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Abstract

This paper considers (partial) identification of a variety of counterfactual parameters in binary response

models with possibly endogenous regressors. Our framework allows for nonseparable index functions

with multi-dimensional latent variables, and does not require parametric distributional assumptions. We

leverage results on hyperplane arrangements and cell enumeration from the literature on computational

geometry in order to provide a tractable means of computing the identified set. We demonstrate how

various functional form, independence, and monotonicity assumptions can be imposed as constraints in

our optimization procedure to tighten the identified set, and we show how these assumptions can be

assigned meaningful interpretations in terms of restrictions on latent response types. Finally, we apply

our method to study the effects of health insurance on the decision to seek medical treatment.
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1 Introduction

This paper considers partial identification of a variety of parameters in a general class of binary response

models. Our main focus throughout is on counterfactual probabilities, as well as parameters that can be

written as linear combinations of counterfactual probabilities. Our approach focuses on the case when the

observed random variables have finite support and the index function is a linear function of the latent

variables, but otherwise we allow for flexible functional form assumptions, endogenous regressors, and the

inclusion of multi-dimensional and nonseparable latent variables. Furthermore, our approach does not require

any parametric distributional assumptions.

In the settings closest to the one we consider, nonparametric point-identification of the distribution of

latent variables occurs only under restrictive conditions, often including strong independence assumptions

and large support conditions (e.g. Ichimura and Thompson (1998)). Control function approaches are often

used to address the issue of endogenous regressors, but if endogenous regressors are discrete or the mechanism

generating the endogenous regressors is poorly understood, then many of these approaches are not applicable.

Partial identification arises as a natural alternative to methods for point-identification as a result of possible

endogeneity, discrete instruments, and limited variation in the covariates. However, flexible and easily

implementable methods in partial identification for binary response models remain underdeveloped. This

paper seeks to address this gap.

Our analysis reveals the importance of a special partition of the latent variable space into types that

have identical responses in all possible counterfactual states. Consistent with the previous literature, we call

these latent types response types. We show that additional functional form, independence, and monotonicity

assumptions can all be assigned meaning in terms of these response types. In particular, we show that

functional form and monotonicity assumptions are equivalent to the elimination of response types, which

amounts to assigning zero probability to regions of the latent variable space corresponding to a particular

profile of counterfactual responses. Furthermore, we show that certain independence assumptions imposed

on a vector of latent variables are observationally equivalent to imposing independence on response types

directly. This connection helps to facilitate interpretation of these assumptions in the class of models we

consider. We are not the first to emphasize the importance of response types, and our discussion echoes the

insights of Balke and Pearl (1994), Heckman and Pinto (2018), and many others.

One of our main contributions is to show how to enumerate the set of all response types consistent with

a given binary choice model using the cell enumeration algorithm of Gu and Koenker (2020) for hyperplane

arrangements, a required step before bounding counterfactual quantities. In particular, we show that linearity

of the index function in the latent variables naturally partitions the latent variable space into cells defined by

a collection of hyperplanes, where each cell corresponds to a unique response type. Using the cell enumeration

algorithm of Gu and Koenker (2020), we show how to enumerate all response types that are consistent with

a given collection of assumptions in polynomial time. After enumerating all response types, we show how

various counterfactual quantities can be easily bounded by solving two linear programming problems. Our
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procedure thus represents a feasible method of constructing bounds on counterfactual quantities under weak

assumptions where the latent variables may be multi-dimensional and nonseparable.

We also thoroughly study the special case when the index function is linear in parameters. In contrast to

most existing procedures in partial identification, we show that exact (i.e. not approximate) sharp bounds

on counterfactual probabilities can be computed without the need to grid over the entire parameter space.

Our procedure leverages results in convex analysis, and combines the double description algorithm of Fukuda

and Prodon (1995) with the cell enumeration algorithm of Gu and Koenker (2020). Avoiding the need to

grid over the entire parameter space allows us to derive a plug-in estimator consistency result that is valid

under weak assumptions, and also allows us to easily adapt the recent inference procedure of Cho and Russell

(2020) to the setting in this paper to efficiently construct confidence sets and bias-corrected estimates of the

identified set.

Finally we apply our method to study the effects of private health insurance on the decision to seek

medical treatment. Consistent with the existing literature, we treat private health insurance status as an

endogenous variable, and we consider the decision to seek medical treatment as our binary outcome variable of

interest. We then consider the average treatment effect of obtaining private health insurance on the decision

to visit a doctor. We find that the sign of the average treatment effect is typically only identified under our

strongest assumptions. However, even our strongest assumptions are much weaker than the assumptions

typically maintained in the empirical literature. Interestingly, we find non-trivial bounds on the average

treatment effect even when the structural parameters are unidentified.

1.1 Review of Relevant Literature

Binary response models with possibly endogenous regressors have been studied extensively, and previous

work on the subject can be separated into two broad categories: work that focuses on conditions required

for point identification, and work that allows for partial identification. From the point identification per-

spective, typical approaches include (i) the use of linear probability models, (ii) maximum likelihood es-

timation (e.g. the bivariate probit), and (iii) control function approaches. All of these approaches have

well-documented limitations.1 In particular, linear probability models are commonly justified as approxima-

tions to the underlying conditional expectation function for the binary dependent variable, but are known to

deliver misleading results when the conditional expectation function is highly nonlinear.2 Methods that use

maximum likelihood—such as the bivariate probit model—enjoy efficiency gains relative to other approaches

when the model is correctly specified, but require strong a priori knowledge of the mechanism generating

the endogenous variables, as well as knowledge of the joint distribution of the latent variables up to some

finite parameter vector. Finally, control function approaches (e.g. Blundell and Smith (1989), Blundell and

1A review of approaches typically used by practitioners to address the problem of endogenous regressors in models with
binary outcomes is provided in Lewbel et al. (2012), who focus on the case of a threshold-crossing model with linear index
function and additively separable errors.

2Lewbel et al. (2012) construct an interesting treatment effect example with a binary outcome variable where the treatment
effect is positive for everyone, but the ATE under a linear probability model is negative.
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Powell (2004), and Imbens and Newey (2009), among many others) relax (to some extent) the assumptions

required on the latent variables, but are generally restricted to cases with continuous endogenous variables

and still require a correctly specified model for the endogenous variables in nonlinear models. Unlike the

control function approach, the special regressor approach of Lewbel (2000) (see also Lewbel et al. (2012)

and Dong and Lewbel (2015)) does not require the correct specification of a model for endogenous vari-

ables, but instead requires the existence of an observed continuously distributed regressor with large support

that satisfies certain conditional independence assumptions. Such a special regressor is not always readily

available.

Beyond these approaches, a number of papers have considered nonparametric identification. Nonpara-

metric identification was studied in binary choice and threshold crossing models by Matzkin (1992), and in

more general nonseparable models by Matzkin (2003) and Chernozhukov and Hansen (2005), among others.

Vytlacil and Yildiz (2007) study nonparametric identification of the average treatment effect in a discrete

triangular system with a binary endogenous variable under a weak separability assumption in the outcome

equation. Important precedents to the work presented here from the literature on point identification in

random coefficient models include Ichimura and Thompson (1998), Gautier and Kitamura (2013) and Gu

and Koenker (2020). However, all these papers focus almost exclusively on the point-identified case with

linear index function and exogenous covariates with large support.

In contrast, the literature on partial identification attempts to relax the assumptions required for point-

identification. In a relevant series of papers, Chesher et al. (2013), Chesher and Rosen (2014) show how to

use random set theory to characterize the identified set of structures in discrete choice models. A general

formulation of their approach is presented in Chesher and Rosen (2017). Similar to the current paper, these

papers do not provide a model for the endogenous covariates, rendering the discrete choice model incomplete.

Chesher et al. (2013) and Chesher and Rosen (2014) then use a characterization of the sharp set of constraints

given by a result due to Artstein (1983) in random set theory.3 Our work extends the work by Chesher et al.

(2013) and Chesher and Rosen (2014), although we focus on obtaining sharp bounds on a general class of

counterfactual conditional distributions, and show how this can be accomplished by solving a sequence of

optimization problems with the help of results from computational geometry.

In other relevant precedents to our work, Galichon and Henry (2011), Lafférs (2019) and Torgovitsky

(2019) demonstrate how to construct sharp bounds on various parameters in models with finite variables

by appropriately partitioning the latent variable space and discretizing the latent variables. We also use

an identification argument based on partitioning the latent variable space. However, the current paper

focuses substantially on how to practically compute the relevant partition using results from the literature

on computational geometry, which is otherwise nontrivial with more than one or two latent variables. We

also show how to avoid griding over the entire parameter space when computing the identified set. This

allows us to compute exact (i.e. not approximate) bounds in our model, and also allows us to easily modify a

3See also Norberg (1992) and Molchanov (2017) Corollary 1.4.11.

4



recent and simple subvector/functional inference procedure (Cho and Russell (2020)) to efficiently compute

confidence sets and biased-corrected estimates of the identified set.

There are a number of other relevant papers in the literature on partial identification in discrete choice

models. In an important paper, Manski (2007) considers counterfactual choice probabilities in a setting

with partial identification, and shows how these counterfactual choice probabilities can be bounded using

optimization problems. However, the general approach used in this paper is very different. Furthermore,

we focus substantially on demonstrating how to practically incorporate a flexible set of assumptions on the

latent index function, and we allow for endogenous explanatory variables.4 In another related and recent

working paper, Tebaldi et al. (2019) study the problem of computing various counterfactual quantities

in a nonparametric discrete choice model with an application to consumer choice of health insurance in

California. However, they focus specifically on the case where consumers have quasi-linear utility functions

(equal to their valuation of the insurance option minus the premium) and use the particular structure of their

setting and problem to resolve issues of endogeneity by conditioning on a set of covariates.5 Computational

considerations—a major contribution of the current paper—are also not addressed in these papers.

Closely related to the problem of bounding counterfactual probabilities is the problem of bounding pa-

rameters in the literature on treatment effects with binary outcome variables. Analytic bounds in triangular

systems of equations with binary dependent variables under various assumptions is considered by Chiburis

(2010), Shaikh and Vytlacil (2011), and Mourifié (2015). An optimization-based approach to bounding

treatment effect parameters is presented in Russell (2019) in the discrete case, and Gunsilius (2020) in the

continuous case.

This paper also makes a connection to the literature on computational geometry. In the case of a linear

index function, computation of our bounds requires the analysis of a partition of the latent space determined

by finitely many hyperplanes. This turns out to be a well studied subject in combinatorial geometry, and

leads us to consideration of the enumeration algorithm proposed by Gu and Koenker (2020).

1.2 Paper Outline and Notation

The remainder of the paper proceeds as follows. Section 2 introduces the main theoretical framework and

main assumptions. Section 3 studies practical implementation of the theoretical framework from Section

2 and introduces our optimization-based bounding procedure for counterfactual probabilities. Section 4

then demonstrates how to introduce functional form, independence, and monotonicity assumptions into our

bounding procedure, and Section 5 applies our methodology to study the impact of health insurance on

utilization of health care services. Section 6 concludes. All proofs can be found in Appendix A. Appendix B

4This latter point differentiates our work from Chiong et al. (2017) and Allen and Rehbeck (2019).
5In particular, Tebaldi et al. (2019) consider a multinomial choice model with preferences over insurance options given by the

difference between the consumer’s latent valuation and the consumer’s premium for each option. Endogeneity arises because
of possible dependence between valuations and premiums. However, in their setting (subsidized) premiums are deterministic
functions of the coverage area, age, and income. The authors then discretize age and income, and assume that a valuation
distribution is fixed within a given coverage area and discretized age and income bin; the remaining variation in premiums
within each coverage area and discretized age and income bin is then considered to be exogenous.
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provides some additional discussion of the results presented in the main text.

Notation: The following notation is relevant for both the main text and the appendices. Given a subset

X of Euclidean space, we use B(X ) to denote the Borel σ−algebra on X . For two measurable spaces

(X ,B(X )) and (X ′,B(X ′)), the product σ−algebra on X × X ′ is denoted by B(X ) ⊗ B(X ′). Random

variables are denoted using capital letters, and if X : (Ω,A) → (X ,B(X )) is a random variable defined on

the probability space (Ω,A, P ), then we use PX to denote the probability measure induced on X by X;

that is, for any A ∈ B(X ), PX(A) := P (X−1(A)). Furthermore, we interpret PX|X′(X ∈ A | X ′ = x′) as

a regular conditional probability measure. Finally, PX|X′ is used as shorthand for the collection PX|X′ :=

{PX|X′( · | X ′ = x′) : x′ ∈ X ′}. We do not explicitly differentiate between scalars and vectors, or random

variables and random vectors. To keep the notation clean, we sometimes omit the transpose when combining

column vectors; that is, if v1 and v2 are two column vectors, rather than write v = (v>1 , v
>
2 )> we instead

write v = (v1, v2), where it is understood that v is a column vector unless otherwise specified.

2 General Framework: Theoretical Considerations

In this section we first introduce our main assumptions on the binary response model, and connect our

assumptions to the definition of the identified set of (conditional) latent variable distributions. We then turn

to the problem of bounding counterfactual parameters.

2.1 The Identified Set of Latent Variable Distributions

We start by introducing our main assumptions on the binary response environment under consideration.

Assumption 2.1. There exists a complete probability space (Ω,A, P ), a random variable Y : Ω → {0, 1},

and random vectors X : Ω→ X ⊆ Rdx , Z : Ω→ Z ⊆ Rdz and U : Ω→ U = Rdu satisfying:

Y = 1{ϕ(X,Z,U, θ0) ≥ 0} a.s., (2.1)

for some function ϕ( · , θ0) : X × Z × U → R parameterized by θ0 ∈ Θ ⊆ Rdθ with:

ϕ( · , θ) = ϕ̃1(x, z, θ)>u+ ϕ̃2(x, z, θ), (2.2)

where ϕ̃1( · , θ) and ϕ̃2( · , θ) are measurable for each θ. Furthermore, |X | = mx <∞, and |Z| = mz <∞, the

spaces X , Z and U are equipped with the Borel σ−algebra, and the distribution of U is absolutely continuous

with respect to the Lebesgue measure.

In Assumption 2.1 U ∈ U is a vector of latent variables, θ ∈ Θ is a vector of fixed coefficients, and

X ∈ X ⊂ Rdx and Z ∈ Z ⊂ Rdz are vectors of covariates. From (2.2) we restrict the index function
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to be linear in the latent variables U ∈ U , although the model in Assumption 2.1 still allows for general

nonseparability between covariates and latent variables. In this model the latent variables can also be

interpreted as random coefficients, in which case there is no restriction on which covariates are assigned fixed

versus random coefficients by the index function ϕ. A special case of linearity occurs when the function ϕ

is additively separable in a scalar latent variable U , which occurs, for instance, when ϕ̃1(x, z, θ) = 1. A full

analysis of this special case using the framework in this paper is taken up in Appendix B.5. For now there

is no distinction between X and Z, and either may be dependent with the latent vector U . Throughout the

paper we switch freely between indexing the points in X ×Z either by {(x1, z1), (x1, z2), . . . , (xmx , zmz )} or

by {(x1, z1), (x2, z2), . . . , (xm, zm)} with m := mx ·mz, depending on which method is more convenient for

our purpose. Finally, imposing absolute continuity of the distribution of latent variables is standard in this

literature, and although it is not required for any of the major results it allows for a dramatic simplification

of the cell enumeration algorithm introduced in the next section.

We assume that the researcher’s objective throughout is to obtain a sharp set of constraints defining the

identified set of latent variable distributions, and to use these constraints to bound various counterfactual

quantities, such as counterfactual conditional probabilities. Similar to previous works, we take the selection

relation as a primitive relation on which to construct a definition of the identified set. The close connection

between the selection relation from random set theory and the concept of observational equivalence from

the work in econometrics on identification has been appreciated in Beresteanu et al. (2011), Beresteanu

et al. (2012), Chesher et al. (2013), Chesher and Rosen (2014), and Chesher and Rosen (2017), among many

others. We continue this work here. In particular, we define the set:

U(y, x, z, θ) := {u ∈ U : y = 1{ϕ(x, z, u, θ) ≥ 0}} . (2.3)

Chesher and Rosen (2017) call this set the U−level set. Intuitively, (2.3) delivers all possible values of the

latent variables u consistent with the vector (y, x, z, θ) given the binary response model in (2.1). A measurable

selection from the random set U(Y,X,Z, θ) is a random vector U : Ω→ U satisfying U ∈ U(Y,X,Z, θ) a.s.6

Importantly, given a distribution of the observable random vectors (Y,X,Z), a structural function ϕ and

a fixed coefficient θ ∈ Θ, any two measurable selections U and U ′ from the random set U(Y,X,Z, θ) are

observationally equivalent in the sense that both latent variable vectors U and U ′ are consistent with the

observed distribution of Y , X and Z for the vector of parameters θ ∈ Θ through the model (2.1). Framed

in this manner, constructing the identified set of latent variable distributions then becomes a problem of

verifying whether a given random vector U : Ω→ U is a measurable selection from the random set in (2.3),

and then collecting the distributions of all such selections.

We now present the definition of the joint identified set for the (conditional) latent variable distribution

and coefficients θ.

6A general definition of a selection and a random set is provided in Appendix A.2. In Appendix A.2 we prove that U(Y,X,Z, θ)
is suitably measurable and thus is a random set under our assumptions (see Lemma A.1). We also prove that U(Y,X,Z, θ)
admits a universally measurable selection (see Lemma A.2).
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Definition 2.1 (Identified Set). Under Assumption 2.1, the (joint) identified set I∗Y,X,Z of conditional latent

variable distributions PU |Y,X,Z and fixed coefficients θ is the set of all pairs (PU |Y,X,Z , θ) satisfying:

PU |Y,X,Z(U ∈ U(Y,X,Z, θ) | Y = y,X = x, Z = z) = 1, PY,X,Z − a.s. (2.4)

Note that this definition of the identified set implicitly depends on the distribution of (Y,X,Z) through

the almost-sure relation in (2.4); any values of (y, x, z) assigned zero probability by the observed distribution

do not impose any restrictions on the distribution of U . Importantly, the definition conditions on the value

of the endogenous outcome variable Y . This conditioning is carried throughout the paper, and we show in

Section 5 that it allows us to bound some interesting, albeit less-typical counterfactual parameters that may

be relevant to policy analysis. Definition 2.1 can also be used to define other related identified sets, including

identified sets for conditional latent variable distributions of the form PU |X,Z , PU |Z , or PU .

2.2 Bounding Counterfactual Quantities

In this paper, we limit ourselves to a class of counterfactual queries that can be characterized by the oc-

currence of an intervention. An intervention is represented by an exogenous causal process capable of

manipulating the values of X and Z. For exogenous random variables—that is, those whose values are

determined outside of the model—we simply replace the random variable by its value under consideration

in the counterfactual. For endogenous random variables—that is, those whose values are determined by a

function of the other exogenous and endogenous variables within a model—the function determining the

value of the endogenous variable is deleted from the system, and the endogenous variable is replaced by its

value under consideration in the counterfactual.7 The following assumption summarizes this discussion.

