Lecture 3: Choice under Uncertainty Expected Utility

James J. Heckman/Tomáš Jagelka (Instructors) University of Chicago

10/21/19

Econ 21740, Fall 2019

Expected Utility Theory

The Space of Lotteries

The Space of Lotteries

Note that

$$\mathbb{P}_i: C \to [0,1]$$

is a function over a finite set of outcomes $C = \{x_1, x_2, ..., x_n\}$ (n = 3 outcomes in previous example).

We can hence write down an outcome vector (x₁,...,x_n) and, given P_i a vector of probabilites corresponding to these outcomes:

$$\mathsf{L}_i := \big(\mathbb{P}_i(x_1), ..., \mathbb{P}_i(x_n)\big) = \big(p_1, ..., p_n\big)$$

• Saying (note that *≥* is a **preference relation**)

$$\mathbb{P}_i \succeq \mathbb{P}_j$$

therefore boils down to stating

$$\mathbf{L}_i \succeq \mathbf{L}_j$$
.

- L_i is a vector in \mathbb{R}^n with the special property the $p_{is} \in [0, 1], \forall s = 1, ..., n$ and $\sum_{s=1}^{n} p_{is} = 1$.
- The set of all such vectors is

$$\mathcal{L}^{n} = \left\{ \mathbf{L} = (p_{1}, ..., p_{n}) \in \mathbb{R}^{n} : \sum_{s=1}^{n} p_{s} = 1, p_{s} \in [0, 1], \forall s = 1, ..., n \right\}, \quad (1)$$

the space of *n*-dimensional, discrete lotteries.

 Mathematically, lottery spaces are called simplexes, which are n-dimensional generalizations of triangles.

Visualizing Lotteries

- n = 1. If only one outcome exists, $C = \{x_1\}$, so $\mathcal{L}^1 = \{(1)\}$ and x_1 realizes with certainty.
- n = 2. $C = \{x_1, x_2\}$, so $\mathcal{L}^1 = \{(p_1, 1 p_1) : p_1 \in [0, 1]\}$. This is a line from 0 to 1, and any point **L** on it represents a lottery:

Visualizing Lotteries

• n = 3. Every $\mathbf{L} \in \mathcal{L}^3$ can be written $(p_1, p_2 \ge 0, p_1 + p_2 \le 1)$ $\mathbf{L}^\top = p_1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + p_2 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + (1 - p_1 - p_2) \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix},$

hence all these points lie in the triangle in \mathbb{R}^3 that is spanned by the points (1,0,0), (0,1,0) and (0,0,1). ((a): full view, (b): simplified view.)

The Space of Lotteries

Compound Lotteries

- Let there be two possible consequences $C = \{A, B\}$
- Possible lotteries over these consequences are $(\mathbb{P}(A), \mathbb{P}(B))$
- Someone has access to two lotteries

$$L_1 = (0.4, 0.6)$$
 and $L_2 = (0.6, 0.4)$

and she suggests a game:

She tosses a coin. (The toss is independent of the lotteries.)

- Heads \Rightarrow You get to play L₁
- Tails \Rightarrow You get to play L_2
- Summarize this offer as (α₁, α₂; L₁, L₂), where α_i is the probability that you get to play lottery i(i = 1, 2).
- Coin toss implies $\alpha_1 = \alpha_2 = 0.5$
- Alternatively, she will **not toss a coin** and you play a lottery

$$L_3 = (0.5, 0.5)$$

• Playing the game, should you care whether she tosses the coin?

Compound Lotteries

- Say, you let her toss the coin
- The probability that consequence A realizes is then

$$\mathbb{P}(A) = \mathbb{P}(Heads)\mathbb{P}_{\mathsf{L}_1}(A) + \mathbb{P}(Tails)\mathbb{P}_{\mathsf{L}_2}(A)$$
$$= 0.5 \cdot 0.4 + 0.5 \cdot 0.6$$
$$= 0.5$$

- Therefore, the probability that *B* realizes will also be 0.5.
- But that's just like playing lottery L_3
- We say, the coin-toss lottery $(0.5, 0.5; L_1, L_2)$ which itself has lotteries as (intermediate) outcomes is a **compound lottery**.
- The lottery $\textbf{L}_3=0.5(0.4,0.6)+0.5(0.6,0.4)$ is the corresponding reduced lottery.

