Lecture 3: Choice under Uncertainty Expected Utility

James J. Heckman/Tomáš Jagelka (Instructors) University of Chicago

10/21/19

Econ 21740, Fall 2019

Expected Utility Theory

The Space of Lotteries

The Space of Lotteries

- Note that

$$
\mathbb{P}_{i}: C \rightarrow[0,1]
$$

is a function over a finite set of outcomes $C=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}(n=3$ outcomes in previous example).

- We can hence write down an outcome vector $\left(x_{1}, \ldots, x_{n}\right)$ and, given \mathbb{P}_{i} a vector of probabilites corresponding to these outcomes:

$$
\mathbf{L}_{i}:=\left(\mathbb{P}_{i}\left(x_{1}\right), \ldots, \mathbb{P}_{i}\left(x_{n}\right)\right)=\left(p_{1}, \ldots, p_{n}\right)
$$

- Saying (note that \succeq is a preference relation)

$$
\mathbb{P}_{i} \succeq \mathbb{P}_{j}
$$

therefore boils down to stating

$$
\mathbf{L}_{i} \succeq \mathbf{L}_{j} .
$$

- \mathbf{L}_{i} is a vector in \mathbb{R}^{n} with the special property the $p_{i s} \in[0,1], \forall s=1, \ldots, n$ and $\sum_{s=1}^{n} p_{i s}=1$.
- The set of all such vectors is

$$
\begin{equation*}
\mathcal{L}^{n}=\left\{\mathbf{L}=\left(p_{1}, \ldots, p_{n}\right) \in \mathbb{R}^{n}: \sum_{s=1}^{n} p_{s}=1, p_{s} \in[0,1], \forall s=1, \ldots, n\right\} \tag{1}
\end{equation*}
$$

the space of n-dimensional, discrete lotteries.

- Mathematically, lottery spaces are called simplexes, which are n-dimensional generalizations of triangles.

Visualizing Lotteries

- $n=1$. If only one outcome exists, $C=\left\{x_{1}\right\}$, so $\mathcal{L}^{1}=\{(1)\}$ and x_{1} realizes with certainty.
- $n=2$. $C=\left\{x_{1}, x_{2}\right\}$, so $\mathcal{L}^{1}=\left\{\left(p_{1}, 1-p_{1}\right): p_{1} \in[0,1]\right\}$. This is a line from 0 to 1 , and any point \mathbf{L} on it represents a lottery:

Visualizing Lotteries

- $n=3$. Every $\mathbf{L} \in \mathcal{L}^{3}$ can be written $\left(p_{1}, p_{2} \geq 0, p_{1}+p_{2} \leq 1\right)$

$$
\mathbf{L}^{\top}=p_{1}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)+p_{2}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)+\left(1-p_{1}-p_{2}\right)\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

hence all these points lie in the triangle in \mathbb{R}^{3} that is spanned by the points $(1,0,0),(0,1,0)$ and ($0,0,1$). ((a): full view, (b): simplified view.)

Compound Lotteries

- Let there be two possible consequences $C=\{A, B\}$
- Possible lotteries over these consequences are $(\mathbb{P}(A), \mathbb{P}(B))$
- Someone has access to two lotteries

$$
\mathbf{L}_{1}=(0.4,0.6) \text { and } \mathbf{L}_{2}=(0.6,0.4)
$$

and she suggests a game:
(ㅇ) She tosses a coin. (The toss is independent of the lotteries.)

- Heads \Rightarrow You get to play \mathbf{L}_{1}
- Tails \Rightarrow You get to play \mathbf{L}_{2}
- Summarize this offer as $\left(\alpha_{1}, \alpha_{2} ; \mathbf{L}_{1}, \mathbf{L}_{2}\right)$, where α_{i} is the probability that you get to play lottery $i(i=1,2)$.
- Coin toss implies $\alpha_{1}=\alpha_{2}=0.5$
(b) Alternatively, she will not toss a coin and you play a lottery

$$
\mathbf{L}_{3}=(0.5,0.5)
$$

- Playing the game, should you care whether she tosses the coin?

