
COGNITIVE ENDURANCE AS HUMAN CAPITAL∗

Christina Brown†‡ Supreet Kaur

Geeta Kingdon Heather Schofield

November 11, 2021

Abstract

Schooling may build human capital not only by teaching academic skills, but by expanding
the capacity for cognition itself. We explore this hypothesis with a focus on cognitive endurance:
the ability to sustain effortful mental activity over a continuous stretch of time. As motivation,
we document that globally and in the US, the poor exhibit cognitive fatigue more quickly than
the rich across a variety of field settings; they also attend schools that offer fewer opportunities
to practice thinking for continuous stretches. Using a field experiment with 1,600 Indian primary
school students, we randomly increase the amount of time students spend in sustained cognitive
activity during the school day—using either math problems (mimicking good schooling) or non-
academic games (providing a pure test of our mechanism). Each approach markedly improves
cognitive endurance: students show 22% less decline in performance over time when engaged
in intellectual activities—listening comprehension, academic problems, or IQ tests. They also
exhibit increased attentiveness in the classroom and score higher on psychology measures of
sustained attention. Moreover, each treatment improves students’ school performance by 0.09
standard deviations. This indicates that the experience of effortful thinking itself—even when
devoid of any subject content—increases the ability to accumulate traditional human capital.
Finally, we complement these results with quasi-experimental variation indicating that an addi-
tional year of schooling improves cognitive endurance, but only in higher quality schools. Our
findings suggest that schooling disparities may further disadvantage poor children by hampering
the development of a core mental capacity. JEL Codes: I24, I25.
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1 Introduction

A large body of work documents far-reaching, persistent benefits of schooling (Bowles and Gintis,
1976; Goldin and Katz, 2010).1 While it’s clear that schooling affects cognitive abilities, the pathways
through which it does so are less well understood. Researchers have long recognized that its role
in shaping cognition could go beyond teaching academic content or skills. Schooling may expand
the mind’s capacity for cognition, for example by expanding our fundamental capacity to engage
in sustained effortful thinking (e.g. Dewey, 1938; Morrison et al., 2019). This constitutes a more
expansive view of how education shapes general human capital.

In this paper, we focus on one specific feature of schooling: formal education engages students
in effortful thinking for continuous stretches of time.2 From doing in-class exercises to reading
a textbook, the act of learning often involves periods of sustained concentration. Using a field
experiment with elementary school students, we test whether such intellectual practice can, in and
of itself, expand a particular mental ability: cognitive endurance.

We use the term “cognitive endurance” to refer to the ability to sustain performance over time
during a cognitively effortful task. The psychology literature on sustained attention emphasizes
the importance of this capacity: productive activity often involves sustaining mental effort, for
example, over many minutes during a school test or hours during a work shift (Chun et al., 2011).
This literature also hypothesizes that cognitive endurance could be improved through practice—
suggesting the possibility that schooling could play a role in its development.

To motivate the empirical relevance of these ideas, we begin with a set of illustrative examples.
Using data from PISA and TIMSS, two prominent global academic achievement tests, we examine
a key prediction of limited cognitive endurance: performance will decline over time during an in-
tellectually effortful task. Each test has the feature that question order is block randomized across
students, with ample time for students to finish the test. This enables us to examine how likely
students are to get a given question correct when it appears earlier in the test (when they are still
fresh) versus later in the test (when they may be more cognitively fatigued).

In Figure I, we plot performance over the length of these exams, separately by each test subject
and by geography. In each of these ten plots, we consistently find two stark patterns. First, in
line with cognitive fatigue, performance declines markedly over time: students are more likely to
get a given question wrong if it appears later in the test. Note that such fatigue effects are not
unique to academic tests; as we discuss below, they appear in myriad settings, from paramedics at
work to voters at the ballot box. Second, performance declines are considerably more severe for
students with lower socioeconomic status (SES). In the US, Black and Hispanic students show 72%
more decline than White students—accounting for 10% of the total White/Non-white test score gap.

1This includes long-term effects on income, health, crime, and social well-being (e.g. Heckman et al., 2006b; Lance,
2011; Deming, 2011), as well as aggregate economic growth (Goldin and Katz, 2010; Acemoglu and Autor, 2012).

2Schooling is comprised of many important facets, and these may map to and affect various mental abilities. Our
paper highlights one specific pathway among these, but does not diminish the potential relevance of others.

1



There is similar heterogeneity by wealth in the global sample. These motivating examples are, of
course, only suggestive. In our experiment, we provide more carefully controlled measurement of
cognitive fatigue.

While there may be many contributing factors for these SES differences, one potential inter-
pretation is that cognitive endurance could be malleable—with the potential to be shaped through
practice. Time use data from TIMSS teacher surveys suggest that schooling may be relevant for
such training: both globally and in the US, higher SES schools allocate more time to independent
focused practice. In other words, richer students spend more time in effortful thinking on their own
during the school day.3 In schools with such pedagogy, we also see fewer performance declines over
time—even after controlling for wealth. While only correlations, these stylized patterns point to the
potential for practice at school to affect cognitive endurance.

To test whether cognitive endurance is indeed malleable, we conduct a field experiment in a
setting where the time spent in focused cognitive activity is limited: low-income primary schools in
India. As is common in many such low-income environments, students spend little time on focused
practice in school or at home. With the exception of exams, it is rare for them to sit and concentrate
for 10-15 minutes at a time without distractions. We conduct our experiment with 1,636 low-income
Indian students in grades 1-5.