Compound Lotteries

- Let $L_1, L_2 \in \mathcal{L}^n$ be two lotteries.
- $L_i = (p_{i1}, ..., p_{in}), i = 1, 2.$
- You buy a ticket that allows you participating in L₁ (only) with probability α and in L₂ (only) with probability 1 − α (α ∈ [0, 1]).
- For $C = \{x_1, ..., x_n\}$, consequence x_s will realize with probability $\alpha p_{1s} + (1 \alpha)p_{2s}$ ($s \in \{1, ..., n\}$).
- The probability vector $(\alpha, 1 \alpha)$ compounds lotteries L₁ and L₂.

Definition (Compound Lotteries)

Given K simple lotteries $\mathbf{L}_k \in \mathcal{L}^k$, k = 1, ..., K and probabilities $\alpha_k \ge 0$, $\sum_k \alpha_k = 1$, the **compound lottery** $\mathbf{L}^{\mathrm{C}} = (\mathbf{L}_1, ..., \mathbf{L}_K; \alpha_1, ..., \alpha_K)$ is the risky alternative that yields the simple lottery \mathbf{L}_k with probability α_k .

Compound Lotteries

Definition (Reduced Lotteries)

Given a compound lottery, \mathbf{L}^{C} , the reduced lottery \mathbf{L} is the lottery that yields outcome x_s with probability $\sum_k \alpha_k p_{sk}$. Hence, it generates the same outcome distribution as the compound lottery \mathbf{L}^{C} .

Definition (Consequentialist Preferences)

A decision maker is said to have **consequentialist preferences**, \succeq , if whenever $L^{\rm C}$ is a compound lottery and L is the reduced lottery derived from it, then

$$L^{\rm C} \sim L$$
.

- Consequentialists only care about the eventual outcome distribution.
- \bullet Note that a consequentialist needs knowledge that $L^{\rm C}$ and L lead to the same outcome distributions
- \bullet Very complicated $\boldsymbol{\mathsf{L}}^{\mathrm{C}}$ can obscure that fact.

Visual Representation of Compounding

- Compounding lotteries L_1, L_2 with probability $\frac{1}{2}$ each, will yield a reduced lottery $L \in \mathcal{L}^n$.
- Note that the fact that *reducing compound lotteries yields new lotteries* is equivalent to the fact that *the lottery space* \mathcal{L}^n *is* **convex**.

Consequentialist Example

A consequentialist should be indifferent between following two compound lotteries and corresponding reduced lotteries.

We verify algebraically that this is true:

• First compound lottery:

$$\begin{aligned} \frac{1}{3}L_1 + \frac{1}{3}L_2 + \frac{1}{3}L_3 &= \frac{1}{3}(1,0,0) + \frac{1}{3}\left(\frac{1}{4},\frac{3}{8},\frac{3}{8}\right) + \frac{1}{3}\left(\frac{1}{4},\frac{3}{8},\frac{3}{8}\right) \\ &= \left(\frac{1}{2},\frac{1}{4},\frac{1}{4}\right) \end{aligned}$$

• Second compound lottery:

$$\begin{split} \frac{1}{2}\mathcal{L}_4 + \frac{1}{2}\mathcal{L}_5 &= \frac{1}{2}\left(\frac{1}{2}, \frac{1}{2}, 0\right) + \frac{1}{2}\left(\frac{1}{2}, 0, \frac{1}{2}\right) \\ &= \left(\frac{1}{2}, \frac{1}{4}, \frac{1}{4}\right) \end{split}$$