Compound Lotteries

- Say, you let her toss the coin
- The probability that consequence A realizes is then

$$
\begin{aligned}
\mathbb{P}(A) & =\mathbb{P}(\text { Heads }) \mathbb{P}_{\mathbf{L}_{1}}(A)+\mathbb{P}(\text { Tails }) \mathbb{P}_{\mathbf{L}_{2}}(A) \\
& =0.5 \cdot 0.4+0.5 \cdot 0.6 \\
& =0.5
\end{aligned}
$$

- Therefore, the probability that B realizes will also be 0.5 .
- But that's just like playing lottery \mathbf{L}_{3}
- We say, the coin-toss lottery ($0.5,0.5 ; \mathbf{L}_{1}, \mathbf{L}_{2}$) which itself has lotteries as (intermediate) outcomes is a compound lottery.
- The lottery $\mathbf{L}_{3}=0.5(0.4,0.6)+0.5(0.6,0.4)$ is the corresponding reduced lottery.

Compound Lotteries

- Let $\mathbf{L}_{1}, \mathbf{L}_{2} \in \mathcal{L}^{n}$ be two lotteries.
- $\mathbf{L}_{i}=\left(p_{i 1}, \ldots, p_{i n}\right), i=1,2$.
- You buy a ticket that allows you participating in \mathbf{L}_{1} (only) with probability α and in \mathbf{L}_{2} (only) with probability $1-\alpha(\alpha \in[0,1])$.
- For $C=\left\{x_{1}, \ldots, x_{n}\right\}$, consequence x_{s} will realize with probability $\alpha p_{1 s}+(1-\alpha) p_{2 s}(s \in\{1, \ldots, n\})$.
- The probability vector $(\alpha, 1-\alpha)$ compounds lotteries \mathbf{L}_{1} and \mathbf{L}_{2}.

Definition (Compound Lotteries)

Given K simple lotteries $\mathbf{L}_{k} \in \mathcal{L}^{k}, k=1, \ldots, K$ and probabilities $\alpha_{k} \geq 0$, $\sum_{k} \alpha_{k}=1$, the compound lottery $\mathbf{L}^{\mathrm{C}}=\left(\mathbf{L}_{1}, \ldots, \mathbf{L}_{K} ; \alpha_{1}, \ldots, \alpha_{K}\right)$ is the risky alternative that yields the simple lottery \mathbf{L}_{k} with probability α_{k}.

Compound Lotteries

Definition (Reduced Lotteries)

Given a compound lottery, $\mathbf{L}^{\mathbf{C}}$, the reduced lottery \mathbf{L} is the lottery that yields outcome x_{s} with probability $\sum_{k} \alpha_{k} p_{s k}$. Hence, it generates the same outcome distribution as the compound lottery \mathbf{L}^{C}.

Definition (Consequentialist Preferences)

A decision maker is said to have consequentialist preferences, \succeq, if whenever \mathbf{L}^{C} is a compound lottery and \mathbf{L} is the reduced lottery derived from it, then

- Consequentialists only care about the eventual outcome distribution.
- Note that a consequentialist needs knowledge that \mathbf{L}^{C} and \mathbf{L} lead to the same outcome distributions
- Very complicated \mathbf{L}^{C} can obscure that fact.

Visual Representation of Compounding

- Compounding lotteries $\mathbf{L}_{1}, \mathbf{L}_{2}$ with probability $\frac{1}{2}$ each, will yield a reduced lottery $\mathbf{L} \in \mathcal{L}^{n}$.
- Note that the fact that reducing compound lotteries yields new lotteries is equivalent to the fact that the lottery space \mathcal{L}^{n} is convex.

Consequentialist Example

A consequentialist should be indifferent between following two compound lotteries and corresponding reduced lotteries.