We randomize a subset of students to receive sustained cognitive practice—engaging them in
intellectually challenging content during the school day. We use two sub-treatments to deliver two
distinct types of content. In the first sub-treatment (Math), students practice math problems.
This mimics what good schooling does: focused activity within the context of academic learn-
ing. However, under our hypothesis, practicing any cognitively challenging task should improve
endurance—regardless of whether students learn anything from it. Consequently, in our second
sub-treatment (Games), students play cognitively demanding games, such as mazes and tangrams.
There is absolutely no academic content, such as numbers or letters, present at any point in these
games—providing a pure test of our mechanism. For these treatments to be effective, the content
must be difficult so that concentration is effortful, but also sufficiently engaging to retain student
participation. To achieve this balance, and to overcome the hurdle of heterogeneous student ability
in each class, we deliver each sub-treatment on simple tablet applications—enabling students to
receive content appropriate to their skill level.4

The control group receives a status-quo math “study hall” period. As is standard in this setting,
control students are provided with a small number of math problems copied from the chalkboard
and can spend the remainder of the study hall session as they’d like. This results in little effective
time spent in cognitive practice. Students are randomized at the individual level to either the control

3This may be due, at least in part, to the fact that facilitating such practice is more difficult in the crowded, more
disruptive environments of lower-income schools (see, e.g., Burke et al., 2011; Kraft and Monti-Nussbaum, 2021).

4For the Math arm, we use the imagineMath software, developed by Pixatel. For the Games arm, we use simple
games with limited animation downloaded from the Android app store, with no writing or numerical content. In each
arm, the tablet software provides no instruction, only the practice of problems or games.
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group or one of the two cognitive practice sub-treatments. The experiment is implemented during
study hall or an elective period 1-3 times per week between August and January, with practice
sessions typically lasting about 20 minutes at a time. In total, treated students receive 10-20 hours
of additional cognitive practice.

We examine impacts on two sets of outcomes. First, we test for improvements in cognitive
endurance—as measured by the rate at which performance declines. Second, we test for impacts
on students’ school performance, in subjects unrelated to the content of the treatments. This
validates whether the ability developed through the treatments is relevant for field behavior. To
better understand mechanisms, we augment our findings with traditional psychology measures of
attentional capacity, and a supplemental exercise on the role of motivation.

To test for effects on cognitive endurance, we measure impacts on the rate of decline in perfor-
mance in three distinct domains—listening, Raven’s Matrices (IQ), and mathematics—allowing us
to test for broad-based impacts. For example, for listening, students listen to a series of short stories,
each of which is followed by factual questions that check whether the student was attending to the
story (e.g. “What color was the cat?”). This not only captures an important input into learning in
school, the content of this test is completely unrelated to the treatments: there is no sense in which
they required students to practice listening. In each domain, students take a test with randomized
question order and ample time to finish—enabling us to cleanly identify performance declines over
time.

Consistent with finite cognitive endurance, in each of the three domains, control students exhibit
significant fatigue effects: the probability of getting a question correct declines by 12% from the
beginning to the end of a test on average. In line with our predictions, the treatments reduce the
severity of these fatigue effects in each of the three domains we test. On average, cognitive practice
mitigates the rate of performance decline across these domains by 21.6% (p=0.006), with similar
average effects across the Math arm (21.2%, p=0.021) and Games arm (21.9%, p=0.015). Applying
these gains to low SES groups in the TIMSS data would cut the gap in performance declines between
high and low-income countries by 35%, or between Black and White students in the US by 38%.

In addition, the treatments have little impact in the beginning of the tests when students are
still mentally fresh (e.g. the first quintile)—for example, in the listening or Ravens Matrices tests.5

Rather, treatment effects only emerge later in the test, when control students become more cogni-
tively fatigued. This pattern is especially consistent with improved cognitive endurance. In addition,
it helps distinguish our effects from confounding mechanisms that would raise performance across
all questions—for example, increased confidence, motivation to try harder, or working memory.6

5This pattern is consistent with the fact that the treatments did not teach subject content in these tests. As one
would expect, the Math treatment improved math test performance even at the start for challenging math questions.

6Under such channels, it is unclear why students should not try harder or perform better early in the tests also,
versus only later in the tests. Mean control group performance in the first decile of the listening, Raven’s, and math
tests is roughly 50%, leaving ample scope for treatment effects at the start of the test. In Section 5.4, we also discuss
other potential channels such as complementary parental inputs.
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The improvements in cognitive endurance persist 3-5 months after the end of treatment activities—
after students return from end of academic year vacations. We cannot reject that effects at this
follow-up round are equal to those at the end of the intervention.7 As a whole, our findings support
the view that the treatments reduce the severity of cognitive fatigue in a broadly applicable manner.

This, in turn, could affect students’ academic performance both by improving their ability to
learn (e.g. sustaining focus longer while listening to the teacher, reading a textbook, or thinking
through a challenging concept) and also by reducing performance declines on exams and assignments
(conditional on the academic knowledge they have). We examine overall impacts on grades in
students’ regular school classes—enabling us to test whether cognitive practice affects students’
normal field behavior and outcomes.

Each of the two sub-treatment arms improves students’ regular school performance in the core
academic subjects taught in all schools. On average, student grades improve by 0.099 standard
deviations (SD) in Hindi (p = 0.012), 0.092 SD in English (p = 0.024), and 0.085 SD in math
(p = 0.025). Since the treatments could not have directly taught students Hindi or English, this
points to improvements in a generalized mental resource. In addition, these impacts are similar for
both the Math and Games sub-treatments. Using a simple back of the envelope exercise described
in Section 6, we estimate that changes in performance declines on assessments can account for 1/3
of the impact on grades, implying that 2/3 of the effects stem from increased learning.

Our treatment effects on school performance indicate that simply spending time in effortful
thinking—without learning any subject content—improves traditional measures of human capital.
Moreover, such thinking need not even be academic in nature: even the students who receive the
Games sub-treatment do substantially better in their academic classes. These findings imply that
receiving an education—through the experience of cognitive practice—could reinforce the process of
human capital accumulation, even outside of teaching content.

Should we view endurance as operating through a cognitive channel, or through motivation?
Finding that cognitive endurance is malleable constitutes an advance under either of these views.
Moreover, because psychologists consider these channels to be inherently related, we do not attempt
to draw a strong line between them.8 This informs our choice of the more general term “endurance”
to describe performance declines during cognitive tasks. However, to explore the forces driving our
effects, we augment our core findings with three supplementary measures.