Preferences and Utility on \mathcal{L}^n

Introductory Example

- You have preferences represented by *u* over a set of outcomes *C*, say $C = \{\text{diving}, \text{skiing}, \text{hiking}\}.$
- You are offered two lotteries L_1, L_2 with

$$\mathsf{L}_1 = (\mathbb{P}_1(\mathsf{diving}), \mathbb{P}_1(\mathsf{skiing}), \mathbb{P}_1(\mathsf{hiking})) = (0.2, 0.3, 0.5)$$

and

$$\mathbf{L}_2 = (0.5, 0.4, 0.1)$$

• In this section we will show that, if your *preferences over lotteries* respect certain axioms, you will prefer L_1 to L_2 if and only if

$$0.2u(\text{diving}) + 0.3u(\text{skiing}) + 0.5u(\text{hiking})$$

$$\geq 0.5u(\text{diving}) + 0.4u(\text{skiing}) + 0.1u(\text{hiking}),$$

so the expected utility of L_1 exceeds that of L_1 .

Lotteries, Preferences and Utility

Natural Questions

Suppose, a decision maker has preferences \succeq over lotteries, \mathcal{L}^n defined on the set of *n* distinct outcomes.

Recall the definition of a utility function $U: \mathcal{L}^n \to \mathbb{R}$,

$$U(\mathsf{L}) \geq U(\mathsf{L}') \Leftrightarrow \mathsf{L} \succeq \mathsf{L}'$$
 for all $\mathsf{L}, \mathsf{L}' \in \mathcal{L}^n$

- Can we represent \succeq by some **utility function**, $U : \mathcal{L}^n \to \mathbb{R}$ over lotteries?
- $\rightarrow~$ Yes, given an appropriate definition of rationality.
 - Will U have special properties that link it to the set-up under certainty?
- \rightarrow Yes. *U* will be the expected value of utility over all consequences.

- Under uncertainty, the axioms we impose on preferences to arrive at conclusions to these questions are stronger than in the certainty case.
- We have defined consequentialist preferences
- We also have defined **transitive** and **complete** preferences (first lecture). Recap:
 - Transitivity: $L \succeq L'$ and $L' \succeq L''$ imply $L \succeq L''$
 - Completeness: For any two $L, L' \in \mathcal{L}^n$, we have $L \succeq L'$ or $L' \succeq L$.
- The two new axioms we will impose are **continuity** and **independence**.

Independence

Definition (Independence on \succeq)

The preference relation \succeq on the space of simple lotteries, \mathcal{L}^n , satisfies the **independence axiom** if for all $\mathbf{L}, \mathbf{L}', \mathbf{L}'' \in \mathcal{L}^n$ and $\alpha \in (0, 1)$, we have that

 $\mathbf{L} \succeq \mathbf{L}'$ if and only if $\alpha \mathbf{L} + (1 - \alpha)\mathbf{L}'' \succeq \alpha \mathbf{L}' + (1 - \alpha)\mathbf{L}''$.

- That is, if we mix two lotteries with a third one each, the preference over the resulting compound lotteries follows the preference of the two initial lotteries.
- Note that this axiom has no counterpart in the model of choice under certainty.
 - Might prefer (2 Soups, 0 Salami, 0 Bread) ≻ (0 Soups, 0 Salami, 2 Bread), but (0 Soups, 1 Salami, 1 Bread) ≻ (1 Soups, 1 Salami, 0 Bread) for dinner
 - Third option relevant under certainty, mixing changes preference ordering
 - But under uncertainty one **never mixes outcomes**, depending on the state of nature, the outcomes will realize **instead of** one another, **not together**.

Independence

Example: Consider L, L' and L''. If one likes L better than L', then the compound lottery which plays with 50% chance L and 50% L'' is also preferred to the compound lottery which plays with 50% chance L' and 50% L''.

if and only if

 $L \gtrsim L'$

Continuity

A sequence of lotteries $(\mathbf{L}_i)_{i=1}^{\infty}$ is understood as a sequence of vectors $(p_{i1}, ..., p_{in}), i = 1, 2, ...$ in the lottery simplex.