We verify algebraically that this is true:

- First compound lottery:

$$
\begin{aligned}
\frac{1}{3} L_{1}+\frac{1}{3} L_{2}+\frac{1}{3} L_{3} & =\frac{1}{3}(1,0,0)+\frac{1}{3}\left(\frac{1}{4}, \frac{3}{8}, \frac{3}{8}\right)+\frac{1}{3}\left(\frac{1}{4}, \frac{3}{8}, \frac{3}{8}\right) \\
& =\left(\frac{1}{2}, \frac{1}{4}, \frac{1}{4}\right)
\end{aligned}
$$

- Second compound lottery:

$$
\begin{aligned}
\frac{1}{2} L_{4}+\frac{1}{2} L_{5} & =\frac{1}{2}\left(\frac{1}{2}, \frac{1}{2}, 0\right)+\frac{1}{2}\left(\frac{1}{2}, 0, \frac{1}{2}\right) \\
& =\left(\frac{1}{2}, \frac{1}{4}, \frac{1}{4}\right)
\end{aligned}
$$

Preferences and Utility on \mathcal{L}^{n}

Introductory Example

- You have preferences represented by u over a set of outcomes C, say $C=\{$ diving, skiing, hiking $\}$.
- You are offered two lotteries $\mathbf{L}_{1}, \mathbf{L}_{2}$ with

$$
\left.\mathbf{L}_{1}=\left(\mathbb{P}_{1}(\text { diving }), \mathbb{P}_{1}(\text { skiing }), \mathbb{P}_{1} \text { (hiking }\right)\right)=(0.2,0.3,0.5)
$$

and

$$
\mathbf{L}_{2}=(0.5,0.4,0.1)
$$

- In this section we will show that, if your preferences over lotteries respect certain axioms, you will prefer \mathbf{L}_{1} to \mathbf{L}_{2} if and only if

$$
\begin{array}{r}
0.2 u(\text { diving })+0.3 u(\text { skiing })+0.5 u \text { (hiking) } \\
\geq 0.5 u(\text { diving })+0.4 u \text { (skiing) }+0.1 u(\text { hiking }),
\end{array}
$$

so the expected utility of \mathbf{L}_{1} exceeds that of \mathbf{L}_{1}.

Lotteries, Preferences and Utility

Natural Questions

Suppose, a decision maker has preferences \succeq over lotteries, \mathcal{L}^{n} defined on the set of n distinct outcomes.

Recall the definition of a utility function $U: \mathcal{L}^{n} \rightarrow \mathbb{R}$,

$$
U(\mathbf{L}) \geq U\left(\mathbf{L}^{\prime}\right) \Leftrightarrow \mathbf{L} \succeq \mathbf{L}^{\prime} \text { for all } \mathbf{L}, \mathbf{L}^{\prime} \in \mathcal{L}^{n}
$$

- Can we represent \succeq by some utility function, $U: \mathcal{L}^{n} \rightarrow \mathbb{R}$ over lotteries?
\rightarrow Yes, given an appropriate definition of rationality.
- Will U have special properties that link it to the set-up under certainty?
\rightarrow Yes. U will be the expected value of utility over all consequences.
- Under uncertainty, the axioms we impose on preferences to arrive at conclusions to these questions are stronger than in the certainty case.
- We have defined consequentialist preferences
- We also have defined transitive and complete preferences (first lecture). Recap:
- Transitivity: $\mathbf{L} \succeq \mathbf{L}^{\prime}$ and $\mathbf{L}^{\prime} \succeq \mathbf{L}^{\prime \prime}$ imply $\mathbf{L} \succeq \mathbf{L}^{\prime \prime}$
- Completeness: For any two $\mathbf{L}, \mathbf{L}^{\prime} \in \mathcal{L}^{n}$, we have $\mathbf{L} \succeq \mathbf{L}^{\prime}$ or $\mathbf{L}^{\prime} \succeq \mathbf{L}$.
- The two new axioms we will impose are continuity and independence.