Assumption 2.2 (Counterfactual Domain). For some collection of functions Γ with typical element γ :

X × Z → X × Z, there exists a collection of random variables {Y ( · , γ) : Ω → {0, 1} | γ ∈ Γ}, abbreviated

as Yγ := Y ( · , γ), representing counterfactual choices for each γ such that Yγ : Ω→ {0, 1} is measurable for

each γ, and:

PYγ |Y,X,Z,U (Yγ = 1{ϕ(γ(X,Z), U, θ0) ≥ 0} | Y = y,X = x, Z = z, U = u) = 1,

PY,X,Z,U−a.s. for the same θ0 ∈ Θ as in Assumption 2.1, and for all γ ∈ Γ.

Assumption 2.2 implies that (i) counterfactual response variables indexed by γ ∈ Γ exist on the common

probability space from Assumption 2.1, and (ii) such counterfactual response variables are equal (almost

surely) to the values that would arise after an intervention on the system represented by (2.1). Under

Assumption 2.2 each counterfactual is represented by a function γ : X × Z → X × Z belonging to the

collection Γ. Taking γ as a function allows us to consider a general class of counterfactuals that allows the

7We refer the reader to Pearl (2009) Section 7.1 for a discussion of a similar procedure. Such counterfactuals have a natural
interpretation as “hypothetical experiments,” and are widely attributed to Haavelmo (1943, 1944).
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counterfactual under consideration to depend on the observed values of X and Z. Although each function γ

is seen as a map from X ×Z to itself, this does not prevent consideration of counterfactuals where γ selects

values of (x, z) that have never been observed in the data. Such cases can be accommodated by simply

extending the support X × Z from Assumption 2.1 to include any counterfactual pair (x, z) of interest.8

Assumption 2.2 on the counterfactual domain leads directly to our definition of the identified set for

counterfactual conditional distributions.

Definition 2.2 (Identified Set of Counterfactual Conditional Distributions). Under Assumptions 2.1 and

2.2, the identified set of counterfactual conditional distributions P∗Yγ |Y,X,Z,U is the set of all conditional

distributions PYγ |Y,X,Z,U satisfying:

PYγ |Y,X,Z,U (Yγ = 1{ϕ(γ(X,Z), U, θ) ≥ 0} | Y = y,X = x, Z = z, U = u) = 1,

PY,X,Z,U−a.s. for some (PU |Y,X,Z , θ) ∈ I∗Y,X,Z .

Note that this definition makes an explicit reference to the identified set I∗Y,X,Z presented in Definition

2.1, which in turn is derived from a selection relation. As was the case with Definition 2.1, this definition

of the identified set can be used as a starting point to define other related identified sets, including for

counterfactual distributions of the form PYγ |Y,X,Z or PYγ |X,Z , as well as identified sets for average structural

functions and average treatment effects.

Using Definition 2.1, the following result provides an intuitive but important link between counterfactual

distributions and the conditional distribution of latent variables.

Theorem 2.1. Suppose that Assumptions 2.1 and 2.2 hold. Then a counterfactual conditional distribution

PYγ |Y,X,Z satisfies PYγ |Y,X,Z ∈ P∗Yγ |Y,X,Z if and only if there exists a pair (PU |Y,X,Z , θ) ∈ I∗Y,X,Z satisfying:

PYγ |Y,X,Z (Yγ = 1 | Y = y,X = x, Z = z) = PU |Y,X,Z (ϕ(γ(X,Z), U, θ) ≥ 0 | Y = y,X = x, Z = z) ,(2.5)

PY,X,Z−a.s.

Theorem 2.1 provides the theoretical link between the identified set of counterfactual conditional distri-

butions, and the identified set for the pair (PU |Y,X,Z , θ). While the result is theoretically straightforward,

it hides some important practical difficulties that arise when constructing the identified set for counterfac-

tual conditional distributions. In particular, verifying the existence of a pair (PU |Y,X,Z , θ) that satisfies the

conditions from Definition 2.1 is a nontrivial task. This is at least partly due to the fact that PU |Y,X,Z

is an infinite dimensional object, even in the case when both X and Z have finite support. This infinite

dimensional existence problem is exacerbated in practice by the fact that PU |Y,X,Z must satisfy a number

of constraints to ensure it is consistent with the binary response model through (2.4), and to ensure it is a

proper conditional probability measure. We consider these practical difficulties in detail in the next section.

8This approach does not affect anything we present in this paper, since we always require any relation to the observed
distribution of (Y,X,Z) to hold only almost-surely.
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3 General Framework: Practical Considerations

In order to bound counterfactual probabilities using Theorem 2.1, we must verify the existence of a collec-

tion of Borel probability measures on U that are consistent with the binary response model through (2.4).

However, solving this existence problem by explicitly constructing a probability measure on all Borel sets of

U seems excessively difficult and naive. Instead, we would like to consider a finite collection of Borel sets

that are both necessary and sufficient for this existence problem in the sense that, to solve the existence

problem, it is both necessary and sufficient that we are able to construct a conditional probability measure

on our finite collection of sets.9

To make progress, let us define the following vector-valued function:

r(u, θ) :=
[
1{ϕ(x1, z1, u, θ) ≥ 0} 1{ϕ(x1, z2, u, θ) ≥ 0} . . . 1{ϕ(xmx , zmz , u, θ) ≥ 0}

]>
, (3.1)

and for a fixed binary vector s ∈ {0, 1}m let us define the set:

U(s, θ) := {u ∈ U : r(u, θ) = s} . (3.2)

The sets from (3.2) partition the space U into at most 2m sets, with each set being uniquely associated with

a binary vector s ∈ {0, 1}m.10 Similar objects to r(u, θ) have appeared previously in the literature (e.g.

Balke and Pearl (1994), Heckman and Pinto (2018)), and to remain consistent with the previous literature

we call the functions r : U × Θ → {0, 1}m defined in (3.1) response types.11 In the discrete choice setting,

these response types tell us the choices that an individual with type indexed by (u, θ) would have made had

they been assigned alternate pairs of (x, z). Any two individuals characterized by values of u from the same

set U(s, θ) make identical choices in every counterfactual, and so the values of u define a natural equivalence

class of latent types.

After partitioning the space of latent variables using response types, various counterfactual objects of

interest can be written as a disjoint union of the sets U(s, θ) from (3.2) that comprise our partition. For the

sake of illustration, consider the binary vectors:

Sj = {s ∈ {0, 1}m : sj = 1}, (3.3)

for j = 1, . . . ,m. Note that each set Sj is comprised of all binary vectors that have a jth entry equal to 1,

9A similar problem is addressed in Torgovitsky (2019), although we note that his general framework is not immediately
applicable here since we are dealing with probability measures rather than distribution functions. We find that for many of the
models we consider, it is simply not possible to write the identified set and functional of interest in terms of the multi-dimensional
distribution function for the latent variables.

10This comes from the fact that there are m points of support in X × Z (and so m rows in r(u, θ)) and each row of r(u, θ)
can take values either 0 or 1.

11The collection of sets defining response types appears to be similar to the “minimal relevant partition” in Tebaldi et al.
(2019), as well as the partition described in Chesher and Rosen (2014) Appendix B.
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and thus contain exactly 2m−1 elements.12 Now note, by definition of the sets U(s, θ) and Sj we have:

{u ∈ U : ϕ(xj , zj , u, θ) ≥ 0} =
⋃
s∈Sj

U(s, θ).

Furthermore, for s′ 6= s the definition of the sets U(s, θ) from (3.2) ensures we have U(θ, s′) ∩ U(s, θ) = ∅,

so that the union in the previous display is a disjoint union. Thus, we have the following decomposition:

PU |Y,X,Z (ϕ(xj , zj , u, θ) ≥ 0 | Y = y,X = x, Z = z) =
∑
s∈Sj

PU |Y,X,Z (U(s, θ) | Y = y,X = x, Z = z) .

Such a decomposition holds for any j = 1, . . . ,m. When the conditioning values (x, z) differ from the values

(xj , zj) in the structural function, an application of Theorem 2.1 shows that the left hand side of this display

represents a counterfactual conditional distribution, illustrating the connection between response types and

counterfactual choices.

The following Theorem shows that, in order to rationalize a given collection of counterfactual condi-

tional distribution under our assumptions, for each fixed θ it is both necessary and sufficient to construct a

probability measure on sets of the form U(s, θ) from (3.2) satisfying the constraints of Theorem 2.1. In the

statement of the Theorem we redefine γ : N→ N to denote the index of the point in {(x1, z1), . . . , (xm, zm)}

assigned under counterfactual γ and we set Sγ(j) := {s ∈ {0, 1}m : sγ(j) = 1} (the analog of Sj from (3.3)).

Theorem 3.1. Suppose Assumptions 2.1 and 2.2 hold. Fix some θ ∈ Θ and consider the collection of sets:

A(θ) := {U(s, θ) : s ∈ {0, 1}m}. (3.4)

Then for any collection of counterfactual conditional distributions PYγ |Y,X,Z , there exists a collection of

Borel conditional probability measures PU |Y,X,Z satisfying (2.5) with (PU |Y,X,Z , θ) ∈ I∗Y,X,Z if and only if

there exists a collection PU |Y,X,Z of probability measures on the sets in A(θ) satisfying:∑
s∈Sj

PU |Y,X,Z (U(s, θ) | Y = 1, X = xj , Z = zj) = 1, (3.5)

∑
s∈Scj

PU |Y,X,Z (U(s, θ) | Y = 0, X = xj , Z = zj) = 1, (3.6)

∑
s∈Sγ(j)

PU |Y,X,Z (U(s, θ) | Y = y,X = xj , Z = zj) = PYγ |Y,X,Z (Yγ = 1 | Y = y,X = xj , Z = zj) , (3.7)

for all y ∈ {0, 1} and j ∈ {1, . . . ,m} assigned positive probability.

Theorem 3.1 reduces our infinite dimensional existence problem to a finite dimensional existence problem.

Indeed, the constraints in (3.5) and (3.6) are linear constraints on a now finite dimensional probability vector

with typical element PU |Y,X,Z (U(s, θ) | Y = y,X = x, Z = z). Note that this result relies crucially on the

finiteness of X and Z. Our proof of Theorem 3.1 appears to be new, and thus may be of separate interest.

12It is useful to note that the sets {Sj}mj=1 are not disjoint; indeed, it is easy to show that Sj ∩ Sk 6= ∅ and Sj ∩ Sc
k 6= ∅ for

every j 6= k.
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However, there is a close connection between Theorem 3.1 and the bounding approach based on Artstein’s

inequalities (e.g. Chesher and Rosen (2017)) and optimal transportation (e.g. Galichon and Henry (2011)).13

Importantly, the finite number of linear constraints from Theorem 3.1 leads naturally to the optimization

formulation of bounds on counterfactual distributions considered in the next subsection.

3.1 Optimization Formulation

We suppose throughout this subsection that our objective is to bound the counterfactual probability:

PYγ |Y,X,Z(Yγ = 1 | Y = y,X = xj , Z = zj), (3.8)

for some j ∈ {1, . . . ,m}. However, all the results in this section are immediately applicable to the case when

we wish to bound some linear function of these counterfactual probabilities. Recall that Theorem 3.1 implies

our counterfactual object of interest can be rewritten as:

PYγ |Y,X,Z(Yγ = 1 | Y = y,X = xj , Z = zj) =
∑

s∈Sγ(j)

PU |Y,X,Z (U(s, θ) | Y = y,X = xj , Z = zj) ,

where γ(j) is the index in {1, . . . ,m} assigned to j under counterfactual γ. To progress further, let us define

the parameter:

π(y, x, z, s, θ) = PU |Y,X,Z (U(s, θ) | Y = y,X = x, Z = z) .

For the sake of notation it is also useful to define the following parameter vectors:

π(y, s, θ) :=
[
π(y, x1, z1, s, θ) π(y, x1, z2, s, θ) . . . π(y, xmx , zmz , s, θ)

]>
,

π(y, θ) :=
[
π(y, s1, θ)

> π(y, s2, θ)
> . . . π(y, s2m , θ)

>
]>

, π(θ) :=
[
π(0, θ)> π(1, θ)>

]>
.

The vector of parameters π(θ) represents the variable over which we optimize in our result ahead. Now

let dπ = 2m2m denote the dimension of π(θ). Without loss of generality, we suppose that each (y, x, z) is

assigned positive probability by the observed distribution. From conditions (3.5) and (3.6) in Theorem 3.1,

we have the constraints:∑
s∈Sj

π(1, xj , zj , s, θ) = 1,
∑
s∈Scj

π(0, xj , zj , s, θ) = 1, (3.9)

13In a previous version of this paper (Gu and Russell (2021)) we show that Theorem 3.1 is equivalent to a characterization
based on Artstein’s inequalities after conditioning on the value of the endogenous variables. This conditioning allows us to
obtain a much smaller number of equality constraints when compared to the full set of unconditional constraints arising from
Artstein’s inequalities. It is also well known that Artstein’s inequalities are equivalent to the existence of a certain zero-cost
optimal transport problem (see Galichon (2016)).
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for j = 1, . . . ,m. Finally, we require the nonnegativity and “adding-up” constraints:

π(y, xj , zj , s, θ) ∈

{0}, if int(U(s, θ)) = ∅,

[0, 1], otherwise,

(3.10)

for all y ∈ {0, 1} and j = 1, . . . ,m and s ∈ {0, 1}m, and:∑
s∈{0,1}m

π(y, xj , zj , s, θ) = 1, (3.11)

for all y ∈ {0, 1} and j = 1, . . . ,m. Note that the researcher must determine which sets U(s, θ) have non-

empty interior in order to impose the constraint (3.10). We will return to this point in the next subsection.

We are now ready to state one of the main results for this section.

Theorem 3.2. Under Assumptions 2.1 and 2.2, the identified set for the counterfactual conditional proba-

bility PYγ |Y,X,Z(Yγ = 1 | Y = y,X = xj , Z = zj) is given by:⋃
θ∈Θ

[π`b(y, xj , zj , θ), πub(y, xj , zj , θ)], (3.12)

where π`b(y, xj , zj , θ) and πub(y, xj , zj , θ) are determined by the optimization problems:

π`b(y, xj , zj , θ) := min
π(θ)∈Rdπ

∑
s∈Sγ(j)

π(y, xj , zj , s, θ), subject to (3.9), (3.10), and (3.11), (3.13)

πub(y, xj , zj , θ) := max
π(θ)∈Rdπ

∑
s∈Sγ(j)

π(y, xj , zj , s, θ), subject to (3.9), (3.10), and (3.11). (3.14)

In one direction, Theorem 3.2 implies that any counterfactual conditional probability of the form (3.8)

belonging to the identified set can be written as:

PYγ |Y,X,Z (Yγ = 1 | Y = y,X = xj , Z = zj) =
∑

s∈Sγ(j)

π(y, xj , zj , θ, s),

for some θ and some vector π(θ) satisfying the constraints (3.9), (3.10), and (3.11). In the opposite direction,

the Theorem implies that if for some θ the vector π(θ) satisfies the constraints (3.9), (3.10), and (3.11) then

the conditional probability measure on U represented by π(θ) can be extended to a (not necessarily unique)

Borel probability measure on all of B(U) that satisfies the conditions of Theorem 2.1. This result can be

easily modified to bound any linear function of counterfactual conditional distributions by simply modifying

the objective function in Theorem 3.2. We will make use of this fact in the application section.

After determining which of the sets U(s, θ) are empty, all the constraints in (3.13) and (3.14) can be

written as linear equality/inequality constraints, so that the optimization problems in (3.13) and (3.14) are

linear programming problems. This is very beneficial, since linear programs can be efficiently solved even

in cases with thousands of parameters and constraints. It is also interesting to note that the proofs for

Theorems 3.1 and 3.2 do not require linearity of the index function in U from Assumption 2.1 (although this
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assumption will be used heavily starting in the next subsection). This implies that Theorem 3.2 can be used

to bound counterfactual parameters for completely nonparametric and nonseparable models of the form:

Y = 1{ϕ(X,Z,U, θ) ≥ 0}, (3.15)

without imposing any restrictions on the index function. Without any constraints on the function ϕ it is

always possible to construct a function ϕ such that all regions U(s, θ) will have non-empty interior, implying

that that there are 2m response types. In this case, constraint (3.10) reduces to simply imposing that all

probabilities are bounded between zero and one, and the rest of Theorem 3.2 remains unchanged. We will

illustrate our procedure using the model (3.15) in the application section.

In the general case, elements of π(θ) corresponding to sets U(s, θ) that are empty can be removed from

the parameter vector π(θ) without altering the optimal solutions to the linear programs in (3.13) and (3.14).

This allows for further reduction of the dimension of these linear programs. Although the number of sets

U(s, θ) appear to grow exponentially in m, in the subsections ahead we show that under linearity of the index

function in U the number of sets U(s, θ) that have non-empty interior grows at a rate that is polynomial

in m, substantially reducing the computational burden. Finally, although Theorem 3.2 is an identification

result we discuss estimators and inference procedures for bounds of the form in Theorem 3.2 in Section 5

when we introduce our application. In the next subsections we discuss an efficient algorithm for determining

which of the sets U(s, θ) have non-empty interior and discuss how to practically take the union in (3.12).

3.2 Hyperplane Arrangements and Cell Enumeration

As mentioned above, we have not yet used the fact that the index function ϕ(X,Z,U, θ) is restricted to be

linear in U ∈ U under Assumption 2.1. However, linearity of the index function imposes restrictions on the

model by limiting the number of sets U(s, θ) that can be assigned positive probability. These restrictions

enter the optimization problems in Theorem 3.2 implicity through the constraint (3.10). Reducing the

number of sets that can be assigned positive probability imposes additional constraints in the optimization

problems of Theorem 3.2 that help to tighten the identified set, and it can also reduce computational time

needed to solve the bounding problems in Theorem 3.2 by reducing the dimension of the vector π(θ).

The assumption of linearity in the latent variables implies that certain response types must have zero

probability. Constraining sets of the form U(s, θ) to be assigned zero probability is referred to as eliminating

response types. Response types corresponding to sets U(s, θ) that survive elimination are called admissible,

and response types corresponding to sets U(s, θ) that are eliminated are called inadmissible. Since each

response type is characterized by a particular menu of counterfactual responses, framing functional form

assumptions in terms of the elimination of particular response types helps to provide some interpretation to

these assumptions.

The following simple example shows how some of the sets U(s, θ) can be empty under Assumption 2.1.
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Example 1. Suppose we have a variable X ∈ {0.5, 1, 2} and latent variables U ∈ R2. That is, suppose there

are no variables Z and no fixed coefficients θ. Then the structural function from (2.1) can be written as

ϕ(X,U) and the binary response vector r(u, θ) can be written as r(u), where:

r(u) =


1{ϕ(0.5, u) ≥ 0}

1{ϕ(1, u) ≥ 0}

1{ϕ(2, u) ≥ 0}

 .
Without any additional restrictions there is a total of 2|X | = 8 possible response types.14 That is, r(U) ∈

{s1, . . . , s8}, where:

s1 =


0

0

0

 , s2 =


1

0

0

 , s3 =


0

1

0

 , s4 =


1

1

0

 , s5 =


0

0

1

 , s6 =


1

0

1

 , s7 =


0

1

1

 , s8 =


1

1

1

 .
Conclude that without any additional restrictions, all sets of the form U(s, θ) for s ∈ {0, 1}3 can be assigned

positive probability by the optimization problems in Theorem 3.2. Now suppose we entertain a linear func-

tional form restriction. In particular, suppose that Assumption 2.1 holds and that the structural function

from (2.1) can be written as:

ϕ(X,U) = XU1 − U2.