Definition (Continuity)

 \succeq is a **continuous preference** relation over \mathcal{L}^n if for any two sequences of lotteries $(\mathbf{L}_i)_{i=1}^{\infty}$, $(\tilde{\mathbf{L}}_j)_{i=1}^{\infty}$.

$$\mathbf{L}_i \succeq \mathbf{\tilde{L}}_i \ \forall i \in \mathbb{N} \Rightarrow \lim_{i \to \infty} \mathbf{L}_i \succeq \lim_{i \to \infty} \mathbf{\tilde{L}}_i.$$

Continuity rules out sudden changes of preferences when we vary probabilities just a little.

Graphical Example Continuous Preferences

Numerical Example Continuous Preferences

Consider sequences of lotteries

$$(\mathbf{L}_n)_{n\in\mathbb{N}} = \left(0.3 - \frac{1}{10n}, 0.3 + \frac{1}{10n}, 0.4\right)$$

and

$$(\mathbf{L}'_n)_{n\in\mathbb{N}} = \left(0.6 - \frac{1}{10n}, 0.2 + \frac{1}{10n}, 0.2\right).$$

lf

$$\left(0.3 - \frac{1}{10n}, 0.3 + \frac{1}{10n}, 0.4\right) \succeq \left(0.6 - \frac{1}{10n}, 0.2 + \frac{1}{10n}, 0.2\right)$$

holds for all finite n, then, for continuous preferences, it will also hold that, as $n \to \infty$,

$$(0.3, 0.3, 0.4) \succeq (0.6, 0.2, 0.2).$$

Saying that \succeq is continuous is equivalent to saying that, if one strictly prefers

$$(p_1,...,p_n) \succ (p'_1,...,p'_n),$$

then we can change the probabilities in $(p_1, ..., p_n)$ by sufficiently small amounts $(p_1 + \epsilon_1, ..., p_n + \epsilon_1)$ with $\sum \epsilon_i = 0$, so that

$$(p_1 + \epsilon_1, ..., p_n + \epsilon_1) \succ (p'_1, ..., p'_n)$$

still holds, and $(p_1 + \epsilon_1, ..., p_n + \epsilon_1) \neq (p_1, ..., p_n)$.

Example Continuous Preferences

• It is early morning and at the end of your day, there are three possible outcomes:

 $C = \{x_1 = \mathsf{Had} \text{ great Day Trip}, x_2 = \mathsf{Stayed at Home}, x_3 = \mathsf{Crashed Car}\}$

- Two actions available: "Stay home" and "Go on Trip"
- Action "Go on Trip" means choosing some lottery ${\sf L}_1$ and "Stay home" means choosing some lottery ${\sf L}_2$ over outcomes.
- Say you value the outcome x_1 higher than x_2 , so

$$(1,0,0) \succ (0,1,0)$$

and if $\textbf{L}_1=(1,0,0), \textbf{L}_2=(0,1,0)$ you will make the trip.

- What if making the trip actually exposes you to a small risk of crashing our car, so L₁ = (1 ε, 0, ε)?
- If your preferences are continuous, then some very small probability ε > 0 of crashing your car will not change your choice:

$$\mathsf{L}_1 = (1 - arepsilon, 0, arepsilon) \succ (0, 1, 0) = \mathsf{L}_2$$

- Continuity is not as radical as example might suggest.
- Could argue against continuity that people are infinitely averse towards death risks.
- So, once a lottery assigns $\mathbb{P}(\text{Death}) > 0$, people would always avoid it.
- But if true, how do we explain:
 - People crossing roads
 - People doing manual labor
 - People engaging in sports
 - People signing up for the Army
 - ...

Savage Axioms

Rationality under Uncertainty

Assume, The **consequentialist approach** holds. Let \succeq be a preference order over \mathcal{L}^n . We say that \succeq satisfies the **Savage Axioms** if and only if

- Separability holds: Actions, states and preferences over outcomes are independent of one another.¹
- **2** \succeq is **complete** and **transitive**,
- $\mathbf{O} \succeq \mathsf{is} \mathsf{continuous} \mathsf{and}$
- \succeq satisfies independence.