First, we test for impacts on attentional capacity using traditional measures from the psychology
literature. This includes the canonical measure of sustained attention, the Sustained Attention
to Response Task (SART), which captures focus via reaction times to stimuli. Cognitive practice

7This provides evidence for some persistence, but of course does not speak to longer horizons. Our ability to collect
data for further follow-up was halted by the Covid pandemic, which led schools to stop operating and another has
shut-down completely since the intervention. Note that, irrespective of their longevity, by demonstrating malleability,
our results open the possibility that SES differences in attentional practice at home, school, or the workplace could
perpetuate differences in cognitive endurance even in later years—a possibility that warrants further research.

8Sustained attention is viewed as an upstream requirement for exerting perseverance, self-control, and other be-
haviors that involve sustaining focus towards a goal (Chun et al., 2011; Mischel, 2014; Zelazo et al., 2016).
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improves performance on traditional attention lab measures, with an average effect of 0.088 SD in
the Math arm (p = 0.040) and 0.075 in the Games arm (p = 0.085).

In addition, we measure effects on classroom behavior, adapted from a diagnostic teacher rating
scale used to assess attention. This captures students’ attentiveness in class, rated by observers that
are blind to treatment status. We also see improvements in this index, with an average effect of
0.117 SD in the Math arm (p = 0.003) and 0.070 SD in the Games arm (p = 0.074). These findings
support the idea that cognitive practice may bolster students’ ability to attend to, and therefore
learn in , the classroom.

Third, we undertake an additional exercise to examine the potential role of motivation. For a
subset of the declines tests, we randomize the chance to earn toys for higher test scores. This sharply
increases test performance, even at the beginning of the test—indicating that performance is highly
elastic to effort even when students are cognitively fresh. However, the incentives do not reduce the
severity of performance declines—indicating that an internal drive to do better does not mitigate
observed fatigue effects. This test may not capture all dimensions of motivation; but this, along with
the positive evidence on attentional measures, suggests a likely role for cognitive improvements.

While effortful thinking is an inherent feature of formal education, our test relies on an outside
intervention introduced into schools. As a complement to our experimental evidence, we examine
whether the natural experience of schooling does indeed develop cognitive endurance. We exploit
quasi-random variation in years of schooling, due to birthday cut-offs for school enrollment, to con-
struct a suggestive test. Using supplementary data on elementary school students from Brown and
Andrabi (2021), we first replicate the presence of large performance declines in academic tests. We
then use a regression discontinuity approach to show that, conditional on student age, an additional
year of schooling does indeed mitigate performance declines—at a magnitude about three times as
large as the effects from our more limited experimental intervention. These effects are considerably
stronger for better quality schools, and those that engage students in independent practice in class.
In contrast, among the worst quality schools, an additional year of school produces no discernible im-
provement in cognitive endurance. This suggests that initial disparities in schooling quality, through
their impact on core mental capacity, could exacerbate achievement gaps among students.

We conclude by examining the broader relevance of cognitive endurance among adults: costly pro-
duction errors among full-time piece-rate data entry workers, and deterioration in decision-making
among voters at the ballot box. In each case, we document substantial performance declines over
time—over the work shift or further down the ballot—and show that declines are considerably more
severe among those with lower socioeconomic status. While only suggestive, these patterns provides
impetus for more work on socioeconomic differences in cognitive endurance.

Our paper contributes to two sets of literatures. First, we advance a growing body of work
on cognitive fatigue effects, including decision fatigue. Recent studies document specific instances
of performance declines in numerous field settings (e.g. Endo and Kogi, 1975; Levav et al., 2010;
Danziger et al., 2011; Brachet et al., 2012; Augenblick and Nicholson, 2015; Meuter and Lacherez,
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2016; Warm et al., 2018; Balart et al., 2018; Borghans and Schils, 2015; Hirshleifer et al., 2019;
Zamarro et al., 2019; Akyol et al., 2021).9 These papers show that fatigue effects are meaningful for
high stakes behaviors—for example, whether a judge grants parole, if a proposition becomes law,
or how well a student does on a standardized test. We augment this work by documenting that
cognitive fatigue exhibits more quickly among lower socioeconomic status (SES) groups, and this
partially accounts for performance gaps by SES, across a variety of settings.10 This suggests, for
example, that test scores may not only reflect content knowledge, and longer tests may especially
disadvantage lower-income populations. Moreover, we provide the first evidence that cognitive
endurance is malleable and can be improved—advancing work in both economics and psychology.11

Second, this study furthers our understanding of how schooling builds general human capi-
tal. Research in the economics, education, and psychology literatures argues that schooling builds
skills—both cognitive and non-cognitive—that go beyond academic learning, and these skills are
consequential for socioeconomic gaps in performance (for reviews, see Bowles et al., 2001; Cunha et
al., 2006; Zelazo et al., 2016; Morrison et al., 2019).12 This argument is typically based, for example,
on looking at the impacts of an additional year of schooling on diverse outcomes. We make three
contributions to this literature. First, we highlight a new skill that can be developed through school-
ing, and which we argue belongs in our conception of general human capital: cognitive endurance.
Second, while existing studies document the broad benefits of schooling, there has been less work
unpacking the education black box: what exact features of schooling are relevant, and how do they
engender particular skills? Understanding such specific pathways would enable targeted policies
to improve varied dimensions of human capital. We provide the first empirical demonstration of
one such pathway: we isolate a specific feature associated with formal education (sustained effort-
ful thinking) and establish its causal impact on a specific mental capacity (cognitive endurance).
Third, our results suggest that worse schools are less likely to inculcate this capacity. This offers

9Balart et al. (2018), Borghans and Schils (2015), Zamarro et al. (2019), and Akyol et al. (2021) document declines
in observational test data such as PISA. By replicating declines in our experiment—e.g., the listening test, where
running out of time or test-taking strategies cannot drive results—we validate and bolster previous findings. Some of
these studies interpret declines as reflecting motivation rather than cognitive fatigue. It is of course not possible to
distinguish these in observational data. See discussion above for the role of motivation in our experimental results.