Then the binary response vector r(u) is given by:

r(u) =


1{u1 ≥ 2u2}

1{u1 ≥ u2}

1{2u1 ≥ u2}

 .
As is illustrated in Figure 1, under the assumption that the index function is linear in latent variables only

6 response types are admissible. In particular, response types corresponding to binary vectors s3 and s6 are

not possible under the linearity assumption. Thus, under Assumption 2.1 a distribution of latent variables

is admissible in this example only if it assigns probability zero to the sets:

U(θ, s3) = {u ∈ U : r(u) = s3} ,

U(θ, s6) = {u ∈ U : r(u) = s6} .

These additional constraints must be imposed in our optimization problems from Theorem 3.2.

This example shows that imposing linearity of ϕ in latent variables implies that certain sets of the form

U(s, θ) may be empty for some binary vectors s ∈ {0, 1}m. In the general case, it can be shown that when ϕ

is restricted to be linear in U , there is an upper bound on the number of non-empty sets U(s, θ) that grows

14For example, if U = (U1, U2) take ϕ(X,U) = sin(U1X +U2) and fix U2 = 0. Then it is straightforward to find eight values
of the frequency parameter U1 ∈ [−1, 1] to rationalize each of the 8 response types.
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Figure 1: A figure corresponding to Example 1 illustrating the partition of the latent variable space according to
response types in the case when the index function is linear. Without functional form restrictions, Example 1 shows
8 response types are possible; however, then the index function is linear in latent variables there are only 6 possible
response types, as illustrated in the figure. In particular, the response types corresponding to binary vectors s3 and
s6 from Example 1 are not possible.

at a rate that is polynomial in m (rather than exponential in m, which is the case when ϕ is unrestricted).

Proposition 3.1. Suppose that Assumption 2.1 is satisfied. Then for each fixed θ ∈ Θ, there are at most∑du
j=0

(
m
j

)
admissible response types.

This result is implied by results in the literature on combinatorial geometry. In particular, linearity of

the function ϕ(·, U) means that for each instance of (x, z, θ) the function ϕ(x, z, u, θ) defines a hyperplane in

du−dimensional space. In the case when the vectors defining these hyperplanes are in general position the

upper bound in Proposition 3.1 is obtained.15 This latter result was initially proven by Buck (1943).

Let us define the collection of binary vectors Sϕ to be those vectors s ∈ {0, 1}m corresponding to admis-

sible response types under Assumption 2.1. To impose linearity in the latent variables we must determine

which sets U(s, θ) have non-empty interior, and then ensure that any distribution of the latent variables

under consideration when bounding counterfactual conditional distributions assigns zero probability to these

sets. To practically implement our optimization problems we require a method of enumerating all admissible

response types represented by the binary vectors in Sϕ, and to compute the collection Sϕ we propose to use

the hyperplane arrangement algorithm of Gu and Koenker (2020).

When the index function ϕ is linear in U , for each fixed θ and s ∈ {0, 1}m the set U(s, θ) is a convex

polyhedron formed by the intersection of halfspaces whose boundaries are hyperplanes of the form {u ∈
15A collection of m hyperplanes in d−dimensional space are considered to be in general position when if any collection of k

out of the m hyperplanes intersect in a d − k dimensional space for 1 < k ≤ d, and any collection of k out of m hyperplanes
has an empty intersection for k > d.
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U : ϕ(x, z, u, θ) = 0}. Under Assumption 2.1 there are at most m such hyperplanes. The hyperplane

arrangement algorithm of Gu and Koenker (2020) accepts these m hyperplanes as an input, and outputs

the binary vectors s corresponding to the sets U(s, θ) that have non-empty interior, as well as a point from

each of these sets. In low dimensional space, it is relatively easy to determine the sets with non-empty

interior formed by the intersection of halfspaces (see Figure 1, for instance). However, as the dimension

of the space increases it becomes challenging to enumerate all of these sets. Avis and Fukuda (1996) were

the first to provide an enumeration algorithm that runs in a time proportional to the maximum number of

sets with non-empty interior. Improvements to this algorithm were made by Sleumer (1999) and Rada and

Cerny (2018). The algorithm of Gu and Koenker (2020) is most closely related to the latter paper, and was

developed for the problem of nonparametric maximum likelihood in a linear random coefficient model. It

runs in a time proportional to O(mdu).

To understand the algorithm, note that for each s ∈ {0, 1}m and fixed θ, we can verify using a linear

program whether there exists a point in the space of U that lies interior to the set U(s, θ). Indeed, consider

the following linear programming problem:

max
u,ε

ε s.t. (2sj − 1)ϕ(xj , zj , u, θ) ≥ ε, j = 1, . . . ,m, (3.16)

where sj is the jth element of our fixed binary vector s, and where here we have an index function ϕ(x, z, u, θ)

that is linear in u. If ε∗ and u∗ are the optimal values of the program (3.16) (provided that it is feasible),

then an optimal value ε∗ > 0 indicates that u∗ is an interior point to the polyhedron U(s, θ). However, since

the linear program (3.16) must be solved for each s ∈ {0, 1}m, checking whether each U(s, θ) admits an

interior point requires solving 2m linear programs, despite the fact that we know the number of non-empty

subsets U(s, θ) is polynomial in m.

To address this issue, the algorithm proposed in Gu and Koenker (2020) builds upon the algorithm in

Rada and Cerny (2018). The idea is to add one hyperplane at a time, and to enumerate all feasible response

types after adding each new hyperplane. At step k they start with a collection of k − 1 hyperplanes from

the previous steps, as well as all existing response types found up to step k − 1. They then introduce a

new hyperplane into the arrangement of hyperplanes, and determine all newly created response types by

solving a collection of linear programs. The algorithm of Rada and Cerny (2018) requires solving a linear

programming problem for all the existing cells at each iteration, which amounts to solving O(mdu+1) such

problems. When m is large, which is typically the case in practice, this can become costly. Gu and Koenker

(2020) observed that when a new hyperplane is added the only new cells are those that are created when

the existing cells are crossed by the last hyperplane. By efficiently locating those crossed cells, the algorithm

reduced the number of linear programming problems to be solved by a magnitude of m. The algorithm in

Gu and Koenker (2020) is available in the R package RCBR.

In summary, the hyperplane arrangement algorithm can be used as a pre-processing step under Assump-

tion 2.1 to determine which sets U(s, θ) have non-empty interior in a given application. Eliminating the
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inadmissible sets U(s, θ) can also dramatically reduce the dimension of the parameter vector π(θ) in the

bounding optimization problems. In particular, under Assumption 2.1 we need only consider a parame-

ter vector π(θ) with typical element π(y, x, z, θ, s) defined only for s corresponding to subsets U(s, θ) with

non-empty interior. The dimension of the revised parameter vector π(θ) constructed in this way is always

upper-bounded by a polynomial in m under Assumption 2.1. In the next subsection we show how the as-

sumption of linearity in parameters θ ∈ Θ can be combined with the hyperplane arrangement algorithm to

dramatically simplify the bounding procedure suggested by Theorem 3.2.

3.3 Profiling Under Linearity in the Fixed Coefficients

To construct sharp bounds on counterfactual probabilities using Theorem 3.2 requires evaluating the linear

programs (3.13) and (3.14) at all values of θ ∈ Θ in the parameter space. In practice this procedure is

clearly infeasible, and instead the identified set must be constructed using Theorem 3.2 by establishing a

grid over the parameter space Θ, determining which of the sets U(s, θ) have non-empty interior at each value

of θ in the grid, and then solving the optimization problems (3.13) and (3.14) for each value of θ in the

grid. The following proposition demonstrates that, theoretically speaking, the researcher need only repeat

the procedure just described for finitely many values of θ.

Proposition 3.2. Suppose that Assumptions 2.1 and 2.2 hold. Then there exists a (not necessarily unique)

finite subset Θ′ ⊂ Θ such that:

{
π ∈ Rdπ : ∃θ ∈ Θ s.t. π(θ) satisfies (3.9), (3.10), (3.11), and π = π(θ)

}
=
{
π ∈ Rdπ : ∃θ ∈ Θ′ s.t. π(θ) satisfies (3.9), (3.10), (3.11), and π = π(θ)

}
.

We will call the points in the set Θ′ the representative points, although it is important to keep in mind

that these points are generally not unique. Assuming the representative points can be determined by the

researcher, Proposition 3.2 immediately implies that the union over θ ∈ Θ in (3.12) can be replaced with a

union over θ ∈ Θ′. That is, the linear programs in (3.13) and (3.14) need only be solved at the representative

points. Proposition 3.2 also implies that the identified set for counterfactual conditional distributions in

Theorem 3.2 will always be a closed (but possibly disconnected) set. Unfortunately, when the researcher

cannot determine the representative points Proposition 3.2 has limited practical value. In these cases, griding

over the parameter space will often at best lead to an inner approximation to the identified set, and may be

computationally prohibitive.

In the case when ϕ is linear in parameters we provide a polynomial-time algorithm for finding a collection

of representative points. To introduce our approach, note that under the assumption that ϕ is linear in (U, θ),

for each fixed θ ∈ Θ the sets of the form U(s, θ) define a unique partition of the space U into sets whose

boundaries are defined by m hyperplanes. Let us define:

S(θ) := {s ∈ {0, 1}m : int(U(s, θ)) 6= ∅} .
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Then S(θ) denotes the set of all vectors s ∈ {0, 1}m that are inducible by our arrangement of m hyperplanes.

Now recall that functional form assumptions impose restrictions in the bounding optimization problems by

restricting the number of sets U(s, θ) with non-empty interior. For any two values of θ, θ′ ∈ Θ with θ 6= θ′,

if S(θ) = S(θ′) then the linear programming problems in Theorem 3.2 at θ and θ′ are identical, since they

have an identical set of constraints. The points θ and θ′ are thus equivalent in the sense that we only need to

solve the linear programming problems for one of them. Extending this idea, we can define an equivalence

class by the set of all θ ∈ Θ delivering the same collection S(θ). We then only need to solve the linear

programming problems at one value of θ belonging to each equivalence class. These values of θ selected from

each equivalence class are exactly what we call representative points.

To see how to find the representative points, let us partition U := (Ux, Uz, ε), θ = (θx, θz), x = (xr, xf )

and z = (zr, zf ), and for a binary vector s ∈ {0, 1}m let us define the set:

R(s) :=


(u, θ) :


1{uxxr1 + uzzr1 + θxxf1 + θzzf1 ≥ ε}

1{uxxr2 + uzzr2 + θxxf2 + θzzf2 ≥ ε}
...

1{uxxrm + uzzrm + θxxfm + θzzfm ≥ ε}

 = s


. (3.17)

These sets form a unique partition of the space (u, θ) defined by m hyperplanes of the form:

uxxri + uzzri + θxxfi + θzzfi = ε. (3.18)

The basic idea behind our strategy to find representative points is to first project the sets of the form R(s)

onto the parameter space Θ. Note that the projection of a set R(s) onto the parameter space Θ delivers the

set of all θ consistent with the binary vector s for some value of u. After taking the intersection of all such

projections, each set in the resulting collection corresponds exactly to an equivalence class discussed above.

An arbitrary value of θ taken from such a set is a representative point. The most challenging part of this

approach is to find a tractable characterization of the projections of R(s) on the parameter space Θ.

Let us define Sp as the collection of all binary vectors s ∈ {0, 1}m corresponding to the sets in R(s)

with non-empty interior. The first step of our procedure to find the representative points is to determine

the binary vectors in Sp. This can be done by running the hyperplane arrangement algorithm of Gu and

Koenker (2020) on the collection of hyperplanes of the form (3.18) defined on U × Θ (i.e. as if we were

treating θ as a latent variable). Note that the assumption of linearity of ϕ in (U, θ) restricts the number of

sets in the collection Sp to be polynomial in m.16

Next, let us define wri := (xri, zri,−1) and wfi := (xfi, zfi), where wri has dimension dr and wfi has

16Note that in this context, all the hyperplanes of the form (3.18) can be viewed as hyperplanes through the origin in U ×Θ.
In this case, the upper bound on the number of cells formed by this collection of hyperplanes is of smaller order than that
presented in Proposition 3.1. Cover (1965) shows the upper bound is given by:

C(m, du) := 2

du−1∑
j=0

(m− 1

j

)
.
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dimension df . Then each of the hyperplanes of the form (3.18) can be written as wriu+wfiθ = 0. Stacking

these hyperplanes into matrix form we have Wrur +Wfθ = 0, where Wr is m× dr and Wf is m× df . Now

each set of the form (3.17) is a polyhedral cone in Rdx+dz+1 and can be uniquely identified by a sign vector

2s − 1 with values in {−1, 1}m. Fix any s ∈ Sp, and let D(s) = diag(2s − 1) denote the m ×m diagonal

matrix with the sign vector 2s − 1 along its main diagonal. Furthermore, define Wr(s) := D(s)Wr and

Wf (s) := D(s)Wf . Then the set R(s) from (3.17) can be conveniently rewritten as:

R(s) := {(u, θ) : Wr(s)u+Wf (s)θ ≥ 0}.

Note that the row dimension of Wr(s) and Wf (s) is m, which can be large if the support X×Z contains many

elements. Thus, in practice it is useful to first remove redundant inequalities among those that define R(s)

before proceeding to the next step. Elimination of redundant inequalities from this system can be achieved

in polynomial time with a sequence of linear programs, and the resulting set of nonredundant inequalities

that define the polyhedral cone R(s) is typically much smaller than m.17

From here on we assume the matrices Wr(s) and Wf (s) only include rows corresponding to nonredundant

constraints, and we denote their row dimension as m(s). Now consider the set:

Θ(s) := {θ ∈ Θ : ∃u ∈ U s.t. Wr(s)u+Wf (s)θ ≥ 0}. (3.19)

In other words, the set Θ(s) is precisely the projection of the polyhedral cone R(s) on the parameter space Θ.

The objective is to show that the set Θ(s) can be defined only in terms of linear inequality constraints in θ.

In other words, we would like to “eliminate” the latent variables U from the system of inequalities in (3.19).

A natural method of doing so is to use Fourier-Motzkin elimination.18 Recall that the Fourier-Motzkin

algorithm eliminates variables from a system of linear inequalities by taking linear combinations of the

inequalities in the system. In particular, Fourier-Motzkin elimination can be viewed as applying a sequence

of matrix operators M1,M2, . . . ,Mdr to the system of inequalities in (3.19), where the matrix MkMk−1 . . .M1

eliminates the first k elements of the vector U from the inequalities. Let us denote M∗r = MdrMdr−1 . . .M1.

Then as a result of Fourier-Motzkin elimination we would have the equivalent system:

Θ(s) := {θ ∈ Θ : M∗rWf (s)θ ≥ 0} , (3.20)

since M∗rWr(s) = 0 by construction of M∗r . The set in (3.20) then gives us inequality constraints only in

terms of θ that define the projection of R(s) on Θ.

17In particular, not all the hyperplanes that define R(s) are relevant, in the sense that some of them are implied by the
rest of the inequalities in the system. Removing these redundant inequalities does not change the cone R(s). We can remove
them before continuing to the projection step of our procedure by conducting a redundancy test. For example, suppose we
have system of j + 1 inequalities of the form Ax ≤ b and s>x ≤ t. Then to check whether the last inequality is binding (and
thus nonredundant), we can solve the linear programming problem f∗ = max s>x s.t. Ax ≤ b, s>x ≤ t + 1. The inequality
s>x ≤ t is redundant if and only if f∗ ≤ t. To eliminate all redundant inequalities from a system of m inequalities results in
solving m linear programs; hence, it can be computed in polynomial time. There are a few strategies to speed up the removal
of redundant inequalities, as discussed in Section 2.21 in Fukuda (2014). We use the implementation in the package Rcdd with
the function redundant.

18The idea of using Fourier-Motzkin elimination to determine the inequality constraints defining projected regions in partial
identification was also explored in Section 8.2 of Chesher and Rosen (2019).
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While it is possible to use Fourier-Motzkin elimination to eliminate the latent variables U , the number

of rows in the matrix M∗r can be prohibitively large, even when the number of nonredundant inequalities

defining the set (3.20) is small. To ensure feasibility of our method of projection, we must thus search for

a procedure that eliminates redundant inequalities from (3.20) and results in a simpler characterization of

Θ(s) than the one provided by Fourier-Motzkin elimination.19 To this end, consider the following set:

C(s) := {c ∈ Rm(s) : cWr(s) = 0, c ≥ 0}, (3.21)

where recall that m(s) is the dimension of Wr(s) and Wf (s) after we’ve removed all the redundant inequali-

ties. Since the rows of M∗r have positive entries (by construction using the Fourier-Motzkin algorithm), they

must belong to C(s). Thus we can conclude that:

{θ ∈ Θ : cWr(s)u+ cWf (s)θ ≥ 0, ∀c ∈ C(s)} ⊆ Θ(s).

Furthermore, Kohler (1967) shows that the reverse inclusion holds; in particular, every vector in the collection

C(s) can be written as a non-negative linear combination of the rows of M∗r . We can thus conclude:

Θ(s) = {θ ∈ Θ : cWr(s)u+ cWf (s)θ ≥ 0, ∀c ∈ C(s)} .

While at first glance this result is not immediately useful, the Minkowski-Weyl Theorem allows us to re-write

the set C(s) as:

C(s) =
{
c ∈ Rm(s) : c = R(s)a, for some a ≥ 0

}
, (3.22)

where R(s) is some matrix.20 That is, every element belonging to the polyhedral cone C(s) can be written as

a nonnegative linear combination of the columns of some matrix R(s). It follows that if we could obtain the

matrix R(s) from (3.22), we could obtain the following representation of the projected set for θ from R(s):

Θ(s) = {θ ∈ Θ : H(s)θ ≥ 0} , (3.23)

where H(s) = R(s)Wf (s). The matrix R(s) is sometimes called the generating matrix of the polyhedral cone

C(s). The Minkowski-Weyl Theorem essentially says that every polyhedral cone admits a generating matrix,

and every generating matrix generates a polyhedral cone. The problem of finding the minimal generating

matrix R(s) (that is, the matrix R(s) generating C(s) such that no proper submatrix of R(s) generates C(s))

is called the extreme ray enumeration problem. Note the minimal generating matrix is unique only up to

19Note that it is possible to first perform Fourier-Motzkin elimination, and then remove redundant inequalities from the
system M∗rWr(s)θ ≥ 0 using a technique similar to that described in footnote 17. However, unlike Fourier-Motzkin elimination
our alternate approach uses the double-description algorithm to avoid the generation of redundant inequalities altogether, and
so is much more efficient.

20For a general convex polyhedral defined by Λ = {λ ∈ Rd : Aλ ≤ b}, the Minkowski-Weyl Theorem states that every vector
λ ∈ Λ can be written as λ = λ1 + λ2, where λ1 ∈ conv{v1, . . . , vk} and λ2 ∈ cone{vk+1, . . . , vn}. Here v1, . . . , vk are called
vertices of Λ and vk+1, . . . , vn are the extreme rays of Λ. In the special case of b = 0, where all hyperplanes are through the
origin, then Λ becomes a polyhedral cone and k = 0, so that Λ = cone{v1, . . . , vn}. This latter case is what is relevant for us,
and the columns of the matrix R(s) are the collections of these extreme rays.