(1)-(3) are basic and guarantee that some $U : \mathcal{L}^n \to \mathbb{R}$ exists and represents \succeq . (4) is new and assigns U a particular form (expected utility form).

 $^{^{1}}$ Note that we do not need to make states explicit primitives of this model; however, we still need to assume that lotteries are exogenously given.

The Role of Separability

- Recall the workhorse decision set-up $D: A \times B \rightarrow C$
- Timing: take an action first, then a state realizes.
- By separability, picking an action *a* ∈ *A* does not affect which state *b* ∈ *B* will realize
- States will realize with exogenous probabilities
- But contingent on what action the decision maker takes, she can influence her (personal) outcome c ∈ C in each state.
- So, if "taking an action" is equivalent to "choosing a lottery" L over outcomes C.

Expected Utility (EU) Form

Definition (Expected Utility (EU) Form)

The utility function $U : \mathcal{L}^n \to \mathbb{R}$ is said to have **expected utility form** if there is an assignment of numbers $(u_1, ..., u_n)$ to the *n* outcomes such that for every simple lottery $\mathbf{L} \in \mathcal{L}^n$ we have

$$U(\mathbf{L})=\sum_{i=1}^n p_i u_i.$$

More intuitively, define the function $u(x_i) := u_i, u : C \to \mathbb{R}$. Then, u is a utility function for the certain outcomes. If X_L is a random variable taking values in C with distribution \mathbf{L} , then

$$U(\mathbf{L}) = \mathbb{E}(u(X_{\mathbf{L}})).$$

This is the expectation of the utilities of all individual outcomes.

Properties of the EU Form

Linearity

Proposition (**EU Form** \Leftrightarrow **Linearity**)

A utility function $U : \mathcal{L}^n \to \mathbb{R}$ has expected utility form if and only if it is linear, i.e. it holds

$$U\left(\sum_{s=1}^{S} \alpha_{s} \mathbf{L}_{s}\right) = \sum_{s=1}^{S} \alpha_{s} U(\mathbf{L}_{s})$$

for any s = 1, ..., S lotteries $L_s \in \mathcal{L}^n$ and probabilities $\alpha_s \in [0, 1], \sum_s \alpha_s = 1$.

Uniqueness

Proposition (Unique Representation)

Suppose $U: \mathcal{L}^n \to \mathbb{R}$ is an expected utility function for the preference relation \succeq over \mathcal{L}^n . Let $U': \mathcal{L}^n \to \mathbb{R}$ be another expected utility function representing the same preferences. Then there exist constants $a \in \mathbb{R}$ and b > 0 such that for all $\mathbf{L} \in \mathcal{L}^n$,

$$U(\mathbf{L}) = a + b \cdot U'(\mathbf{L}).$$

Conversely, if there exist constants $a \in \mathbb{R}$ and b > 0 such that for all $\mathbf{L} \in \mathcal{L}^n$, $U(\mathbf{L}) = a + b \cdot U'(\mathbf{L})$ holds, then U' has expected utility format and represents the same preferences.

Link to proof.

As a consequence of uniqueness, differences in utility have meaning. Example:

• Suppose there are four outcomes with certainty utility assignments u_1, u_2, u_3, u_4

"The difference in utility between outcomes 1 and 2 is greater than the difference in utility between outcomes 3 and 4."

The Expected Utility Theorem

Theorem (The Expected Utility Theorem (EUT))

Suppose, that the preference relation \succeq on the space of lotteries \mathcal{L}^n satisfies completeness, transitivity, continuity and independence. Furthermore, let the consequentialist approach hold. Then, there exists a utility function $U : \mathcal{L}^n \to \mathbb{R}$ representing \succeq . Furthermore, U has expected utility form.

