratic,
then identification within these subset is implied by
identification within the larger set of nonparametric functions
that include linear, quadratic, and possibly many other
parametric specifications.

If, on the other hand, one does not know whether the function
is nonparametrically identified but one can establish its
identification when a particular specification is imposed on the
function, then it is not clear how robust any estimation results
would be.
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When a function is nonparametrically identified, one can
develop tests for different parametric structures, by comparing
the results obtained from a nonparametric estimator for the
function with those obtained from specific parametric
estimators (Wooldridge (1992), Hong and White (1995), and
Fan and Li (1996) are examples of such tests.)

When a function is nonparametrically identified, one can allow
the function to possess local behavior that would not be
possible under some parametric specifications.

(See, for example, the examples in Härdle (1991).)

When a model or a function within a model is not identified
nonparametrically, one can consider imposing sequentially
stronger sets of restrictions in the model, up to the point where
identification is achieved.
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This provides a method for analyzing the trade-off between
imposing restrictions and achieving identification.

(See, for example, Matzkin (1994) for such an analysis.)

This chapter will present several of the developments in the
nonparametric identification in economic models.
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Another area of active research, specially in recent years, was in
the development of econometric models that were specified with
properties closer to those of models studied in economic theory.

The analysis of identification in the past, which concentrated
on models that were linear in variables and parameters and
additive in unobservable random terms, contrasted strongly
with the standard practice in economic theory, where functions
were only specified to possess some properties, such as
continuity or monotonicity.

On those times, economic theorists would work on models
involving very general functions and distributions.

Econometricians, on the other side, would work on models with
well specified and typically quite restrictive functional forms and
distributions.
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Even though the main goals of both groups were in many
instances very similar, the solutions as well as the languages
used in each of them were very different.

The picture is drastically different nowadays.

The development of nonparametric techniques for the
estimation and testing of economic models has been shortening
the distance between those roads to the point where now some
econometric models are specified with no more restrictions than
those that a theorist would impose.
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The advances that have decreased the distance between
economic theory and econometrics have not concentrated only
on the relaxation of parametric structures.

Lately, there has also been an increasing effort to relax the way
in which the unobservable random terms are treated.

A practice that has been and still is commonly used when
specifying an econometric model proceeds by first using
economic theory to specify a relationship between a vector of
observable explanatory variables and a vector of dependent
variables, and then adding unobservable random variables to
the relationships, as an after-thought.
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The seminal works by Heckman (1974), McFadden (1974),
Heckman and Willis (1977), and Lancaster (1979) have shown
that one can analyze econometric models where the
unobservable random terms have important economic
interpretations.

They may represent, for example, heterogeneity parameters in
utility functions, productivity shocks in production functions, or
utility values for unobserved product attributes.

When interpreting the unobservables in this way, it is rarely the
case that they enter in additive ways into the models of interest.

Several recent papers have considered the identification and
estimation of nonparametric models with nonadditive random
terms.

Some of these will be reviewed in this chapter.
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Ideally, one would like to be able to identify all the unknown
functions and distributions in a model without imposing more
restrictions than those implied by the theory of the model.

Restrictions derived from optimization, such as concavity and
linear homogeneity, or equilibrium conditions, have been shown
to be useful to identify functions in models that had been
thought in the past to be identified only under very restrictive
parametric assumptions.

(See the survey chapter by Matzkin (1994) in Volume 4 of this
Handbook for several such examples.)

Nevertheless, in some cases, the identification of all functions
and distributions in a model that imposes so few restrictions
might not be possible.
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In such cases, one may consider several options.

One may try to determine what can be identified without
imposing any more restrictions on the model.

One may impose some additional restrictions on some of the
functions or distributions, to achieve identification.

Or, one may consider enlarging the model, by augmenting the
set of observable variables that can provide information about
the functions or distributions of interest in the model.

In this chapter we discuss some of the recent related techniques
that have been developed.
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While restrictions implied by economic theory may, in some
cases, aid in achieving identification, in some other cases, they
may also hinder identification.

This occurs when restrictions such as agent’s optimization and
equilibrium conditions generate interrelationships among
observable variables, X , and unobservable variables, ε, that
affect a common observable outcome variable, Y .

In such cases, the joint distribution of (Y ,X ) does not provide
enough information to recover the causal effect of X on Y ,
since changes in X do not leave the value of ε fixed.
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A typical example of this is when Y denotes quantity
demanded for a product, X denotes the price of the product,
and ε is an unobservable demand shifter.

If the price that will make firms produce a certain quantity
increases with quantity, this change in ε will generate an
increment in the price X .

Hence, the observable effect of a change in price in demanded
quantity would not correspond to the effect of changing the
value of price when the value ε stays constant.

Another typical example arises when analyzing the effect of
years of education on wages.
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An unobservable variable, such as ability, affects wages but also
years of education.

When an individual chooses years of education to maximize the
discounted stream of future income, he takes ability into
account because it influences the productivity of education.

(See, for example, Card (2001).)

As a result of this connection between ability and years of
education, the distribution of ability, given years of education,
changes with the years of education.

In this chapter, we will review some of the methods that have
been developed to identify causal effects in these situations.
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The outline of the chapter is as follows.

In the next section, we describe several econometric models.

In Section 3, we analyze, in general terms, identification in
those models.

In Section 4 we discuss some particular techniques that have
been used to achieve identification.

Section 5 concludes.
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The econometric model
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From the economic model to the econometric model
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The description of an economic model typically starts out by
describing the economic agents involved, their objective
functions, their information, and the interactions among the
agents.

When an econometrician tries to fit an economic model to the
available data, he first needs to determine which of the variables
in the model are observable and which are unobservable.

Another important division of the variables in the model is
between the variables that are determined outside of the model
and those that are determined inside the model.

The variables in the latter set are functions of the variables in
the former set.

In economic models, they are typically determined either by the
choice of some agents or by the interaction among several
agents.
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We will denote by X the vector of variables that are determined
outside the model and are observable, and by ε the vector of
variables that are determined outside the model and are
unobservable.

X and ε are also called the observable and unobservable
explanatory, or exogenous, variables.

We will denote the number of coordinates of X by K and the
number of coordinates of ε by L.

The vectors of observable and unobservable variables that are
determined within the model will be denoted, respectively, by
Y and Υ.

These are observable and unobservable outcome variables.

We will denote the number of coordinates in the vector of
observable variables, Y , determined within the model, by G ,
and the number of coordinates in the vector of unobservable
variables, Υ, determined within the model by GΥ.
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Following the standard terminology, we will say that Y and Υ
are vectors of, respectively, observable and unobservable
endogenous variables.

The description of an economic model contains, as well as a list
of variables, a list of functions and distributions.
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Some of these functions and distributions are primitive, in the
sense that they are determined outside the model.

Some are derived within the model.

Let h denote the list of all primitive functions and let F denote
the list of all primitive distributions.

We will describe the interrelation between the primitive
functions and distributions and the observable and unobservable
variables by a known vector function v and an equation

v (Y ,Υ,X , ε; h,F ) = 0

This equation can be used to derive the joint distribution of the
vector of observable variables, (Y ,X ) , as a function of the
primitives of the model, (h,F ).
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To provide an example, consider a model of consumer demand
for a consumption good and a composite good.

Let I denote the income that the consumer can spend on these
two goods.

Let the price of the composite good be 1 and let p denote the
price of the consumption good.

Let y and z denote the quantities chosen by the consumer of,
respectively, the consumption good and the composite good.

Suppose that the economic model specifies that the individual
has preferences over bundles (y , z), and chooses the one that
maximizes those preferences over the set of all bundles that
cost no more than I .

Suppose, further, that the consumer preferences can be
represented by a strictly increasing, strictly concave, twice
differentiable utility function, U , on (y , z), and that such utility
function is different for different individuals in a population.
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In particular, assume that the utility function depends on
observable socioeconomic characteristics of the individual, such
as age and marital status, denoted by w , and on unobservable
tastes for (y , z), denoted by ε.

Then, for an individual with characteristics w and ε, and with
observable income I , the observed choice (y , z) is defined as

(y , z) = arg max
(ỹ ,z̃)
{U(ỹ , z̃ ,w , ε) | pỹ + z̃ ≤ I}
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Since the monotonicity of U with respect to (ỹ , z̃) implies that
all the available income will be used, this is equivalent to

y = arg max
ỹ
{U(ỹ , I − pỹ ,w , ε)}

z = I − py
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The differentiability, strict concavity, and strict monotonicity of
U imply then that y satisfies

Uỹ (y , I − py ,w , ε)− p Uz̃ (y , I − py ,w , ε) = 0
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In this model, the income, I , the vector of socioeconomic
variables, w , and the price p are observable variables
determined outside the system.

The unobservable taste, ε, is also determined outside the
system.

The chosen quantity, y , of the commodity is observed and
determined within the system.

The utility function U(·, ·, ·, ·) is an unknown primitive function;
and the distribution of (p, I ,w , ε) is an unknown primitive
distribution function.

Given any particular utility function U , satisfying the
differentiability, monotonicity and concavity restrictions
imposed above, and given any distribution for (p, I ,w , ε) , one
can use the above equation to derive the joint distribution of
the vector of observable variables, (Y , p, I ,w).
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This is derived from the equation

v (Y ,X , ε) = v (Y , p, I ,w , ε)

= Uy (Y , I − pY ,w , ε)− Uz (Y , I − pY ,w , ε) p

= 0

Under our assumptions, the value of Y that satisfies this
equation, for given values of (p, I ,w , ε) , is unique.

Let m denote the function that assigns the optimal value of Y
to (p, I ,w , ε).

Then, the demand function m (p, I ,w , ε) satisfies the first
order conditions

Uy (m (p, I ,w , ε) , I − pm (p, I , ε) ,w , ε)

− Uz (m (p, I ,w , ε) , I − pm (p, I , ε) ,w , ε) p = 0
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The demand model

Y = m (p, I ,w , ε)

is the reduced form model.

The reduced form model maps the observable and unobservable
explanatory variables into the observable endogenous variables,
without necessarily specifying behavioral and equilibrium
conditions from which the mapping might have been derived.

The reduced form model suffices to analyze many situations
where this underlying structure does not change.

For example, as will be discussed in more detail below, when m
is strictly increasing in ε and ε is distributed independently of
(p, I ,w) , the reduced model above suffices to analyze the
causal effect of (p, I ,w) on Y .

This is the effect on demand from changing the value of
(p, I ,w) , leaving the value of ε unchanged.
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The analysis of counterfactuals, on the other hand, would
typically require knowledge of the primitive function U .

Suppose, for example, that we were interested in predicting the
behavior of a consumer that possesses preferences as in the
model above, when the price of the consumption good depends
on the quantity chosen, instead of being a fixed value, p, as
considered above.

Denote the price function as s(y).

To predict the choice of the consumer with utility function
U(ỹ , z̃ ,w , ε) when his set of affordable consumption bundles is

{(ỹ , z̃) | s(ỹ) ỹ + z̃ = I}

we would need to know the function U(ỹ , z̃ ,w , ε) to calculate
the new optimal values

(y , z) = arg max
(ỹ ,z̃)

{U(ỹ , z̃ ,w , ε) | s(ỹ) ỹ + z̃ = I}
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This would require analyzing the structural model of utility
maximization described earlier.

The structural model uses behavioral and/or equilibrium
conditions, to define a mapping between the primitive functions
and distributions, on one side, and the distribution of the
observable variables, on the other.

Path diagrams (Pearl (2000)) are often very useful to clarify
the role of each variable and the ordering of the variables in
terms of cause and effect.

Support conditions, which may allow one to identify only the
local behavior of some functions should also be taken into
consideration.
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Dependence between ε and X
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In many cases, a model is not completely specified.

Some of the unobservable explanatory variables in the model
are themselves functions of observable variables, in a way that
is not described within the model.

Consider, for example, the utility maximization model described
in the previous subsection.

In that model, the income of the consumer, I , was assumed to
be determined outside of the model.

The unobservable ε was assumed to denote taste for
consumption.

In many cases, one could think of income as being partially
determined by ε.

Individuals with a larger taste for consumption will typically
make lifetime decisions, such as the choice of profession, that
would generate higher incomes.
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In particular, if we let r̃ denote a function and let δ denote
additional variables, which are determined outside the system
and which affect income I , we could specify that I = r̃ (ε, δ).

If this latter relationship were added to the specification of the
model, then, in the augmented model, the variables determined
within the system would be (Y ,Z , I ) , and those determined
outside the system would be (p, ε, δ).

Suppose that we wanted to infer the causal effect of income I
on demand Y .

This is the effect on Y of changing I , when the value of
(p,w , ε) stays fixed.

If I is a function of ε, the total effect will be different from this
partial effect.

A similar example occurs when variables are determined jointly.

Haavelmo (1943, 1944) argued that in these cases a joint
probability distribution is needed to analyze the data.
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2.2. Definition of an econometric model
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Following up on the model described in the beginning of
Section 2, we define an econometric model by a specification of
variables that are observed and variables that are unobserved,
variables that are determined within the model and variables
that are determined outside of the model, functional
relationships among all the variables, and restrictions on the
functions and distributions.

We will denote by S the set of all vectors of functions and
distributions that satisfy the restrictions imposed by the model.

We assume that for any element ζ ∈ S , we can derive the
distribution, FY ,X (·; ζ) , of the observable vector of variables
that is generated by S .

The observable distribution, FY ,X , corresponds to the true
value ζ∗ of ζ.

Matzkin Nonparametric Identification



Introduction The econometric model Identification Ways of achieving identification Conclusions

For example, in the consumer demand model described above,
ε and (p, I ,w) are, respectively, the vectors of unobservable
and observable explanatory variables and Y is the vector of
observable endogenous variables.

The elements of S are pairs ζ = (U ,Fε,p,I ,w ) , such that for all
(w , ε) , U(·, ·,w , ε) : R2 → R is strictly increasing, strictly
concave, and twice differentiable, and Fε,p,I ,w is a distribution
function.

Given ζ = (U ,Fε,p,I ,w ) and X = (p, I ,w) , the distribution of Y
given X is calculated by the distribution of ε given (p, I ,w) and
the function U , using the first order conditions.

Note that since X is observable, the marginal distribution of X ,
FX , can be assumed to be known.

Hence, one of the restrictions that Fε,p,I ,w would be required to
satisfy is that the marginal distribution of (p, I ,w) coincides
with Fp,I ,w .
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Examples
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We next describe several models, whose identification will be
discussed in Sections 3 and 4.

We denote random variables with capital letters and their
realizations with lower case letters.
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2.2.1.1 Additive Models

In additive models, the unobservable variables that are
determined outside the model affect the values of the variables
that are determined within the model in an additive way.

A standard example of such a model is where Y denotes an
observable dependent variable, X denote a vector of observable
explanatory variables, ε denotes an unobservable explanatory
variable, and the functional relationship between these variables
is given by

Y = Xβ + ε

for some β.

Allowing X to influence Y in a nonlinear, possibly unknown
way, while leaving the influence of ε additive, will also give rise
to an additive model.
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In this latter case
Y = g (X ) + ε

for some function g .

Typical restrictions that are imposed on such a model are that
g is continuous and that the distribution of ε given X has
support R .

Typically, one would like to add the restriction that the
distribution of (X , ε) is such that for all x in some set, the
conditional expectation of ε given X = x is 0.
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In such a case g(x) denotes the conditional expectation of Y
given X = x , which is an object of interest when forecasting
the value of Y conditional on X = x , under a squared-error loss
function.

In other situations, one may want to add the restriction that
the conditional median, or other quantile of ε, given X = x is 0.

Many methods exist to estimate conditional means and
conditional quantiles nonparametrically. Prakasa Rao (1983),
Härdle and Linton (1994), Pagan and Ullah (1999), Matzkin
(1994), Koenker (2005), and X. Chen (2007), among others,
survey parts of this literature.
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2.2.1.2 Nonadditive Models

When the unobservable random terms in an economic model
have important interpretations such as being variables
representing tastes of consumers, or productivity shocks in
production functions, it is rarely the case that these
unobservable random terms influence the dependent variables in
the model in an additive way.

Nonadditive models allow the unobservable variables that are
determined outside the model to affect the values of the
variables that are determined within the model in nonadditive
ways.
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For a simple example, let Y denote an observable dependent
variable, X denote a vector of observable explanatory variables,
and ε denote an unobservable explanatory variable.