Independence

Definition (Independence on \succeq)

The preference relation \succeq on the space of simple lotteries, \mathcal{L}^{n}, satisfies the independence axiom if for all $\mathbf{L}, \mathbf{L}^{\prime}, \mathbf{L}^{\prime \prime} \in \mathcal{L}^{n}$ and $\alpha \in(0,1)$, we have that

$$
\mathbf{L} \succeq \mathbf{L}^{\prime} \text { if and only if } \alpha \mathbf{L}+(1-\alpha) \mathbf{L}^{\prime \prime} \succeq \alpha \mathbf{L}^{\prime}+(1-\alpha) \mathbf{L}^{\prime \prime} .
$$

- That is, if we mix two lotteries with a third one each, the preference over the resulting compound lotteries follows the preference of the two initial lotteries.
- Note that this axiom has no counterpart in the model of choice under certainty.
- Might prefer (2 Soups, 0 Salami, 0 Bread) \succ (0 Soups, 0 Salami, 2 Bread), but (0 Soups, 1 Salami, 1 Bread) \succ (1 Soups, 1 Salami, 0 Bread) for dinner
- Third option relevant under certainty, mixing changes preference ordering
- But under uncertainty one never mixes outcomes, depending on the state of nature, the outcomes will realize instead of one another, not together.

Independence

Example: Consider $\mathbf{L}, \mathbf{L}^{\prime}$ and $\mathbf{L}^{\prime \prime}$. If one likes \mathbf{L} better than \mathbf{L}^{\prime}, then the compound lottery which plays with 50% chance \mathbf{L} and $50 \% \mathbf{L}^{\prime \prime}$ is also preferred to the compound lottery which plays with 50% chance \mathbf{L}^{\prime} and $50 \% \mathbf{L}^{\prime \prime}$.

if and only if

$$
L \succsim L^{\prime}
$$

Continuity

A sequence of lotteries $\left(\mathbf{L}_{i}\right)_{i=1}^{\infty}$ is understood as a sequence of vectors $\left(p_{i 1}, \ldots, p_{i n}\right), i=1,2, \ldots$ in the lottery simplex.

Definition (Continuity)
\succeq is a continuous preference relation over \mathcal{L}^{n} if for any two sequences of lotteries $\left(\mathbf{L}_{i}\right)_{i=1}^{\infty},\left(\tilde{L}_{j}\right)_{j=1}^{\infty}$.

$$
\mathbf{L}_{i} \succeq \tilde{\mathbf{L}}_{i} \forall i \in \mathbb{N} \Rightarrow \lim _{i \rightarrow \infty} \mathbf{L}_{i} \succeq \lim _{i \rightarrow \infty} \tilde{\mathbf{L}}_{i}
$$

Continuity rules out sudden changes of preferences when we vary probabilities just a little.

Graphical Example Continuous Preferences

Numerical Example Continuous Preferences

Consider sequences of lotteries

$$
\left(\mathbf{L}_{n}\right)_{n \in \mathbb{N}}=\left(0.3-\frac{1}{10 n}, 0.3+\frac{1}{10 n}, 0.4\right)
$$

and

$$
\left(\mathbf{L}_{n}^{\prime}\right)_{n \in \mathbb{N}}=\left(0.6-\frac{1}{10 n}, 0.2+\frac{1}{10 n}, 0.2\right) .
$$

If

$$
\left(0.3-\frac{1}{10 n}, 0.3+\frac{1}{10 n}, 0.4\right) \succeq\left(0.6-\frac{1}{10 n}, 0.2+\frac{1}{10 n}, 0.2\right)
$$

holds for all finite n, then, for continuous preferences, it will also hold that, as $n \rightarrow \infty$,

$$
(0.3,0.3,0.4) \succeq(0.6,0.2,0.2)
$$

Saying that \succeq is continuous is equivalent to saying that, if one strictly prefers

$$
\left(p_{1}, \ldots, p_{n}\right) \succ\left(p_{1}^{\prime}, \ldots, p_{n}^{\prime}\right),
$$

then we can change the probabilities in $\left(p_{1}, \ldots, p_{n}\right)$ by sufficiently small amounts $\left(p_{1}+\epsilon_{1}, \ldots, p_{n}+\epsilon_{1}\right)$ with $\sum \epsilon_{i}=0$, so that

$$
\left(p_{1}+\epsilon_{1}, \ldots, p_{n}+\epsilon_{1}\right) \succ\left(p_{1}^{\prime}, \ldots, p_{n}^{\prime}\right)
$$

still holds, and $\left(p_{1}+\epsilon_{1}, \ldots, p_{n}+\epsilon_{1}\right) \neq\left(p_{1}, \ldots, p_{n}\right)$.