- Existence of **some** utility function is guaranteed by our assumptions without **independence**.
- The EUT crucially hinges on the independence axiom.
- It implies that **indifference curves** on the unit simplex are **linear** and **parallel**.
- With linear indifference curves over the space of lotteries (not: outcomes), the consquentialism assumption implies that convex combinations of equally preferred lotteries will again yield equally preferred lotteries.
- This is because a convex combination of lotteries (compound lottery) is worth just as much as its reduced counterpart
- It is easy to check that the EU form also implies linear and parallel indifference curves.
- Turns out that these are a defining feature of the EU form.

Implications Independence Axiom

Indifference curves are straight, parallel lines, if independence axiom holds.

Straight Lines

Suppose, $L \sim L^\prime.$ Invoking independence, we can take a combination with any $L^{\prime\prime}$ and have

$$0.5L + 0.5L'' \sim 0.5L' + 0.5L''$$
.

Letting L''=L yields $L\sim 0.5L'+0.5L,$ contradicting the situation in the picture and thus nonlinear indifference curves.

Parallel Lines

Here, independence is violated by assuming non-parallel indifference curves. The convex combinations of **L** and **L**^{$\prime\prime$} as well as **L**^{\prime} and **L**^{$\prime\prime$} should be on the same indifference curve. Does such **L**^{$\prime\prime$} always exist? Yes, appendix for proof. Link to <u>Geometric Proof</u>

Significance of the EUT

- **Technical advantage**: Implies strong predictions from analytically simple calculations.
- Ormative advantage: Individuals who accept the axioms for their own decision making can use the EUT for introspection. Example (figure):
 - Three lotteries on a line, L^\prime lies between (ie. is a convex combination of) L and $L^{\prime\prime}.$
 - \bullet Decision maker is unsure whether $L' \succ L$ but knows that $L'' \succ L$
 - EUT ⇒ L' ≻ L holds true.

Recap and Integration into Generic Decision Model

- Uncertainty decisions can, in the simplest example, be the act of literally buying a lottery ticket.
- $A \times B$ maps into consequences, C. We have modeled X as a random variable which (1) is determined by the states of nature in $b \in B$ and (2) realizes as a consequence in C.
- Hence, we can write $X(b) = c \in C$ and whether a outcome, c, realizes, depends on the appropriate state b being true.
- Thus, the distribution of consequences \mathbb{P}_X depends on the distribution of states, \mathbb{P} .

- Choosing an **action**, *a*, can be thought of changing the dependency of *X* on *b*:
 - Write $X^{a}(b)$
 - For some *a*, the decision maker might be able to cancel out all risks, so that $X^{a}(b) = c$ for all $b \in B$.
 - For other a' the distribution of $X^{a'}(b)$ can be any lottery in \mathcal{L}^n
- Choosing $a \Rightarrow$ choosing **L** through a
 - $\bullet\,$ If an action brings about a particular lottery, it is thus valid to write $L=L^a$
 - Two different actions might imply the same lottery (but not vice versa)
- The optimal choice of lottery is dictated by picking the maximizer \mathbf{L}^* of $U:\mathcal{L}^n\to\mathbb{R}$
- U has expected utility from and relies on some utility function for consequences $u: C \to \mathbb{R}$
- Explicitly,

$$U(\mathbf{L}) = \mathbb{E}(u(X^a)) = \sum_{c \in C} u(c) \mathbb{P}(X^a = c) = \sum_{b \in B} u(X^a(b)) \mathbb{P}(b)$$

Appendix

Proof: Unique Representation of Expected Utility Link back to Proposition (main lecture).