We can specify the functional relationship between these
variables as

Y = m (X , ε)

for some function m : RK × R → R .

We may impose the restrictions that the function m is strictly
increasing in ε, for all values of X , and that the distribution,
Fε,X , of (X , ε) is strictly increasing over RK+1.

We may add the restriction that m is differentiable, or that X
and ε are distributed independently of each other.

When the latter restriction is imposed, we will call such model
an Independent Nonadditive Model.
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An example of such a model could be when X denotes hours of
work of an individual, ε denotes the ability of the individual to
perform some task, and Y is output of the individual.

Conditional on working the same quantity x of hours of work,
output is higher when ability is higher.
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Nonparametric models of this type were studied in Roehrig
(1988), Olley and Pakes (1996), Brown and Matzkin (1998),
Matzkin (1999, 2003), Altonji and Ichimura (2000), Altonji and
Matzkin (2001), and Imbens and Newey (2003), among others.

When the distribution of ε is specified to be U(0, 1) and m is
strictly increasing in ε, the function m can be interpreted as a
nonparametric conditional quantile function.

See Chaudhuri (1991) and Chaudhuri, Doksum, and Samarov
(1997), for nonparametric estimation, as well as the references
in Koenker (2005).
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The additive model described in Section 2.2.1.1 can be
interpreted as a different representation of the nonadditive
model.

One can always express the model: Y = m (X , ε) as
Y = g(X ) + η, where for each x , g(x) = E (Y |X = x).

In such case, the value of the additive unobservable η has, by
construction, conditional expectation equal 0, given X = x .

The distribution of η given X = x can be derived from the
function m and the distribution of ε given X = x , since by its
definition, η = Y − E (Y |X = x) = m (X , ε)− g(x).
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2.2.1.3. Triangular Nonadditive Model

When m and ε are multivalued, a particular nonadditive model
is the Triangular Nonadditive Model.

In this model, there are G endogenous (outcome) variables,
Y1, ...,YG , and G unobservable variables, ε1, ..., εG .
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Given a vector of explanatory variables, X ∈ RK , the value of
each Yg is determined recursively from X , Y1, ...,Yg−1, and εg :

Y1 = m1 (X , ε1)

Y2 = m2 (X ,Y1, ε2)

Y3 = m3 (X ,Y1,Y2, ε3)

·
·
·

YG = mG (X ,Y1,Y2, · · ·,YG−1, εG )
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This is a nonparametric nonadditive version of the triangular
system in linear simultaneous equations (see Hausman (1983)),
where for some lower triangular, G × G matrix A and some
G × K matrix B ,

ε = AY + BX

where ε is the G × 1 vector (ε1, ..., εG )′ , Y is the G × 1 vector
(Y1, ...,YG )′ , and X is the K × 1 vector (X1, ...,XK )′.
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Nonparametric identification in the nonparametric, nonadditive
model has been studied recently by Chesher (2003) and Imbens
and Newey (2003), among others.

The later considers also nonparametric estimation.

(Ma and Koenker (2006) compare the approaches of those two
papers. See also Matzkin (2004)).

A typical example (see Imbens and Newey (2003) and Chesher
(2003)) is the model where Y2 denotes lifetime discounted
income, Y1 denotes years of education, X is a variable denoting
the cost of education, ε1 is (unobserved) ability, and ε2 is
another unobservable variable that affects income.

In this example, X is an argument of the function m1 but not
of the function m2.

Many panel data models, where the unobservables incorporate
fixed effects, fall into this structure.

Matzkin Nonparametric Identification



Introduction The econometric model Identification Ways of achieving identification Conclusions

By recursively substituting the endogenous variables, in the
above system of the equations, one can obtain the system of
reduced form equations, where each endogenous variable is
solely determined by observable and unobservable exogenous
variables.
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This system has the form

Y1 = h1 (X , ε1)

Y2 = h2 (X , ε1, ε2)

Y3 = h3 (X , ε1, ε2, ε3)

·
·
·

YG = hG (X , ε1, ε2, · · ·, εG )

where h1 (X , ε1) = m1 (X , ε1) , h2 (X , ε1, ε2) =
m2 (X ,Y1, ε1, ε2) = m2 (X , h1 (X , ε1) , ε1, ε2) , and so on.
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As can be seen from above, the reduced form of this model,
which represents the G dimensional vector of outcomes
Y1, ...,YG as G functions of the vector of observable
explanatory variables, X , and the vector of G unobservable
variables ε1, ..., εG , is triangular in (ε1, ..., εG ) , in the sense that
for each g , Yg does not depend on εg+1, ..., εG .
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2.2.1.4. Nonadditive Index Models

In many situations in economics, we might be interested in
analyzing the effect that some vector of variables X has on a
variable, Y , when the model establishing such a relationship
between X and Y is either very complicated or only vaguely
known.

If we could determine that the effect of X on Y is weakly
separable from the other variables, then we might be able to
identify features of the aggregator, or ”index” function, h(X ),
even though we might not be able to infer all the functions and
distributions in the model.
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A simple example of a nonadditive index model is where Y
denotes an observable dependent variable, X denotes a vector
of observable explanatory variables, and ε denotes an
unobservable explanatory variable.

The functional relationship between these variables is specified
as

Y = m (h(X ), ε)

where m : R2 → R and h : RK → R .

We may impose the restrictions that m is increasing in each
coordinate and h is continuous.
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Stoker (1986), Han (1987), Powell, Stock and Stoker (1989),
Ichimura (1993), Horowitz (1996), Horowitz and Hardle
(1996), Abrevaya (2000), and Das (2001) have considered
semiparametric estimation of single index linear models, where
the function h is specified as a linear-in-parameters function.

Ichimura and Lee (1991) considered identification and
estimation of semiparametric, multiple linear index models.

Matzkin (1991b) considered estimation of a nonparametric h.

Matzkin and Newey (1993), Horowitz (2001), and Lewbel and
Linton (2007) considered estimation of h and the distribution
of ε nonparametrically.

Heckman and Vytlacil (1999, 2000) and Vytlacil and Yildiz
(2004), among others, consider identification of average effects.

Chesher (2005) considers local identification when X is
endogenous and ε is vector valued.
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If we impose the restriction that X and ε are independently
distributed, we will call it the Independent Nonadditive Index
Model.

Consider, for example, a duration model, with a proportional
hazard function, λ(t, x , ν), given by

λ(t, x , ν) = s(t) eh(x)+ν

where x denotes the value of observable characteristics, X , ν
denotes the value of an unobservable characteristic, and t
denotes the time, Y , at which the hazard is evaluated.

Suppose that r is an unknown positive function over R+, h is
an unknown function over the support of X , and ν is
distributed independently of X .
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Such a model could describe a situation where Y denotes the
length of time that it takes an individual with observable
characteristics, X , and unobservable characteristic, ν, to find
employment.

When the probability-density of finding employment at time t
conditional on not having found employment yet is given by the
above specification for the hazard function, the model that
describes the relation between Y and X is

Y = m (h(X ), η + ν)

where η possesses an extreme value distribution, independent
of (X , ν).

Moreover, m is strictly decreasing in η + ν.
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Semiparametric and nonparametric identification of duration
models, as well as corresponding estimation methods, were
studied by Elbers and Ridder (1982), Heckman (1991),
Heckman and Singer (1984a, 1984b), Barros and Honore
(1988), Honore (1990), Ridder (1990), Horowitz (1999), van
den Berg (2001), and Abbring and van der Berg (2003).

(See also the chapters on this topic in Lancaster (1990).)
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2.2.1.5. Nonadditive Simultaneous Equations Models

In many economic models the values of the dependent variables
are determined simultaneously.

A standard example is the model of demand and supply.

Let md denote an aggregate demand function, which
determines the aggregate quantity demanded of a product, Qd ,
as a function of the price of the product, p, the income level of
the consumers, I , and an unobservable variable εd .

Let ms denote the aggregate supply function, which determines
the aggregate supplied output, Qs , as a function of the price of
the product, P , input prices, W , and an unobservable variable,
εs .
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In equilibrium, Qd = Qs .

The model can then be described as

Qd = md
(
P , I , εd

)
Qs = ms (P ,W , εs)

Qd = Qs

where the last equation denotes the equilibrium conditions that
aggregate demand equals aggregate supply.

In this model, the equilibrium quantity, Q = Qd = Qs , and the
equilibrium price are determined simultaneously.

In most multidimensional optimization problems, such as those
faced by a consumer maximizing a utility function or by a
multiproduct firm maximizing profits, the optimal choices are
also determined simultaneously.

Matzkin Nonparametric Identification



Introduction The econometric model Identification Ways of achieving identification Conclusions

The analysis of simultaneous equations models is typically more
complicated than that of many other models because the
unobservables that affect any one of the endogenous variables
affect, through the simultaneity, also the other endogenous
variables.

This was made clear for linear models by Haavelmo (1943),
who showed that Least Squares was not the correct method to
estimate models with endogenous variables.

Suppose, for example, that in the demand and supply example
described above, md is strictly increasing in εd and ms is
strictly decreasing in εs .
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Then, the system can be expressed as

εd = rd (Q,P , I )

εs = r s (Q,P ,W )

where rd is the inverse function of md with respect to εd and
r s is the inverse function of ms with respect to εs .

Assuming that, for any value of the vector of exogenous
variables,

(
I ,W , εd , εs

)
, this system of structural equations

possesses a unique solution for (P ,Q) , one can derive the
reduced form system of the model, which can be expressed as

Q = h1
(
I ,W , εd , εs

)
P = h2

(
I ,W , εd , εs

)
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When the structural equations in the simultaneous equations
model above are linear in the variables, as in the standard linear
models for simultaneous equations, the reduced form equations
turn out to be linear in the unobservables.

In such case, to each reduced form equation there corresponds
a unique unobservable random term, which enters the equation
in an additive way.

The value of each such unobservable is a function of εd , εs and
of the coefficients that appear in rd and r s .

Identification in linear simultaneous equations can be analyzed
using the results in Koopmans (1949), Koopmans, Rubin, and
Leipnik (1950), and Fisher (1966), among others.

(See Hausman (1983) and Hsiao (1983) for surveys of that
literature.)
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We will consider below the nonadditive simultaneous equations
model described by

ε = r (Y ,X )

where Y ∈ RG denote a vector of observable dependent
variables, X ∈ RK denote a vector of observable explanatory
variables, and ε ∈ RL denote a vector of unobservable
explanatory variables.

The function r : RG × RK → RL specifies the relationship
between these vectors.

In our analysis of this model, we will impose the restriction that
r is differentiable and is such that for all values of (X , ε) there
is a unique Y satisfying the above equation.

We will also impose the restriction that X and ε are
independently distributed with support RK × RG and that r is
such that for each x , the density of Y given X = x has support
RG .

Matzkin Nonparametric Identification



Introduction The econometric model Identification Ways of achieving identification Conclusions

The identification of nonparametric simultaneous equations
satisfying these properties was first analyzed by Roehrig (1988),
following a technique developed by B.

Brown (1983) for parametric, nonlinear in variables,
simultaneous equations models.

Recently, Benkard and Berry (2004) showed that Roehrig’s
conditions may not guarantee identification.

Matzkin (2005) proposed a different set of conditions.

Manski (1983) proposed a Closest Empirical Distribution
method for estimation of a semiparametric version of these
models, which did not require a parametric specification for the
density of ε.
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Brown and Matzkin (1998) developed a nonparametric Closest
Empirical Distribution method, which did not require either the
distribution of ε or the function r to be parametric.

A semi-nonparametric maximum likelihood method, such as
that developed in Gallant and Nychka (1987), or a
semiparametric maximum likelihood method, as in Ai (1997)
could also be used to estimate identified models.
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When a structural function is additive in the unobservable
random term, estimation can proceed using the nonparametric
instrumental variable methods of Newey and Powell (1989,
2003), Ai and Chen (2003), Darolles, Florens, and Renault
(2002), and Hall and Horowitz (2005).

When it is nonadditive, the methods of Chernozhukov and
Hansen (2005), or Chernozhukov, Imbens, and Newey (2007)
could be used.
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2.2.1.6. Discrete Choice Models

Discrete Choice Models are models typically used to describe
the situation where an individual has a finite number, 1, ...,G ,
of alternatives to choose from.

The individual has preferences defined over those alternatives
and chooses one that maximizes those preferences.

It is assumed that the preference of the individual for each
alternative can be represented by a function, Vg , which
depends on observable and unobserved characteristics of the
individual and of the alternative.

Let S denote a vector of observable socioeconomic
characteristics of a typical individual.

Let Zg denote a vector of observable characteristics of
alternative g .
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Let ε denote a vector of unobservable variables.

It is typically assumed that ε ∈ RJ where J ≥ G .

For each g , let Y ∗g = Vg (S ,Zg , ε) , and let Yg = 1 if the
individual chooses alternative g and Yg = 0 otherwise.

Assume that the functions V1, ...,VG and the distribution of ε
are such that there is zero probability that for some g 6= k ,
Vg (S ,Zg , ε) = Vk (S ,Zk , ε).
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In this model, the vector of unobserved endogenous variables is
Y ∗ = (Y ∗1 , ...,Y

∗
G ) , and the vector of observable endogenous

variables is Y = (Y1, ...,YG ) where, for each g ,

Yg =

{
1 if Vg (S ,Zg , ε) > Vk (S ,Zk , ε) for all k 6= g
0 otherwise

}
The vector of observable explanatory variables is
X = (S ,Z1, ...,ZG ).
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The conditional probability of Y given X is given by

Pr (Yg = 1|X ) = Pr ({ε|Vg (S ,Zg , ε) > Vk (S ,Zk , ε)

for all k ≡ j})

Discrete Choice Models were originally developed by McFadden
(1974) under the linear additive specification that for all g

Vg (S ,Zg , ε) = αg + γgS + βgZg + εg

and ε = (ε1, ..., εG ).
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Initially, McFadden (1974) specified a parametric distribution
for ε.

Subsequent work by Manski (1975, 1985), Cosslett (1983),
Powell, Stock and Stoker (1989), Horowitz (1992), Ichimura
(1993), and Klein and Spady (1993), among others, developed
methods that did not require a parametric specification for ε.

Matzkin (1991a) considered identification when the distribution
of ε = (ε1, ..., εG ) is specified parametrically and for each g

Vg (S ,Zg , ε) = vg (S ,Zg ) + εg

for some unknown functions vg .

Matzkin (1992, 1993) extended these results to the case where
both the distribution of (ε1, ..., εG ) and the functions v1, ..., vG
are nonparametric.
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Identification
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Definition of identification
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Following the description of an econometric model in Section 2,
we denote the set of all vectors of functions and distributions
that satisfy the restrictions imposed by a model by S .

We denote any element in S by ζ, and we denote the element
of S corresponding to the vector of true functions and
distributions by ζ∗.

For any element ζ in S , we will denote by FY ,X (·, ·; ζ) the
distribution of the observable variables generated by ζ.

The distribution of the observable variables generated by ζ∗ will
be denoted by FY ,X (·, ·; ζ∗) or simply by FY ,X .
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The analysis of identification deals with the mapping between
the distribution of the observable variables and the underlying
elements in the model.

Given a model, with an associated vector of functions and
distributions, ζ∗, and a set S of vectors of functions and
distributions satisfying the same restrictions that ζ∗ is assumed
to satisfy, we can ask what elements of ζ∗ are uniquely
determined from FY ,X .
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More generally, we may ask what features of ζ∗ can be uniquely
recovered from FY ,X .

By a feature of ζ, we mean any function Ψ : S → Ω.

This could be an element of ζ, or a property such as, for
example, the sign of the derivative of a particular function in ζ.

We will let ψ∗ = Ψ (ζ∗) ; ψ∗ then denotes the true value of the
feature of ζ∗.

Elements in the range, Ψ (S) , of Ψ will be denoted by ψ.
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Given ψ ∈ Ψ (S) , we define ΓY ,X (ψ, S) to be the set of all
probability distributions of (Y ,X ) that are consistent with ψ
and S .