10While many studies in the education literature examine performance declines, particularly in PISA, there has
been limited work on SES heterogeneity. A notable exception is Borgonovi and Biecek (2016), who explore hetero-
geneity along various dimensions, including SES and gender. In addition, Borghans and Schils (2015) document that
performance declines in PISA predict later life outcomes, such as employment status and health.

11There is a related psychology literature on sustained attention, defined as the ability to sustain cognitive thought
towards a goal, and measured through lab tasks such as the SART game. In this literature, attempts to “train”
sustained attention have not found “far transfer”—improvements outside of the exact task or game that was practiced—
likely due to small sample sizes (typically 10-40 individuals per arm). See Rapport et al. (2013) for a meta-analysis of
programs training attention, Simons et al. (2016) for a broader review of the cognitive training literature, and Chun
et al. (2011) for an excellent review of the psychology literature on attention. Our findings, such as on traditional
psychology measures of sustained attention, advance this literature as well by demonstrating far transfer.

12Relatedly, a growing body of work demonstrates the importance of non-academic skills—such as higher order
cognitive skills or non-cognitive skills—for worker productivity, underscoring that human capital is broad and multi-
faceted (e.g. Heckman et al., 2006a; Almlund et al., 2011; Chetty et al., 2011; Heckman and Kautz, 2012; Borghans
et al., 2014; Chen et al., 2017; Deming, 2017, 2021).
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a new channel through which educational disparities could handicap more disadvantaged children,
widening achievement gaps. In addition, we document that just the practice of thinking itself equips
students to perform better in school—a novel finding with direct policy implications, irrespective of
mechanism. Of course, schooling likely confers other important cognitive and non-cognitive abilities;
tracing the pathways for these constitutes an interesting direction for further work.13

2 Motivation and Background

We define cognitive endurance as the ability to sustain performance over time during an activity
that requires effortful thinking. Because individuals have a limited capacity to sustain such thinking
for long periods, doing so leads to mental fatigue. This offers a key empirical implication: when a
person is engaged in a task that requires intellectual resources, performance during that task will
decline over time. Note that this definition does not inherently take a stance on the specific psycho-
logical mechanism that produces performance declines. We probe potential mechanisms within the
context of our field experiment below. In this section, we highlight suggestive patterns in field data
to motivate our experiment.

2.1 Performance Declines and Socioeconomic Status

To motivate the empirical relevance of cognitive endurance, we begin with a set of illustrative
examples. We focus on the key prediction that performance will decline over time during effortful
cognitive activity. We look for this prediction within two prominent global academic achievement
tests: TIMSS and PISA. TIMSS is a math and science test administered in over 50 countries to
fourth graders during the school day. Question order is block randomized within each subject, and
students are given ample time during each 30-minute test subject exam, so that declines are not
driven by changes in question difficulty or test completion.14 Similarly, PISA is administered to
15-year olds globally, covering math, science, and language. The test has four 30-minute sections
or blocks, and these are administered in random order across students. Once each 30-minute block
ends, students must move onto the next block.

In Figure I, we plot performance over time. For TIMSS, we compare performance on a given
question when it appears earlier in the test versus later, including question fixed effects. For PISA,
we examine performance on a given 30-minute block when it appears earlier versus later in the exam,
including block fixed effects. The figure shows the US sample in the top row and the global sample

13We also relate to studies that introduce new interventions during the school day to improve generalized skills such
as mindset, patience, grit, or working memory (Bettinger et al., 2018; Alan and Ertac, 2018; Alan et al., 2019; Berger
et al., 2020).

14The test is explicitly designed to allow for sufficient time to complete it. Only 3.2% of questions are skipped, and
4.5% of questions are not reached (Foy et al., 2011). Moreover, the patterns we document are similar if we restrict the
sample to completed questions only. Note that we view this as motivational evidence. We provide a more carefully
controlled test of decline effects in our experiment.
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in the bottom row, separately for each test subject in the TIMSS and PISA tests, respectively. In
each graph, the x-axis denotes the location in the test (as a percentage of the total test length), and
the y-axes denote the average probability that the question was answered correctly.

In each of these ten plots, we document two stark patterns. First, consistent with cognitive
fatigue, when the same question appears later in the test rather than earlier, students are consid-
erably more likely to get it wrong. For example, in the TIMSS exam, among low socioeconomic
status students, the rate of performance decline is 16% in the global sample. Note that such perfor-
mance declines are not unique to these tests. They also arise in other academic achievement tests,
as well as myriad settings where the stakes are high—including among voters, paramedics, data
entry workers, judges, financial analysts, airport baggage security inspectors, train operators, and
consumers buying cars (Borghans and Schils, 2015; Balart et al., 2018; Augenblick and Nicholson,
2015; Brachet et al., 2012; Kaur et al., 2015; Danziger et al., 2011; Hirshleifer et al., 2019; Meuter
and Lacherez, 2016; Edkins and Pollock, 1997; Levav et al., 2010). These motivating examples are
only suggestive. However, the ubiquity of performance declines across domains supports the premise
that cognitive endurance matters for economic outcomes. In our field experiment, we provide more
carefully controlled measurement of cognitive fatigue effects.

Second, more disadvantaged students exhibit markedly stronger cognitive fatigue effects. Across
each of the ten plots in Figure I, performance declines are more severe among lower SES students.
For example, in the US, Black and Hispanic students show 72% more decline than White students;
this difference in decline accounts for 9% of the total White/Non-white test score gap (Panels A-B
and E-G). We see similar patterns by wealth globally (Panels C-D and H-J). Below, we document
similar systematic heterogeneity by wealth among adults in behaviors outside of schooling.

2.2 Cognitive Practice and Schooling Environments

Good schooling engages students in effortful thinking for continuous stretches of time. For
example, in many schools, this feature is explicitly incorporated into pedagogy: students are required
to sit and independently work on academic problems on their own. In classroom time use data from
the TIMSS teacher survey, the average student engages in some independent practice one out of
every three school days. To varying degrees, other aspects of schooling—taking a test, reading a
textbook, doing homework, possibly even listening to a lecture—may also engage students in effortful
thinking for extended periods. In other words, school involves more than just learning content; the
act of learning the content often requires periods of sustained concentration.