Example Continuous Preferences

- It is early morning and at the end of your day, there are three possible outcomes:

$$
C=\left\{x_{1}=\text { Had great Day Trip, } x_{2}=\text { Stayed at Home }, x_{3}=\text { Crashed Car }\right\}
$$

- Two actions available: "Stay home" and "Go on Trip"
- Action "Go on Trip" means choosing some lottery \mathbf{L}_{1} and "Stay home" means choosing some lottery \mathbf{L}_{2} over outcomes.
- Say you value the outcome x_{1} higher than x_{2}, so

$$
(1,0,0) \succ(0,1,0)
$$

and if $\mathbf{L}_{1}=(1,0,0), \mathbf{L}_{2}=(0,1,0)$ you will make the trip.

- What if making the trip actually exposes you to a small risk of crashing our car, so $\mathbf{L}_{1}=(1-\varepsilon, 0, \varepsilon)$?
- If your preferences are continuous, then some very small probability $\varepsilon>0$ of crashing your car will not change your choice:

$$
\mathbf{L}_{1}=(1-\varepsilon, 0, \varepsilon) \succ(0,1,0)=\mathbf{L}_{2}
$$

- Continuity is not as radical as example might suggest.
- Could argue against continuity that people are infinitely averse towards death risks.
- So, once a lottery assigns $\mathbb{P}($ Death $)>0$, people would always avoid it.
- But if true, how do we explain:
- People crossing roads
- People doing manual labor
- People engaging in sports
- People signing up for the Army
- ...

Savage Axioms

Rationality under Uncertainty

Assume, The consequentialist approach holds. Let \succeq be a preference order over \mathcal{L}^{n}. We say that \succeq satisfies the Savage Axioms if and only if
(1) Separability holds: Actions, states and preferences over outcomes are independent of one another. ${ }^{1}$
(2) \succeq is complete and transitive,
(0) \succeq is continuous and
(\succeq satisfies independence.
(1)-(3) are basic and guarantee that some $U: \mathcal{L}^{n} \rightarrow \mathbb{R}$ exists and represents \succeq.
(4) is new and assigns U a particular form (expected utility form).

[^0]
The Role of Separability

- Recall the workhorse decision set-up $D: A \times B \rightarrow C$
- Timing: take an action first, then a state realizes.
- By separability, picking an action $a \in A$ does not affect which state $b \in B$ will realize
- States will realize with exogenous probabilities
- But contingent on what action the decision maker takes, she can influence her (personal) outcome $c \in C$ in each state.
- So, if "taking an action" is equivalent to "choosing a lottery" \mathbf{L} over outcomes C.

Expected Utility (EU) Form

Definition (Expected Utility (EU) Form)

The utility function $U: \mathcal{L}^{n} \rightarrow \mathbb{R}$ is said to have expected utility form if there is an assignment of numbers $\left(u_{1}, \ldots, u_{n}\right)$ to the n outcomes such that for every simple lottery $\mathbf{L} \in \mathcal{L}^{n}$ we have

$$
U(\mathbf{L})=\sum_{i=1}^{n} p_{i} u_{i} .
$$

More intuitively, define the function $u\left(x_{i}\right):=u_{i}, u: C \rightarrow \mathbb{R}$. Then, u is a utility function for the certain outcomes. If X_{L} is a random variable taking values in C with distribution \mathbf{L}, then

$$
U(\mathbf{L})=\mathbb{E}\left(u\left(X_{\mathrm{L}}\right)\right) .
$$

This is the expectation of the utilities of all individual outcomes.

Properties of the EU Form

Linearity

Proposition (EU Form \Leftrightarrow Linearity)

A utility function $U: \mathcal{L}^{n} \rightarrow \mathbb{R}$ has expected utility form if and only if it is linear, i.e. it holds

$$
U\left(\sum_{s=1}^{S} \alpha_{s} \mathbf{L}_{s}\right)=\sum_{s=1}^{S} \alpha_{s} U\left(\mathbf{L}_{s}\right)
$$

for any $s=1, \ldots, S$ lotteries $\mathbf{L}_{s} \in \mathcal{L}^{n}$ and probabilities $\alpha_{s} \in[0,1], \sum_{s} \alpha_{s}=1$.