21



multiplication by a positive scalar.

The characterizations of the cone C(s) in (3.21) and (3.22) are called its H-representation and its V-

representation, respectively. Converting from one representation of a convex polyhedron to another is called

the double description problem in computational geometry, and is one of the most important problems in the

field of polyhedral computation. One of the earliest double description algorithms proposed by Motzkin et al.

(1953) is an incremental algorithm that computes in exponential time in the worst case. The idea is to start

with a small subset of hyperplanes and an associated V-representation and continue to add hyperplanes while

updating the set of extreme rays. However, the performance of the algorithm can be sensitive to the order

that new hyperplanes are introduced. A more efficient variant of this procedure is proposed by Fukuda and

Prodon (1995), and we use the R implementation in the package Rcdd by Geyer (2019). There are alternative

nonincremental algorithms available for extreme ray enumeration; for instance, the reverse search algorithm

by Avis and Fukuda (1996). However, in general there is no known efficient (polynomial-time) algorithm for

general input, although the incremental double description algorithm is known to be efficient for degenerate

polyhedrons (which arises very often when the hyperplanes are not in general position) and low dimensions

(up to 10).21 Avis et al. (1997) present a thorough comparison of these different algorithms.

After employing the double description algorithm the projection Θ(s) represented in (3.23) contains a

minimal number of constraints defined only in terms of θ. Repeating the procedure described above for all

s ∈ Sp then gives us a collection of sets Θ(s) representing the projections of R(s) onto the parameter space

Θ. However, for different binary vectors s ∈ Sp the projected sets Θ(s) may not be disjoint. Thus, to get

the representative points θ∗ we consider the intersection of these cones across s ∈ Sp. To do so, we stack all

unique hyperplanes of the form H(s)θ = 0 for all s ∈ Sp into a matrix Hp. The set of hyperplanes Hpθ = 0

then define the boundaries of the sets formed by the intersection of the cones Θ(s). From here we can

then easily collect the representative points from the resulting collection of sets defined by the hyperplanes

Hpθ = 0 by a final application of the hyperplane arrangement algorithm of Gu and Koenker (2020).

To summarize, our procedure to profile θ is based on the idea that there are only a finite number

of representative points from Θ that need to be considered in the bounding optimization problems. Our

proposed procedure to find these representative points is as follows:

(i) Determine the collection Sp of binary vectors s ∈ {0, 1}m corresponding to the sets R(s) from (3.17)

with non-empty interior by running the hyperplane arrangement algorithm of Gu and Koenker (2020)

on the collection of hyperplanes of the form (3.18).

(ii) For each s ∈ Sp:

(a) Set D(s) = diag(2s− 1) and define Wr(s) := D(s)Wr and Wf (s) := Df (s)Wf . Now remove any

21For an incremental algorithm to be polynomial-time, the size of the intermediate rays in each incremental step needs to
be polynomial in the input size. The difficulty involved with all known incremental algorithm in the literature is that the
intermediate representation can be very large and leads the algorithm to be superpolynomial in the worst case. See further
discussion in Bremner (1999).
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redundant inequalities from the system of inequalities in the set:

R(s) := {(u, θ) : Wr(s)u+Wf (s)θ ≥ 0},

by solving a sequence of linear programs, as described in footnote 17.

(b) Compute the minimal generating matrix R(s) for the polyhedral cone C(s) using the double

description algorithm of Fukuda and Prodon (1995), and set H(s) = R(s)Wf (s). Then the

projected set Θ(s) from (3.19) can be written:

Θ(s) = {θ ∈ Θ : H(s)θ ≥ 0}.

(iii) Intersect the projected sets Θ(s) over all s ∈ Sp. By stacking the matrices H(s) over s ∈ Sp into the

matrix Hp, the rows of the matrix Hp defines a set of hyperplanes that act as the boundaries of all

sets defined by the intersection of the projected sets Θ(s).

(iv) Run the hyperplane arrangement algorithm of Gu and Koenker (2020) a final time on the collection of

hyperplanes defined by the rows of Hp in order to collect representative points from each set.

The above discussion sheds light on how we can construct the identified set for θ. In particular, for some

of these representative points the linear programming problems in our bounding procedure may have an

empty feasible region, that is, there exists no valid conditional distribution of u that fulfils all constraints

for that particular value of θ. In this case, these representative points—as well as all other values of θ that

belong to the same sets—cannot be included in the identified set for the fixed coefficients Θ∗. Therefore,

the identified set Θ∗ naturally collects all sets whose representative points render a linear program with

non-empty feasible region. Since the arrangement involves only hyperplanes through the origin, all sets take

the form of a polyhedral cone, hence the identified set Θ∗ is a union of polyhedral cones. This implies that

the identified set Θ∗ may not be connected, and for any θ ∈ Θ∗, we also have λθ ∈ Θ∗ for all λ ≥ 0. An

appropriate normalization—for example, fixing ||θ|| = 1—leads to a bounded identified set Θ∗.

4 Additional Assumptions

The previous section outlines the mechanics of our main bounding procedure. In this section we show

how to introduce additional independence and monotonicity assumptions. Independence assumptions are

quite common in parametric binary response models and binary response models with endogenous regressors,

although here we show how to impose various independence assumptions as a set of linear equality constraints

in the optimization problems of Theorem 3.2. Finally, monotonicity assumptions appear in various forms

in the literature on treatment effects, and our incorporation of monotonicity restrictions arising from choice

theory makes substantial use of response types, resembling the approach of Heckman and Pinto (2018).
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4.1 Independence Assumptions

In some cases the researcher may have access to a variable that is believed to be independent of the distribu-

tion of latent variables. If such a variable enters as an argument in the structural function, then intuitively

such a variable induces variation in the observed conditional probabilities without affecting the distribution

of latent variables. We refer to such variables as exogenous covariates. A similar intuition applies if the

variable is independent of the distribution of latent variables, does not enter as an argument in the struc-

tural function, but has nontrivial dependence with the variables that do enter the structural function.22

We refer to such variables as instruments. Any additional variation generated in the observed conditional

probabilities by either exogenous covariates or instruments can be used to further pin down the distribution

of latent variables.

We now distinguish between the random variables in X and Z by allowing the variables in the random

vector Z to satisfy an independence assumption with the latent variables U .

Assumption 4.1 (Independence). For all A ∈ B(U) we have PU |Z(A | Z = z) = PU (A), PZ−a.s.

The independence assumption restricts the econometric model by constraining the set of admissible la-

tent variable distributions, and provides a crucial link between the conditional distributions of U | Z = z

across values of z ∈ Z. When applied to our context, Assumption 4.1 nests the two kinds of independence

constraints introduced above (i.e. exogenous covariates and instruments). Furthermore, it is without loss of

generality that we continue to write the structural function ϕ as a function of Z, which helps us avoid un-

necessary repetition by considering the two kinds of independence constraints separately. Also, even though

Assumption 4.1 posits full independence between Z and the vector of latent variables U , the assumption

can be easily modified for the case when a subvector of Z, say Z1, is conditionally independent of U given

some other subvector of Z, say Z2. We suppress this case for simplicity, but we note that consideration of

conditional independence does not have any significant impact on the results to come, and thus can be easily

accommodated.

Definition B.1 in Appendix B.1 provides the extension of Definition 2.1 to the case when Assumption

4.1 also holds. Corollary B.1 in Appendix B.1 then provides the extension of Theorem 3.1 to the case when

Assumption 4.1 also holds, and again allows us to reduce an infinite dimensional existence problem to a

manageable finite dimensional existence problem. Intuitively, Corollary B.1 shows that every conditional

probability measure PU |Y,X,Z defined on the sets A(θ) from (3.4) satisfying the independence assumption

can be extended to a probability measure on B(U) that satisfies Assumption 4.1. This result can be used to

show that Assumption 4.1 is observationally equivalent to imposing independence between Z and response

types r(U, θ).

To extend the linear programming result of Theorem 3.2 it is straightforward to see that we must simply

include the additional constraints from Corollary B.1. Without loss of generality we again assume that all

22Restricting an exogenous variable from entering the structural function is known as the exclusion restriction in the termi-
nology of simultaneous equations.
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values of (y, x, z) are assigned positive probability by the observed distribution. Then these constraints can

be written in terms of the parameter vector π(θ) as:∑
y∈{0,1}

∑
x∈X

π(y, x, zk, s, θ)P (Y = y,X = x | Z = zk)

=
∑

y∈{0,1}

∑
x∈X

π(y, x, zk+1, s, θ)P (Y = y,X = x | Z = zk+1), (4.1)

for k = 1, . . . ,mz−1. The formal statement of the extension of Theorem 3.2 to the case when the constraints

(4.1) are also imposed is provided by Corollary B.2 in Appendix B.1.

4.2 Monotonicity Assumptions

In this subsection we introduce monotonicity assumptions and demonstrate how monotonicity assumptions

impose constraints on the bounding problem by effectively eliminating certain response types. To introduce

our monotonicity assumptions, let M ⊂ {1, . . . ,m} × {1, . . . ,m} denote any collection of pairs of integers

(j, k), where 1 ≤ j, k ≤ m.

Assumption 4.2 (Monotonicity). For each θ ∈ Θ and each pair (j, k) in the setM we have ϕ(xj , zj , θ, u) ≤

ϕ(xk, zk, θ, u).

This monotonicity assumption states that, when comparing two points (xj , zj) and (xk, zk), the value

of the structural function can be ordered by the researcher. Note that if the order determined by the re-

searcher’s monotonicity assumption for the pair of points (xj , zj) and (xk, zk) is ϕ(xj , zj , θ, u) ≤ ϕ(xk, zk, θ, u)

(for example), then the researcher automatically rules out response types with 1{ϕ(xj , zj , θ, u) ≥ 0} >

1{ϕ(xk, zk, θ, u) ≥ 0}. The following example illustrates how this idea leads to elimination of response

types.

Example 2. Suppose again that we have only a binary variable X ∈ {0, 1} and latent variables U (i.e. no

variables Z and no fixed coefficients θ). Then the structural function from (2.1) can be written as ϕ(X,U)

and the binary response vector r(u, θ) can be written as r(u), where:

r(u) =

1{ϕ(0, u) ≥ 0}

1{ϕ(1, u) ≥ 0}

 .
Note that there are only four response types; that is, r(u) ∈ {s1, s2, s3, s4} where:

s1 =

1

1

 , s2 =

1

0

 , s3 =

0

1

 , s4 =

0

0

 .
Without any additional restrictions, all response types—and thus all sets of the form U(s, θ) for s ∈ {0, 1}2—

can be assigned positive probability by the optimization problems in Theorem 3.2. Now suppose we entertain

the monotonicity assumption ϕ(0, u) ≤ ϕ(1, u). Imposing this constraint clearly rules out the case when
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r(u) = s2, and thus the set U(θ, s2) = {u : r(u) = s2} must be assigned probability zero in any solution to

the optimization problems in Theorem 3.2. Constraining such sets to be assigned zero probability in these

optimization problems reduces the size of the feasible region and thus potentially tightens the resulting bounds

on counterfactual probabilities.

Monotonicity of the type entertained here has a number of precedents in the literature on treatment

effects, and can be interpreted a few different ways. For example, when Y is interpreted as a treatment

indicator, the type of monotonicity introduced here nests the monotonicity assumption from Angrist et al.

(1996) required for identification of the local average treatment effect. Alternatively, when Y is the interpreted

as the binary outcome after some (possibly endogenous) treatment X, our monotonicity assumption can be

interpreted as a version of the monotone treatment response assumption introduced in Manski (1997) and also

considered in Manski and Pepper (1998). Finally, similar monotonicity assumptions in triangular systems

have been extensively explored by Heckman and Pinto (2018). In particular, Heckman and Pinto (2018)

explore how choice theory can be used to impose monotonicity assumptions and to eliminate response types,

and many of their insights are applicable here.

Following the insights from the example above, let us define the collection of binary vectors SM to be

those that respect the monotonicity relations from Assumption 4.2. Definition B.2 in Appendix B.2 provides

the extension of Definition 2.1 to the case when Assumption 4.2 is also imposed. The extension of Theorem

3.1 to the case when Assumption 4.2 is imposed is provided by Corollary B.3 in Appendix B.2. To extend

the results of Theorem 3.2 we must simply include the set of constraints imposed by Assumption 4.2 in our

optimization problems. These constraints are provided in Corollary B.3, and can be written in terms of the

parameter vector π(θ) as: ∑
s∈ScM

π(y, xj , zj , s, θ) = 0, (4.2)

for all y ∈ {0, 1} and j = 1, . . . ,m occurring with positive probability. Corollary B.4 in Appendix B.2 then

shows the extension of Theorem 3.2 to the case when Assumption 4.2 is imposed using the constraints (4.2).

Combining all the results seen in this section, any combination of Assumption 2.1, Assumption 4.1

and Assumption 4.2 can be imposed on the optimization problems in Theorem 3.2 by simply adding the

corresponding combination of constraints (4.1) and/or (4.2).

5 Application

In this section we apply our method to study the impact of private health insurance on an individual’s

decision to visit a doctor. In general, insurance markets are plagued by problems arising from asymmetric

information between consumers and insurance providers (c.f. Rothschild and Stiglitz (1978)). For example,

adverse selection occurs in the health insurance market when individuals have more information about their

latent health determinants than the providers of health insurance. A robust prediction of the classical theory
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of asymmetric information is that those who are more likely to purchase insurance are also those who are

more likely to experience the insured risk.23 On the other hand, there has been little and mixed empirical

evidence of adverse selection in health insurance markets (see Cardon and Hendel (2001) for a discussion).

Others have suggested that those who purchase insurance may be more risk averse, and so less likely to engage

in activities that might cause them to experience the insured risk. Evidence of this is found in Finkelstein

and McGarry (2006), who demonstrate that wealthier and more cautious individuals are more likely to have

long-term care insurance, but less likely to ever use their insurance. However, in many cases the opposite is

equally plausible. For example, Bajari et al. (2014) explore the effect of moral hazard in health insurance

markets, which occurs when those who purchase health insurance are more likely to experience the insured

risk given that they no longer bear the full cost of health care.

Here we do not attempt to disentangle the effects of adverse selection, risk aversion, or moral hazard.

Instead we compute various counterfactual parameters while remaining agnostic on the exact nature of the

unobservables linking the health insurance and health care utilization decisions. We take the decision to visit

a doctor as our binary outcome variable of interest, and we consider the individuals’ private health insurance

status to be an endogenous explanatory variable. This latter point is consistent with the idea that private

insurance status may be dependent with individual-specific latent factors—most importantly, unobserved

health determinants and attitudes towards risk—that influence an individual’s propensity to visit a doctor.

We use data from the 2010 wave of the Medical Expenditure Panel Survey (MEPS). This data has been

analyzed by Han and Lee (2019). We focus on the same sub-sample they consider. In particular, we focus

on the month of January 2010, consider only individuals between ages 25 and 64, and drop individuals who

obtain either federal or state insurance in 2010 and individuals who are self-employed or unemployed. These

restrictions leave us with a sample of 7555 individuals.

In all specifications X is a binary endogenous variable representing an individual’s private insurance

status, and we consider a binary health status variable (Z1) and a binary marital status variable (Z2) as

regressors.24 Finally, we use the number of employees working for the individual’s firm (Z3) as an instrument.

This variable provides a measure of the size of a firm and has discrete support in the range [1, 500], which

we further discretize into 11 bins.25 Using firm size as an instrument is consistent with the evidence that

larger firms are more likely to provide health insurance benefits, but do not directly influence an individual’s

decision to visit a doctor.26 The same instrument was used in Han and Lee (2019).

A possible concern with using firm size as an instrument is that risk averse individuals may be more

23The “insured risk” refers to the event for insurance was purchased. In our context, it is any event that would typically
require a visit to the doctor.

24The MEPS data includes information on self-reported health status on a scale from 1 − 5, and we regard values less than
or equal to 2 as being “unhealthy.”

25Variable Z3 is supported on the range [1, 500] which is clearly top-coded. We notice that there is bunching of observations
at firm size rounded by five, which implies that some of the support of Z3 has very few observations. In order to get reliable
estimates of the conditional choice probabilities, we further discretize the firm size into 11 bins. The bins are respectively [1, 5],
(5, 10], (10, 20], (20, 30], (30, 40], (40, 50], (50, 60], (60, 70], (70, 100], (100, 200] and (200, 500].

26From Cardon and Hendel (2001) p.408: “Another observed symptom, consistent with the theoretical predictions, is that
the uninsured tend to work for small employers. Large employers can overcome adverse selection by risk pooling.”
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likely to select into a job with a larger firm size. In an attempt to address this issue, we investigate a

weaker independence assumption (which we call relaxed independence) that assumes the firm size Z3 is

conditionally independent of U given (Z1, Z2) only when Z3 lies within a certain range. The main idea is

that once we condition on a particular range of firm size, the remaining variation in firm size is independent

of U conditional on (Z1, Z2). We consider four ranges, given by (1, 10], (10, 50], (50, 100] and (100, 500], and

impose our conditional independence assumption for each range separately.

The first parameter we consider is the average treatment effect, defined as:

µate :=
∑

(y,x,z)∈{0,1}×X×Z

PU |Y,X,Z(ϕ(1, z, u, θ) ≥ 0 | Y = y,X = x, Z = z)P (Y = y,X = x, Z = z)

−
∑

(y,x,z)∈{0,1}×X×Z

PU |Y,X,Z(ϕ(0, z, u, θ) ≥ 0 | Y = y,X = x, Z = z)P (Y = y,X = x, Z = z).

This parameter provides the average causal effect of obtaining health insurance on the decision to visit a doc-

tor. Near the end of this section we also consider bounds on counterfactual conditional choice probabilities.

We construct our bounds under the following set of assumptions:

(A1) Only Assumptions 2.1 and 2.2.

(A2) (A1) and monotonicity (Assumption 4.2). The discussion below provides further details.

(A3) (A1) and independence between (Z1, Z2) and U (Assumption 4.1).

(A4) (A1), (A2) and (A3) together.

(A5) (A1) and independence between (Z1, Z2, Z3) and U (Assumption 4.1).

(A6) (A1), (A2) and (A5) together.

(A7) (A1) and independence between (Z1, Z2) and U , and relaxed independence with Z3 (Assumption 4.1).

(A8) (A1), (A2) and (A7) together.

Note that the general index function takes the form ϕ(x, z1, z2, u, θ), and when we say that the monotonicity

assumption is imposed in (A2), we are in fact imposing:

ϕ(1, 0, z2, u, θ) ≥ ϕ(0, 0, z2, u, θ),

for each z2 ∈ {0, 1}. This implies that for an unhealthy individual, the propensity to visit a doctor when

the person has private insurance is always weakly greater than without the insurance, regardless of marital

status. Finally we consider three different models for the binary outcome variable Y :

Y = 1{ϕ(X,Z,U) ≥ 0}, (M1)

Y = 1{XU1 + Z1θ1 + Z2θ2 ≥ U2}, (M2)
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Y = 1{Xθ1 + Z1θ2 + Z2θ3 ≥ U}. (M3)

Recall that the extension of our procedure to cover model (M1) was discussed briefly at the end of Section 3.1.