However, the degree to which students engage in sustained concentration varies across schools—
and does so systematically by socioeconomic status. As an example, both globally and in the US,
poorer students spend less time in focused independent practice during the school day (Figure II,
Panels A-B). This amounts to 40% less independent practice among students in poorer countries com-
pared to richer ones, or 10% less practice among more disadvantaged students in the US compared
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to more advantaged ones. In addition, the environmental conditions faced by poorer students—more
crowded classrooms, disruptions from peers, and less ability to focus on homework at home—may
make it less likely that they can effectively engage in concentration, even when it is attempted
(Kraft and Monti-Nussbaum, 2021; Figlio, 2007). For example, poorer students attend schools with
considerably more disruptions during class (Figure II, Panels C-D). These environmental conditions
could also discourage teachers from attempting to engage a class in focused practice work.15

Work in psychology hypothesizes that exposure to periods of effortful thinking could be con-
sequential for “training” sustained attention (e.g. Chun et al., 2011). Such independent activity
requires self-driven focus—as opposed, for example, to external stimuli that can capture your atten-
tion, such as listening to a lecture. Potentially consistent with this view, students who are exposed
to more independent practice time in school exhibit much less steep performance declines over the
length of the TIMSS exams (Appendix Table A.1, Col. 2). This relationship holds even controlling
for income differences across students (Col. 3).16 While these are simply correlations and there-
fore not causal, they provide motivational support for the possibility that exposure to independent
practice could affect cognitive endurance.

Consequently, our experimental intervention increases the amount of time students spend solving
cognitively challenging problems on their own. This approach reflects common practices already used
in many wealthier schools. Of course, this does not negate the potential role of other activities, at
school or home. Rather, our choice of independent practice as the basis for our design is informed
by both the psychology literature, and the motivational patterns above.

3 Experimental Design

The primary goal of our study is to construct a field experiment to test whether spending time in
effortful thinking expands cognitive endurance, with downstream effects on academic achievement.
We supplement this with ancilliary tests on underlying mechanisms.

3.1 Context

We select a school setting where the time spent in focused cognitive activity is limited: low-income
primary schools in India. In this setting, as is common in many developing countries, the teaching
approach focuses on rote memorization and recitation during the school day (World Bank, 2004).
Classrooms are crowded, with frequent disruptions from environmental noise and other students.
Students within a class also vary widely by achievement level: half the students in a classroom may
be below grade level (e.g. ASER, 2019; Muralidharan et al., 2019). Consequently, when teachers

15For example, in our sample teachers cite these conditions, along with heterogeneous ability among students, as
factors that prevent independent practice in class.

16We conduct this motivational analysis within the global sample, where there is greater power to examine these
correlations due to the larger sample size.
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do assign independent practice—typically by writing 2-5 problems on the chalkboard and asking
students to complete them in their notebooks—many students cannot even attempt the problems,
and end up disrupting other students. Outside of school, students spend little time on homework or
other cognitively challenging tasks. Consequently, they seldom have the opportunity to engage in
focused cognitive activity for sustained periods either inside or outside the classroom.

We conduct our experiment in six Indian private primary schools in the region of Lucknow,
India. The schools cover a mix of urban and rural areas, and serve students from largely low-income
households. Our sample is comprised of 1,636 students in grades 1-5. Appendix Figure A.1 provides
example pictures of the classroom environment in these schools.

3.2 Treatments

We design an intervention to increase the amount of time students spend in effortful thinking
for sustained periods. We accomplish this by having students solve cognitively challenging problems
on their own for 20-minute sessions during the school day. In order to construct a robust test of our
hypothesized mechanism, we use two different approaches for this cognitive practice—academic or
non-academic—and compare this with a control arm:

1) Treatment: Cognitive practice. Students solve intellectually challenging problems.

a) Math : Students practice academic math problems.

b) Games: Students play cognitively demanding games, such as mazes and tangrams, with
no academic content.

2) Control: Study hall. Students attend a status-quo study hall period, with limited cognitive
practice.

The control group receives a status-quo math “study hall” period. As is standard practice in this
setting, in this group, the teacher writes a small number of math problems (i.e. 5 problems) on
the chalkboard and then sits down to do her own work (e.g. marking exams). Students can decide
whether to attempt the questions, and spend the remainder of the study hall session as they’d like.
Because the work does not feel engaging, the size of the chalkboard limits the number of problems,
and many students do not have the skill to attempt grade-level content, little effective time is spent
in cognitive practice for most students. The math problems assigned to students are drawn from
the same question bank as those in the Math sub-treatment arm.

The Cognitive Practice treatment is divided into two sub-treatments. The Math sub-treatment
mimics what good schooling does: focused cognitive practice within the context of academic learning.
Students solve a series of math problems on their own in each session. However, under our hypoth-
esis, practicing any intellectually demanding task should improve cognitive endurance—regardless
of whether students learn anything from it. This motivates the design of the Games sub-treatment,
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which does not entail any academic learning or practice. Students play intellectually challenging
games, like tangrams or Flow Free (see Appendix A.2). These games are chosen so that they: 1)
contain absolutely no academic content, such as numbers or letters—providing a more pure test of
our mechanism, and 2) require effortful thought to complete. Treated students receive about 20
minutes of focused practice per program class period, compared to 0-10 minutes for students in
the control group (reflecting wide heterogeneity across students). This resulted in 10-20 hours of
cognitive practice in the treatment arms on average (see details below).

For the cognitive practice treatments to be effective, they require an activity that is cognitively
demanding so that concentration is taxing, but also sufficiently engaging to retain student partic-
ipation for a continuous stretch of time (e.g. a 20 minute session). Moreover, the activity must
be feasible in classrooms with starkly different achievement levels across students (i.e. with many
students behind grade level). To achieve this balance, we deliver each treatment on simple tablets—
enabling students to receive content appropriate to their skill level. In each sub-treatment arm, the
tablet software provides no instruction, only the practice of problems or games. Appendix figure
A.3 show pictures of example classes implementing the treatment.