Proof '⇐'

Suppose, some $a \in \mathbb{R}, \beta > 0$ exist such that $U(\mathbf{L}) = a + b \cdot U'(\mathbf{L})$. Since ax + b is an increasing transformation, U' represents the same preferences. U' also must be of expected utility form, since

$$U'\left(\sum_{k} \alpha_{k} \mathbf{L}\right) = b^{-1} U\left(\sum_{k} \alpha_{k} \mathbf{L}\right) - a/b \qquad \text{by assumption}$$
$$= b^{-1} \sum_{k} \alpha_{k} U(\mathbf{L}) - a/b \qquad \text{use EU form of } U$$
$$= \sum_{k} \alpha_{k} b^{-1} U(\mathbf{L}) - \sum_{k} (\alpha_{k} a/b) \qquad \text{use } \sum_{k} \alpha_{k} = 1$$
$$= \sum_{k} \alpha_{k} (b^{-1} U(\mathbf{L}) - a/b)$$
$$= \sum_{k} \alpha_{k} U'(\mathbf{L})$$

Appendix

Proof ' \Rightarrow '

Suppose, U, U' both represent \succeq and assume both have EU form. The lottery space is closed and bounded and U, U' are continuous functions. Then we can pick a most preferred, \mathbf{L} , and a least preferred $\underline{\mathbf{L}}$ lottery. Choose

$$a = \frac{U(\bar{\mathbf{L}}) - U(\underline{\mathbf{L}})}{U'(\bar{\mathbf{L}}) - U'(\underline{\mathbf{L}})}, \ b = U'(\bar{\mathbf{L}}) - U(\underline{\mathbf{L}})\frac{U(\bar{\mathbf{L}}) - U(\underline{\mathbf{L}})}{U'(\bar{\mathbf{L}}) - U'(\underline{\mathbf{L}})}.$$

Then, for given **L**, choose $\lambda \in [0, 1]$ such that $\lambda U(\overline{\mathbf{L}}) + (1 - \lambda)U(\underline{\mathbf{L}}) = U(\mathbf{L})$. By EU form of U, we have

$$U(\lambda \mathbf{\bar{L}} + (1 - \lambda) + \mathbf{\underline{L}}) = U(\mathbf{L})$$

and since U and U' represent the same preferences and U' also has EU form

$$U'(\mathbf{L}) = U'(\lambda \overline{\mathbf{L}} + (1 - \lambda) + \underline{\mathbf{L}}) = \lambda U'(\overline{\mathbf{L}}) + (1 - \lambda)U'(\underline{\mathbf{L}}).$$

Noting that $aU'(\bar{\mathbf{L}}) + b = U(\bar{\mathbf{L}})$ and $aU'(\underline{\mathbf{L}}) + b = U(\underline{\mathbf{L}})$, rearrange these and substitute into the right hand side of last equation to see

$$U'(\mathbf{L}) = a \left(\lambda U(\overline{\mathbf{L}}) + (1 - \lambda)U(\underline{\mathbf{L}}) \right) + b = aU(\mathbf{L}) + b.$$

Link back to Proposition (main lecture).

Proof: Indifference Curves are Parallel

Link back to proposition (main lecture)

Let some indifference curve (IC) and some lottery **L** of different utility be given. Want to show that the IC through **L** is parallel to given IC. Assume, outcome 3 is most preferred, so we know the direction of increasing utility.

First, shrink the simplex so it passes through L and mark where the given IC is intersected $\left(L_{1},L_{2}\right)$ and mark the upper corner point, $L_{3}.$

Consider all candidates that could possibly be indifference curves through L. Because we know that 3 is most preferred and because we are not indifferent between L and L_1 , the possible slopes are bounded.

Independence axiom: Since $L_1 \sim L_2$, if we combine $\alpha L_3 + (1 - \alpha)L_1$ and $\beta L_3 + (1 - \beta)L_2$, we are indifferent between the two combinations if and only if $\alpha = \beta$. Go through IC candidates to see whether $\alpha = \beta$ is true.

This holds precisely if the ratios A_1/B_1 and A_2/B_2 are equalized.

This holds precisely is the ratios A_1/B_1 and A_2/B_2 are equalized.

This holds precisely is the ratios A_1/B_1 and A_2/B_2 are equalized. We have a winner.

This holds precisely is the ratios A_1/B_1 and A_2/B_2 are equalized. We have a winner.

Link back to Proposition (main lecture)