Indeed, under model (M1) the index function ϕ need not even be explicitly specified and it may not satisfy

the linearity assumption made under Assumption (2.1). This makes model (M1) the most flexible. Models

(M2) and (M3) impose linearity of ϕ in the latent variables and in the parameters. Here we distinguish two

cases. In the first case, (M2) regards (U1, U2) as the latent variables in the model. Model (M3) is the same

as (M2) except that we have replaced the random slope coefficient U1 from (M2) with a fixed coefficient.

Model (M3) represents the additively separable linear index model that is commonly used in the empirical

literature, except for the fact that we do not assume a parametric distribution for U and do not have a

model for how the endogenous variable X is generated.

In the presence of an independent and identically distributed random sample, our method can be employed

using a slightly modified version of simple plug-in estimators for all probabilities depending on the observed

random variables Y , X, Z1, Z2 and Z3. In Appendix B.3 we present a consistency result specifically

designed for plug-in estimation in the kinds of problems considered in this paper.27 However, it is well-

known that simple plug-in estimators for the objective function and constraints defining the linear programs

in Theorem 3.2 can produce an estimate of the identified set that is inwardly biased (c.f. Chernozhukov et al.

(2013)).28 In addition to the plug-in estimators, we use a half-median unbiased estimator constructed using

the inference procedure of Cho and Russell (2020) and report them for comparison. Our confidence sets are

also constructed using this procedure. Details on how to use the procedure of Cho and Russell (2020) to

construct half-median unbiased estimators and confidence sets in our setting are presented in Appendix B.4,

where we discuss how to adapt the inference procedure in Cho and Russell (2020) to accommodate for our

profiling procedure. We have also made a few adjustments to the procedure in Cho and Russell (2020) for

computational reasons. In particular, the procedure of Cho and Russell (2020) proceeds by bootstrapping

linear programs. For specifications (A5) - (A8), a noticeable proportion of these bootstrap linear programs

had empty feasible regions, although overall none of the specifications were rejected at the 10% level (i.e.

the 90% confidence set for each specification was always non-empty). However, empty feasible regions can

slow down the procedure of Cho and Russell (2020), and so for computational reasons we relaxed some

of the troublesome constraints when implementing the procedure. Unfortunately our use of a relaxation

procedure for some specifications implies that two models with nested assumptions do not necessarily have

nested half-median unbiased bounds or confidence sets, as one would expect. It also makes the half-median

unbiased estimates and the confidence sets slightly wider than necessary. Despite this, we continue to report

the half-median unbiased estimates and confidence sets for comparison with our modified plug-in estimates,

although these remarks should be kept in mind when interpreting the results.

27Importantly, our consistency result requires a slight (but vanishing) relaxation of the constraint set in our linear programs;
in particular, see the sequence “bn” in Appendix B.3. However, the scale of this sequence can be taken to be extremely small,
and so has a minimal impact on the estimated bounds.

28This can be proven by a simple application of Jensen’s inequality.
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(A1) (A2) (A3) (A4) (A5) (A6) (A7) (A8)
(M1): Nonseparability of ϕ

Plug-in [−0.91, 0.73] [−0.55, 0.73] [−0.81, 0.59] [−0.55, 0.59] [−0.61, 0.46] [−0.38, 0.42] [−0.81, 0.59] [−0.52, 0.58]
Half-Median [−0.91, 0.73] [−0.55, 0.73] [−0.81, 0.59] [−0.55, 0.59] [−0.73, 0.55] [−0.53, 0.57] [−0.85, 0.62] [−0.56, 0.62]
90% c.s. [−0.92, 0.74] [−0.56, 0.74] [−0.82, 0.60] [−0.56, 0.60] [−0.75, 0.57] [−0.54, 0.59] [−0.85, 0.63] [−0.57, 0.64]

(M2): Linearity of ϕ (with random coefficients)
Plug-in [−0.91, 0.73] [−0.53, 0.73] [−0.64, 0.40] [−0.37, 0.40] [−0.37, 0.30] [0.09, 0.29] [−0.59, 0.41] [−0.35, 0.41]
Half-Median [−0.98, 0.88] [−0.78, 0.88] [−0.65, 0.43] [−0.73, 0.45] [−0.59, 0.40] [−0.35, 0.39] [−0.66, 0.46] [−0.41, 0.46]
90% c.s. [−0.98, 0.88] [−0.78, 0.88] [−0.66, 0.44] [−0.73, 0.46] [−0.63, 0.42] [−0.37, 0.41] [−0.68, 0.47] [−0.42, 0.47]

(M3): Linearity of ϕ (with fixed coefficients)
Plug-in [−0.91, 0.73] [−0.53, 0.73] [−0.64, 0.40] [0.00, 0.40] [0.09, 0.28] [0.09, 0.28] [0.02, 0.41] [0.02, 0.41]
Half-Median [−0.91, 0.73] [−0.53, 0.73] [−0.64, 0.40] [0.00, 0.40] [0.00, 0.41] [0.00, 0.40] [−0.01, 0.45] [−0.01, 0.45]
90% c.s. [−0.92, 0.74] [−0.54, 0.74] [−0.65, 0.41] [0.00, 0.41] [−0.01, 0.43] [−0.02, 0.42] [−0.02, 0.47] [−0.02, 0.47]

Table 1: Identified sets for the average treatment effect under different specifications and under various assumptions.
For the plug-in estimates, we convert all equality constraints to two inequality constraints and introduce a small
slackness bn = 0.0001/

√
log(n) which is needed for consistency (see Appendix B.3). Half-median unbiased estimates

and a 90% confidence set are also reported. These sets are computed using 999 bootstrap samples using the inference
approach in Cho and Russell (2020).

The identified set for µate under assumptions (A1) - (A8) and models (M1) - (M3) are reported in Table

1. For simplicity, we report the convex hull of the estimated identified set for each specification. Table 1

also reports our modified plug-in estimator (see Appendix B.3) as well as half-median unbiased estimators

and 90% confidence sets. Due to a confluence of factors—including the dimension of the empirical choice

probability vector, the large number of constraints, and the sample size—we find that the bootstrap standard

errors from our modification of the Cho and Russell (2020) procedure are small, resulting in half-median

unbiased estimates that are only slightly more narrow than the 90% confidence sets. Unsurprisingly, the

plug-in bounds on µate shrink as the strength of our assumptions increase. The most flexible model is

(M1) under assumption (A1). It is interesting to note that the bounds on µate in this case are contained

strictly within the interval [−1, 1], implying that even with the most flexible model, the data provide some

information about the average treatment effects. Also note that the identified set for µate always overlaps

zero for model (M1). As expected, independence of the instrument Z3 is a stronger assumption than the

relaxed independence, hence the plug-in estimates of the identified set under assumptions (A7) and (A8)

always contain the plug-in estimates of the identified set under (A5) and (A6). The results also show that

relaxed independence does not provide much identifying power (compare the results under Assumptions (A3)

and (A7)). On the other hand, independence of Z3 does induce a noticeable narrowing of the identified set

for µate (compare the results under Assumptions (A3) and (A6)). The results for this model are a useful

benchmark to compare with cases where we impose linearity on the index function.

Next, we see in Table 1 that the linear models from (M2) and (M3) narrow the bounds relative to the

case of general nonseparability. Unsurprisingly, the smallest interval for µate is obtained under Assumptions

(A5) and (A6) for model (M3). For models (M2) and (M3) we make use of our method for profiling θ, as

described in Section 3.3. In model (M2) we must profile on θ ∈ R2 and there are 8 representative points.

Interestingly, we find that under Assumptions (A1) - (A4) and (A7) - (A8), the identified set of θ is the entire

euclidean space R2. This illustrates that non-trivial bounds on µate are possible even when the structural
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parameters are unidentified. Figure 2 shows the intervals computed using the linear programs of the form

(3.13) and (3.14) for each representative point of θ under our various assumptions. The results in Table 1

for model (M2) represent the (convex hull of the) union of the intervals in Figure 2.

In the second linear model (M3), all coefficients are fixed. Thus, we need to profile on a parameter vector

θ ∈ R3. Our profiling procedure from Section 3.3 returns 96 representative points, each associated with a

polyhedral cone in R3. Under Assumptions (A1) and (A2), the identified set for θ is R3, while for all other

assumptions (A3) - (A8) we get an informative identified set for θ. In Figure 3 we also show the intervals

computed using the linear programs of the form (3.13) and (3.14) for each representative point of θ under

our various assumptions. The results in Table 1 for model (M3) represent the (convex hull of the) union of

the intervals in Figure 3.

A few interesting patterns emerge when we consider parameters other than the average treatment effect.

In particular, consider the counterfactual choice probability:

µccp(y) :=
∑
z∈Z

PU |Y,X,Z(ϕ(1, z, u, θ) ≥ 0 | Y = y,X = 0, Z = z)P (Z = z | Y = y,X = 0),

for y ∈ {0, 1}. We focus on the parameter µccp(0) for simplicity, which represents the counterfactual choice

probability of visiting a doctor when given private health insurance for the set of individuals who have no

insurance and who have chosen not to visit a doctor, averaged across health and marital status. Table 2

reports the convex hull of the estimated identified set for µccp(0) under various model specifications and

under various assumptions. Similar to the bounds for µate, the half-median unbiased estimates are only

slightly more narrow than the 90% confidence sets. We also see that the bounds on counterfactual choice

probabilities tend to be wide and uninformative for most assumptions. Note that under Assumption (A1)

we always obtain the interval [0, 1] for the estimated identified set. The narrowest bounds are found in

model (M3) under Assumptions (A5) and (A6). These bounds allow us to conclude that the probability

an individual visits a doctor when given private health insurance, given that they have no private health

insurance and did not visit a doctor, is somewhere in the interval [0.04, 0.19].

To summarize, Table 1 shows that most specifications do not identify the sign of µate, and Table 2

shows that most bounds on counterfactual choice probabilities are not informative. Exceptions typically

occur only under the strongest independence assumptions, given by assumptions (A5) and (A6), and the

strongest functional form assumptions, given in model (M3). However, even the strongest set of assumptions

considered here are much weaker than the typical assumptions employed in empirical work. For the sake of

comparison to our results, we estimate the following bivariate probit model:

Y = 1{Xθ1 + Z1θ2 + Z2θ3 ≥ ε1},

X = 1{Z1γ1 + Z2γ2 + Z3γ3 ≥ ε2},

where (Z1, Z2, Z3) are assumed to be independent from (ε1, ε2), which are bivariate normal with mean zero,
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(A1) (A2) (A3) (A4) (A5) (A6) (A7) (A8)
(M1): Nonseparability of ϕ

Plug-in [0.00, 1.00] [0.00, 1.00] [0.00, 0.98] [0.00, 0.98] [0.03, 0.79] [0.03, 0.71] [0.02, 0.95] [0.02, 0.92]
Half-Median [0.00, 1.00] [0.00, 1.00] [0.00, 0.98] [0.00, 0.98] [0.00, 0.93] [0.00, 0.95] [0.00, 0.99] [0.00, 0.97]
90% c.s. [0.00, 1.00] [0.00, 1.00] [0.00, 1.00] [0.00, 1.000] [0.00, 0.96] [0.00, 0.97] [0.00, 1.00] [0.00, 0.97]

(M2): Linearity of ϕ (with random coefficients)
Plug-in [0.00, 1.00] [0.00, 1.00] [0.00, 0.34] [0.00, 0.31] [0.04, 0.23] [0.04, 0.20] [0.02, 0.40] [0.02, 0.36]
Half-Median [0.00, 1.00] [0.00, 1.00] [0.00, 0.46] [0.00, 0.34] [0.00, 0.44] [0.00, 0.40] [0.00, 0.52] [0.00, 0.46]
90% c.s. [0.00, 1.00] [0.00, 1.00] [0.00, 0.47] [0.00, 0.36] [0.00, 0.48] [0.00, 0.43] [0.00, 0.54] [0.00, 0.50]

(M3): Linearity of ϕ (with fixed coefficients)
Plug-in [0.00, 1.00] [0.00, 1.00] [0.00, 0.31] [0.00, 0.31] [0.04, 0.19] [0.04, 0.19] [0.02, 0.36] [0.02, 0.36]
Half-Median [0.00, 1.00] [0.00, 1.00] [0.00, 0.31] [0.00, 0.31] [0.00, 0.33] [0.00, 0.31] [0.00, 0.45] [0.00, 0.45]
90% c.s. [0.00, 1.00] [0.00, 1.00] [0.00, 0.32] [0.00, 0.32] [0.00, 0.37] [0.00, 0.35] [0.00, 0.50] [0.00, 0.50]

Table 2: This table reports the convex hull of the estimated bounds on µccp(0), the counterfactual choice probability
of visiting doctor when granted insurance for those who chose not to visit a doctor without insurance. For the
plug-in estimates, we convert all equality constraints into two inequality constraints and introduce a small slackness
bn = 0.0001/

√
log(n), which is needed for consistency (see Appendix B.3). Half-median unbiased estimates and

a 90% confidence set are also reported. These sets are computed using 999 bootstrap samples using the inference
approach in Cho and Russell (2020).

unit variance and correlation ρ. This model was estimated with our data using maximum likelihood, and

µate was estimated as 0.16 with a bootstrapped confidence interval of [0.11, 0.20]. This value for µate lies

within all of our bounds in Table 1, and seems to suggest strong evidence of a positive causal effect of health

insurance on the decision to visit the doctor.29 However, the bivariate probit model is highly parameterized,

and the results from Table 1 suggest that under weaker assumptions the sign of µate may not be identified.

The previous literature studying the effects of health insurance on the utilization of health care services

is full of mixed results, and Table 1 suggests that highly parameterized models may give highly significant,

but possibly misleading results relative to models that make weaker assumptions.

6 Conclusion

This paper considers (partial) identification of a variety of parameters in binary response models with

possibly endogenous regressors. Importantly, our class of models allows for general nonseparability of the

index function in latent variables, and does not require any parametric distributional assumptions. Our

approach to bounding counterfactual parameters is based on framing the bounding in terms of optimization

problems. Our specific partition of the latent variable space is key to our suggested procedure, and we show

how to enumerate the sets in this partition using results from the literature on computational geometry and

hyperplane arrangements. In doing so, we provide a feasible method of constructing bounds on counterfactual

quantities under weak assumptions where the latent variables may be multi-dimensional and nonseparable.

29Han and Lee (2019) obtain a similar result in a model allowing for ε1 and ε2 to have unrestricted marginals, and a flexible
dependence structure. However, they consider a different model from us, and the average treatment effect in Han and Lee
(2019) is different from ours; we consider the average treatment effect averaged over all values of (x, z), while they report the
average treatment effect at the average value of their conditioning variables. They report the average treatment effect at various
quantiles of their conditioning variables.
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We also thoroughly study the special case when the index function is linear in parameters, and show how to

compute exact (i.e. not approximate) sharp bounds on counterfactual quantities, as well as how to adapt a

recent inference procedure to the setting in this paper in order to construct confidence sets and bias-corrected

estimates of the identified set. Finally, we show how to impose independence and monotonicity assumptions,

and we present an application of our method to study the effects of private health insurance on the utilization

of health care services.

There are a number of obvious further directions in which to expand the ideas presented in this paper.

For example, the consideration of multinomial choice models, triangular systems, or general simultaneous

discrete choice models all seem to be natural next steps. In addition, a major emphasis in this paper, as

in other recent papers, is on the important computational problems that arise in models that are partially

identified. We believe exploring applications of state-of-the-art algorithms in computer science to problems

in econometrics—as we have attempted here—is a fruitful avenue of research.
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A Proofs

A.1 Proofs of Results in the Main Text

Proof of Theorem 2.1. Let P∗∗Yγ |Y,X,Z denote the set of all conditional distributions PYγ |Y,X,Z such that there

exists a pair (PU |Y,X,Z , θ) ∈ I∗Y,X,Z satisfying:

PYγ |Y,X,Z (Yγ = 1 | Y = y,X = x, Z = z) = PU |Y,X,Z (ϕ(γ(X,Z), U, θ) ≥ 0 | Y = y,X = x, Z = z) ,

PX,Z−a.s. To prove the result it suffices to show P∗Yγ |Y,X,Z = P∗∗Yγ |Y,X,Z . To do this, we show that P∗Yγ |Y,X,Z ⊂

P∗∗Yγ |Y,X,Z and P∗∗Yγ |Y,X,Z ⊂ P
∗
Yγ |Y,X,Z . To this end, begin by fixing an arbitrary PYγ |Y,X,Z ∈ P∗Yγ |Y,X,Z . By

Definition 2.2 we have:

PYγ |Y,X,Z,U (Yγ = 1{ϕ(γ(X,Z), U, θ) ≥ 0} | Y = y,X = x, Z = z, U = u) = 1, (A.1)

PY,X,Z,U−a.s. for some (PU |Y,X,Z , θ) ∈ I∗Y,X,Z . For this pair (PU |Y,X,Z , θ) we have:

PYγ |Y,X,Z,U (Yγ = 1 | Y = y,X = x, Z = z, U = u)

= PYγ |Y,X,Z,U (Yγ = 1, Yγ = 1{ϕ(γ(X,Z), U, θ) ≥ 0} | Y = y,X = x, Z = z, U = u) ,

PY,X,Z,U−a.s., which follows from (A.1). Now note:

PYγ |Y,X,Z,U (Yγ = 1, Yγ = 1{ϕ(γ(X,Z), U, θ) ≥ 0} | Y = y,X = x, Z = z, U = u) = 1{ϕ(γ(x, z), U, θ) ≥ 0},

PY,X,Z,U−a.s. Thus we have:

PYγ |Y,X,Z (Yγ = 1 | Y = y,X = x, Z = z) =

∫
PYγ |Y,X,Z,U (Yγ = 1 | Y = y,= x, Z = z, U = u) dPU |Y,X,Z

=

∫
1{ϕ(γ(x, z), U, θ) ≥ 0} dPU |Y,X,Z

= PU |Y,X,Z(ϕ(γ(X,Z), U, θ) ≥ 0 | Y = y,X = x, Z = z),

PY,X,Z−a.s. In other words, for our PYγ |Y,X,Z ∈ P∗Yγ |Y,X,Z we have shown that there exists a pair (PU |Y,X,Z , θ) ∈

I∗Y,X,Z satisfying:

PYγ |Y,X,Z (Yγ = 1 | Y = y,X = x, Z = z) = PU |Y,X,Z (ϕ(γ(X,Z), U, θ) ≥ 0 | Y = y,X = x, Z = z) ,

PY,X,Z−a.s. This proves PYγ |Y,X,Z ∈ P∗∗Yγ |Y,X,Z , and since PYγ |Y,X,Z ∈ P∗Yγ |Y,X,Z was arbitrary we conclude

that P∗Yγ |Y,X,Z ⊂ P
∗∗
Yγ |Y,X,Z .