For the Math sub-treatment, we use the imagine Math software, developed by Pixatel. This
displays math practice problems via a simple interface, with no graphics, animations, or other visual
features (see Appendix figure A.2a). One problem appears on the screen at a a time; students are
asked to solve the problem, and then select the correct answer on the tablet.17 Depending on the
student’s performance, subsequent problems become easier or more challenging. Overall, we selected
topics to prioritize practice rather than learning new content.

For the Games sub-treatment, we use simple games with limited animation downloaded from
the Android app store. These should not be viewed as “fun” video games, but rather traditional
stimulating puzzles and games delivered through a bare-bones tablet interface (see Appendix figure
A.2b). The specific games were chosen to meet three criteria: 1) they should be dynamically
adaptive to continue to challenge all students regardless of initial skill (so students do not get bored
over time); 2) they should not be related to test outcomes we would measure later (e.g. no games
with sound or listening were selected); 3) they should be challenging and require concerted effort,
but still sufficiently engaging that students would work for an extended period. The final criteria
relied heavily on piloting a variety of potential games and selecting those which appeared effective
by visually judging the children’s engagement.

Note that we do not view tablet-based training as necessary for our approach to be effective.
Rather, in our particular context, piloting indicated that this was an effective way to retain student
engagement in intellectually challenging material, while solving the practical challenge of hetero-
geneous ability. Consequently, we view this implementation approach as simply a convenient way
to achieve our goal of increasing the amount of time in effortful thinking in this context. Below,

17Students were also provided paper and a pencil during this class for problems in which they needed to work out
the answer on scratch paper.
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we assess whether this approach may have generated other impacts, such as increased motivation
or confidence, which could explain our results. Finally, note that our main outcome measures are
collected using traditional pencil-and-paper tests.

3.3 Implementation and Protocols

Students in grades 1-5 in the study schools were enrolled in the experiment. Each student was
randomized into one of the three treatment groups for the duration of the study. Randomization was
at the individual level, stratified by class section (i.e. classroom) and baseline math test scores.18

The intervention was implemented during students’ regular study hall or other elective periods,
avoiding any crowd out of traditional academic teaching. At the start of each designated period,
students in the classroom were split up and went to one of three classrooms based on their assigned
treatment status. They returned to their normal classroom at the end of the elective period. In
most schools, elective periods were about 30 minutes in length, so that due to the fixed transition
cost across classrooms, the effective intervention time was roughly 20 minutes per session. Appendix
Figure A.4 shows the timeline of the experiment. Each school dedicated 1-3 elective periods per
week from August to January for the intervention. The number of sessions varied across weeks based
on other activities such as festivals, planned assemblies, or exams, and across schools based on when
the intervention began in the school and the schedule agreed upon with the school administration
based on the number of free elective periods available. This resulted in 10-20 hours of cognitive
practice in the treatment arms on average.

At each school, we placed three study staff members who were responsible for splitting students
up into the correct intervention classroom, overseeing activities in these classrooms, and then re-
turning students back to their normal class sections as a group.19 These staff members had the
background one may expect of a teacher’s assistant, and were recruited with assistance from the
schools; from the perspective of students, they resembled normal teachers. The study staff were
randomly rotated across treatment arms each month to prevent any collinearity with treatment
status. Across all experimental groups, they did not engage in any instruction during the prac-
tice sessions. They typically corrected other homework or did administrative tasks at a desk while
students practiced—as is customary among teachers overseeing study hall periods in our setting.

To avoid feelings of unfairness, students in the control group were also allowed to use the tablets
early in the year to practice typing and other simple activities, selected to avoid stretches of cognitive
focus. Across all three groups, because the tablet activities were not very exciting (e.g. no animations
or graphics), the novelty of the tablets wore off fairly quickly during the intervention. As a result
of this and the exposure to tablets among all experimental arms, qualitative conversations suggest

18We also included income tercile in constructed strata in the subset of schools where parental income was available.
19Having our own research staff implement the intervention during elective classes helped ensure study protocols

were followed, such as no instruction or extra help beyond basic technical support (e.g. swapping out a malfunctioning
tablet) to treatment students. This helps ensure a clean test of our research question.
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that students did not experience notable fairness concerns. In response to any parent inquiries,
schools planned to explain the intervention as a pilot program on alternate education approaches—
with different approaches being tried by lottery during the study year—with the plan that access
would be equalized across all students the following year. In practice, however, we did not hear
of any incidents of parent complaints, in line with limited interaction and engagement with school
activities among parents in our population. Because the randomization assignment was controlled
by the study team and overseen by study staff, it was not possible for students to switch across
treatment arms—as verified by our administrative data and random spot checks.

Finally, while not essential for our experiment design, we endeavored to keep the regular school
teachers blind to students’ treatment status. Treatment assignment rosters were never shared with
teachers. Students left and returned to their class section at the same time, and program classes
were held in a different location in the school (usually a different floor), so that teachers would not
have directly observed which students were in which group. This helps reduce concerns that teachers
could systematically have treated students differentially in some way based on their knowledge of
treatment status.20

We do not observe any imbalance in student covariates or baseline test scores (Table A.2). Of
the 44 pair-wise t-tests comparing treatment arms, none are statistically significant. In addition,
attrition was low – 11% for school administered exams, 3% for experimental exams – and balanced
across experimental arms (Table A.3).

3.4 Outcome Measures and Mechanisms

Our outcome measures are summarized below and explained in more detail in the results section.
We examine impacts on two primary outcomes: cognitive endurance as measured through perfor-
mance declines, and students’ academic performance. We supplement this with additional measures
and tests to better understand mechanisms. Note that the outcomes below were pre-registered.21

Across our measures, we test students in domains that are unrelated to the content they practice as
part of the treatment arms—enabling us to draw conclusions about whether our results capture a
change in core cognitive capacity.