Formally,

ΓY ,X (ψ, S) = {FY ,X (·, ·; ζ) | ζ ∈ S and Ψ (ζ) = ψ}

In other words, ΓY ,X (ψ, S) is the set of all distributions of
(Y ,X ) that are generated by some vector of functions and
distributions in S and whose value of the element that we want
to infer is ψ.
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In the model of consumer demand, ψ∗ may denote, for
example, the utility function U∗, the expected demand of a
socioeconomic group at a particular budget
E [m∗ (p, I ,w , ε) |p, I ,w ] , or the expected infinitessimal effect
in the demand of a change in price,
E [∂m∗ (p, I ,w , ε) /∂p | p, I ,w ].
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A key concept when analyzing identification is the one of
observational equivalence.

Two values ψ, ψ′ ∈ Ω are observationally equivalent if there
exist at least two vectors, ζ, ζ ′ ∈ S with Ψ (ζ) = ψ,
Ψ (ζ ′) = ψ′, and FY ,X (·, ·; ζ) = FY ,X (·, ·; ζ ′):
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Definition 3.1: ψ, ψ′ ∈ Ω are observationally equivalent in the
model S if

[ΓY ,X (ψ, S) ∩ ΓY ,X (ψ′, S)] 6= ∅
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The feature ψ∗ is identified if there is no ψ ∈ Ω such that
ψ 6= ψ∗ and ψ is observationally equivalent to ψ∗ :
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Definition 3.2: ψ∗ ∈ Ω is identified in model S if for any
ψ ∈ Ω such that ψ 6= ψ∗

[ ΓY ,X (ψ, S) ∩ ΓY ,X (ψ∗, S) ] = ∅
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The following characterization is often used to prove
identification when it is easy to show that ψ∗ can be recovered
uniquely from any distribution in ΓY ,X (ψ∗, S) in particular
models:
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Definition 3.3: ψ∗ ∈ Ω is identified in model S if for any
ψ ∈ Ω

([ ΓY ,X (ψ, S) ∩ ΓY ,X (ψ∗, S) ] 6= ∅) ⇒ [ψ = ψ∗]
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Identification in Additive Models
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Consider the model

Y = g ∗ (X ) + ε

where Y denotes an observable dependent variable, X ∈ RK

denotes a vector of observable explanatory variables, ε denotes
an unobservable explanatory variable, and g ∗ : RK → R is an
an unknown, continuous function.

Suppose that we were interested in the value g ∗(x) of the
function g ∗ at a particular value x of X .

For any distribution F̃ε,X of (ε,X ) , let E
[
ε|X = x ; F̃ε,X

]
denote the expectation of ε conditional on X = x , calculated
using F̃ε,X , and let f̃X denote the probability density of the

marginal distribution F̃X .
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Let S = {
(
g̃ , F̃ε,X

)
|g̃ : RK → R is continuous and F̃ε,X is a

distribution on RK+1 such that (i) f̃X (x) > 0 and f̃X has an

extension that is continuous at x , (ii) E
[
ε|X = x ; F̃ε,X

]
= 0

and E
[
ε|X = x ; F̃ε,X

]
has an extension that is continuous in x

at x}.
Let Ω denote the set of all possible values that ψ∗ = g ∗(x) can
attain.

Then,
(3.a) ψ∗ = g ∗(x) is identified
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Proof of (3.a): Let E
[
Y |X = x ; g̃ , F̃ε,X

]
denote the

conditional expectation of Y given X = x , for the distribution

generated by
(
g̃ , F̃ε,X

)
.

Suppose that
(
g ∗,F ′ε,X

)
,
(
g̃ , F̃ε,X

)
∈ S and g̃ (x) 6= g ∗ (x).

Then, since

E
[
Y |X = x ; g̃ , F̃ε,X

]
= g̃ (x) + E

[
ε|X = x ; , F̃ε,X

]
= g̃ (x)

E
[
Y |X = x ; g ∗,F ′ε,X

]
= g ∗ (x) + E

[
ε|X = x ; ,F ′ε,X

]
= g ∗ (x)

and both functions are continuous at x , it follows by the
properties of F ′ε,X and F̃ε,X that

FY ,X

(
·; g ∗,F ′ε,X

)
6= FY ,X

(
·; g̃ , F̃ε,X

)
Hence, ψ∗ is identified.�
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When g ∗ is identified, we can also identify F ∗ε,X .

Assume for simplicity that the marginal distribution FX has an
everywhere positive density.

Let S = {
(
g̃ , F̃ε,X

)
|g̃ : RK → R is continuous and F̃ε,X is a

distribution that has support RK+1 and is such that

E
[
ε|X = x ; F̃ε,X

]
is continuous in x and it equals 0 at all

values of x}.
Let Ω denote the set of all possible pairs of functions
ψ = (g ,Fε,X ).

Then,
(3.b) ψ∗ =

(
g ∗,F ∗ε,X

)
is identified
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Proof of (3.b): Using the same arguments as in the proof of
(3.a), we can show that, for any x , g ∗(x) is identified.

To show that F ∗ε,X is identified, note that

FY |X=x (y) = Pr (Y ≤ y |X = x)

= Pr (g ∗(X ) + ε ≤ y |X = x)

= Pr (ε ≤ y − g ∗ (x) |X = x)

= F ∗ε|X=x (y − g ∗ (x))

Since the marginal density, f ∗X , of X is identified, it follows that
F ∗ε,X (x , e) is identified. �
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The linear model is, of course, the most well known case of an
additive model.

In this case, for all x ,

g ∗(x) = α∗ + β∗x

for some α∗ ∈ R , β∗ ∈ RK .

To identify ψ∗ = (α∗, β∗) within the set of all vectors
(α, β) ∈ R1+K , one needs a rank condition in addition to the
location normalization.
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Suppose that for K + 1 vectors x (1), ..., x (K+1), g ∗
(
x (k)
)

is
identified and the rank of the (K + 1)× (K + 1) matrix whose
k − th row is

(
1, x (k)

)
is K + 1.

Then, the system of K + 1 linear equations

α∗ + β∗x (k) = g ∗
(
x (k)
)

k = 1, ...,K + 1

has a unique solution.

Hence, (α∗, β∗) is identified.
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3.3. Identification in Nonadditive Models

Matzkin Nonparametric Identification



Introduction The econometric model Identification Ways of achieving identification Conclusions

Since the nonadditive model is more general than the additive
model, it would not be surprising to find out that stronger
conditions are necessary for the identification of the function
m∗ and distribution F ∗ε,X in the model where Y is an observable
dependent variable, X is a vector of observable explanatory
variables, ε is an unobservable random term explanatory
variable, and

Y = m∗ (X , ε)
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In fact, Matzkin (2003, Lemma 1) establishes that even when
m∗ is assumed to be strictly increasing in ε and ε is distributed
independently of X , one can not identify m∗.

Assume that FX is known. Let Ξ denote the support of X ,
which will be assumed to be RK .

We will assume that F ∗ε has support R and that ε is distributed
independently of X .

Hence, we can characterize the model by pairs (m,Fε).
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Theorem 3.1 (Matzkin (2003)): Let

S = {
(
m̃, F̃ε

)
| m̃ : Ξ× R → R is continuous on Ξ× R and

strictly increasing in its last coordinate and F̃ε is continuous
and strictly increasing on R}.
Let Ψ : S → Ω denote the first coordinate of ζ = (m,Fε) ∈ S .

Then, m, m̃ ∈ Ω are observationally equivalent iff for some
continuous and strictly increasing function s : R → R and all
x ∈ Ξ, ε ∈ R

m̃ (x , s (ε)) = m (x , ε)
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Proof: Suppose m, m̃ ∈ Ω are observationally equivalent.

Then, there exist continuous and strictly increasing Fε, F̃ε such
that for all x ∈ Ξ, y ∈ R

FY |X=x (y ; (m,Fε)) = FY |X=x

(
y ;
(
m̃, F̃ε

))
Let r (x .·) and r̃ (x , ·) denote, respectively, the inverses of
m (x , ·) and m̃ (x , ·).

Since for all y , x

FY |X=x (y ; (m,Fε)) = Pr (Y ≤ y |X = x ; (m,Fε)) = Fε (r(y , x))

and

FY |X=x

(
y ;
(
m̃, F̃ε

))
= Pr

(
Y ≤ y |X = x ;

(
m̃, F̃ε

))
= F̃ε (r̃(y , x))

it follows that for all y , x

Fε (r(y , x)) = F̃ε (r̃(y , x))
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Since Fε, F̃ε are strictly increasing and continuous, the function
s(t) = F̃−1

ε (Fε(t)) is strictly increasing and continuous and
r̃(y , x) = s (r(y , x)).

Let y=m (x , ε).

Since r̃ is the inverse of m̃

y = m̃ (x , r̃ (y , x)) = m̃ (x , s (r (y , x))) = m̃ (x , s(ε))

Hence,
m (x , ε) = m̃ (x , s(ε))
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Conversely, suppose that m and m̃ are such that for a strictly
increasing and continuous function s,all x and ε

m (x , ε) = m̃ (x , s(ε))

Let Fε denote any continuous and strictly increasing
distribution on R .
Let ε̃ = s (ε) and let F̃ε denote the distribution of ε̃, which is
derived from s and Fε.
Let r and r̃ denote respectively the inverse functions of m with
respect to ε and of m̃ with respect to ε̃.
Then, for all y , x

FY |X=x (y ; (m,Fε)) = Pr (Y ≤ y |X = x ; (m,Fε)) = Fε (r(y , x))

and

FY |X=x

(
y ;
(
m̃, F̃ε

))
= Pr

(
Y ≤ y |X = x ;

(
m̃, F̃ε

))
= F̃ε (r̃(y , x))

Hence, m and m̃ are observationally equivalent. �
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An implication of the above result is that to identify m∗, one
must restrict m∗ to belong to a set of functions such that for
any two different continuous functions in the set, their
corresponding inverse functions are not continuous, strictly
increasing transformations of each other.

Suppose, for example, that we impose the normalization that
for some x for which fX (x) > 0, where fX , the marginal
probability density of X , is continuous at x and for all ε, all
m ∈ Ω satisfy

m (x , ε) = ε
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Then, all the inverse functions, r , must satisfy

r (ε, x) = ε

Suppose r , r̃ are any two such functions and for a strictly
increasing s, and all ε, x

r̃ (ε, x) = s (r (ε, x))

Then, letting x = x , it follows that for any t

t = r̃ (t, x) = s (r (t, x)) = s (t)

Hence, s is the identity function.
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Clearly, if m∗ is identified, so is F ∗ε , since for all e and any x

F ∗ε (e) = Pr (ε ≤ e) = Pr (ε ≤ e|X = x)

= Pr (m∗ (X , ε) ≤ m∗(x , e)|X = x) = FY |X=x(m∗(x , e))
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In this expression, the first equality follows by the definition of
F ∗ε , the second by the independence between ε and X , the third
by the strict monotonicity of m∗ in its last coordinate, and the
last equality follows by the definition of Y and that of FY |X .
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It is also clear that if F ∗ε is specified, then m∗ is identified, since
from the above equation it follows that

m∗(x , e) = F−1
Y |X=x (F ∗ε (e))

Imbens and Newey (2003) and Blundell and Powell (2003), for
example, use a normalization that amounts to specifying ε to
be U(0, 1).
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3.3.1. Identification of derivatives

Rather than normalizing the set of functions, as above, we may
ask what features can be identified without normalizations.

It turns out that derivatives and discrete changes are identified.

For the first result, let x and y denote particular values of,
respectively, X and Y .

Let ε denote the value of ε at which y = m∗ (x , ε).

Assume that ε and X have differentiable densities, strictly
positive at ε and x , and that m∗ is differentiable at (x , ε).

Let Ω denote the set of all values that ∂m∗ (x , ε) /∂x may
attain.

Then,
(3.c) ψ∗ = ∂m∗ (x , ε) /∂x is identified .
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Proof of (3.c): We follow closely Matzkin (1999) and Chesher
(2003).

By independence between X and ε and the strict monotonicity
of m,

F ∗ε (ε) = F ∗ε|X=x (ε)

= Pr (ε ≤ ε|X = x)

= Pr (m∗ (X , ε) ≤ m∗ (x , ε) |X = x)

= Pr (Y ≤ m∗ (x , ε) |X = x)

= FY |X=x (m∗ (x , ε))
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Taking derivatives with respect to x , on both sides, we get that

0 =
∂FY |X=x (t)

∂x
|t=m∗(x ,ε)

+
∂FY |X=x (t)

∂t
|t=m∗(x ,ε)

∂m∗ (x , ε)

∂x

Hence, the derivative

∂m∗(x , ε)

∂x
= −

[
∂FY |X=x (y)

∂y

]−1 ∂FY |X=x (y)

∂x

is uniquely derived from the distribution FY ,X of the observable
variables. �
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3.3.2. Identification of finite changes

Finite changes can also be identified.

Fix again the value of (Y ,X ) at (y , x) , and let again ε be such
that y = m∗ (x , ε) .

We are interested in the value of y ′ − y where y ′ = m∗(x ′, ε).

This is the causal effect on Y of changing the value of X from
x to x ′, while leaving the value of the unobservable variable, ε,
unchanged.

Assume that the probability density f ∗X has a continuous
extension and is strictly positive at x and x ′, and that the
density of ε is strictly positive at ε.

Let Ω denote the set of all values that y ′ − y may attain.

Then,

(3.d) ψ∗ = m∗(x ′, ε)−m∗ (x , ε) is identified .
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3.3.2. Identification of finite changes

Proof of (3.d): The independence between X and ε and the
strict monotonicity of m imply that

Fε (ε) = FY |X=x (m∗ (x , ε))

and, similarly, that

Fε (ε) = FY |X=x ′ (m
∗ (x ′, ε))
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The strict monotonicity of FY |X=x ′ then implies that

y ′ − y = m∗ (x ′, ε∗)− y

= F−1
Y |X=x ′ (Fε (ε∗))− y

= F−1
Y |X=x ′

(
FY |X=x (m∗ (x , ε))

)
− y

= F−1
Y |X=x ′

(
FY |X=x (y)

)
− y

Hence, the change in the value of Y when X is changed from x
to x ′ is identified.�
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3.3.3. Identification in triangular systems

In a model with a nonadditive, unobserved efficiency variable,
Pakes and Olley (1996) used the strict monotonicity between
investment and the unobserved index variable, conditional on
observable age and capital stock of the firm, to express the
unobserved efficiency index in terms of the observables age,
capital stock, and investment.

In a similar spirit, Chesher (2003) derived expressions for
unobserved variables from conditional distributions, and use
them to derive expressions for the derivatives of functions in a
triangular system of equations with nonadditive random terms.

Chesher used a local independence assumption.

We will analyze here a special case of Chesher’s model where
the independence restrictions are stronger.
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To provide an example, suppose that the model of consumer
demand is

Y = m (p, I , ε, η)

where ε and η are unobservable variables and m is strictly
increasing in η.

Suppose that I is determined by ε and an observable variable
Z , according to a function r̃ , strictly increasing in ε :

I = r̃ (Z , ε)

Assume that Z is distributed independently of (ε, η). For
simplicity, assume full support for all variables and
differentiability for all functions.

Then,

(3.e)
∂m (p, I , ε, η)

∂I
can be identified
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Proof of (3.e): Letting r denote the inverse of r̃ with respect
to ε and substituting in the demand function, we have that

Y = m (p, I , r (Z , I ) , η)

Let
v (p, I ,Z , η) = m (p, I , r (Z , I ) , η)

Note that

∂v (p, I ,Z , η)

∂I
=
∂m (p, I , r (Z , I ) , η)

∂I

+
∂m (p, I , r (Z , I ) , η)

∂ε

∂r (Z , I )

∂I

and

∂v (p, I ,Z , η)

∂Z
=
∂m (p, I , r (Z , I ) , η)

∂ε

∂r (Z , I )

∂Z
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Hence,

∂m (p, I , ε, η)

∂I
|ε=r(Z ,I ) =

∂v (p, I ,Z , η)

∂I
−∂v (p, I ,Z , η)

∂Z

[
∂r(Z ,I )
∂I

∂r(Z ,I )
∂Z

]
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This implies that, if we know the functions v and r , we can
identify the derivative of m with respect to I , at particular
values of ε and δ.

But, the models
I = r̃ (Z , ε)

and
Y = v (p, I ,Z , η)

are just the Independent Nonadditive Model, when ε and Z are
independently distributed, and when (p, I ,Z ) and η are also
independently distributed.
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Hence, the derivatives of r̃ and of v are identified from the
distribution of, respectively, (I ,Z ) and (Y , p, I ,Z ).