For the reverse inclusion, fix any arbitrary PYγ |Y,X,Z ∈ P∗∗Yγ |Y,X,Z . Then by definition there exists a pair

(PU |Y,X,Z , θ) ∈ I∗Y,X,Z satisfying:

PYγ |Y,X,Z (Yγ = 1 | Y = y,X = x, Z = z) = PU |Y,X,Z (ϕ(γ(X,Z), U, θ) ≥ 0 | Y = y,X = x, Z = z) ,
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PY,X,Z−a.s. It suffices to show that for this pair (PU |Y,X,Z , θ) there exists PYγ |Y,X,Z,U satisfying:

PYγ |Y,X,Z,U (Yγ = 1{ϕ(γ(X,Z), U, θ) ≥ 0} | Y = y,X = x, Z = z, U = u) = 1, (A.2)

PY,X,Z,U−a.s. By the Radon-Nikodym Theorem, the existence of a (version of) PYγ |Y,X,Z,U is guaranteed

by the fact that PYγ ,U |Y,X,Z � PU |Y,X,Z . Since all spaces involved are euclidean, we can choose the version

to be an almost surely unique regular conditional distribution (c.f. Durrett (2010) Theorem 5.1.9). By

construction this PYγ |Y,X,Z,U satisfies:

PYγ ,U |Y,X,Z(Yγ ∈ A,U ∈ B | Y = y,X = x, Z = z)

=

∫
B

PYγ |Y,X,Z,U (Yγ ∈ A | Y = y, Z = z,X = x, U = u) dPU |Y,X,Z ,

PY,X,Z−a.s. for every A ⊂ {0, 1} and B ∈ B(U). Now note that:

PYγ |Y,X,Z,U (Yγ = 1, Yγ = 1{ϕ(γ(X,Z), U, θ) ≥ 0} | Y = y,X = x, Z = z, U = u) = 1{ϕ(γ(x, z), u, θ) ≥ 0},

PYγ |Y,X,Z,U (Yγ = 0, Yγ = 1{ϕ(γ(X,Z), U, θ) ≥ 0} | Y = y,X = x, Z = z, U = u) = 1{ϕ(γ(x, z), u, θ) < 0}.

PY,X,Z−a.s. Thus:

PYγ |Y,X,Z (Yγ = 1{ϕ(γ(X,Z), U, θ) ≥ 0} | Y = y,X = x, Z = z)

=

∫
U
PYγ |Y,X,Z,U (Yγ = 1{ϕ(γ(X,Z), U, θ) ≥ 0} | Y = y,X = x, Z = z, U = u) dPU |Y,X,Z

=

∫
U
PYγ |Y,X,Z,U (Yγ = 1, Yγ = 1{ϕ(γ(X,Z), U, θ) ≥ 0} | Y = y,X = x, Z = z, U = u) dPU |Y,X,Z

+

∫
U
PYγ |Y,X,Z,U (Yγ = 0, Yγ = 1{ϕ(γ(X,Z), U, θ) ≥ 0} | Y = y,X = x, Z = z, U = u) dPU |Y,X,Z

=

∫
U
1{ϕ(γ(x, z), u, θ) ≥ 0} dPU |Y,X,Z +

∫
U
1{ϕ(γ(x, z), u, θ) < 0} dPU |Y,X,Z

= PU |Y,X,Z(ϕ(γ(x, z), u, θ) ≥ 0 | Y = y,X = x, Z = z) + PU |Y,X,Z(ϕ(γ(x, z), u, θ) < 0 | Y = y,X = x, Z = z)

= 1,

PY,X,Z−a.s. This proves (A.2) and thus shows PYγ |Y,X,Z ∈ P∗Yγ |Y,X,Z . Since PYγ |Y,X,Z ∈ P∗∗Yγ |Y,X,Z was

arbitrary we can conclude that P∗∗Yγ |Y,X,Z ⊂ P
∗
Yγ |Y,X,Z . Combining the two inclusions, we have P∗Yγ |Y,X,Z =

P∗∗Yγ |Y,X,Z . This completes the proof.

�

Proof of Theorem 3.1. Let PYγ |Y,X,Z be a collection of conditional distributions, and suppose there exists

(PU |Y,X,Z , θ) ∈ I∗Y,X,Z satisfying (2.5). Note that (3.7) is equivalent to (2.5), so we can conclude that

(PU |Y,X,Z , θ) satisfies (3.7). Furthermore, by definition (PU |Y,X,Z , θ) ∈ I∗Y,X,Z implies that:

PU |Y,X,Z(U ∈ U(Y,X,Z, θ) | Y = y,X = x, Z = z) = 1, PY,X,Z − a.s.,
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which is equivalent to conditions (3.5) and (3.6). This shows that any pair (PU |Y,X,Z , θ) ∈ I∗Y,X,Z satisfying

(2.5) satisfies (3.5) - (3.7).

For the reverse, fix any θ ∈ Θ and any collection PU |Y,X,Z of probability measures on the sets in A(θ)

satisfying (3.5) - (3.7). We show that PU |Y,X,Z can be extended to a (not necessarily unique) probability

measure P̃U |Y,X,Z on B(U) in a manner that ensures P̃U |Y,X,Z satisfies (2.5) and such that (P̃U |Y,X,Z , θ) ∈

I∗Y,X,Z . Furthermore, by the definition of an extension, P̃U |Y,X,Z agrees with PU |Y,X,Z on all sets of the form

A(θ). To construct the extension, note that the sets in A(θ) form a disjoint partition of U . Now select a

single point u(s, θ) from the interior of each set U(s, θ) in the collection A(θ); if U(s, θ) has empty interior,

choose u(s, θ) as an arbitrary point from U . For any set A ⊂ U , define the indicator:

1(A, θ, s) = 1{u(s, θ) ∈ A ∩ int(U(s, θ))}.

Now define the function µy,x,z : B(U)→ R as:

µy,x,z(B) :=
∑

s∈{0,1}m
1(B, θ, s)PU |Y,X,Z (U(s, θ) | Y = y,X = x, Z = z) .

To verify that this is a proper probability measure on B(U), we must show that (i) µy,x,z(B) ≥ µy,x,z(∅) = 0

for every B ∈ B(U), (ii) µy,x,z(U) = 1, and (iii) for any countable sequence of disjoint sets {Ai}∞i=1 in B(U),

we have:

µy,x,z

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

µy,x,z(Ai).

The first property holds since 1(∅, θ, s) = 0 for all s. To verify the second property, note that 1(U , θ, s) = 1

for all s, so that:

µy,x,z(U) =
∑

s∈{0,1}m
1(U , θ, s)PU |Y,X,Z (U(s, θ) | Y = y,X = x, Z = z)

=
∑

s∈{0,1}m
PU |Y,X,Z (U(s, θ) | Y = y,X = x, Z = z)

= 1,

where the last line holds since PU |Y,X,Z is a probability measure on A(θ). For the third property, note that

for two disjoint Borel sets A1, A2 ∈ B(U) we have:

1(A1 ∪A2, θ, s) = 1(A1, θ, s) + 1(A2, θ, s).

Inducting on this formula, we conclude that for countable disjoint sets {Ai}∞i=1 in B(U), we have:

1

( ∞⋃
i=1

Ai, θ, s

)
=

∞∑
i=1

1(Ai, θ, s),
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Thus we can conclude:

µy,x,z

( ∞⋃
i=1

Ai

)
=

∑
s∈{0,1}m

1

( ∞⋃
i=1

Ai, θ, s

)
PU |Y,X,Z (U(s, θ) | Y = y,X = x, Z = z)

=
∑

s∈{0,1}m

∞∑
i=1

1(Ai, θ, s)PU |Y,X,Z (U(s, θ) | Y = y,X = x, Z = z)

=

∞∑
i=1

∑
s∈{0,1}m

1(Ai, θ, s)PU |Y,X,Z (U(s, θ) | Y = y,X = x, Z = z)

=

∞∑
i=1

µy,x,z(Ai).

Thus, our measure satisfies countable additivity. We conclude that µy,x,z is a proper probability measure.

Note that the argument above has been completed for a single triple (y, x, z) indexing the conditioning

variables. However, we can repeat the same argument as above for all (y, x, z) assigned positive probability,

and thus can construct a corresponding probability measure µy,x,z satisfying all the conditions described

above for each such (y, x, z).

Now we define P̃U |Y,X,Z : B(U) → [0, 1] by P̃U |Y,X,Z(B | Y = y,X = x, Z = z) = µy,x,z(B) for all

B ∈ B(U) and all (y, x, z) assigned positive probability. By the above, P̃U |Y,X,Z( · | Y = y,X = x, Z = z)

is a proper probability measure on B(U) for each (y, x, z). Also note that for any triple (1, x, z) assigned

positive probability, the pair (P̃U |Y,X,Z , θ) satisfies:

P̃U |Y,X,Z(U(1, x, z, θ) | Y = 1, X = x, Z = z)

=
∑
s∈Sj

P̃U |Y,X,Z(U(s, θ) | Y = 1, X = x, Z = z)

=
∑
s∈Sj

∑
s′∈{0,1}n

1(U(s, θ), θ, s′)PU |Y,X,Z (U(s, θ) | Y = 1, X = x, Z = z)

=
∑
s∈Sj

1(U(s, θ), θ, s)PU |Y,X,Z (U(s, θ) | Y = 1, X = x, Z = z)

= 1,

which follows from (3.5). Furthermore, for any triple (0, x, z) assigned positive probability, the pair (P̃U |Y,X,Z , θ)

also satisfies:

P̃U |Y,X,Z(U(0, x, z, θ) | Y = 0, X = x, Z = z)

=
∑
s∈Scj

P̃U |Y,X,Z(U(s, θ) | Y = 0, X = x, Z = z)

=
∑
s∈Scj

∑
s′∈{0,1}n

1(U(s, θ), θ, s′)PU |Y,X,Z (U(s, θ) | Y = 0, X = x, Z = z)

=
∑
s∈Scj

1(U(s, θ), θ, s)PU |Y,X,Z (U(s, θ) | Y = 0, X = x, Z = z)
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= 1,

which follows from (3.6). Conclude that:

P̃U |Y,X,Z(U ∈ U(Y,X,Z, θ) | Y = y,X = x, Z = z) = 1, a.s.

This shows that (P̃U |Y,X,Z , θ) ∈ I∗Y,X,Z . Finally, setting C := {u ∈ U : ϕ(γ(x, z), u, θ) ≥ 0}, it is straightfor-

ward to show that:

P̃U |Y,X,Z (C | Y = y,X = x, Z = z) =
∑

s∈{0,1}m
1(C, θ, s)PU |Y,X,Z (U(s, θ) | Y = y,X = x, Z = z)

=
∑

s∈Sγ(j)

PU |Y,X,Z (U(s, θ) | Y = y,X = xj , Z = zj)

= PYγ |Y,X,Z (Yγ = 1 | Y = y,X = xj , Z = zj) ,

for all (y, xj , zj) assigned positive probability, which follows from (3.7). This is exactly condition (2.5).

Conclude that (P̃U |Y,X,Z , θ) ∈ I∗Y,X,Z and that (P̃U |Y,X,Z , θ) satisfies (2.5). This completes the proof.

�

Proof of Theorem 3.2. Note that the constraints in (3.9) are equivalent to the constraints in (3.5) and (3.6).

Furthermore, the objective function in the optimization problems in Theorem 3.2 enforce (3.7). Thus,

using Theorem 3.1, a distribution π(θ) is feasible in the optimization problems from Theorem 3.2 if and

only if there exists a collection of Borel conditional probability measures PU |Y,X,Z satisfying (2.5) with

(PU |Y,X,Z , θ) ∈ I∗Y,X,Z . However, by Theorem 2.1, there exists a collection of Borel conditional probability

measures PU |Y,X,Z satisfying (2.5) with (PU |Y,X,Z , θ) ∈ I∗Y,X,Z if and only PYγ |Y,X,Z ∈ P∗Yγ |Y,X,Z , where

PYγ |Y,X,Z is the (collection of) conditional distribution(s) satisfying (2.5). �

Proof of Proposition 3.1. This follows immediately from the results of Buck (1943). �

A.2 Measurability Results

Definition A.1 (Effros-Measurability, Random Set, Selection). Let (Ω,A, P ) be a probability space, let V

be a Polish space, and let OV denote the collection of all open sets on V. A multifunction V : Ω → FV is

called Effros-measurable if for every A ∈ OV we have V −(A) := {ω ∈ Ω : V (ω) ∩ A 6= ∅} ∈ A. A random

element V : Ω→ V is called a (measurable) selection of V if V (ω) ∈ V (ω) for P−almost all ω ∈ Ω.

Lemma A.1. Suppose Assumption 2.1 holds. Then for each θ ∈ Θ, the map U( · , θ) : Y × X × Z → U is

an Effros-measurable multifunction, and thus is a random set on Y × X × Z.

Proof of Lemma A.1. For any fixed θ ∈ Θ and any open set A ⊂ U . We have:

{(y, x, z) : U(y, x, z, θ) ∩A 6= ∅} = G0(A) ∪G1(A),
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where:

G0(A) := {(0, x, z) : U(0, x, z, θ) ∩A 6= ∅},

G1(A) := {(1, x, z) : U(1, x, z, θ) ∩A 6= ∅}.

Since B(Y)⊗B(X )⊗B(Z) is closed under unions, it suffices to show G0(A), G1(A) ∈ B(Y)⊗B(X )⊗B(Z).

In particular, it suffices to show Effros-measurability of the maps:

U(0, x, z, θ) = {u ∈ U : ϕ(x, z, u, θ) < 0} ,

U(1, x, z, θ) = {u ∈ U : ϕ(x, z, u, θ) ≥ 0} .

Effros measurability of U(0, x, z, θ) follows directly from Lemma 18.7 in Aliprantis and Border (2006) after

noting that ϕ(·, θ) is a Caratheodory function, and (−∞, 0) is an open set. For measurability of U(1, x, z, θ),

consider an arbitrary point u0 ∈ U , and define:

d(u0,U(1, x, z, θ)) := inf
u∈U(1,x,z,θ)

||u0 − u||.

By Assumption 2.1, the set U(1, x, z, θ) is a closed halfspace in Rdu of the form:

U(1, x, z, θ) =
{
u ∈ U : −ϕ̃1(x, z, θ)>u− ϕ̃2(x, z, θ) ≤ 0

}
,

for some measurable functions ϕ̃1(x, z, θ) and ϕ̃2(x, z, θ). It follows that:30

d(u0,U(1, x, z, θ)) =
| − ϕ̃1(x, z, θ)>u0 − ϕ̃2(x, z, θ)|+

||ϕ̃1(x, z, θ)||
.

so d(u0,U(1, x, z, θ)) is itself measurable in (x, z). Following Himmelberg (1975) (see also Theorem 1.3.3 in

Molchanov (2017)) this implies that U(1, · , θ) : X × Z → U is an Effros-measurable multifunction. This

completes the proof. �

Given a σ−algebra F on a space R, the P -completion of F is the smallest σ−algebra containing F

as well as all P−null sets of R. The intersection of all P−completions of F (over all P ) is called the

universal σ−algebra, and functions that are measurable with respect to the universal σ−algebra are said

to be universally measurable. The following Lemma shows that the random set U(Y,X,Z, θ) admits a

universally measurable selection under Assumption 2.1.

Lemma A.2. Suppose Assumption 2.1 holds. Then the random set U(Y,X,Z, θ) admits a universally

measurable selection for every θ ∈ Θ ensuring it is non-empty almost surely.

Proof of Lemma A.2. Fix some θ ∈ Θ ensuring U(Y,X,Z, θ) is almost surely non-empty. By Lemma A.1,

30Note this follows from the fact that the distance between a point x0 and the halfspace H := {x : a>x+ b ≤ 0} is given by:

d(x0, H) :=
|a>x0 + b|+
||a||

.
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U(Y,X,Z, θ) is an Effros-measurable multifunction, and by Theorem 1.3.3 in Molchanov (2017) this implies

that the graph of U(Y,X,Z, θ) belongs to B(Y) ⊗ B(X ) ⊗ B(Z) × B(U); that is, U(Y,X,Z, θ) is graph-

measurable. The result then follows immediately from Theorem 3 of Sainte-Beuve (1974). �

B Additional Definitions and Results

B.1 Independence Assumptions

Under Assumption 4.1, we have the following definition of the identified set, which is analogous to both

Definitions 2.1 and 2.2.

Definition B.1. Under Assumptions 2.1 and 4.1, the identified set I∗Y,X,Z is the set of all pairs (PU |Y,X,Z , θ)

such that:

(i) (PU |Y,X,Z , θ) satisfies:

PU |Y,X,Z(U ∈ U(Y,X,Z, θ) | Y = y,X = x, Z = z) = 1,

PY,X,Z−a.s.; and

(ii) For all Borel sets A ∈ B(U) we have PU |Z(A | Z = z) = PU (A), PZ−a.s.

Furthermore, under Assumptions 2.1, 2.2 and 4.1, the identified set of counterfactual conditional distributions

P∗Yγ |Y,X,Z,U is the set of all conditional distributions PYγ |Y,X,Z,U satisfying:

PYγ |Y,X,Z,U (Yγ = 1{ϕ(γ(X,Z), U, θ) ≥ 0} | Y = y,X = x, Z = z, U = u) = 1,

PY,X,Z,U−a.s. for some pair (PU |Y,X,Z , θ) ∈ I∗Y,X,Z .

Here we do not consider the case when Assumptions 2.1 and 4.2 hold, but we again note that this

definition (and the results to follow) are easily modified to accommodate the case when any combination of

these assumptions hold. We now provide the following Corollary whose proof follows almost identically to

that of Theorems 2.1 and 3.1, with the exception being that we require condition (ii) of Definition B.1 to

hold.

Corollary B.1. Under Assumptions 2.1, 2.2 and 4.1, a counterfactual conditional distribution PYγ |Y,X,Z

satisfies PYγ |Y,X,Z ∈ P∗Yγ |Y,X,Z if and only if there exists a pair (PU |Y,X,Z , θ) ∈ I∗Y,X,Z (for I∗Y,X,Z from

Definition B.1) satisfying:

PYγ |X,Z (Yγ = 1 | Y = y,X = x, Z = z) = PU |Y,X,Z (ϕ(γ(X,Z), U, θ) ≥ 0 | Y = y,X = x, Z = z) , (B.1)

PY,X,Z−a.s. Furthermore, for any collection of counterfactual conditional distributions PYγ |Y,X,Z , there exists

a collection of Borel conditional probability measures PU |Y,X,Z satisfying (B.1) with (PU |Y,X,Z , θ) ∈ I∗Y,X,Z
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(for I∗Y,X,Z from Definition B.1) if and only if there exists a collection PU |Y,X,Z of probability measures on

the sets in A(θ) from (3.4) satisfying:∑
s∈Sj

PU |Y,X,Z (U(s, θ) | Y = 1, X = xj , Z = zj) = 1,

∑
s∈Scj

PU |Y,X,Z (U(s, θ) | Y = 0, X = xj , Z = zj) = 1,

∑
s∈Sγ(j)

PU |Y,X,Z (U(s, θ) | Y = y,X = xj , Z = zj) = PYγ |Y,X,Z (Yγ = 1 | Y = y,X = xj , Z = zj) ,

for y ∈ {0, 1} and j ∈ {1, . . . ,m} assigned positive probability, and:∑
y

∑
x

PU |Y,X,Z (U(s, θ) | Y = y,X = x, Z = zk)P (Y = y,X = x | Z = zk)

=
∑
y

∑
x

PU |Y,X,Z (U(s, θ) | Y = y,X = x, Z = zk+1)P (Y = y,X = x | Z = zk+1), (B.2)

for all s ∈ {0, 1}m and all k = 1, . . . ,mz − 1 assigned positive probability.