3.4.1 Primary Outcomes

(i) Cognitive endurance: performance declines. We measure changes in cognitive en-
durance by estimating performance declines during intellectual activity. We test whether the treat-

20Of course it is possible that some teachers may have learned of treatment status for some individual students
through conversation or by walking past the program classrooms.

21Specifically, we pre-registered the performance declines tests (in the subjects of listening, Raven’s Matrices, and
math), including the fact that we would be looking at effects on declines (i.e. slopes), and the the traditional
psychology measures (SART and symbol crossing). We also pre-registered looking at school performance and the
classroom observations, with the caveat that our ability to look at these would be subject to agreements from the
schools to collect this data, which had not yet been obtained at the time of the pre-registry.
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ments mitigate the severity of performance declines across three unrelated domains—listening, IQ
tests (Ravens Matrices), and math—over a 20-30 minute period. In each test, we randomize question
order and allot ample time for test completion, allowing us to cleanly identify performance declines.

(ii) Academic achievement: school grades. Second, we examine students’ regular school
performance in their core academic subjects of Hindi, English, and math. For this, we use the end-
of-term grades provided by the schools. This offers a direct test for whether the ability developed
through the treatments is relevant for field behavior. In addition, these scores are intended to capture
a combination of improved cognitive endurance on the exam itself as well as direct learning effects
through improved attention in the classroom. Note that both the performance declines and school
grades include domains that were not practiced during treatment sessions. For example, neither
sub-treatment arm involved students practicing listening, and neither could have taught students
Hindi or English. Consequently, examining impacts on non-math subjects provides a test for changes
in a generalized, transferable ability.

The performance decline tests (outcome i) were administered during the school day at four
times: Baseline (September), Mid-line (December), Endline (February), and Follow-up 3-5 months
after the end of the intervention (April-September). All tests were administered via paper and pencil.
Students in each class section cohort were tested together, so that each test batch had students from
across the treatment arms. Certain tests were randomly not administered in all rounds due to time
constraints.22 For each outcome, we pool across testing rounds in tables and figures to present
average impacts, unless otherwise stated.

School performance measures (outcome ii) were provided by all schools for the treatment period,
and by a subset of schools for the year before treatment as a baseline measure. Unfortunately, we
were not able to collect follow-up administrative data from the schools for the subsequent year due
to disruptions from the COVID-19 pandemic, which led schools to close for an extended period, and
one school has since shut down.

3.4.2 Mechanisms: Additional Outcomes and Tests

Outcome (i) above enables us to examine our primary goal: whether cognitive endurance is
malleable. However, this does not shed light on whether we should understand endurance through a
primarily cognitive lens, versus through a broader view of perseverance, which could include factors
such as motivation. To better understand mechanisms, we augment the above with two additional
sets of analyses. First, we examine measures of attentional capacity used in the cognitive psychology
literature: canonical psychology lab measures, and assessments of classroom behavior. Second, we

22In addition, there was a clerical error in some of the April Ravens Matrices tests, which led to test modules that
were up to 60 questions long and therefore unusable for looking at performance declines. These tests are excluded
from the data analysis. The results are robust to including these tests in the analysis. Test modules included in the
main analysis have, on average, 30 questions.
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introduce supplemental variation using incentives to explore the role of motivation. Again, we
provide an overview here, with more details when we present the results.

Traditional Psychology Measures. We assess students’ attentional capacity as proxied by
the canonical measure of sustained attention in cognitive psychology: the Sustained Attention to
Response Task (SART) (Smilek et al., 2010). This provides an abstract context-free measure of
whether students’ ability to sustain focus has improved. We supplement this with a secondary lab
measure used in psychology, a symbol matching task, which is an adapted version of a concentration
endurance task.

Classroom Behaviors. To examine effects on classroom behavior, we adapt the Vanderbilt
ADHD Diagnostic teacher rating scale, a commonly used assessment used by teachers to evaluate
student behaviors, to our local environment. This measures students’ attentiveness level in the
classroom while a teacher is lecturing and while students are engaged in common classroom activities.
Students’ behavior is rated by treatment-blind observers.

Role of Motivation. To understand the potential relationship between motivation and cog-
nitive endurance, we exogenously induce students to be more driven to perform well. Specifically,
for a subset of the performance declines tests (outcome (i)), we randomize whether students are
incentivized to perform better on the test: they receive increasingly desirable toys as their perfor-
mance is higher up the distribution of scores. We use this approach so that students randomized to
receive the toy incentives are motivated to work hard on the test, regardless of initial skill. We can
then test whether this raises performance both early in the test (enabling us to check whether early
performance is elastic to motivation), and the effect on performance declines (enabling us to check
whether improved motivation mitigates performance declines). We randomize these incentives at
the grade-school-exam level during one round of testing.

Alternate Mechanisms. The cognitive practice treatments could arguably boost performance
through other channels unrelated to cognitive endurance. In Section 5 below, we discuss potential
confounds—including changes in confidence, a desire to do well in school, or alternate cognitive
mechanisms such as working memory.

Balance. The randomization was successful. We find no significant differences in demographic
characteristics or baseline performance across experimental arms (Appendix Table A.2). In addition,
attrition was relatively low: averaging 10% for school administered tests and 3% for the experimental
exams used to capture cognitive fatigue. There is no differential attrition by treatment status for
any outcome (Appendix Table A.3).
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4 Results I: Cognitive Endurance

4.1 Measuring Performance Declines

We test for improvements in cognitive endurance by examining whether the treatment mitigates
the severity of performance declines during cognitively challenging activity. We construct tests in
three diverse domains, allowing us to look for broad generalizable impact:

(1) Listening: This task measures students’ attentiveness while listening to a passage—mimicking
an activity that is required in nearly all typical classroom settings. Using headphones, each
student listens to a pre-recorded set of short simple stories. After each story, the student is
asked simple factual questions about the content of the story, for example, “what color was the
dolphin?” Each question is presented one at a time, with fixed time pacing between consecutive
questions about a story, after which the next story begins. In order to avoid any concerns about
literacy, answers are multiple choice and visual (e.g. in the above example, green, blue, black,
and grey squares to denote the color of the dolphin).