In particular, using the results in the previous section, it
immediately follows that

∂v (p, I ,Z , η)

∂I
= −

[
∂FY |I ,Z (y ∗)

∂y

]−1 ∂FY |I ,Z (y ∗)

∂I

and

∂v (p, I ,Z , η)

∂Z
= −

[
∂FY |I ,Z (y ∗)

∂y

]−1 ∂FY |I ,Z (y ∗)

∂Z

at y ∗ such that y ∗ = m (I ,Z , η).
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Differentiating the expression

Fε (r (Z , I )) = FY |I ,Z (y)

which can be shown to be equivalent to the expression

Fε (ε) = FY |I ,Z (r̃ (I ,Z , ε))

we get, similarly, that

∂r (Z , I )

∂I
= −

[
∂Fε (ε)

∂ε
|ε=r(Z ,I )

]−1 ∂FY |I ,Z (y)

∂I

and
∂r (Z , I )

∂Z
= −

[
∂Fε (ε)

∂ε
|ε=r(Z ,I )

]−1 ∂FY |I ,Z (y)

∂Z
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Hence,

∂m (p, I , ε, η)

∂I
=

[
∂FY |I ,Z (y ∗)

∂y

]−1

[
∂FY |I ,Z (y ∗)

∂Z

[
∂FY |I ,Z (y∗)

∂I
∂FY |I ,Z (y∗)

∂Z

]
−
∂FY |I ,Z (y ∗)

∂I

]

at ε = r (I ,Z ) and y ∗ = m (p, I , ε, η).

Hence, using the variable Z we can identify the derivative of m
with respect to I , leaving the value of ε fixed.�
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3.4. Identification in Nonadditive Index Models
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Consider the model,

Y = m∗ (h∗(X ), ε)

where Y denotes an observable dependent variable, ε denotes
an unobservable explanatory variable whose support is R , X
denotes a vector of observable explanatory variables that
possesses support Ξ = RK , X is such that the last coordinate,
XK , of X possesses an everywhere positive density conditional
on the other coordinates of X , ε is distributed independently of
X , m∗ : R2 → R is increasing in each coordinate, non-constant,
and satisfies that for all t, t ′,

t < t ′ ⇒ there exists ε such that m∗ (t, ε) < m∗ (t ′, ε)

and h∗ : Ξ→ R is continuous on Ξ and strictly increasing in its
last coordinate.
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Assume that FX is known.

The model, S , is then characterized by the set of all triplets

ζ =
(
h̃, F̃ε, m̃

)
such that h̃, F̃ε, and m̃ satisfy the

assumptions that, respectively, h∗, F ∗ε , and m∗ are assumed to
satisfy.

Let Ω denote the set composed of all first coordinates, h̃,

of
(
h̃, F̃ε, m̃

)
∈ S .

Let ◦ denote the composition of two functions, so that(
g ◦ h̃

)
(t) = g(h̃(t)).

The following theorem was stated in Matzkin (1994).

It’s proof is a modification of the identification result in Han
(1987) for semiparametric index models.
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Theorem 3.2: In the model described above, two functions
h, h̃ ∈ Ω are observationally equivalent if and only if there
exists a continuous, strictly increasing function g : R → R such
that h̃ = g ◦ h.
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Proof: Suppose that for all x , h̃(x) = g (h(x)).

Then, letting m̃ (t, e) = m (g−1 (t) , e) , it follows that for all
x , e

m̃
(
h̃(x), e

)
= m

(
g−1 (g (h(x))) , e

)
= m (h(x), e)

Hence, for any distribution, Fε,

FY ,X (·, ·; h,Fε,m) = FY ,X

(
·, ·; h̃,Fε, m̃

)
.

It follows that h and h̃ are observationally equivalent.
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On the other hand, suppose that there exist no strictly
increasing, continuous g such that h̃ = g ◦ h, then, there must
exist x ′, x ′′ ∈ Ξ such that

h (x ′) < h (x ′′) and h̃(x ′) > h̃(x ′′)

By the properties of any m̃,m, specified by the model, this
implies that there exist ε, ε̃ such that

m (h(x ′), ε) < m (h(x ′′), ε) and m̃
(
h̃(x ′), ε̃

)
> m̃

(
h̃(x ′′), ε̃

)
Let Fε, F̃ε be any distributions that have support R .
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By independence between X and ε, the full support of ε, and
the monotonicity of m and m̃, this implies that

Pr
{

(e ′, e ′′)|
(
m̃
(
h̃ (x ′) , e ′

)
> m̃

(
h̃ (x ′′) , e ′′

))}
> Pr

{
(e ′, e ′′)|

(
m̃
(
h̃ (x ′) , e ′

)
< m̃

(
h̃ (x ′′) , e ′′

))}
while

Pr {(e ′, e ′′)| (m (h (x ′) , e ′) > m (h (x ′′) , e ′′))}
< Pr {(e ′, e ′′)| (m (h (x ′) , e ′) < m (h (x ′′) , e ′′))}

Matzkin Nonparametric Identification



Introduction The econometric model Identification Ways of achieving identification Conclusions

Hence, either

Pr
{

(e ′, e ′′)|
(
m̃
(
h̃ (x ′) , e ′

)
< m̃

(
h̃ (x ′′) , e ′′

))}
6= Pr {(e ′, e ′′)| (m (h (x ′) , e ′) < m (h (x ′′) , e ′′))}

or

Pr
{

(e ′, e ′′)|
(
m̃
(
h̃ (x ′) , e ′

)
> m̃

(
h̃ (x ′′) , e ′′

))}
6= Pr {(e ′, e ′′)| (m (h (x ′) , e ′) > m (h (x ′′) , e ′′))}
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Let FY ,X

(
·; h̃, F̃ε, m̃

)
and FY ,X (·; h,Fε,m) denote the

distributions generated by, respectively,
(
h̃, F̃ε, m̃

)
and

(h,Fε,m).

Let Y ′ and Y ′′ denote the random variables that have,
respectively, distributions FY |X=x ′ and FY |X=x ′′ .

If any of the two inequalities above are satisfied, the probability

of the event Y ′ > Y ′′ calculated using FY |X=x ′

(
·, ·; m̃, h̃, F̃ε

)
and FY |X=x ′′

(
·, ·; m̃, h̃, F̃ε

)
will be different from the probability

of the same event calculated using FY |X=x ′ (·, ·;m, h,Fε) and
FY |X=x ′′ (·, ·;m, h,Fε).
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By continuity of the functions, and the support conditions of
X , this will still hold for all x̃ ′ and x̃ ′′ in neighborhoods,
respectively, of x ′ and x ′′, which have positive probability.

Hence, FY ,X

(
·, ·; m̃, h̃, F̃ε

)
6= FY |X (·, ·;m, h,Fε).

It follows that h and h̃ are not observationally equivalent.�
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This result implies that if the restrict h∗ to belong to a set of
functions such that no two functions in the set are strictly
increasing transformations of each other, then in that set h∗ is
identified.

Matzkin (1994) describes several such set of functions.

(See also Section 4.4.)
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3.5. Identification in Simultaneous Equations Models
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Consider the simultaneous equations model, described in
Section 2.2.1.5, where Y ∈ RG denotes a vector of observable
dependent variables, X ∈ RK denotes a vector of observable
explanatory variables, ε ∈ RG denotes a vector of unobservable
explanatory variables, and the relationship between these
vectors is specified by a function r ∗ : RG × RK → RG such that

ε = r ∗ (Y ,X )

The set S consisted of vectors of twice differentiable functions
r : RG × RK → RG and twice differentiable, strictly increasing
distributions Fε,X : RG × RK → R such that (i) for all Fε,X , ε
and X are distributed independently of each other (ii) for all r ,
and all y , x |∂r(y , x)/∂y | > 0 , (iii) for all r and all x , ε, there
exists a unique value of y such that ε = r (y , x) , and (iv) for
all r , all Fε,X , and all x , the distribution of Y given X = x ,
induced by r and Fε|X=x has support RG .
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For any (r ,Fε,X ) ∈ S , condition (iii) implies that there exists a
function h such that for all ε,X ,

Y = h (X , ε)

This is the reduced form system of the structural equations
system determined by r .

We will let h∗ denote the reduced form function determined by
r ∗.
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A special case of this model is the linear system of
simultaneous equations, where for some invertible, G × G
matrix A and some G × K matrix B ,

ε = AY + BX

Premultiplication by (A)−1 yields the reduced form system

Y = Π X + ν

where Π = − (A)−1 B and ν = (A)−1 ε.

The identification of the true values, A∗, B∗, of the matrices A
and B , and the distribution of ε has been the object of study in
the works by Koopmans (1949), Koopmans, Rubin, and Leipnik
(1950), and Fisher (1966), among others, and it is treated in
most econometrics textbooks.
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The chapters by Hausman (1983) and Hsiao (1983) present the
main known results.

Assume that E (ε) = 0, and Var (ε) = Σ∗, an unknown matrix.

Let W denote the variance of ν.

Π and W can be identified from the distribution of the
observable variables (Y ,X ).

The identification of any element of (A∗,B∗,Σ∗) is achieved
when it can be uniquely recovered from Π and Var(ν).

A priori restrictions on A∗, B∗, and Σ∗ are typically used to
determine the existence of a unique solution for any element of
(A∗,B∗,Σ∗).

(See Fisher (1966).)
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In an analogous way, one can obtain necessary and sufficient
conditions to uniquely recover r ∗ and F ∗ε from the distribution
of the observable variables (Y ,X ), when the system of
structural equations is nonparametric.

The question of identification is whether we can uniquely
recover the density f ∗ε and the function r ∗ from the conditional
densities fY |X=x .
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Following the definition of observational equivalence, we can
state that two functions r , r̃ satisfying the assumptions of the
model are observationally equivalent iff there exist fε, f̃ε such

that (fε, r) ,
(
f̃ε, r̃
)
∈ S and for all y , x

(3.5.1) fε̃ (r̃(y , x))

∣∣∣∣∂ r̃(y , x)

∂y

∣∣∣∣ = fε (r(y , x))

∣∣∣∣∂r(y , x)

∂y

∣∣∣∣
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The function r̃ can be expressed as a transformation of (ε, x).

To see this, define

g (ε, x) = r̃ (h (x , ε) , x)

Since ∣∣∣∣∂g (ε, x)

∂ε

∣∣∣∣ =

∣∣∣∣∂ r̃ (h (x , ε) , x)

∂y

∣∣∣∣ ∣∣∣∣∂h (x , ε)

∂ε

∣∣∣∣
it follows that |∂g (ε, x) /∂ε| > 0.

Let ε̃ = r̃ (y , x).

Since, conditional on x , h is invertible in ε and r̃ is invertible in
y , it follows that g is invertible in ε.

Substituting in (3.5.1), we get that (r̃ , fε̃) ∈ S is
observationally equivalent to (r , fε) ∈ S iff for all ε, x

fε̃ (g (ε, x))

∣∣∣∣∂g (ε, x)

∂ε

∣∣∣∣ = fε (ε)
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The following theorem provides conditions guaranteeing that a
transformation g of ε does not generate an observable
equivalent pair (r̃ , fε̃) ∈ S of a pair (r , fε) ∈ S
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Theorem 3.3 (Matzkin (2005): Let (r , fε) ∈ S .

Let g (ε, x) be such that r̃ (y , x) = g (r (y , x) , x) and
ε̃ = g (ε, x) are such that (r̃ , fε̃) ∈ S , where fε̃ denotes the
marginal density of ε̃.

If for some ε, x , the rank of the matrix
(
∂g(ε,x)
∂ε

)′
∂ log fε(u)

∂ε
− ∂ log| ∂g(ε,x)

∂ε |
∂ε(

∂g(ε,x)
∂x

)′
−∂ log| ∂g(ε,x)

∂ε |
∂x


is strictly larger than G , then, (r̃ , fε̃) is not observationally
equivalent to (r , fε).

Alternatively, we can express an identification theorem for the
function r ∗.
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Theorem 3.4 (Matzkin (2005)): Let M × Γ denote the set
of pairs (r , fε) ∈ S .

The function r ∗ is identified in M if r ∗ ∈ M and for all fε ∈ Γ
and all r̃ , r ∈ M such that r̃ 6= r , there exist y , x such that the
rank of the matrix

(
∂ r̃(y ,x)
∂y

)′
∆y

(
y , x ; ∂r , ∂2r , ∂ r̃ , ∂2r̃

)
+ ∂ log(fε(r(y ,x)))

∂ε
∂r(y ,x)
∂y(

∂ r̃(y ,x)
∂x

)′
∆x

(
y , x ; ∂r , ∂2r , ∂ r̃ , ∂2r̃

)
+ ∂ log(fε(r(y ,x)))

∂ε
∂r(y ,x)
∂x


is strictly larger than G , . . .
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. . . where

∆y

(
y , x ; ∂r , ∂2r , ∂ r̃ , ∂2r̃

)
=

∂

∂y
log

∣∣∣∣∂r(y , x)

∂y

∣∣∣∣− ∂

∂y
log

∣∣∣∣∂ r̃(y , x)

∂y

∣∣∣∣
∆x

(
y , x ; ∂r , ∂2r , ∂ r̃ , ∂2r̃

)
=

∂

∂x
log

∣∣∣∣∂r(y , x)

∂y

∣∣∣∣− ∂

∂x
log

∣∣∣∣∂ r̃(y , x)

∂y

∣∣∣∣
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Example 3.1: As a very simple example, consider the
simultaneous equations model, analyzed in Matzkin (2007c),
where for some unknown function, g ∗, and some parameter
values β∗, γ∗,

y1 = g ∗ (y2) + ε1

y2 = β∗ y1 + γ∗ x + ε2

Assume that (ε1, ε2) has an everywhere positive, differentiable
density f ∗ε1,ε2

such that for two, not necessarily known a-priori,
values (ε1, ε2) and (ε′′1, ε

′′
2) ,

0 6=
∂ log f ∗ε1,ε2

(ε1, ε2)

∂ε1
6=
∂ log f ∗ε1,ε2

(ε′′1, ε
′′
2)

∂ε1
6= 0

and
∂ log f ∗ε1,ε2

(ε1, ε2)

∂ε2
=
∂ log f ∗ε1,ε2

(ε′′1, ε
′′
2)

∂ε2
= 0

Matzkin Nonparametric Identification



Introduction The econometric model Identification Ways of achieving identification Conclusions

The observable exogenous variable x is assumed to be
distributed independently of (ε1, ε2) and to possess support
R . In this model

ε1 = r ∗1 (y1, y2, x) = y1 − g ∗(y2)

ε2 = r ∗2 (y1, y2, x) = −β∗y1 + y2 − γ∗ x

The Jacobian determinant is∣∣∣∣( 1 −∂g∗(y2)
∂y2

−β∗ 1

)∣∣∣∣ = 1− β∗ ∂g
∗(y2)

∂y2

which will be positive as long as 1 > β∗ ∂g ∗(y2)/∂y2.
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Since the first element in the diagonal is positive, it follows by
Gale and Nikaido (1965) that the function r ∗ is globally
invertible if the condition 1 > β∗ ∂g ∗(y2)/∂y2 holds for every
y2.

Let r , r̃ any two differentiable functions satisfying this condition
and the other properties assumed about r ∗.

Suppose that at some y2, ∂g̃(y2)/∂y2 6= ∂g(y2)/∂y2.

Assume also that γ 6= 0 and γ̃ 6= 0.