Uniqueness

Proposition (Unique Representation)

Suppose $U: \mathcal{L}^{n} \rightarrow \mathbb{R}$ is an expected utility function for the preference relation \succeq over \mathcal{L}^{n}. Let $U^{\prime}: \mathcal{L}^{n} \rightarrow \mathbb{R}$ be another expected utility function representing the same preferences. Then there exist constants $a \in \mathbb{R}$ and $b>0$ such that for all $\mathbf{L} \in \mathcal{L}^{n}$,

$$
U(\mathbf{L})=a+b \cdot U^{\prime}(\mathbf{L})
$$

Conversely, if there exist constants $a \in \mathbb{R}$ and $b>0$ such that for all $\mathbf{L} \in \mathcal{L}^{n}$, $U(\mathbf{L})=a+b \cdot U^{\prime}(\mathbf{L})$ holds, then U^{\prime} has expected utility format and represents the same preferences.

Link to proof.

As a consequence of uniqueness, differences in utility have meaning. Example:

- Suppose there are four outcomes with certainty utility assignments $u_{1}, u_{2}, u_{3}, u_{4}$
"The difference in utility between outcomes 1 and 2 is greater than the difference in utility between outcomes 3 and 4."

$$
\begin{aligned}
& \Leftrightarrow \\
u_{1}-u_{2} & >u_{3}-u_{4} \\
& \Leftrightarrow \\
\frac{1}{2} u_{1}+\frac{1}{2} u_{4} & >\frac{1}{2} u_{3}+\frac{1}{2} u_{2} \\
& \Leftrightarrow \\
U(\underbrace{\left(\frac{1}{2}, 0,0, \frac{1}{2}\right)}_{\mathbf{L}}) & >U(\underbrace{\left(0, \frac{1}{2}, \frac{1}{2}, 0\right)}_{\mathbf{L}^{\prime}}) \\
& \Leftrightarrow \\
\mathbf{L} & \succ \mathbf{L}^{\prime}
\end{aligned}
$$

The Expected Utility Theorem

Theorem (The Expected Utility Theorem (EUT))
Suppose, that the preference relation \succeq on the space of lotteries \mathcal{L}^{n} satisfies completeness, transitivity, continuity and independence. Furthermore, let the consequentialist approach hold. Then, there exists a utility function $U: \mathcal{L}^{n} \rightarrow \mathbb{R}$ representing \succeq. Furthermore, U has expected utility form.

- Existence of some utility function is guaranteed by our assumptions without independence.
- The EUT crucially hinges on the independence axiom.
- It implies that indifference curves on the unit simplex are linear and parallel.
- With linear indifference curves over the space of lotteries (not: outcomes), the consquentialism assumption implies that convex combinations of equally preferred lotteries will again yield equally preferred lotteries.
- This is because a convex combination of lotteries (compound lottery) is worth just as much as its reduced counterpart
- It is easy to check that the EU form also implies linear and parallel indifference curves.
- Turns out that these are a defining feature of the EU form.

Implications Independence Axiom

Indifference curves are straight, parallel lines, if independence axiom holds.

Straight Lines

Suppose, $\mathbf{L} \sim \mathbf{L}^{\prime}$. Invoking independence, we can take a combination with any $\mathbf{L}^{\prime \prime}$ and have

$$
0.5 \mathbf{L}+0.5 \mathbf{L}^{\prime \prime} \sim 0.5 \mathbf{L}^{\prime}+0.5 \mathbf{L}^{\prime \prime}
$$

Letting $\mathbf{L}^{\prime \prime}=\mathbf{L}$ yields $\mathbf{L} \sim 0.5 \mathbf{L}^{\prime}+0.5 \mathbf{L}$, contradicting the situation in the picture and thus nonlinear indifference curves.