Proof of Corollary B.1. The first statement follows a proof identical to the proof of Theorem 2.1. For the

second statement, the forward direction is identical to the proof of Theorem 3.1. The reverse direction

is similar to the proof of Theorem 3.1, with the exception that we must show that the extended measure

on B(U) satisfies independence if the intial measure on A(U) satisfies independence. Let P̃U |Y,X,Z be the

extension of PU |Y,X,Z from the proof of Theorem 3.1. Then for any A ∈ B(U):

P̃U |Z(A | Z = zk)

=
∑

y∈{0,1}

∑
x∈X

∑
s∈{0,1}m

1(A, θ, s)PU |Y,X,Z (U(s, θ) | Y = y,X = x, Z = zk)PY,X|Z(Y = y,X = x | Z = zk)

=
∑

s∈{0,1}m
1(A, θ, s)

∑
y∈{0,1}

∑
x∈X

PU |Y,X,Z (U(s, θ) | Y = y,X = x, Z = zk)PY,X|Z(Y = y,X = x | Z = zk)

=
∑

s∈{0,1}m
1(A, θ, s)

∑
y∈{0,1}

∑
x∈X

PU |Y,X,Z (U(s, θ) | Y = y,X = x, Z = zk+1)PY,X|Z(Y = y,X = x | Z = zk+1)

=
∑

y∈{0,1}

∑
x∈X

∑
s∈{0,1}m

1(A, θ, s)PU |Y,X,Z (U(s, θ) | Y = y,X = x, Z = zk+1)PY,X|Z(Y = y,X = x | Z = zk+1)

= P̃U |Z(A | Z = zk+1),

for all pairs zk and zk+1 assigned positive probability, where the third equality follows from (B.2). Conclude

that P̃U |Z satisfies the second condition in Definition B.1. �

Analogous to Theorem 2.1, the first part of Corollary B.1 provides the theoretical link between the

identified set for counterfactual conditional distributions and the identified set for the pair (PU |Y,X,Z , θ)

under the additional independence assumption between U and Z. Furthermore, analogous to the result in

Theorem 3.1, the second part of Corollary B.1 reduces an infinite dimensional existence problem to a finite
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dimensional existence problem. Importantly, the second part of Corollary B.1 builds on Theorem 3.1 by

demonstrating that Assumption 4.1—which requires PU |Z(A | Z = z) = PU (A) a.s. for all Borel sets A—can

be imposed by considering only a finite number of equality constraints on a distribution PU |Y,X,Z defined on

sets of the form U(s, θ).

We have the following Corollary to Theorem 3.2:

Corollary B.2. Under Assumptions 2.1, 2.2, and 4.1, the identified set for the counterfactual conditional

probability PYγ |Y,X,Z(Yγ = 1 | Y = y,X = xj , Z = zj) is given by:⋃
θ∈Θ

[π`b(y, xj , zj , θ), πub(y, xj , zj , θ)]

where π`b(y, xj , zj , θ) and πub(y, xj , zj , θ) are determined by the optimization problems:

π`b(y, xj , zj , θ) := min
π(θ)∈Rdπ

∑
s∈Sγ(j)

π(y, xj , zj , s, θ), s.t. (3.9), (3.10), (3.11), and (4.1), (B.3)

πub(y, xj , zj , θ) := max
π(θ)∈Rdπ

∑
s∈Sγ(j)

π(y, xj , zj , s, θ), s.t. (3.9), (3.10), (3.11), and (4.1). (B.4)

Note that this Corollary is identical to Theorem 3.2 with the exception that we have imposed Assumption

4.1, and thus have included constraints of the form (4.1). With the exception of these additional constraints,

the optimization problems that characterize the bounding problem are the same as before. Again, this result

can be easily modified to bound any linear function of counterfactual conditional distributions by simply

modifying the objective function in the optimization problems (B.3) and (B.4).

B.2 Monotonicity Assumptions

When we entertain Assumption 4.2, we have the following definition of the identified set, which is analogous

to both Definitions 2.1 and 2.2.

Definition B.2. Under Assumptions 2.1 and 4.2, the identified set I∗Y,X,Z is the set of all pairs (PU |Y,X,Z , θ)

such that:

(i) (PU |Y,X,Z , θ) satisfies:

PU |Y,X,Z(U ∈ U(Y,X,Z, θ) | Y = y,X = x, Z = z) = 1,

PY,X,Z−a.s.; and

(ii) For all (j, k) ∈M from Assumption 4.2, we have:

PU |Y,X,Z(ϕ(xj , zj , θ, U) ≤ ϕ(xk, zk, θ, U) | Y = y,X = x, Z = z) = 1 a.s.

Furthermore, under Assumptions 2.1, 2.2, and 4.2, the identified set of counterfactual conditional distribu-
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tions P∗Yγ |Y,X,Z,U is the set of all conditional distributions PYγ |Y,X,Z,U satisfying:

PYγ |X,Z,U (Yγ = 1{ϕ(γ(X,Z), U, θ) ≥ 0} | Y = y,X = x, Z = z, U = u) = 1,

PY,X,Z,U−a.s. for some pair (PU |Y,X,Z , θ) ∈ I∗Y,X,Z .

Again this definition and the results to follow are easily modified to accommodate the case when any

combination of Assumptions 2.1 and 4.1 hold. We now provide the following Corollary whose proof follows

almost identically to that of Theorems 2.1 and 3.1, with the exception being that we require condition (ii)

of Definition B.2 to hold.

Corollary B.3. Under Assumptions 2.1, 2.2, and 4.2, a counterfactual conditional distribution PYγ |Y,X,Z

satisfies PYγ |Y,X,Z ∈ P∗Yγ |Y,X,Z if and only if there exists a pair (PU |Y,X,Z , θ) ∈ I∗Y,X,Z (for I∗Y,X,Z from

Definition B.2) satisfying:

PYγ |X,Z (Yγ = 1 | Y = y,X = x, Z = z) = PU |Y,X,Z (ϕ(γ(X,Z), U, θ) ≥ 0 | Y = y,X = x, Z = z) , (B.5)

PY,X,Z−a.s. Furthermore, for any collection of counterfactual conditional distributions PYγ |Y,X,Z , there exists

a collection of Borel conditional probability measures PU |Y,X,Z satisfying (B.5) with (PU |Y,X,Z , θ) ∈ I∗Y,X,Z
(for I∗Y,X,Z from Definition B.2) if and only if there exists a collection PU |Y,X,Z of probability measures on

the sets in A(θ) from (3.4) satisfying:∑
s∈Sj

PU |Y,X,Z (U(s, θ) | Y = 1, X = xj , Z = zj) = 1,

∑
s∈Scj

PU |Y,X,Z (U(s, θ) | Y = 0, X = xj , Z = zj) = 1,

∑
s∈Sγ(j)

PU |Y,X,Z (U(s, θ) | Y = y,X = xj , Z = zj) = PYγ |Y,X,Z (Yγ = 1 | Y = y,X = xj , Z = zj) ,

for y ∈ {0, 1} and j ∈ {1, . . . ,m} assigned positive probability, and:∑
s∈ScM

PU |Y,X,Z (U(s, θ) | Y = y,X = x, Z = z) = 0, a.s. (B.6)

for all (y, x, z) assigned positive probability, where SM is as defined in Section 4.

The proof of this corollary is identical to the proof of Theorem 2.1 and Theorem 3.1. Analogous to

Theorem 2.1, the first part of Corollary B.3 provides the theoretical link between the identified set for

counterfactual conditional distributions and the identified set for the pair (PU |Y,X,Z , θ) under the additional

monotonicity assumption. Analogous to Theorem 3.1, the second part of Corollary B.3 reduces an infi-

nite dimensional existence problem to a finite dimensional existence problem amenable to analysis using

optimization problems. Building on the intuition provided in example 2, the second part of Corollary B.3

demonstrates that monotonicity as in Assumption 4.2 can be imposed by considering only a finite number

of equality constraints on a distribution PU |Y,X,Z defined on sets of the form U(s, θ). By definition of the set
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SM , condition (B.6) simply assigns probability zero to all sets U(s, θ) that do not satisfy the monotonicity

relation from Assumption 4.2. This leads to the following result.

Corollary B.4. Under Assumptions 2.1, 2.2, and 4.2, the identified set for the counterfactual conditional

probability PYγ |Y,X,Z(Yγ = 1 | Y = y,X = xj , Z = zj) is given by:⋃
θ∈Θ

[π`b(y, xj , zj , θ), πub(y, xj , zj , θ)]

where π`b(y, xj , zj , θ) and πub(y, xj , zj , θ) are determined by the optimization problems:

π`b(y, xj , zj , θ) := min
π(θ)∈Rdπ

∑
s∈Sγ(j)

π(y, xj , zj , s, θ), s.t. (3.9), (3.10), (3.11), and (4.2), (B.7)

πub(y, xj , zj , θ) := max
π(θ)∈Rdπ

∑
s∈Sγ(j)

π(y, xj , zj , s, θ), s.t. (3.9), (3.10), (3.11), and (4.2). (B.8)

Note that this Corollary is identical to Theorem 3.2 with the exception that we have imposed Assumption

4.2, and thus have included constraints of the form (4.2). With the exception of these additional constraints,

the optimization problems that characterize the bounding problem are the same as before. Finally, alternative

counterfactual quantities can be bounded in the same way by simply modifying the objective function in

(B.7) and (B.8).

B.3 Consistency

In this subsection we present a basic consistency result for functionals of a partially identified parameter.

The result is designed to minimize the number of high-level assumptions required for consistency, and is

closely related to results found in Molchanov (1998), Manski and Tamer (2002), and Chernozhukov et al.

(2007), possibly among others. It is presented in a form that is more general than necessary for the current

paper, and so it may be of interest in other applications.

We consider an environment where the researcher wishes to compute bounds on a functional EP [ψ(Wi, τ1, τ2)],

where ψ : W × T → R, where W ⊂ Rdw denotes the support of the observed random vector W , and

T = T1 × T2 ⊂ Rdτ denotes the parameter space with typical elements τ = (τ1, τ2) ∈ T . The values of

(τ1, τ2) are constrained by J moment inequalities of the form:

EP [mj(Wi, τ1, τ2)] ≤ 0, for j = 1, . . . , J.

Note this does not rule out moment equalities, since each moment equality can be equivalently written as

a combination of two moment inequalities. In this environment, the identified set for (τ01, τ02) ∈ T at the

true P is given by:

T ∗(P ) := {(τ1, τ2) ∈ T : EP [mj(Wi, τ1, τ2)] ≤ 0 for j = 1, . . . , J} .

51



In addition, the identified set for ψ0 := EP [ψ(Wi, τ01, τ02)] is given by:

Ψ∗(P ) :=
{
ψ ∈ R : ∃(τ1, τ2) ∈ TI(P ) s.t. ψ = EP [ψ(Wi, τ1, τ2)]

}
.

Let us define the projection:

T ∗1 (τ2, P ) := {τ1 ∈ T1 : EP [mj(Wi, τ1, τ2)] ≤ 0 for j = 1, . . . , J} .

It is then straightforward to show that Ψ∗(P ) can be rewritten as:

Ψ∗(P ) =
⋃
τ2∈T2

[Ψ`b(τ2, P ),Ψub(τ2, P )],

where:

Ψ`b(τ2, P ) := min
τ1∈T ∗1 (τ2,P )

EP [ψ(Wi, τ1, τ2)], Ψub(τ2, P ) := max
τ1∈T ∗1 (τ2,P )

EP [ψ(Wi, τ1, τ2)].

We study the consistency properties of the sample analog estimator for this representation of Ψ∗(P ). In

particular, define:

En[ψ(Wi, τ1, τ2)] :=
1

n

n∑
i=1

ψ(Wi, τ1, τ2), En[mj(Wi, τ1, τ2)] :=
1

n

n∑
i=1

mj(Wi, τ1, τ2), for j = 1, . . . , J.

Then the sample analog estimator of interest is given by:

Ψ∗(Pn) =
⋃
τ2∈T2

[Ψ`b(τ2,Pn),Ψub(τ2,Pn)],

where:

Ψ`b(τ2,Pn) := min
τ1∈T ∗1 (τ2,Pn)

En[ψ(Wi, τ1, τ2)], Ψub(τ2,Pn) := max
τ1∈T ∗1 (τ2,Pn)

En[ψ(Wi, τ1, τ2)],

and:

T ∗1 (τ2,Pn) := {τ1 ∈ T1 : En[mj(Wi, τ1, τ2)] ≤ 0 for j = 1, . . . , J} .

In the following, we define the sequence {ηn(τ2)}∞n=1 as:

ηn(τ2) := max

{
max

j=1,...,J.
sup
τ1∈T1

|En[mj(Wi, τ1, τ2)]− EP [mj(Wi, τ1, τ2)]|, sup
τ1∈T1

|En[ψ(Wi, τ1, τ2)]− EP [ψ(Wi, τ1, τ2)]|
}
.

We impose the following assumption.

Assumption B.1. (i) The parameter space T = T1 ×T2 ⊂ Rdτ , where T1 is compact; (ii) for each τ2 ∈ T2,

the function ψ( · , τ2) :W×T1 → R is measurable in Wi ∈ W ⊂ Rdw and is Lipschitz continuous in τ1 with a

(possibly data-dependent) Lipschitz constant C(τ2) with supτ2∈T2 C(τ2) <∞ a.s.; (iii) for j = 1, . . . , J , and

for each τ2 ∈ T2, the moment function mj( · , τ2) :W×T1 → R is measurable in Wi and lower semicontinuous

in τ1; (iv) the true data generating process is indexed by a triple (τ01, τ02, P ) that satisfies (τ01, τ02) ∈ T ,
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and EP [mj(Wi, τ01, τ02)] ≤ 0, for j = 1, . . . , J ; (v) the sample {Wi}ni=1 is an indepndent and identically

distributed draw from P ; (vi) for each fixed τ2 ∈ T2, we have ηn(τ2) = OP (a−1
n ) for some sequence an ↑ ∞;

(vii) for each fixed τ2 ∈ T , there exists a sequence bn ↓ 0 satisfying bn ≥ ηn(τ2) with probability approaching

1 (w.p.a. 1).; (viii) there exists a finite subset T ′2 ⊂ T2 such that:

{τ1 ∈ T1 : ∃τ2 ∈ T2 s.t. EP [mj(Wi, τ1, τ2)] ≤ 0 for j = 1, . . . , k}

= {τ1 ∈ T1 : ∃τ2 ∈ T ′2 s.t. EP [mj(Wi, τ1, τ2)] ≤ 0 for j = 1, . . . , k} .

Part (i) of Assumption B.1 is standard in the literature on extremum estimators. Part (ii) separates the

roles of τ1 and τ2, and restricts the objective function to be Lipschitz continuous in the parameter τ1 for

each τ2. Part (ii) places no restrictions on how τ2 enters the objective function. Part (iii) further separates

the roles of τ1 and τ2 by requiring each of the moment functions to be lower semicontinuous in τ1. Similar

to part (ii), no restrictions are placed on how τ2 enters the moment functions. Assumption (iv) is standard,

and simply indicates that the true parameters satisfying the moment inequalities at the true P . Part (v) is

also standard, although it rules out the case of dependent data. Part (vi) indicates that ηn(τ2) converges

in probability at a rate of 1/an. This can be verified using standard assumptions; for example, if for each

τ2 ∈ T2 the J + 1 classes of functions:

Fψ(τ2) := {ψ( · , τ1, τ2) :W → R | τ1 ∈ T1},

Fj(τ2) := {mj( · , τ1, τ2) :W → R | τ1 ∈ T1}, for j = 1, . . . , J,

are all P−Donsker classes, then part (vi) is satisfied with an =
√
n. This is the case, for example, for all

specifications considered in Section 5. After verifying part (vi), it is easy to find a sequence bn satisfying part

(vii). For example, if an =
√
n from part (vi), then we can set bn = b/

√
log(n) for any b > 0. Finally, part

(viii) essentially allows us to replace T2 with a finite subset T ′2 without impacting the bounding problem. It

is precisely because of part (viii) that all other parts of Assumption B.1—namely parts (ii), (iii), (vi) and

(vii)—are allowed to be so flexible with respect to the parameter τ2. This last component of Assumption

B.1 is verified in our basic setup in Proposition 3.1 in Gu and Russell (2021), the previous version of this

paper. Gu and Russell (2021) also verify the assumption under the functional form, independence, and

monotonicity assumptions discussed in the main text. All other components of Assumption B.1 are either

standard assumptions, or are easily verified for the bounding problems presented in the main text and for

all specifications considered in Section 5.

Before stating the main result for this subsection, for any c ∈ R let us define:

T ∗1 (τ2, P, c) := {τ1 ∈ T1 : EP [mj(W, τ1, τ2)] ≤ c for j = 1, . . . , J} ,
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and:

Ψ∗(P, c) =
⋃

τ2∈T ′2

[Ψ`b(τ2, P, c),Ψub(τ2, P, c)],

where:

Ψ`b(τ2, P, c) := min
τ1∈T ∗1 (τ2,P,c)

EP [ψ(Wi, τ1, τ2)], Ψub(τ2,Pn, c) := max
τ1∈T ∗1 (τ2,P,c)

EP [ψ(Wi, τ1, τ2)].

Define the sets T ∗1 (τ2, P, c) and Ψ∗(P, c) analogously. The following Theorem then shows that a slight

enlargement of the set Ψ∗(Pn) is a consistent estimator for the set Ψ∗(P ), where consistency is defined using

the Hausdorff metric.

Theorem B.1. Suppose that Assumption B.1 holds. Then dH(Ψ∗(Pn, bn),Ψ∗(P )) = oP (1), where bn is the

sequence from Assumption B.1.

Proof of Theorem B.1. We have:

dH(Ψ∗(Pn, bn),Ψ∗(P )) ≤
∑
τ2∈T ′2

dH ([Ψ`b(τ2,Pn, bn),Ψub(τ2,Pn, bn)], [Ψ`b(τ2, P ),Ψub(τ2, P )]) .

Since T ′2 is finite by Assumption B.1(viii), it suffices to show that:

dH ([Ψ`b(τ2,Pn, bn),Ψub(τ2,Pn, bn)], [Ψ`b(τ2, P ),Ψub(τ2, P )]) = oP (1),

for each τ2 ∈ T ′2 . To this end, fix any τ2 ∈ T2. To show the previous display, it suffices to show consistency

of the upper and lower bounds; i.e. that |Ψ`b(τ2,Pn, bn) − Ψ`b(τ2, P )| = oP (1) and that |Ψub(τ2,Pn, bn) −

Ψub(τ2, P )| = oP (1). We focus on the lower bound, since the upper bound proof is symmetric.

First recall that ψ(Wi, τ1, τ2) is continuous with respect to τ1 for every τ2 by Assumption B.1(ii), and T1

is compact by Assumption B.1(i). Thus, we have that ψ(Wi, τ1, τ2) is uniformly continuous (w.r.t. τ1) on T1.