Let fε1,ε2 denote any density satisfying the same properties that
f ∗ε1,ε2

is assumed to satisfy.
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Denote by (ε1, ε2) and (ε′1, ε
′
2) the two points such that

0 6= ∂ log fε1,ε2 (ε1, ε2)

∂ε1
6= ∂ log fε1,ε2 (ε′1, ε

′
2)

∂ε1
6= 0

and
∂ log fε1,ε2 (ε1, ε2)

∂ε2
=
∂ log fε1,ε2 (ε′1, ε

′
2)

∂ε2
= 0
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Define

a1 (y1, y2, x) =
∂ log fε1,ε2 (y1 − g(y2),−βy1 + y2 − γ x)

∂ε1

− β
∂ log fε1,ε2 (y1 − g(y2),−βy1 + y2 − γ x)

∂ε2
,

a2 (y1, y2, x) =

((
∂2g(y2)/∂y2

2

(1− β(∂g(y2)/∂y2)

)
−

(
∂2g̃(y2)/∂y2

2

(1− β̃(∂g̃(y2)/∂y2)

))

−
(
∂g(y2)

∂y2

)(
∂ log fε1,ε2 (y1 − g(y2),−βy1 + y2 − γ x)

∂ε1

)

+
∂ log fε1,ε2 (y1 − g(y2),−βy1 + y2 − γ x)

∂ε2

and

a3 (y1, y2, x) = −γ ∂ log fε1,ε2 (y1 − g(y2),−βy1 + y2 − γ x)

∂ε2

Matzkin Nonparametric Identification



Introduction The econometric model Identification Ways of achieving identification Conclusions

By Theorem 3.4, r and r̃ will not be observationally equivalent
if for all fε1,ε2 there exists (y1, x) such that the rank of the
matrix

A =



1 −β̃ a1 (y1, y2, x)

−∂g̃(y2)
∂y2

1 a2 (y1, y2, x)

0 −γ̃ a3 (y1, y2, x)


is 3.
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Let

a′1 (y1, y2, x) =
(
β̃ − β

) ∂ log fε1,ε2 (y1 − g(y2),−βy1 + y2 − γ x)

∂ε2

a′2 (y1, y2, x) =

((
∂2g(y2)/∂y2

2

(1− β(∂g(y2)/∂y2)

)
−

(
∂2g̃(y2)/∂y2

2

(1− β̃(∂g̃(y2)/∂y2)

))

+

(
∂g̃(y2)

∂y2
− ∂g(y2)

∂y2

)(
∂ log fε1,ε2 (y1 − g(y2),−βy1 + y2 − γ x)

∂ε1

)
and

a′3 (y1, y2, x) = (γ̃ − γ)
∂ log fε1,ε2 (y1 − g(y2),−βy1 + y2 − γ x)

∂ε2
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Multiplying the first column of A by
- ∂ log fε1,ε2 (y1 − g(y2),−βy1 + y2 − γ x) /∂ε1 and adding it
to the third column, and multiplying the second column by
- ∂ log fε1,ε2 (y1 − g(y2),−βy1 + y2 − γ x) /∂ε2 and adding it
to the third column, we obtain the matrix

1 −β̃ a′1 (y1, y2, x)

−∂g̃(y2)
∂y2

1 a′2 (y1, y2, x)

0 −γ̃ a′3 (y1, y2, x)


which has the same rank as A.
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By assumption, either

a′2 (y1, y2, x) =

((
∂2g(y2)/∂y2

2

(1− β(∂g(y2)/∂y2)

)
−

(
∂2g̃(y2)/∂y2

2

(1− β̃(∂g̃(y2)/∂y2)

))

+

(
∂g̃(y2)

∂y2
− ∂g(y2)

∂y2

)(
∂ log fε1,ε2 (ε1, ε2)

∂ε1

)
6= 0

or

a′2 (y1, y2, x) =

((
∂2g(y2)/∂y2

2

(1− β(∂g(y2)/∂y2)

)
−

(
∂2g̃(y2)/∂y2

2

(1− β̃(∂g̃(y2)/∂y2)

))

+

(
∂g̃(y2)

∂y2
− ∂g(y2)

∂y2

)(
∂ log fε1,ε2 (ε′1, ε

′
2)

∂ε1

)
6= 0
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Suppose the latter.

Let y1 = g(y2) + ε′1 and let x = (−β y1 + y2 − ε′2) /γ.

It then follows that

∂ log fε1,ε2 (y1 − g(y2),−βy1 + y2 − γ x)

∂ε2
= 0
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At such y1, x , the above matrix becomes the rank 3 matrix

1 −β̃ 0

−∂g̃(y2)
∂y2

1 a′2 (y1, y2, x)

0 −γ̃ 0


Hence, derivatives of g ∗ are identified.
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Example 3.2: A similar example provides sufficient conditions
for the identification of a utility function and its distribution, in
a multidimensional version of the utility maximization problem
described in Section 2.

Let the utility function U∗ for products 1, ...,G + 1, for a
consumer with unobservable tastes ε1, ..., εG , be specified as:

U∗(y1, ..., yG+1, ε1, ..., εG ) = v ∗ (y1, ..., yG ) +
G∑

g=1

εg yg + yG+1

where v ∗ is a strictly monotone, strictly concave, twice
differentiable function and where ε=(ε1, ..., εG ) is distributed
independently of (p, I ) with a differentiable density that has
known convex support.
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(This utility specification was studied in Brown and Calsamiglia
(2004) in their development of tests for utility maximization; it
is a slight modification of the specification used in Brown and
Matzkin (1998) to analyze the identification of a distribution of
utility functions from the distribution of demand.)

Normalize the price of the G + 1− th commodity to equal 1.

Maximization of U∗ with respect to (y1, ..., yG+1) subject to the
budget constraint

∑G
g=1 pg yg + yG+1 = I yields the first order

conditions

εg = pg − ∂v ∗ (y1, ..., yG ) /∂yg g = 1, ...,G

yG+1 = I −
G∑

g=1

pg yg
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Let Dv ∗(y) and D2v ∗(y) denote, respectively, the gradient and
Hessian of v ∗ at y = (y1, ..., yG ).

The first set of G equations represent a system of simultaneous
equations with observable endogenous variables (y1, ..., yG ) and
observable exogenous variables (p1, ..., pG ).

The strict concavity of v ∗ guarantee that for any (p1, ..., pG )
and (ε1, ..., εG ) , a unique solution for (y1, ..., yG ) exists.

Let W denote the set of functions v satisfying the same
restrictions that v ∗ is assumed to satisfy.

Let ε denote a given value of the vector ε.
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Let Γ denote the set of all densities fε of ε such that (i) fε is
differentiable, (ii) fε (ε) > 0 on a neighborhood of radius δ
around ε, (iii) for all ε in the support of fε, ∂ log(fε(ε))/∂ε = 0
iff ε = ε, (iv) for all g , there exist two distinct values, ε′ and
ε′′, in the δ−neighborhood of ε such that fε(ε

′), fε(ε
′′) > 0, 0

6= ∂ log(fε(ε
′))/∂εg 6= ∂ log(fε(ε

′′))/∂εg 6= 0, and for j 6= g ,
∂ log(fε(ε

′))∂εj = ∂ log(fε(ε
′′))/∂εj = 0.

Suppose that W and the support of p is such for all y , for all
v ∈ W , there exist a set of prices, Q, such that the density of
p is uniformly bounded away from zero on Q and the range of
Dv(y)− p, when considered as a function of p over Q, is the δ
neighborhood of ε.

Then, if v , ṽ belong to W and Dṽ 6= Dv , there exist, for all
fε ∈ Γ, values y , p such that the rank of the corresponding
matrix in Theorem 3.4 is larger than G .

(See Matzkin (2007a))
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3.6. Identification in Discrete Choice Models
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Consider the discrete choice model described in Section 2.2.1.6,
where a typical individual has to choose between G + 1
alternatives.

Let Vg (s, zg , ω) denote the utility for alternative g , where s
denotes a vector of observable characteristics of the consumer,
zg denotes a vector of observable attributes of alternative g ,
and ω is an unobservable random vector.

The vector of observable dependent variables is
y = (y1, ..., yG+1) defined by

yg =

{
1 if Vg (s, zg , ω) > Vk (s, zg , ω) for all k 6= g
0 otherwise

}
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Let z denote the vector (z1, ..., zG+1).

The conditional choice probability, for each g = 1, ...,G + 1 is

Pr ({yg = 1 | s, z}) = Pr ({ω | Vg (s, zg , ω) > Vk (s, zk , ω)

for all k 6= g})

Since the choice probabilities of each alternative depend only
on the differences between the utilities of the alternatives, only
those differences can be identified.

Hence, for simplicity, we may specify VG+1 (s, zG+1, ω) equal to
0 for all (s, zG+1, ω) .

Then,

Pr ({yG+1 = 1 | s, z}) = Pr ({ω | 0 > Vk (s, zk , ω)

for all k 6= G + 1 })

(We assume that the probability of ties is zero.)
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3.6.1. Subutilities additive in the unobservables

The simplest case to analyze is when ω = (ω1, ..., ωG ) , each Vg

depends only on one coordinate, ωg of ω, and ωg is additive:

Vg (s, zg , ω) = vg (s, zg ) + ωg ,

where vg is a nonparametric function.
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(Matzkin (1991a) studies identification in this model when the
distribution of ω is specified parametrically. Matzkin (1992,
1993, 1994) extends some of those results for the case of
nonparametric distributions.)

Under the additivity assumption:

Pr ({yG+1 = 1 | s, z}) = Fω1,...,ωG
(−v1(s, z1), ...,−vG (s, zG ))

where Fω1,...,ωG
is the unknown distribution of (ω1, ..., ωG ).

This is of the form of a multiple index model, and it could
therefore be analyzed using techniques for those models.
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Assume, for example, that each of the zg vectors includes a

coordinate z
(1)
g with is such that

vg (s, z (1)
g , z (2)

g ) = z (1)
g + mg

(
s, z (2)

g

)
where zg =

(
z

(1)
g , z

(2)
g

)
and mg is a nonparametric function.

Then,

Pr ({yG+1 = 1 | s, z}) =

Fω1,...,ωG

(
−z (1)

1 −m1

(
s, z

(2)
1

)
, ...,−z (1)

G −mG

(
s, z

(2)
G

))
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Assume that (ω1, ..., ωG ) is distributed independently of
(s, z1, ..., zG ).

Let
(
s, z (2)

)
=
(
s, z

(2)
1 , ..., z

(2)
G

)
denote a particular value of(

s, z (2)
)
.

Assume that z (1) =
(
z

(1)
1 , ..., z

(1)
G

)
∈ RG possesses an

everywhere positive density on RG , conditional on(
s, z (2)

)
=
(
s, z

(2)
1 , ..., z

(2)
G

)
.

Let αg ∈ R and specify that for g = 1, ...,G

mg

(
s, z (2)

g

)
= αg
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Then,

Pr
({

yG+1 = 1 | s, z (1), z (2)
})

=

Fω1,...,ωG

(
−z (1)

g − αg , ...,−z (1)
g − αG

)
,

which shows that Fω1,...,ωG
can be recovered from the choice

probabilities, evaluated at appropriate values of
(
s, z (1), z (2)

)
.
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In an influential paper, Lewbel (2000) shows that the
requirement that (ω1, ..., ωG ) be independent of (s, z) is not
needed for identification of Fω1,...,ωG

.

It suffices that (ω1, ..., ωG ) be independent of z (1) conditional
on
(
s, z (2)

)
, in addition to the large support condition on z (1).

Since the work of Lewbel (2000), the vector z (1) has been
called a ”special regressor”.

Its identification force has been extended to many models other
than discrete choice models.
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3.6.2. Subutilities nonadditive in the unobservables

Applying Lewbel’s special regressor technique, one can analyze
models with nonadditive unobservables, as described in Matzkin
(2005b).

Suppose that each Vg is specified as:

Vg

(
s, z (1)

g , z (2)
g , ω

)
= z (1)

g + vg
(
s, z (2)

g , ω
)

where vg is a nonparametric function.

Assume that ω is distributed independently of (s, z).

Define Υg for each g by

Υg = vg
(
s, z (2)

g , ω
)
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Since ω is distributed independently of (s, z) , (Υ1, ...,ΥG ) is
distributed independently of z (1), conditional on

(
s, z (2)

)
.

Hence, using the arguments in Lewbel (2000), one can recover
the distribution of (Υ1, ..,ΥG ) given

(
s, z (2)

)
.

From this distribution, one can identify the functions v1, ..., vG
and the distribution of (ω1, ..., ωG ) in the system

Υ1 = v1

(
s, z

(2)
1 , ω1, ..., ωG

)
Υ2 = v2

(
s, z

(2)
2 , ω1, ..., ωG

)
· · ·

ΥG = vG
(
s, z

(2)
G , ω1, ..., ωG

)
using the results in Matzkin (2005).
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In particular, assume that, given
(
s, z (2)

)
, the system of

functions (v1, ..., vG ) is invertible in ω.

Then, it can be equivalently expressed as

ω = r
(
Υ, s, z (2)

)
where ω is the vector (ω1, ..., ωG )′ and Υ = (Υ1, ...,ΥG ).

This has the same structure as considered in the previous
sections.

(See Matzkin (2007a) for more detail.)

Unobservable vectors of dimension larger than G can be dealt
with making use of additional functional restrictions and
conditional independence assumptions.

(See the Appendix in Matzkin (2003).)
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Ways of achieving identification
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When a feature of interest is not identified, one may proceed in
different ways to achieve identification.

One may augment the model, incorporating more observable
variables.

One may impose further restrictions on either the functions, or
the distributions, or both.

The analysis of observational equivalence together with
economic theory can often be used to determine appropriate
restrictions.

In this section, we describe examples of some of the techniques
that have been developed, following one or more of these
approaches.

The emphasis will be in showing how one can recover particular
features, once objects such as conditional distributions and
conditional expectations are identified.
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Conditional independence

Matzkin Nonparametric Identification



Introduction The econometric model Identification Ways of achieving identification Conclusions

A common situation encountered in econometric models is
where the unobservable variables affecting the value of an
outcome variable are not distributed independently of the
observed explanatory variables.

Without additional information, identifying the causal effect of
the observable explanatory variables on the outcome variable is
typically not possible in such a situation.

Usually, the additional information involves variables and
restrictions guaranteeing some exogenous variation on the value
of the explanatory variable.

The leading procedures to achieve this are based on conditional
independence methods and instrumental variable methods.
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In the first set of procedures, independence between the
unobservable and observable explanatory variables in a model is
achieved after conditioning on some event, some function, or
some value of an external variable or function.

The second set of procedures usually derives identification from
an independence condition between the unobservable and an
external variable (an instrument) or function.

In this subsection, we will deal with conditional independence.

In Subsection 4.2, we will deal with instrumental variables.
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4.1.1. Identification of functions and distributions in a nonadditive
model using conditional independence
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Consider the nonadditive model

Y1 = m1 (X , ε1)

where ε and X are not independently distributed and m is
strictly increasing in ε.

A standard example (see Chesher (2003) and Imbens and
Newey (2003)) is where Y1 denotes earnings, X denotes years
of education, and ε denotes the effect of unobservable
explanatory variables, which includes unobserved ability.

Since X is determined as a function of ε, these variables are
not independently distributed.
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Suppose, however, that some variable W is available, such that
for some function m2 and some ε2,

X = m2 (W , ε2)

Denoting X by Y2, the system of the two above equations is a
triangular system.

Imbens and Newey (2003) developed identification results for
this system when W is observable and independent of (ε1, ε2).

Chesher (2003) considered local independence conditions for
identification of local derivatives.
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Matzkin (2004) studied identification when ε1 and ε2 are
independent, conditional on either a particular value or all
possible values of W .

(A footnote in Chesher (2003) also discusses independence
restrictions on the unobservables as a source of identification.)

When W is independent of (ε1, ε2) , independence between ε1

and X can be determined conditional on the unobservable ε2.

When ε1 and ε2 are independent conditional on W ,
independence between ε1 and X can be determined conditional
on the observable W .

Matzkin Nonparametric Identification



Introduction The econometric model Identification Ways of achieving identification Conclusions

The following theorem, in Matzkin (2004), provides insight into
the sources of identification

Theorem 4.1 (Equivalence Theorem (Matzkin (2004)):
Consider the model Y1 = m1 (X , ε1) .

Suppose that m1 is strictly increasing in ε1, and that for all
values w of W , the conditional distribution, FX ,ε|W=w , of
(X , ε) given W = w is strictly increasing.

Then, the following statements are equivalent:

(i) There exists a strictly increasing function m2 (W , ·) and an
unobservable random term ε2 such that X = m2 (W , ε2) and
ε2 is independent of (W , ε1).

(ii) There exists a strictly increasing function r (W , ·) and an
unobservable random term δ such that ε1 = r (W , δ) , δ is
independent of (X ,W ).

(iii) ε1 is independent of X , conditional on W .