Parallel Lines

Here, independence is violated by assuming non-parallel indifference curves. The convex combinations of \mathbf{L} and $\mathbf{L}^{\prime \prime}$ as well as \mathbf{L}^{\prime} and $\mathbf{L}^{\prime \prime}$ should be on the same indifference curve. Does such $\mathbf{L}^{\prime \prime}$ always exist? Yes, appendix for proof. Link to Geometric Proof

Significance of the EUT

(1) Technical advantage: Implies strong predictions from analytically simple calculations.
(2) Normative advantage: Individuals who accept the axioms for their own decision making can use the EUT for introspection. Example (figure):

- Three lotteries on a line, \mathbf{L}^{\prime} lies between (ie. is a convex combination of) \mathbf{L} and $\mathbf{L}^{\prime \prime}$.
- Decision maker is unsure whether $\mathbf{L}^{\prime} \succ \mathbf{L}$ but knows that $\mathbf{L}^{\prime \prime} \succ \mathbf{L}$
- $\mathrm{EUT} \Rightarrow \mathbf{L}^{\prime} \succ \mathbf{L}$ holds true.

Recap and Integration into Generic Decision Model

- Uncertainty decisions can, in the simplest example, be the act of literally buying a lottery ticket.
- $A \times B$ maps into consequences, C. We have modeled X as a random variable which (1) is determined by the states of nature in $b \in B$ and (2) realizes as a consequence in C.
- Hence, we can write $X(b)=c \in C$ and whether a outcome, c, realizes, depends on the appropriate state b being true.
- Thus, the distribution of consequences \mathbb{P}_{X} depends on the distribution of states, \mathbb{P}.
- Choosing an action, a, can be thought of changing the dependency of X on b :
- Write $X^{a}(b)$
- For some a, the decision maker might be able to cancel out all risks, so that $X^{a}(b)=c$ for all $b \in B$.
- For other a^{\prime} the distribution of $X^{a^{\prime}}(b)$ can be any lottery in \mathcal{L}^{n}
- Choosing $a \Rightarrow$ choosing \mathbf{L} through a
- If an action brings about a particular lottery, it is thus valid to write $\mathbf{L}=\mathbf{L}^{a}$
- Two different actions might imply the same lottery (but not vice versa)
- The optimal choice of lottery is dictated by picking the maximizer \mathbf{L}^{*} of $U: \mathcal{L}^{n} \rightarrow \mathbb{R}$
- U has expected utility from and relies on some utility function for consequences $u: C \rightarrow \mathbb{R}$
- Explicitly,

$$
U(\mathbf{L})=\mathbb{E}\left(u\left(X^{a}\right)\right)=\sum_{c \in C} u(c) \mathbb{P}\left(X^{a}=c\right)=\sum_{b \in B} u\left(X^{a}(b)\right) \mathbb{P}(b)
$$

Appendix

Proof: Unique Representation of Expected Utility
 Link back to Proposition (main lecture).

Proof ' \Leftarrow '

Suppose, some $a \in \mathbb{R}, \beta>0$ exist such that $U(\mathbf{L})=a+b \cdot U^{\prime}(\mathbf{L})$. Since $a x+b$ is an increasing transformation, U^{\prime} represents the same preferences. U^{\prime} also must be of expected utility form, since

$$
\begin{array}{rlr}
U^{\prime}\left(\sum_{k} \alpha_{k} \mathbf{L}\right) & =b^{-1} U\left(\sum_{k} \alpha_{k} \mathbf{L}\right)-a / b & \text { by assumption } \\
& =b^{-1} \sum_{k} \alpha_{k} U(\mathbf{L})-a / b & \text { use EU form of } U \\
& =\sum_{k} \alpha_{k} b^{-1} U(\mathbf{L})-\sum_{k}\left(\alpha_{k} a / b\right) & \text { use } \sum_{k} \alpha_{k}=1 \\
& =\sum_{k} \alpha_{k}\left(b^{-1} U(\mathbf{L})-a / b\right) & \\
& =\sum_{k} \alpha_{k} U^{\prime}(\mathbf{L}) &
\end{array}
$$