Thus, for every ε > 0 there exists a δ(ε) > 0 such that |En[ψ(Wi, τ1, τ2)] − En[ψ(Wi, τ
′
1, τ2)]| < ε whenever

||τ1 − τ ′1|| < δ(ε). Now note that:

|Ψ`b(τ2,Pn, bn)−Ψ`b(τ2, P )|

=

∣∣∣∣ min
τ1∈T ∗1 (τ2,Pn,bn)

En[ψ(Wi, τ1, τ2)]− min
τ1∈T ∗1 (τ2,P )

EP [ψ(W, τ1, τ2)]

∣∣∣∣ ,
≤
∣∣∣∣ min
τ1∈T ∗1 (τ2,Pn,bn)

En[ψ(Wi, τ1, τ2)]− min
τ1∈T ∗1 (τ2,P )

En[ψ(Wi, τ1, τ2)]

∣∣∣∣
+

∣∣∣∣ min
τ1∈T ∗1 (τ2,P )

En[ψ(Wi, τ1, τ2)]− min
τ1∈T ∗1 (τ2,P )

EP [ψ(Wi, τ1, τ2)]

∣∣∣∣ ,
=

∣∣∣∣ max
τ1∈T ∗1 (τ2,P )

−En[ψ(Wi, τ1, τ2)]− max
τ1∈T ∗1 (τ2,Pn,bn)

−En[ψ(Wi, τ1, τ2)]

∣∣∣∣
+

∣∣∣∣ max
τ1∈T ∗1 (τ2,P )

−EP [ψ(Wi, τ1, τ2)]− max
τ1∈T ∗1 (τ2,P )

−En[ψ(Wi, τ1, τ2)]

∣∣∣∣ ,
≤ max
{τ1,τ ′1∈T1:||τ1−τ ′1||≤dH(T ∗1 (τ2,Pn,bn),T ∗1 (τ2,P ))}

|−En[ψ(Wi, τ1, τ2)]−−En[ψ(Wi, τ
′
1, τ2)]|
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+ max
τ1∈T ∗1 (τ2,P )

|−En[ψ(Wi, τ1, τ2)]−−EP [ψ(Wi, τ1, τ2)]|

≤ max
{τ1,τ ′1∈T1:||τ1−τ ′1||≤dH(T ∗1 (τ2,Pn,bn),T ∗1 (τ2,P ))}

|En[ψ(Wi, τ
′
1, τ2)]− En[ψ(Wi, τ1, τ2)]|

+ max
τ1∈T ∗1 (τ2,P )

|EP [ψ(Wi, τ1, τ2)]− En[ψ(Wi, τ1, τ2)]|

= max
{τ1,τ ′1∈T1:||τ1−τ ′1||≤dH(T ∗1 (τ2,Pn,bn),T ∗1 (τ2,P ))}

C · ||τ1 − τ ′1||+ max
τ1∈T ∗1 (τ2,P )

|EP [ψ(Wi, τ1, τ2)]− En[ψ(Wi, τ1, τ2)]|

≤ C · dH(T ∗1 (τ2,Pn, bn), T ∗1 (τ2, P )) + max
τ1∈T ∗1 (τ2,P )

|EP [ψ(Wi, τ1, τ2)]− En[ψ(Wi, τ1, τ2)]| .

It suffices to show the two terms in the last line of the previous display converge to zero in probability. The

second term converges in probability to zero by Assumption B.1(vi). Furthermore, since C <∞ w.p. 1, the

first term converges to zero in probability if we can show that:

dH(T ∗1 (τ2,Pn, bn), T ∗1 (τ2, P )) = oP (1).

The remainder of the proof focuses on proving this latter fact. Note that:

dH(T ∗1 (τ2,Pn, bn), T ∗1 (τ2, P )) = inf{δ > 0 : T ∗1 (τ2, P ) ⊆ T ∗1 (τ2,Pn, bn)δ, and T ∗1 (τ2,Pn, bn) ⊆ T ∗1 (τ2, P )δ},

where:

T ∗1 (τ2,Pn, bn)δ := {τ1 ∈ T1 : Bδ(τ1) ∩ T ∗1 (τ2,Pn, bn) 6= ∅},

T ∗1 (τ2, P )δ := {τ1 ∈ T1 : Bδ(τ1) ∩ T ∗1 (τ2, P ) 6= ∅},

where Bδ(τ1) denotes the closed ball of radius δ > 0 around τ1. The next part of the proof closely follows

the proof of Theorem 2.1 in Molchanov (1998). Define the function:

ρ(ε) := dH(T ∗1 (τ2, P, ε), T ∗1 (τ2, P )).

Since each of the moment functions are lower semi-continuous in τ1 for each τ2, each of the sets T ∗1 (τ2, P, ε)

and T ∗1 (τ2, P ) are closed and ρ is right continuous. Furthermore, ρ is non-increasing for ε < 0 and non-

decreasing for ε > 0. Now by Assumption B.1 we have with high probability:

T ∗1 (τ2,Pn, bn) = {τ1 ∈ T1 : En[mj(W, τ1, τ2)] ≤ bn for j = 1, . . . , k}

⊆ {τ1 ∈ T1 : En[mj(W, τ1, τ2)] ≤ ηn(τ2) + bn for j = 1, . . . , k}

⊆ T ∗1 (τ2, P, 2bn)

⊆ T ∗1 (τ2, P )ρ(2bn).

Furthermore, by Assumption B.1 we have with high probability for large enough n:

T ∗1 (τ2, P ) ⊆ T ∗1 (τ2, P, bn − ηn(τ2))
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⊆ T ∗1 (τ2,Pn, bn).

Conclude that with high probability for large enough n:

dH(T ∗1 (τ2,Pn, bn), T ∗1 (τ2, P )) ≤ ρ(2bn)→ 0,

where the last line follows from right-continuity of the function ρ( · ). Since τ2 ∈ T ′2 was arbitrary, this

completes the proof. �

B.4 Bias-Corrected Estimates and Inference

In Section 5 we use the inference method of Cho and Russell (2020), which is specifically designed for uniform

inference on value functions in stochastic linear programming problems. However, the characterization of

the identified set provided by Theorem 3.2 is slightly different then the setting considered in Cho and Russell

(2020). In particular, the identified set in Theorem 3.2 is a union of intervals whose endpoints are determined

by the value functions of two linear programming problems.

To extend the result of Cho and Russell (2020), let ψ0 denote the true value of our counterfactual object

of interest (e.g. a counterfactual conditional choice probability) and let Ψ∗(P ) denote the identified set for

ψ0 evaluated at a distribution P belonging to some class of distributions P characterized by Assumption

3.2 in Cho and Russell (2020). For some α ∈ (0, 1), we would like to construct a random set CSn(1 − α)

satisfying:

lim inf
n→∞

inf
{(ψ,P ):ψ∈Ψ∗(P ),P∈P}

PrP (ψ0 ∈ CSn(1− α)) ≥ 1− α.

Let Ψ∗(θ, P ) := [ψ`b(θ, P ), ψub(θ)] where ψ`b(θ, P ) is the value function from (3.13) and ψub(θ, P ) is the

value function from (3.14) for some distribution P ∈ P. Then from Theorem 3.2 we have that:

Ψ∗(P ) =
⋃
θ∈Θ

Ψ∗(θ, P ). (B.9)

By Proposition 3.2, there exists a finite set Θ′ ⊆ Θ of representative points satisfying:

Ψ∗(P ) =
⋃
θ∈Θ′

Ψ∗(θ, P ).

Now consider setting:

CSn(1− α) =
⋃
θ∈Θ′

CSn(1− α, θ),

where the random sets {CSn(1− α, θ) : θ ∈ Θ′} satisfy:

lim inf
n→∞

inf
{(ψ,P ):ψ∈Ψ∗(θ,P ),P∈P}

PrP (ψ0 ∈ CSn(1− α, θ)) ≥ 1− α. (B.10)
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Then combining everything we can write:

lim inf
n→∞

inf
{(ψ,P ):ψ∈Ψ∗(P ),P∈P}

PrP (ψ0 ∈ CSn(1− α))

= lim inf
n→∞

inf
{(ψ,P ):ψ∈Ψ∗(P,θ),θ∈Θ′,P∈P}

PrP (ψ0 ∈ CSn(1− α))

= lim inf
n→∞

min
θ∈Θ′

inf
{(ψ,P ):ψ∈Ψ∗(θ,P ),P∈P}

PrP (ψ0 ∈ CSn(1− α))

= lim inf
n→∞

min
θ∈Θ′

inf
{(ψ,P ):ψ∈Ψ∗(θ,P ),P∈P}

PrP

(
ψ0 ∈

⋃
θ∈Θ′

CSn(1− α, θ)

)

≥ lim inf
n→∞

min
θ∈Θ′

inf
{(ψ,P ):ψ∈Ψ∗(θ,P ),P∈P}

min
θ∈Θ′

PrP (ψ0 ∈ CSn(1− α, θ))

= lim inf
n→∞

min
θ∈Θ′

inf
{(ψ,P ):ψ∈Ψ∗(θ,P ),P∈P}

PrP (ψ0 ∈ CSn(1− α, θ))

= min
θ∈Θ′

lim inf
n→∞

inf
{(ψ,P ):ψ∈Ψ∗(θ,P ),P∈P}

PrP (ψ0 ∈ CSn(1− α, θ))

≥ 1− α,

where the second last line follows from continuity of the minimum, and the last line follows from (B.10).

Thus, it suffices to construct random sets CSn(1 − α, θ) satisfying (B.10) for each θ ∈ Θ′. Since in all

specifications in the application section the representative points are known, the confidence sets CSn(1−α, θ)

are constructed for each representative point using the procedure in Cho and Russell (2020), and our final

confidence set is given by (B.9). After introducing additional moment assumptions on the random variables

in our application, Assumptions 3.1 and 3.2 in Cho and Russell (2020) (the only two assumptions required

for their method) are easily verified.

Finally, in the application in Section 5, we report bias-corrected estimates of the upper and lower end-

points of the identified set. In particular, if ψ`b(P ) is the lower endpoint of the (convex hull of the) identified

set Ψ∗(P ) and ψub(P ) is the upper endpoint of the (convex hull of the) identified set Ψ∗(P ), then our

estimates ψ̂`b and ψ̂ub are half-median unbiased in the sense that ψ̂`b ≤ ψ`b(P ) and ψub(P ) ≤ ψ̂ub, both

holding with probability at least 1/2 uniformly over P ∈ P. The use of half-median unbiased estimators was

proposed by Chernozhukov et al. (2013). In our case, these bias-corrected estimates can also be constructed

using the inference procedure of Cho and Russell (2020). In particular, Cho and Russell (2020) show how

to construct one-sided confidence intervals, and the procedure discussed above is easily amended for the

one-sided case. The estimates of the identified set reported in the application in Section 5 are the resulting

α = 0.5 one-sided lower and upper confidence bounds.

B.5 The Additively Separable Case

In this subsection we show how our method can be applied to a model that satisfies the following assumption.

Assumption B.2. The index function ϕ satisfying Assumption 2.1 is additively separable in U ; i.e. we

have ϕ(X,Z,U, θ) = ϕ̃(X,Z, θ)− U for some function ϕ̃.
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This is a well-studied special case of the linear model considered in the main text. In particular, much

of the discussion in this section expands upon the insights of Chesher (2013). We consider two cases: (i)

when the structural function ϕ is linear in the parameter vector θ, and (ii) when the structural function is

unknown. To begin, let us consider the following simple example.

Example 3. Suppose we have a scalar variable X with support X = {x1, . . . , xmx} and latent variables

U ∈ [−1, 1], and suppose there are no variables Z. Consider the following additively separable threshold

crossing model:

Y = 1{Xθ ≥ U},

where θ is a fixed scalar coefficient. The response types in this setting are characterized by the mx×1 vectors:

r(u, θ) :=


1{x1θ ≥ u}

1{x2θ ≥ u}
...

1{xmxθ ≥ u}

 .

However, the set of possible response types in this setting depends on the sign of the fixed coefficient θ. In

particular, when θ ≥ 0 we have the response types r(u, θ) ∈ {s1, . . . , smx+1}, where:

s1 :=



0

0
...

0

0


, s2 :=



0

0
...

0

1


, . . . , smx :=



0

1
...

1

1


, smx+1 :=



1

1
...

1

1


. (B.11)

No other response types are possible when θ > 0, and so all other response types must be assigned zero

probability. Alternatively, when θ < 0 we have the response types r(u, θ) ∈ {s′1, . . . , s′mx+1}, where:

s′1 :=



0

0
...

0

0


, s′2 :=



1

0
...

0

0


, . . . , s′mx :=



1

1
...

1

0


, s′mx+1 :=



1

1
...

1

1


. (B.12)

Again, no other response types are possible when θ < 0, and so must be assigned zero probability by the

distribution of U .

The reason that these particular response types arise when θ ≥ 0 and θ < 0 is due to the ordering of the

support of X induced by the value of the scalar product Xθ. In particular, if we suppose x1 ≤ x2 ≤ . . . ≤ xmx ,

then when θ ≥ 0 we have the ordering x1θ ≤ x2θ ≤ . . . ≤ xmxθ. This means, for example, that it is impossible
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Figure 4: A figure corresponding to Example 3 illustrating the partition of the latent variable space according to
response types in the case when the index function is additively separable in U and when X = {x1, x2, x3} with
x1 ≤ x2 ≤ x3. As indicated in the example, the feasible response types are those that correspond to a particular
ordering of the points in X induced by the scalar product Xθ.

to find a value of u ∈ [−1, 1] so that:

r(u, θ) =



1{x1θ ≥ u}

1{x2θ ≥ u}

1{x3θ ≥ u}
...

1{xmxθ ≥ u}


=



0

1

0
...

0


.

Indeed, the existence of such a value for u would contradict the ordering x1θ ≤ x2θ ≤ . . . ≤ xmxθ. This

means that when θ ≥ 0 certain response types are not possible, and so must be assigned probability zero

by the distribution of U . An identical intuition holds in the case when θ < 0. In the end, the response

types that can be assigned positive probability in this example when θ ≥ 0 and θ < 0 are exactly the ones

corresponding to the vectors in (B.11) and (B.12), respectively. Figure 4 provides an illustration in the case

when X = {x1, x2, x3}.

This example illustrates the key ideas behind the implementation of our approach when the index function

is additively separable in U , as in Assumption B.2. In particular, given the function ϕ̃ from Assumption

B.2, the key is to determine the values of θ such that the function ϕ̃( · , θ) : X × Z → R induces a unique

ordering of the points in the support X ×Z. With no Z variables, a scalar X variable, and ϕ̃(X,Z, θ) = Xθ,

Example 3 shows that only two orderings are possible, corresponding to the case when θ ≥ 0 and θ < 0.

After the order is determined, we can immediately determine the set of response types that must be assigned

zero probability by the distribution of U , and then impose these restrictions as an additional constraint

in the bounding problems (3.13) and (3.14). In particular, letting Sϕ denote the set of all binary vectors
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s ∈ {0, 1}m corresponding to sets U(s, θ) that can be assigned positive probability under Assumption B.2,

and impose the constraint: ∑
s∈Scϕ

π(y, xj , zj , θ, s) = 0, (B.13)

for all y ∈ {0, 1} and j = 1, . . . ,m occurring with positive probability. Thus, Theorem 3.2 can be extended to

accommodate Assumption B.2 by simply adding the constraints (B.13) to the optimization problems (3.13)

and (3.14).

Similar to the discussion in the main text, determining the sets U(s, θ) that can be assigned positive

probability under Assumption B.2 poses an interesting computational problem. Although Example 3 illus-

trates a case when there are only two orderings, in general many more orderings may be possible, even when

ϕ̃ is linear in θ. Clearly at most m! orderings are possible, but when the index function is linear in θ it is

possible to show that the maximum number of possible orderings is much smaller than m!. In particular,

partition θ = (θx, θz) and consider the function ϕ̃(X,Z, θ) = Xθx + Zθz where X is a vector of dimension

dx and Z is a vector of dimension dz. Label the support X × Z as {(x1, z1), (x2, z2), . . . , (xm, zm)}, and let

∆jk := (xj , zj) − (xk, zk) for 1 ≤ j < k ≤ m. Setting d = dx + dz, the set Hjk := {θ ∈ Rd : ∆jkθ = 0}

defines a hyperplane through the origin that is normal to the line connecting (xj , zj) and (xk, zk) in Rd. The

set of all such hyperplanes partitions Rd into at most Q(m, d) non-empty cones, where Q(m, d) is defined

recursively as:

Q(m, d) = Q(m− 1, d) + (m− 1)Q(m− 1, d− 1), (B.14)

with Q(m, 1) = 2 for all m ≥ 2 and Q(2, d) = 2 for all d ≥ 1. Furthermore, each these non-empty cones

corresponds exactly to the equivalence class of vectors θ = (θx, θz) that induce a unique ordering of the

points in X ×Z. Thus, the value Q(m, d) serves as an upper bound on the number of orderings of the points

in X × Z that are inducible by the function ϕ̃(X,Z, θ) = Xθx + Zθz. The recursive formula from (B.14)

defining the upper bound Q(m, d) has been independently discovered in different contexts by many authors;

the earliest such account appears in Bennett (1956), although the formula was independently discovered

again in Cover (1967). The upper bound Q(m, d) is obtained when the collection of hyperplanes of the form

Hjk are in general position. Note that Q(m, 1) = 2 corresponds exactly to Example 3, where it was shown

that only two orderings could be induced when ϕ̃(X,Z, θ) = Xθ for scalar X and θ. Typically, Q(m, d) < m!,

although some inspection of the formula shows that we always have Q(m, d) = m! when d ≥ m− 1.

If we could select one value of θ from each of the cones defined by the collection of hyperplanes of the

form Hjk, we could then determine the permitted orderings of the support points X ×Z by simply evaluating

xjθx + zjθz for j = 1, . . . ,m at the selected value for θ. This would then allow us to determine which sets

U(s, θ) must be assigned zero probability under Assumption B.2. Note that under Assumption B.2 the latent

variable U obtains a value on the hyperplane Hjk with probability zero. Thus, it suffices to select one value

of θ from each of the non-empty cones defined by the collection of hyperplanes of the form Hjk. However,
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this can be done using the hyperplane arrangement algorithm described in the main text applied to the

hyperplanes of the form Hjk for 1 ≤ j < k ≤ m.

Our method is also applicable to cases when ϕ̃(X,Z, θ) may be non-linear in the finite-dimensional vector

θ. To see how this case can be accommodated, recall that the case when ϕ̃ is linear in θ, the ordering of the

support points in X × Z by the function ϕ̃(X,Z, θ) allowed us to determine the admissible response types,

which in turn allowed us to construct the additional constraints needed in programs (3.13) and (3.14). A

similar strategy can be used when ϕ̃ is not known by the researcher. However, when ϕ̃ is not restricted by the

researcher, all orderings of the support points in X×Z are possible. The procedure to bound a counterfactual

probability (or some other counterfactual quantity of interest) is then as follows. The researcher must first

fix an ordering of the support points in X × Z, determine the admissible response types Sϕ for the fixed

ordering, and run the linear programs in (3.13) and (3.14) subject to the constraint (B.13). The researcher

must then repeat the procedure for all possible orderings of the support points in X ×Z. On each iteration

of this procedure the researcher obtains an interval with endpoints determined by the values of the linear

programs in (3.13) and (3.14). The closed convex hull of the identified set for the counterfactual probability is

then given by the interval whose lower endpoint is the smallest value of the linear program in (3.13) obtained

across all orderings, and whose upper endpoint is the largest value of the linear program in (3.14) obtained

across all orderings. Admittedly, there are m! possible orderings for ϕ̃(X,Z, θ) unless additional assumptions

are imposed. This means that considering all possible orderings may be computationally burdensome.
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