Matzkin Nonparametric Identification



Introduction The econometric model Identification Ways of achieving identification Conclusions

Consider the Nonadditive Model

Y1 = m1 (X , ε1)

To be able to identify m1, we need to observe independent
variation in each coordinate of m.

The theorem considers three different representations of the
model:

Y = m1 (m2 (W , ε2) , ε1)

= m1 (m2 (W , ε2) , r (W , δ))

= m1 (X , r (W , δ))
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From the first expression, it follows that if ε1 and ε2 are
independent conditional on at least one value w of W , then we
will be able to observe events where, conditional on W , each
coordinate of m1 achieves values independently of the other
coordinates of m1.

From the third expression, it follows that if δ is independent of
X conditional on at least one value w of W , then, again each
coordinate of m1 will achieve values independently of the other
coordinates of m1, when conditioning on at least one value of
W .
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The second expression provides the same result, when we can
establish that δ and ε2 are independent, conditional on at least
one value w of W .

The equivalence theorem above states that as long as we show
that the conditions for one of these representations are satisfied,
then the conditions for the other representations also hold.

The above theorem also holds when W is unobservable, ε2 is
observable, and ε2 is distributed independently of (ε1,W ).

In such case, that (i) implies (iii) is shown in Imbens and
Newey (2003) as follows: The restriction that ε2 is independent
of (W , ε1) implies that, conditional on W , ε2 and ε1 are
independent.

Since conditional on W , X is a function of ε2, and ε2 is
independent of ε1, if follows that conditional on W , X is
independent of ε1.

Matzkin Nonparametric Identification



Introduction The econometric model Identification Ways of achieving identification Conclusions

The local condition, that conditional on W = w , ε1 and ε2 are
independent, can be shown to imply, under some additional
assumptions, that m1 and the distribution of (X , ε1) can both
be identified, up to a normalization on the distribution of ε1

given W = w .
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In particular, Matzkin (2004) shows that if m1 is strictly
increasing in ε1, Fε1,X |W=w is strictly increasing in (ε1,X ) , for
each x , Fε1|(X ,W )=(x ,w) is strictly increasing in ε1, and if there
exists a function m2 and an unobservable ε2 such that
X = m2 (W , ε2) , m2 is strictly increasing in ε2 when W = w ,
and ε1 is independent of ε2 conditional on W = w , then for all
x , e

(4.a) m (x , e) = F−1
Y |(X ,W )=(x ,w)

(
Fε1|W=w (e)

)
and

Fε1|X=x(e) = FY |X=x

(
F−1
Y |(X ,W )=(x ,w)

(
Fε1|W=w (e)

))
Matzkin (2004) describes several examples where economic
theory implies the conditional exogeneity of the unobservable
ε2, for particular variables W .
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Proof of (4.a): Let x be given and let e2 denote the value of
ε2 such that x = m2 (w , e2).
By conditional independence and strict monotonicity

Pr (ε1 ≤ e|W = w) = Pr (ε1 ≤ e|ε2 = e2,W = w)

= Pr (m1 (X , ε1)

≤ m1 (x , e) | X = m1 (w , e2) ,W = w)

= FY1|X=x ,W=w (m1 (x , e))

Hence,
m1 (x , e) = F−1

Y1|X=x ,W=w

(
Fε1|W=w (e)

)
Since

Fε1|X=x = FY |X=x (m1 (x , e))

it follows that

Fε1|X=x = FY |X=x

(
F−1
Y1|X=x ,W=w

(
Fε1|W=w (e)

))
�
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As with the case where X and ε1 are independently distributed,
identification of derivatives of m1 with respect to X does not
require additional normalizations.

Altonji and Matzkin (2001) present the following result (see
also Altonji and Ichimura (2000)).
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Identification of average derivatives in a nonadditive model using
conditional independence
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Consider the nonseparable model

Y = m (X , ε1, ..., εJ)

where no particular assumptions are made regarding
monotonicity of m.

Let ε = (ε1, ..., εJ).

Assume that m and the density fε|X are differentiable with
respect to X in a neighborhood of a value x of X , that fε|X is
everywhere positive in ε and the marginal density fX is strictly
positive on a neighborhood of x .
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Assuming that the integral and all the terms inside the integral
exist, suppose that we wanted to recover the average derivative

β(x) =

∫
∂m (x , e)

∂x
fε|X=x(e) de

using a conditioning vector of variables W .

Altonji and Matzkin (2001, 2005) show that if ε is independent
of X conditional on W , then

(4.b) β(x) can be recovered from the distribution

of the observable variables
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Proof of (4.b): Since for all e, x ,w ,

fε|W=w ,X=x(e) = fε|W=w (e)

one has that
∂fε|W=w ,X=x(e)

∂x
= 0

Let E [Y |W = w ,X = x ] denote the conditional expectation of
Y given (W = w ,X = x).
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Then,∫
∂E [Y |W = w ,X = x]

∂x
fW |X=x (w) dw

=

∫
∂

∂x

∫
m (x , ε) fε|W=w,X=x (ε)

fW ,X (w , x)

fX (x)
dε dw

=

∫ [
∂

∂x

∫
m (x , ε) fε|W=w,X=x (ε) dε

]
fW ,X (w , x)

fX (x)
dw

=

∫ [∫
∂m (x , ε)

∂x
fε|W=w,X=x (ε) dε+

∫
m (x , ε)

∂ fε|W=w,X=x (ε)

∂x
dε

]
fW ,X (w , x)

fX (x)
dw

=

∫ [∫
∂m (x , ε)

∂x
fε|W=w,X=x (ε) dε

]
fW ,X (w , x)

fX (x)
dw

=

∫ ∫
∂m (x , ε)

∂x

fε,W ,X (ε,w , x)

fW ,X (w , x)

fW ,X (w , x)

fX (x)
dε dw

=

∫ ∫
∂m (x , ε)

∂x

fε,W ,X (ε,w , x)

fX (x)
dw dε

=

∫
∂m (x , ε)

∂x

fε,X (ε, x)

fX (x)
dε

=

∫
∂m (x , ε)

∂x
fε|X=x (ε) dε

= β(x)
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Since E [Y |W = w ,X = x ] and fW |X can be recovered from
the distribution of (Y ,W ,X ) , β(x) can also be recovered from
it.�

Many other functions, average derivatives, and other functions
can be derived and shown to be identified in the nonadditive
model Y1 = m1 (X , ε1).
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Blundell and Powell (2003) consider identification and
estimation of the ”average structural function”, defined for
X = x as

G (x) =

∫
m1 (x , e) fε1(e) de

Blundell and Powell (2003) assumed the existence of a random
vector

ν = v(y , x ,w)

which is identified and estimable, and it is such that the
distribution of ε1 conditional on (X ,W ) is the same as the
distribution of ε1 conditional on (X , ν) , which is the same as
the distribution of ε1 conditional on ν.
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The average structural function is then obtained from the
distribution of (Y ,X , ν) as:

G (x) =

∫
E (Y |X , ν) fν(ν) dν

This follows because

G (x) =

∫
m1 (x , e) fε1(e) de

=

∫ [∫
m1 (x , e) fε1|ν(e) de

]
fν(ν) dν

=

∫
[E (Y |X , ν)] fν(ν) dν
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Imbens and Newey (2003) consider identification of the
”quantile structural function”, defined for τ ∈ (0, 1) and all x
as

m1 (x , qε1(τ))

where qε1(τ) is the τ−quantile of the distribution of ε1.

Letting ν be such that ε1 is independent of X conditional on ν,
they obtain the following expression for the inverse m−1

1 (x , y)
of m1 with respect to qε1 (τ) :

m−1
1 (x , y) = Pr (m1 (x , qε1(τ)) ≤ y)

=

∫
Pr (Y ≤ y |ν) fν(ν) dν

=

∫
Pr (Y ≤ y |X = x , ν) fν(ν) dν
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For the average derivative, Imbens and Newey (2003) use the
fact that, under conditional independence

δ = E

[
∂m1 (x , ε1)

∂x

]
= E

[∫
∂m1 (x , e)

∂x
fε1|X=x ,ν(e) de

]
= E

[∫
∂m1 (x , e)

∂x
fε1|X=x ,ν(e) de

]
= E

[
∂

∂x
E (Y |X = x , ν)

]
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Marginal independence
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In many situations, such as in models with simultaneity,
establishing conditional independence between the unobservable
and observable explanatory variables that determine the value
of an outcome variable may require undesirable strong
assumptions (see Blundell and Matzkin (2007)).

A variable that is independent of the unobservable variables,
and not independent of the observable variables may be used in
such and other situations.

In the model
Y = m (X , ε)

where X is not distributed independently of ε, an instrument is
a variable, Z , that is distributed independently of ε and is not
distributed independently of X .
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4.2.1. Instrumental variables in nonadditive models
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Chernozhukov and Hansen (2005), Chernozhukov, Imbens, and
Newey (2007), and Matzkin (2004, 2005b) consider
identification of nonadditive models using instruments.

Chernozhukov, Imbens, and Newey (2007)’s model is

Y = m (X ,Z1, ε)

where X is a vector of observable variables that is not
distributed independently of ε, m is strictly increasing in ε,
Z = (Z1,Z2) is an observable vector that is distributed
independently of ε, and the density of ε is everywhere positive.

Since the distribution of ε and m are not jointly identified, one
may normalize the marginal distribution of ε to be U(0, 1).
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Independence between ε and Z imply that for each τ ∈ (0, 1)

τ = E [1 (ε < τ)] = E [1 (ε < τ) |Z ]

= E [E [1 (ε < τ) |W ,Z ] |Z ]

= E [E [1 (m (W , ε) < m (W , τ)) |W ,Z ] |Z ]

= E [1 (Y < m (W , τ)) |Z ]
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Define ρ (Y ,W , τ,m) = 1 (Y < m (W , τ))− τ .

Then, the above defines a conditional moment restriction

E [ρ (Y ,W , τ,m) |Z ] = 0
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The following theorem provides sufficient conditions for local
identification, in the sense of Rothenberg (1971), of
ρ (Y ,W , τ,m).

Theorem 4.2 (Chernozhukov, Imbens, and Newey
(2004)): Suppose that Y is continuously distributed
conditional on X and Z with density f (y |x , z) , and that
there exists C > 0 such that

|f (y |x , z)− f (ỹ |x , z)| ≤ C |y − ỹ |

and for D(V ) = f (m (W , τ) |W ,Z ) , E [D(V ) ∆(V )|Z ] = 0
implies ∆(V ) = 0 then m (W , τ) is locally identified.
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In simultaneous equations, of the type considered in previous
sections, an observed or identified exogenous variable that is
excluded from one equation may be used as an instrument for
that equation.

Consider, for example, the simultaneous equation model

Y1 = m1 (Y2, ε1)

Y2 = m2 (Y1,X , ε2)

where X is distributed independently of (ε1, ε2).

Matzkin (2007b) establishes restrictions on the functions m1

and m2 and on the distribution of (ε1, ε2,X ) under which[
∂r1 (y1, y2)

∂y2

]−1 [
∂r1 (y1, y2)

∂y1

]
can be expressed as a function of the values of fY1,Y2,X at
(Y1,Y2) = (y1, y2) and particular values of X .
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4.2.2. Unobservable Instruments
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Matzkin (2004) considers the use of unobservable instruments
to identify nonadditive models.

These are variables that are known to be distributed
independently of unobservable random terms in an equation of
interest, but are themselves unobservable.

This is in the spirit of Fisher (1966), who developed an
extensive set of conditions on the unobservables in linear
systems of simultneous equations that provide identification.

The method is also related to the one in Hausman and Taylor
(1983).
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Matzkin (2004) considers the model

Y1 = m (Y2,X , ε)

with m strictly increasing in ε and ε distributed independently
of X .

She assumes that a second equation,

Y2 = g (Y1, η)

is identified, and that the unobservables η and ε are
independently distributed.
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The identification of the function g in general will require
imposing additional restrictions.

If, for example, g were specified to be a linear function and
one assumed that E [η|X ] = 0, then identification of g would
follow by standard results.

If g were nonparametric and additive in η, then, under the
assumption that E [η|X ] = 0 one could identify it using the
methods in Newey and Powell (1989, 2003), Darolles, Florens,
and Renault (2000), or Hall and Horowitz (2003).

Suppose that g is identified.

Matzkin (2004) proposes a pointwise direct identification of the
function m.
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The argument proceeds by using η to estimate the reduced
form equations

Y1 = r1 (X , η, ε)

Y2 = r2 (X , η, ε)

Under the assumption that ε is independent of (X , η) , these
equations are identified, using the arguments in 3.3.

These equations are next used to identify m.

To see this, suppose that we wanted to identify the value of m
at a particular value (y2, x , e).
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Let η∗ denote the value of η that solves the equation

y2 = r2 (x , η∗, e)

Let y ∗1 = r1 (x , η∗, e).

If then follows by the definition of m and of the functions r1
and r2 that

m (y2, x , e) = m (r2 (x , η∗, e) , x , e)

= r1 (x , η∗, e)

= y ∗1

Hence, one can recover the function m.
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4.2.3. Instrumental variables in additive models
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In additive models, the requirement that Z = (Z1,Z2) be
independent of ε1 may be weakened to a conditional mean
independence.

Newey and Powell (1989, 2003), Darolles, Florens, and Renault
(2000), Ai and Chen (2003), and Hall and Horowitz (2005)
considered the model

Y = m (X ,Z1) + ε

where E [ε|X ] 6= 0.
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They assumed the existence of an instrument, Z , satisfying

E [ε|Z1,Z2] = 0

Using the definition of ε, this yields the equation

E [Y |Z1 = z1,Z2 = z2] = E [m (X , z1) |Z1 = z1,Z2 = z2]

=

∫
m (x , z1) fX |Z1=z1,Z2=z2

(x) dx

Since the ”reduced form” E [Y |Z1,Z2] is identified from the
distribution of (Y ,Z1,Z2) and fX |Z1=z1,Z2=z2

(x) is identified
from the distribution of (X ,Z ) , the only unknown in the above
integral equation is m (x , z1).

Newey and Powell (2003) provided conditions characterizing
the identification of the function m solely from the above
integral equation.
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Theorem 4.3 (Newey and Powell (2003)): Suppose that
Y = m (X ,Z1) + ε and E [ε|Z1,Z2] = 0.

Then, m is identified if and only if for all functions δ(x , z1) with
finite expectation, E [δ(x , zl)|Z = z ] = 0 implies that
δ(x , z1) = 0.

Das (2004) and Newey and Powell (2003) considered
identification of this model when the endogenous variables are
discrete.

To state the result presented in Newey and Powell (2003),
assume that both X and Z2 are discrete.

Denote the support of X and Z2 by, respectively, {x1, ..., xS}
and {z21, ..., z2T}.
Let P(z1) denote the S × T matrix whose ij − th elements is
Pr (X = xi |Z1 = z1,Z2 = z2j).
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Theorem 4.4 (Newey and Powell (2003)): Suppose that
Y = m (X ,Z1) + ε, E [ε|Z1,Z2] = 0, and X and Z2 have finite
support.

Then, m(x , z1) is identified if and only if
Pr [rank (P(z1)) = s] = 1.
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4.2.4. Instrumental variables in additive models with measurement
error
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A common situation where an observable explanatory variable is
not independent of the unobserved explanatory variable is when
the observed explanatory variable is an imperfect measurement
of the true explanatory variable, which is unobserved.

For this situation, Schennach (2007) established identification
of an additive model using instrumental variables.

She considered the model

Y = m (X ∗) + ε

X = X ∗ + ηX

X ∗ = r(Z ) + ηZ

where the nonparametric function m is the object of interest,
X ∗ is unobservable, Z ,X , and Y are observable, E (ε|Z , ηZ ) =
E (ηX |Z , ηZ , ε) = E (ηZ ) = 0, and ηZ and Z are independently
distributed.
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Since, in this model,

X = r(Z ) + ηX + ηZ

and E (ηX + ηZ |Z ) = 0, the function r is identified from the
joint distribution of (X ,Z ).
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The model implies the two moment conditions

E (Y |Z = z) =

∫
m (r(Z ) + ηZ ) dF (ηZ )

E (YX |Z = z) =

∫
(r(Z ) + ηZ ) m (r(Z ) + ηz) dF (ηZ )

(These moment conditions were used in Newey (2001) to deal
with a parametric version of the model with measurement
error.)