Proof ' \Rightarrow '
Suppose, U, U^{\prime} both represent \succeq and assume both have EU form. The lottery space is closed and bounded and U, U^{\prime} are continuous functions. Then we can pick a most preferred, $\overline{\mathbf{L}}$, and a least preferred $\underline{\mathbf{L}}$ lottery. Choose

$$
a=\frac{U(\overline{\mathbf{L}})-U(\underline{\mathbf{L}})}{U^{\prime}(\overline{\mathbf{L}})-U^{\prime}(\underline{\mathbf{L}})}, \quad b=U^{\prime}(\overline{\mathbf{L}})-U(\underline{\mathbf{L}}) \frac{U(\overline{\mathbf{L}})-U(\underline{\mathbf{L}})}{U^{\prime}(\overline{\mathbf{L}})-U^{\prime}(\underline{\mathbf{L}})} .
$$

Then, for given \mathbf{L}, choose $\lambda \in[0,1]$ such that $\lambda U(\overline{\mathbf{L}})+(1-\lambda) U(\underline{\mathbf{L}})=U(\mathbf{L})$. By EU form of U, we have

$$
U(\lambda \overline{\mathbf{L}}+(1-\lambda)+\underline{\mathbf{L}})=U(\mathbf{L})
$$

and since U and U^{\prime} represent the same preferences and U^{\prime} also has EU form

$$
U^{\prime}(\mathbf{L})=U^{\prime}(\lambda \overline{\mathbf{L}}+(1-\lambda)+\underline{\mathbf{L}})=\lambda U^{\prime}(\overline{\mathbf{L}})+(1-\lambda) U^{\prime}(\underline{\mathbf{L}})
$$

Noting that $a U^{\prime}(\overline{\mathbf{L}})+b=U(\overline{\mathbf{L}})$ and $a U^{\prime}(\underline{\mathbf{L}})+b=U(\underline{\mathbf{L}})$, rearrange these and substitute into the right hand side of last equation to see
$U^{\prime}(\mathbf{L})=a(\lambda U(\overline{\mathbf{L}})+(1-\lambda) U(\underline{\mathbf{L}}))+b=a U(\mathbf{L})+b$.

Link back to Proposition (main lecture).

Proof: Indifference Curves are Parallel
 Link back to proposition (main lecture)

Constructive Proof: Parallel Lines

Let some indifference curve (IC) and some lottery \mathbf{L} of different utility be given. Want to show that the IC through \mathbf{L} is parallel to given IC. Assume, outcome 3 is most preferred, so we know the direction of increasing utility.

Constructive Proof: Parallel Lines

First, shrink the simplex so it passes through \mathbf{L} and mark where the given IC is intersected ($\mathbf{L}_{1}, \mathbf{L}_{2}$) and mark the upper corner point, \mathbf{L}_{3}.

Constructive Proof: Parallel Lines

Consider all candidates that could possibly be indifference curves through \mathbf{L}. Because we know that 3 is most preferred and because we are not indifferent between \mathbf{L} and \mathbf{L}_{1}, the possible slopes are bounded.

Constructive Proof: Parallel Lines

Independence axiom: Since $\mathbf{L}_{1} \sim \mathbf{L}_{2}$, if we combine $\alpha \mathbf{L}_{3}+(1-\alpha) \mathbf{L}_{1}$ and $\beta \mathbf{L}_{3}+(1-\beta) \mathbf{L}_{2}$, we are indifferent between the two combinations if and only if $\alpha=\beta$. Go through IC candidates to see whether $\alpha=\beta$ is true.

Constructive Proof: Parallel Lines

This holds precisely if the ratios A_{1} / B_{1} and A_{2} / B_{2} are equalized.

Constructive Proof: Parallel Lines

This holds precisely is the ratios A_{1} / B_{1} and A_{2} / B_{2} are equalized.

Constructive Proof: Parallel Lines

This holds precisely is the ratios A_{1} / B_{1} and A_{2} / B_{2} are equalized. We have a winner.

Constructive Proof: Parallel Lines

This holds precisely is the ratios A_{1} / B_{1} and A_{2} / B_{2} are equalized. We have a winner.

Link back to Proposition (main lecture)

[^0]: ${ }^{1}$ Note that we do not need to make states explicit primitives of this model; however, we still need to assume that lotteries are exogenously given.