Using the representation of these in terms of characteristic
functions, Schennach (2007) shows that m and the distribution
of X ∗ are identified.
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Shape restrictions on distributions
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Particular shapes or some local conditions on the distributions
can often be used to provide identification.

We provide two examples.
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4.3.1. Exchangeability restrictions in the nonadditive model
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Altonji and Matzkin (2005) considered the model

Y = m (X , ε)

where ε is not distributed independently of X , but for some
observable variable Z , it is the case that for all x there exists
values z(x), z (x , x) of Z such that for all e

Fε|X=x ,Z=z(x)(e) = Fε|X=x ,Z=z(x ,x)(e)

Their leading example is where X denotes the value of a
variable for one member of a group, Z denotes the value of the
same variable for another member of the same group, and ε,
which incorporates the unobservable group effect, is such that
its distribution is exchangeable in X and Z , so that for all
values t, t ′ and all e

Fε|X=t,Z=t′(e) = Fε|X=t′,Z=t(e)
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In such case, z(x) = x and z (x , x) = x .

Assume that for all x , z , Fε|X=x ,Z=z is strictly increasing.

As with the case where ε is assumed to be independent of X , a
normalization is needed either on the function m or on the
distribution.

Assume that m (x , ε) = ε.

Under these assumptions

(4 .c) m and Fε|X=x can be recovered from(
FY |X=x ,Z=z(x),FY |X=x ,Z=z(x ,x)

)
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Proof of (4.c): Let x and e be given.

By the strict monotonicity of m in ε,
Fε|X=x ,Z=z(x)(e) = Fε|X=x ,Z=z(x ,x)(e) implies that

FY |X=x ,Z=z(x)(m(x , e)) = FY |X=x ,Z=z(x ,x)(m (x , e))

Hence, since m (x , e) , it follows that

m(x , e) = F−1
Y |X=x ,Z=z(x)

(
FY |X=x ,Z=z(x ,x)(e)

)
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Next, since the strict monotonicity of m in ε implies that for all
x and e

Fε|X=x(e) = FY |X=x(m(x , e))

it follows that

Fε|X=x(e) = FY |X=x(F−1
Y |X=x ,Z=z(x)

(
FY |X=x ,Z=z(x ,x)(e)

)
)

�
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Rather than imposing a normalization, one may ask what can
be identified without imposing any normalization.

Suppose that the exchangeability condition considered in
Altonji and Matzkin (2005) is satisfied.

Let m, e be given and let y ∗ = m(x , e).
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Then,
m (x , e) = F−1

Y |X=x ,Z=x

(
FY |X=x ,Z=x(y ∗)

)
and for any x ′

m(x ′, e)

= F−1
Y |X=x ′,Z=x

(
FY |X=x ,Z=x ′(m (x , e))

)
= F−1

Y |X=x ′,Z=x

(
FY |X=x ,Z=x ′(F

−1
Y |X=x ,Z=x

(
FY |X=x ,Z=x(y ∗)

)
)
)
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Hence, the effect of changing X from x to x ′ is

m(x ′, e)−m(x , e) =F−1
Y |X=x ′,Z=x

(
FY |X=x ,Z=x ′(

F−1
Y |X=x ,Z=x

(
FY |X=x ,Z=x(y ∗)

)))
− y ∗
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4.3.2. Local independence restrictions in the nonadditive model

Chesher (2003) used a local insensitivity assumption to achieve
local identification of the partial derivatives of structural
functions in a triangular system of equations.

To demonstrate a simple version of this restriction, consider a
nonadditive model, specified as

Y = m∗ (X , ε)

where m is strictly increasing in ε.

Suppose that we were interested in inferring the partial
derivative of m with respect to X .
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Following arguments analogous to those used in Section 3.3,
one can show that for any x , ε

FY |X=x (m∗ (x , ε)) = F ∗ε|X=x (ε)

Assuming that all the functions are differentiable, we get that

∂m∗ (x , ε)

∂x
=

[
∂FY |X=x (t)

∂t
|t=m∗(x ,ε)

]−1

·[
∂FY |X=x (t)

∂x
|t=m∗(x ,ε) −

∂F ∗ε|X=x (ε)

∂x

]
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The local insensitivity assumption can be stated as the
restriction that at X = x and ε = ε

∂F ∗ε|X=x (ε)

∂x
= 0

Assume that the value of m∗ (x , ε) is known.

It then follows that the derivative of m∗ with respect to x ,
evaluated at (x , ε) , can be identified.
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Shape restrictions on functions
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One of the main parts in the specification of an econometric
model is the set of restrictions on the functions and
distributions of the model.

We concentrate here on shape restrictions.

These may prove useful when a specification is such that a
particular feature of interest is not identified.

In such situation, one may consider tightening the set of
restrictions by considering particular shapes.

The analysis of observational equivalence can often be used to
determine the search for restrictions that, when added to the
model, help to determine identification.

Economic theory can be used to choose among the possible
restrictions.

We provide some examples.
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4.4.1. Homogeneity restrictions

Homogeneous functions are often encountered in economic
models.

Profit and cost functions of firms in perfectly competitive
environments are homogeneous of degree one.

Production functions are often homogeneous.

Given the ubiquity of this type of functions, it is worthwhile
considering how this restriction can aid in identifying features
of a model.

We provide some examples.
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Independent Nonadditive Model

Consider the Independent Nonadditive Model, described in
Section 2.2.1.2, where Y = m∗ (X , ε) , m∗ is strictly increasing
in ε, and ε and X are independently distributed.

Suppose that we are interested in identifying m∗.

The analysis of identification in Section 3.3 showed that one
can partition the set, Ω, of possible functions m, into classes
such that for any two functions, m and m̃ in a class, there
exists a strictly increasing g : R → R such that for all x , ε

m̃ (x , g(ε)) = m (x , ε)
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Functions within each such class are observationally equivalent,
while functions from different classes are not.

This suggest, then, that any restriction on the set of functions
m, which guarantees that for any two different functions in the
restricted set, no such g exists, will be sufficient to guarantee
identification of m∗ within that set.
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Suppose that the function m∗ is the profit function of a firm in
a perfectly competitive environment, and suppose that (x , ε) is
the vector of prices, assumed to possess support RK+1

+ .

Economic theory implies that m∗ is continuous and
homogenous of degree one in (x , ε) ∈ RK+1

+ .

Let (x , ε) denote a specified value of (x , ε) and let α > 0
denote a specified number.

Let Ω denote the set of all functions m that are continuous and
homogeneous of degree one and satisfy m (x , ε) = α.
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Then,

(4.d) if m, m̃ ∈ Ω and for some strictly increasing

g : R+ → R+

m̃ (x , g(ε)) = m (x , ε)

it must be that for all ε ∈ R+,

g(ε) = ε.
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Proof of (4.d) (Matzkin (2003)): Substituting x = x and
ε = ε, and using the homogeneity of degree one assumption
and the assumption that m̃ (x , ε) = m (x , ε) = α, we get that
for all λ > 0

m̃ (λx , g (λε)) = m (λx , λε) = λα = m̃ (λx , λε)

Since m̃ is strictly increasing in its last coordinate

m̃ (λx , g (λε)) = m̃ (λx , λε) implies that g (λε) = λε

Since this holds for every λ > 0, the result follows.�
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The implication of this result is that in the Independent
Nonadditive Model, if we restrict the set to which m∗ belongs
to be such that all functions, m, in that set are continuous,
homogenous of degree one, and satisfy m (x , ε) = α, then m∗

will be identified in that set.
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Independent Index Model

Consider the Independent Index Model, 2.2.1.4, where
Y = m∗ (h∗ (X ) , ε) , and ε and X are independently
distributed.

The analysis of identification in Section 3.4 showed that one
can partition the set, Ω, of possible functions h into classes
such that for any two functions, h and h̃, in a class, there exists
a strictly increasing g : R → R such that for all x

h̃ (x) = g (h (x))

Functions within each such class are observationally equivalent,
while functions from different classes are not.

Hence, any restriction which guarantees that any two function
in the restricted set cannot be strictly increasing
transformations of each other will suffice to guarantee
identification of h∗ within that set.
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Let Ω denote the set of all functions h : X → R that satisfy the
restrictions in the Independent Index Model described in 2.2.1.4
and, in addition, are homogeneous of degree one and satisfy
h (x) = α.

Assume h∗ ∈ Ω.

Then,
(4.e) h∗ is identified in Ω
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Proof of (4.e) (Matzkin (1991b, 1994)): Let h ∈ Ω.

Suppose that h is observationally equivalent to h∗.

Then, by the theorem in Section 3.4, there is some strictly
increasing g : R → R , such that

h(x) = g (h∗(x))

Since both h, h∗ ∈ Ω, for all λ

λ =

(
λ

α

)
α =

(
λ

α

)
h (x) = h

((
λ

α

)
x

)
= g

(
h∗
((

λ

α

)
x

))
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The second equality follows by the definition of Ω, the third by
the homogeneity of degree one of h, the fourth because for all
x , h(x) = g (h∗(x)).

By the homogeneity of degree one of h∗ and the specification
that h∗ (x) = α, it follows that

g

((
λ

α

)
h∗(x)

)
= g

((
λ

α

)
α

)
= g(λ)

Hence, for all λ, g(λ) = λ.

Since for all x , h(x) = g (h∗ (x)) , this implies that h = h∗.

Hence, the only function in Ω that is observationally equivalent
to h∗ is h∗.�
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Discrete Choice Models

Consider the Discrete Choice Model described in Section
2.2.1.6 with additive unobservables and with the normalization
that VJ(s, zJ , ω) = 0.

Then

Pr (y
J

= 0|s, x1, ..., xJ) = F ∗ε1,...,εJ−1

(
V ∗1 (s, x1), ...,V ∗J−1(s, xJ−1)

)
From the above analysis it is clear that homogeneity restrictions
in each of the V ∗j functions can be used to identify F ∗ε1,...,εJ−1

.

To see this, suppose that the functions V ∗1 , ...,V
∗
J−1 are such

that for some s, and each j , there exists x j and αj such that for
all s and all λ such that λx j ∈ X , V ∗j (s, x j) = aj and
V ∗j (s, λx j) = λaj .
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Then, for any (t1, ...., tJ−1) ,

F ∗ε1,...,εJ−1
(t1, ..., tJ−1) = F ∗ε1,...,εJ−1

((
t1

α1

)
α1, ...,

(
tJ−1

αJ−1

)
αJ−1

)
= F ∗ε1,...,εJ−1

((
t1

α1

)
V ∗1 (s, x1) , ...,

(
tJ−1

αJ−1

)
V ∗J−1 (s, xJ−1)

)
= F ∗ε1,...,εJ−1

(
V ∗1

(
s,

(
t1

α1

)
x1

)
, ...,V ∗J−1

(
s,

(
tJ−1

αJ−1

)
xJ−1

))
= Pr

(
y
J

= 0|s, x1 =

(
t1

α1

)
x1, ..., xJ−1 =

(
tJ−1

αJ−1

)
xJ−1

)
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Hence, F ∗ε1,...,εJ−1
(t1, ..., tJ−1) can be recovered from

Pr
(
y
J

= 0|s, x1 =
(

t1

α1

)
x1, ..., xJ−1 =

(
tJ−1

αJ−1

)
xJ−1

)
as long as

this conditional probability is identified.

When F ∗ε1,...,εJ−1
is identified, one can recover each V ∗g function

as in Matzkin (1991a).

(See Matzkin and Newey (1993) and Lewbel and Linton (2007)
for the use of homogeneity restrictions when J = 2.)
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4.4.2. Additivity Restrictions

As with homogeneous functions, additive functions also appear
often in economic models.

Aggregate demand is the sum of individual demands; cost
functions are sums of fixed cost and variable cost functions;
total income is the sum of income from work and income from
other sources.

We describe below two particular examples where additivity can
be used to identify nonparametric functions.
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4.4.2.1. Additivity in conditional expectations

Consider an additive model, where for unknown functions m∗1
and m∗2,

E (Y |X = (x1, x2)) = m∗1 (x1) + m∗2(x2)

Following the arguments in Linton and Nielsen (1995), one can
show that

(4.f ) m∗1 and m∗2 can be recovered, up to at an additive

constant, from E (Y |X = (x1, x2))
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Proof of (4.f): Note that

∫
E (Y |X = (x1, x2)) f (x2)dx2 =

∫
(m∗1 (x1) + m∗2(x2)) f (x2)dx2

=m∗1 (x1) +

∫
m∗2(x2) f (x2) dx2
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Hence, once one specifies a value for
∫
m∗2(x2) f (x2) dx2, one

can obtain m∗1(x1) for all x1.

For each x2, the value of m∗2(x2) can then be obtained by

m∗2(x2) =E (Y |X = (x1, x2))−m∗1(x1)

=E (Y |X = (x1, x2))

−
∫

E (Y |X = (x1, x2)) f (x2)dx2

+

∫
m∗2(x2)f (x2) dx2

which depends on the same constant
∫
m∗2(x2) f (x2) dx2.�
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4.4.2.2. Additivity in a known function

When a nonparametric function can only be identified up to a
strictly increasing transformation, a scale as well as a location
normalization will be necessary.

An often convenient way of imposing these is to assume that
the nonparametric function is linearly additive in one of the
coordinates, the coefficient of that coordinate is known, and
the value of the subfunction of the other coordinates is
specified at one point.

In other words, partition X into subvectors X1, ...,XJ , so that
X1 ∈ R , and X = (X1, ...,XJ) ∈ RK .
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Suppose that for functions h∗2, ..., h
∗
J ,

h∗ (X ) = X1 +
J∑

j=2

h∗j (Xj)

and that for some value (x2, ..., xJ) of (X2, ...,XJ) , the value of∑J
j=2 h

∗
j (x j) is specified, then,

(4.g) if h∗, h are two functions satisfying these restrictions,

h∗, h cannot be strictly increasing transformations of each other
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Proof of (4.g): Let g :R → R be a strictly increasing function.

Suppose that for all X , h∗(X ) = g(h̃(X )).

Then, letting X = (x1, x2, ..., xJ) , it follows that for all x1,

g
(
x1 +

∑J
j=2 h̃j(x j)

)
= x1 +

∑J
j=2 h

∗
j (x j).

Since
∑J

j=2 h̃j(x j) =
∑J

j=2 h
∗
j (x j), it follows that g must be the

identity function.�

This result can be used in the nonadditive model, the
nonadditive index model, and discrete choice models, using
arguments similar to the ones used for the homogeneity of
degree one case.
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Restrictions on functions and distributions
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Often, a combination of restrictions on functions and
distributions is used.

We provide some examples below.
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4.5.1. Control functions

Matzkin Nonparametric Identification



Introduction The econometric model Identification Ways of achieving identification Conclusions

A control function is a function of observable variables such
that conditioning on its value purges any statistical dependence
that may exist between the observable and unobservable
explanatory variables in an original model.

The control function approach was fully developed, and
analyzed for parametric selection models, in Heckman and
Robb (1985).

The method is commonly used for identification of models
where the explanatory observable variables, X , and the
explanatory unobserved variables, ε, are not independently
distributed.

In this method, the unobservable, ε, is modeled as a function of
observed or identified variables, W , which have independent
variation from the endogenous explanatory variables, X .

We provide an example.
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4.5.1.1. A control function in an additive model

Newey, Powell and Vella (1999) considered identification and
estimation of the model

Y = m (X ,Z1) + ε

with the additional equation

X = π (Z ) + u

and the restrictions

E [ε|u,Z ] = E [ε|u] and E [u|Z ] = 0

where Z1 is a subvector of Z .

(See also Ng and Pinkse (1995) and Pinkse (2000).)

Matzkin Nonparametric Identification



Introduction The econometric model Identification Ways of achieving identification Conclusions

Since, in this model, E [ε|u] = E [ε|u,Z ] = E [ε|u,X ,Z ] , u can
be used as a control function to identify m.

Since E [u|Z ] = 0, the function πcan be recovered from the
joint distribution of (X ,Z ).

Hence, u = X − π (Z ) can also be recovered.

Moreover, the structure of the model implies that for some g

E [Y |X ,Z ] = m (X ,Z1) + E [ε|u]

= m (X ,Z1) + g (X − π(Z ))
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The following identification result is established in Newey,
Powell and Vella (1999):

Theorem 4.5 (Newey, Powell and Vella (1999)): Suppose that
m (x , z1) , g (u) , and π (Z ) are differentiable, the boundary of
the support of (Z , u) has zero probability, and with probability
one, rank(∂π (Z1,Z2)/∂Z2)) = dX , where dX denotes the
dimension of dX .

Then, m (X ,Z1) is identified (up to constant).

Matzkin Nonparametric Identification



Introduction The econometric model Identification Ways of achieving identification Conclusions

As noted in Newey, Powell, and Vella (1999), one can use the
additive structure to derive the derivatives of the functions m
directly.

Let h (X ,Z1,Z2) = E [Y |X ,Z1,Z2].
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Then, since

h (X ,Z1,Z2) = m (X ,Z1) + g (X − π(Z ))

it follows that

∂h (X ,Z1,Z2)

∂X
=

∂m (X ,Z1)

∂X
+
∂g (u)

∂u
|u=X−π(Z)

∂h (X ,Z1,Z2)

∂Z1
=

∂m (X ,Z1)

∂Z1

−
(
∂π (Z1,Z2)

∂Z1

)′
∂g (u)

∂u
|u=X−π(Z)

∂h (X ,Z1,Z2)

∂Z2
= −

(
∂π (Z1,Z2)

∂Z2

)′
∂g (u)

∂u
|u=X−π(Z)
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Assume that rank(∂π (Z1,Z2) /∂Z2) = dX .

Define

D(Z ) =

[(
∂π (Z1,Z2)

∂Z2

)(
∂π (Z1,Z2)

∂Z2

)′]−1(
∂π (Z1,Z2)

∂Z2

)
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Then, multiplying ∂h (X ,Z1,Z2) /∂Z2 by D(Z ) and solving
gives

∂m (X ,Z1)

∂X
=
∂h (X ,Z1,Z2)

∂X
− D(Z )

∂h (X ,Z1,Z2)

∂Z2

∂m (X ,Z1)

∂Z1
=
∂h (X ,Z1,Z2)

∂Z1

+

(
∂π (Z1,Z2)

∂Z1

)′
D(Z )

∂h (X ,Z1,Z2)

∂Z2

The above gives identification of mup to an additive constant.
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An additional restriction is necessary to identify such a
constant.

Suppose, for example, that E [ε] = 0.

Then, as shown in Newey, Powell, and Vella (1999), for any
function τ(u) such that

∫
τ(u) du = 1,∫

E [Y |X ,Z1, u] τ(u) du − E

[∫
E [Y |X ,Z1, u] τ(u) du

]
+ E [Y ]

= m (X ,Z1)− E [m (X ,Z1)] + E [Y ]

= m (X ,Z1)

Hence, the constant of m is identified.
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4.5.2. Linear factor models
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When the unobservable vector ε in a model is driven by factors
that are common to some equations, one might want to use a
factor model.

Factor models were introduced into economics by Jöreskog and
Goldberger (1972), Goldberger (1972), Chamberlain and
Griliches (1975), and Chamberlain (1977a,b).

(See Aigner, Hsiao, Kapteyn, and Wansbeek (1984) for an
in-depth review and analysis.)

The standard situation analyzed in factor models is the one
where there are L measurements on K mutually independent
factors arrayed in a vector θ.
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Let G denote the vector of measurements.

Then, the model is specified as

G = µ + Λθ + δ

where G is L× 1, θ is independent of δ, µ is an L× 1 vector of
means, which may depend on a vector of observable variables
X , θ is K × 1, δ is L× 1, and Λ is L× K , the coordinates of
δ = (δ1, ..., δL) are assumed to be mutually independent, as well
as the coordinates of θ = (θ1, ..., θK ) , and δ and θ are assumed
to be independent.
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Anderson and Rubin (1956) discuss the identification problem
in factor models.

More recently, Carneiro, Hansen, and Heckman (2003) have
shown that factor models can be identified when the matrix Λ
has a particular structure.

Bonhomme and Robin (2006) analyze identification using the
third and fourth moments of the distributions of the
measurements.
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Carneiro, Hansen, and Heckman (2003) consider a system of L
measurements on K factors,

M1 = m1 (X ) + β11θ1 + · · ·+ β1KθK + δ1

M2 = m2 (X ) + β21θ1 + · · ·+ β2KθK + δ2

·
·
·

ML = mL (X ) + βL1θ1 + · · ·+ βLKθK + δ2

where δ = (δ1, ..., δL) , E (δ) = 0, and where θ=(θ1, ..., θK ) is
distributed independently of δ.
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A special case that they consider is one where there are two or
more measurements devoted exclusively to factor θ1, and at
least three measurements that are generated by factor θ1, two
or more further measurements that are devoted only to factors
θ1 and θ2, with at least three measurements that depend on θ1

and θ2, and so fourth, in blocks of at least two.

Order G under this assumption so that

Λ =


1 0 · 0 · · · 0
λ21 0 · 0 · · · 0
λ31 1 0 0 · · · 0
λ41 λ42 0 0 · · · 0
· · · · · · · · · 0 · · · 0
λL1 λL2 λL3 · · · · · · λLK
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Assuming nonzero covariances,

Cov(gj , gl) = λj1λl1σ
2
θ1

l = 1, 2; j = 1, ..., L; j 6= l

where G = (g1, ..., gL).

In particular,

Cov (g1, gl) = λl1σ
2
θ1

Cov (g2, gl) = λl1λ21σ
2
θ1
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Hence, assuming that λl1 6= 0, one obtains

λ21 =
Cov (g2, gl)

Cov (g1, gl)

It follows that from Cov(g1, gl) = λ21σ
2
θ1
, one can obtain σ2

θ1
,

and hence λl1, l = 1, ..., L.

One can then proceed to the next set of two measurements and
identify

Cov(gl , gj) = λl1λj1σ
2
θ1

+ λl2λj2σ
2
θ2

l = 3, 4; j ≥ 3; j 6= l
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Since we can know the first term on the right hand side by the
previous arguments, we can proceed using
Cov(gl , gj)− λl1λj1σ2

θ1
and identify the λj2 j = 1, ..., L, using

similar arguments.

Proceeding in this fashion, one can identify Λ and the variance
of θ, Σθ, subject to diagonal normalizations.

Knowing Λ and Σθ, one can identify the variance, Dδ, of δ.

Next, using the mutual independence of the factors
θi (i = 1, ...,K ), one can identify the densities of each θi .
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To provide a simple case, developed in Carneiro, Hansen, and
Heckman (2003), suppose that

G1 = λ11θ1 + δ1

G2 = λ21θ1 + δ2

where λ11 = 1 and λ21 6= 0.
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Subject to the normalization that λ11 = 1, λ21 is identified.

Thus, one can write these equations as

G1 = θ1 + δ1

G2

λ21
= θ1 +

(
δ2

λ21

)
where θ1, δ1, and (δ2/λ21) are mutually independent.
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By Kotlarski (1967), one can nonparametrically identify the
densities of θ1, δ1, and (δ2/λ21).

The next equations in the system

G3 = λ31θ1 + θ2 + δ3

G4 = λ41θ1 + λ42θ2 + δ4

can be written as

G3 − λ31θ1 = θ2 + δ3

G4 − λ41θ1

λ42
= θ2 +

(
δ4

λ42

)
where θ2, δ3, and (δ4/λ42) are mutually independent.
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Again, one can apply Kotlarski’s theorem.

Proceeding in this fashion, all the densities are identified.

From the knowledge about the densities of θi and the factor
loadings, one can apply standard deconvolution methods to
nonparametrically identify the δ terms in the model.

Cunha, Heckman, and Matzkin (2004) extend this analysis to
factor models of the type

Yt = mt (X , βtθ + δt) t = 1, ...,T

where mt is strictly increasing in it last argument.
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Assuming that (θ, δ1, ..., δT ) is distributed independently of X
and that at some specified value x t of X ,

mt (x t , βtθ + δt) = βtθ + δt

one can recover the distribution of ηt = βtθ + εt , and the
function mt , since, by previous arguments

Fηt (ηt) = FYt |Xt=x t (ηt)

and

mt (xt , ηt) = F−1
Yt |Xt=xt

(FYt |Xt=x t (ηt))
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Let rt denote the inverse of mt with respect to ηt .

Then, given yt , xt

ηt = rt (xt , yt) = F−1
Yt |Xt=x t

(FYt |Xt=xt (yt))

We can then analyze the identification of the factor model, as
in Carneiro, Hansen, and Heckman (2003), from the system

ηt = βtθ + εt

where ηt is interpreted as a measurement on θ.
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One could also allow X to depend on ηt , using Matzkin (2004).

Suppose that there exists Zt such that ηt is independent of Xt

conditional on Zt .

Then, one can obtain identification of mt and ηt .

One way of guaranteeing that this condition is satisfied is by
assuming that there exists an unobservable φt and a function
vt , such that

Xt = vt (Zt , φt)

and φt is independent of (θ, δt) conditional on Zt .
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4.5.3. Index Models with fixed effects
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Abrevaya (2000) established the identification of the
coefficients of a linear index model for panel data models with
two observations.

Abrevaya’s model was

Yit = D ◦ G (βXit , εi , ηit) i = 1, ...,N ; t = 1, 2

where for each εi , the function G is strictly increasing in β Xit

and ηit .

The function D is assumed to be monotone increasing and
nonconstant, (ηi1, ηi2) is independent of (Xi1,Xi2, εi) and has
support R2, and one of the coordinates of Xit ∈ RK is
continuously distributed with support R , conditional on the
other coordinates.
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The model is then like the one studied in Han (1987) with the
added fixed effect εi .

In the same way that Matzkin (1991b) modified the arguments
in Han (1987) to show the identification of a nonparametric
index function, one can modify Abrevaya’s arguments to
establish the identification of the nonparametric function h∗ in
the model

Yit = D ◦ G (h∗(Xit), εi , ηit) i = 1, ...,N ; t = 1, 2
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Assume that the function G is strictly increasing in its first and
third arguments; the function D is monotone increasing and
nonconstant; (ηi1, ηi2) is independent of (Xi1,Xi2, εi) ;
conditional on εi , (Xi1, ηi1) is independent of (Xi2, ηi2) ; and
(Xi1,Xi2) has support R2K .

Let h∗ belong to a set of continuous, homogeneous of degree
one functions, h : RK → R , that are strictly increasing in the
last coordinate, and satisfy h(x) = α.

Then, within this set,

(4.h) h∗ is identified .
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Proof of (4.h): Suppose that h belongs to the set of
continuous, homogeneous of degree one functions, that are
strictly increasing in the last coordinate, and satisfy h(x) = α,
and that h 6= h∗.

Then, following the arguments in Matzkin (1991b), one can
show that there exist neighborhoods N1 and N2 such that for
all x ′′1 ∈ N1 and x ′′2 ∈ N2,

h∗(x ′′1 ) > h∗(x ′′2 ) and h(x ′′1 ) < h(x ′′2 )

For each εi , the model is as the one considered in Matzkin
(1991b).
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Hence, by analogous arguments, it follows by independence
that, conditional on εi , since h∗(x ′′1 ) > h∗(x ′′2 )

Pr [Yit > Yis |Xit = x ′′1 , Xis = x ′′2 , εi ; h
∗]

= Pr {(ηit , ηis) |D ◦ G (h∗(x ′′1 ), εi , ηit) > D ◦ G (h∗(x ′′2 ), εi , ηis) }
> Pr {(ηit , ηis) |D ◦ G (h∗(x ′′1 ), εi , ηit) < D ◦ G (h∗(x ′′2 ), εi , ηis) }
= Pr [Yit < Yis |Xit = x ′′1 , Xis = x ′′2 , εi ; h

∗]

Matzkin Nonparametric Identification



Introduction The econometric model Identification Ways of achieving identification Conclusions

And, since h(x ′′1 ) < h(x ′′2 ),

Pr [Yit > Yis |Xit = x ′′1 , Xis = x ′′2 , εi ; h]

= Pr {(ηit , ηis) |D ◦ G (h(x ′′1 ), εi , ηit) > D ◦ G (h(x ′′2 ), εi , ηis) }
< Pr {(ηit , ηis) |D ◦ G (h(x ′′1 ), εi , ηit) < D ◦ G (h(x ′′2 ), εi , ηis) }
= Pr [Yit < Yis |Xit = x ′′1 , Xis = x ′′2 , εi ; h]

Matzkin Nonparametric Identification



Introduction The econometric model Identification Ways of achieving identification Conclusions

Integrating over any two possible distributions for εi conditional
on (x ′′1 , x

′′
2 ) , we get

Pr [Yit > Yis |Xit = x ′′1 , Xis = x ′′2 ; h∗] >

Pr [Yit < Yis |Xit = x ′′1 , Xis = x ′′2 ; h∗]

and

Pr [Yit > Yis |Xit = x ′′1 , Xis = x ′′2 ; h] <

Pr [Yit < Yis |Xit = x ′′1 , Xis = x ′′2 ; h]

Hence, the distribution of the observable variables is different
under h than under h∗.

It follows that h∗ is identified.�

Chesher (2005) considers a model with many unobservables.
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4.5.4. Single equation models with multivariate unobservables
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Matzkin (2003) considers the model

Y = m (X , ε1, ..., εK )

where (ε1, ..., εK ) is independent of X and ε1, ..., εK are
mutually independent.

Suppose that X can be partitioned into (X1, ...,XK ) such that
for some known r , and unknown functions m1, ...,mK

Y = r (m1 (X1, ε1) ,m2 (X2, ε2) , ....mK (XK , εK ))
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Suppose that r is strictly increasing in each coordinate and that
for each k , there exist for all coordinate j different from k ,
values x

(k)
j such that, when

x =
(
x

(k)
1 , .., x

(k)
k−1, xk , x

(k)
k+1, ..., x

(k)
K

)
the conditional distribution

FY |X=x of Y given X =
(
x

(k)
1 , ..., x

(k)
K

)
is strictly increasing and

identified, and for all j 6= k ,

mj

(
x

(k)
j , εj

)
= αj

for a specified value αj .

Then, for all xk and εk

F
Y |X=

(
x

(k)
1 ,..,x

(k)
k−1,xk ,x

(k)
k+1,...,x

(k)
K

)(r (α1, ..., αk−1,mk (xk , εk) , αk+1, ..., αK ))

= Fεk (εk)
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In this expression, all functions and values are known except for
mk (xk , εk) and Fεk (εk).

A normalization on either of these, as described in Section 3.3,
or a restriction on mk , as described in Section 4.1.1, can be
used to identify mk and Fεk .

A similar argument can be used to show that under analogous
conditions, all the functions mk and all the marginal
distributions Fεk can be identified.

Since ε1, ..., εK are assumed to be mutually independent, the
identification of the marginal distributions of each of the εk
implies the identification of Fε1,...,εK .
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To provide an example, suppose that

Y =
K∑

k=1

mk (xk , εk)

where for each k , all εk , and for specified values α1, ..., αK , x̃k
and xk , mk (x̃k , εk) = αk and mk (xk , εk) = εk .

Then, letting x∗ =
(
x̃

(k)
1 , .., x̃

(k)
k−1, xk , x̃

(k)
k+1, ..., x̃

(k)
K

)
,

x∗∗ =
(
x̃

(k)
1 , .., x̃

(k)
k−1, xk , x̃

(k)
k+1, ..., x̃

(k)
K

)
mk (xk , εk) = F−1

Y |X=x∗∗

(
FY |X=x∗(εk +

K∑
j=1;j 6=k

αj)

)
−

K∑
j=1;j 6=k

αj
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Note that the linear random coefficients model, where
Y =

∑K
k=1 βkxk , for unobservable, mutually independent

β1, ..., βK , is an example of a model that satisfies the above
restrictions.

In this case, x̃k = 0 and xk = 1.
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Conclusions
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This chapter has attempted to provide some insight into some
of the results that have been developed recently for
nonparametric models, with emphasis on those with
nonadditive unobservable random terms.

We first presented some general identification results about
nonparametric models with additive unobservables, nonadditive
unobservables, index models, simultaneous equations models,
and discrete choice models.

Next, we discussed some techniques that have been used to
achieve identification, such as imposing additional restrictions
on the functions and/or distributions in the models, or
augmenting the data.
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