(2) Ravens Progressive Matrices: This is a non-verbal multiple-choice test of reasoning in which
the participant is asked to identify the element that completes a pattern in a figure (Raven,
1936, 2000). This test is viewed as capturing “fluid intelligence” and is commonly used as
an IQ test. Students take a shortened paper-and-pencil version of this test, adapted to be
appropriate for each grade level.

(3) Math: A standard paper-and-pencil test of math problems. These tests are constructed to
include a mix of both remedial and more grade-appropriate problems—enabling us to test for
declines effects regardless of whether students are at grade-level.

For each test of the three tests, we randomize the order of questions across different test packet
versions.23 We then randomize the test packet version across students to enable student-level ran-
domization of question order. Appendix Table A.5 and Appendix Figure A.5 verify the balance in
test version and question difficulty by treatment status.

In addition, we ensure that students have sufficient time to finish the tests without time pressure.
Consistent with this, nearly all students are able to respond to questions near or at the very end of
the exam; the last question completed was on average 99.7%, 93.3%, and 99.3% of the way through
the exam for the listening, math, and Ravens Matrices tests, respectively (Appendix Table A.6).
Consequently, declines over time are not confounded by changes in question composition or non-
completion. Below we verify that results are similar when restricted to only attempted questions.

23For the listening test, the question order randomization ensures that questions later in the test are not more likely
to be based on content that appeared later in the story passage. This helps assuage concerns that performance on
later question items could be related to the students’ working memory instead of cognitive endurance.
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Each set of tests is adapted to grade level. Students take only one test per day, so are cognitively
fresh at the start of each test. All tests are conducted during the school day, and are interpreted by
students as being regular school tests.

4.2 Performance Decline Patterns

Figure III plots performance on each test over time—separately for the control group and each
sub-treatment arm. In each panel, the x-axis is the percent location of the test (where 0 is the
beginning of the test and 1 is the final question of the test), and the y-axis is the proportion of
students who answer the question correctly. The data is residualized to remove question fixed
effects. Consequently, the plots can be interpreted as showing changes in average performance when
the same question appears earlier in the test versus later.24

The solid black line displays control group performance in each plot. Across tests, students are
are 12% less likely to get a question correct if it appears in the fifth quintile rather than the first
quintile. In each domain, the control group shows substantial declines in test performance over
time: 18 p.p., 6 p.p. and 3 p.p. for math, listening, Ravens, respectively. Because test completion
is high, note that these patterns persist even when restricting the data to only attempted questions
(Appendix Figure A.7). This replicates the patterns seen in the TIMSS and PISA data documented
above in Figure I—supporting the empirical relevance of cognitive fatigue.

Consistent with our hypothesis, cognitive practice mitigates performance declines. In the plots,
the blue dashed line shows average performance for the Math sub-treatment, and the green long
dashed line for the Games sub-treatment. On average, relative to the control group, being assigned
to the treatment reduces the rate of decline in the second half of the test—by 21.2% in the Math
arm and 21.9% in the Games arm.25

4.3 Empirical Estimation

To more formally examine treatment effects, we begin by estimating:

Correctils = β0 + β1CogPractices +

10∑
l=2

λlDecilel + β2CogPractices ∗ 1[2 ≤ Decilel ≤ 5]

+ β3CogPractices ∗ 1[6 ≤ Decilel ≤ 10] + β4Baselines + χil + εijs

(1)

Correctils is a binary variable that captures whether student s correctly answered question item i in
location l. CogPractices is a dummy that equals one if the student is assigned to one of the cognitive
practice sub-treatments and zero if the student is in the control group. The λl are location (decile)

24Because initial performance is similar and statistically indistinguishable across treatment arms (see Table I), initial
levels are normalized to the control group mean in the first quintile of each test in order to more clearly visualize
declines. Appendix Figure A.6 reproduces these plots without this normalization.

25See Section 4.4 below for an explanation; Table I, Col. (1) for the corresponding regression results.

17



fixed effects, which flexibly capture declines over time in the control group. The χil is a vector of
question fixed effects. We also control for the student’s baseline score.26 In addition, we can run the
above regression to separately estimate effects for each subtreatment, replacing the CogPractices
dummy with two separate dummies for the Math and Games practice sub-treatments. For inference,
we cluster standard errors by student, the unit of randomization, in all analyses throughout the
paper.

β1 captures the treatment effect in the first decile of the test—i.e. the level effect at the start
of the test when students are still cognitively fresh. β2 captures treatment effects for questions in
deciles 2-5 of the test. The primary coefficient of interest is β3, which captures the treatment effect
in the second half of the test, i.e. deciles 6-10. We predict that β3 will be positive: cognitive practice
will mitigate the rate of decline toward the end of the test, when cognitive fatigue has set in.

While helpful in its simplicity, one potential limitation of the approach in Equation 1 is that,
by focusing on the second half of the test, it implicitly takes a stance on when treatment effects on
declines should arise (i.e. the second half of the test). However, the scope for treatment effects occurs
once the control group starts declining in performance. We therefore complement the above with a
more flexible, higher-powered approach based on this intuition. To obtain a data-driven proxy for
expected declines at each point in time throughout the exam, we use data from the baseline tests.
Specifically, for each school, we compute how much worse students do in later questions relative to
their performance at the start of the test:27

PredictedDeclinel = E[Correctils|location = 1]− E[Correctils|location = l] (2)

Since some tests have a small number of questions (e.g. some Ravens tests have 10 questions only),
we use quintiles as location bins to reduce noise.28 The first term therefore captures average baseline
test performance in quintile 1. The second term captures this average for quintile l, where l takes
the values 1-5. Consequently, PredictedDeclinel serves as a proxy for how much worse we would
expect students do over the course of a test in the absence of any intervention. We then test whether
receiving Cognitive Practice mitigates the rate of expected performance decline:

Correctils = α0 + α1CogPractices + α2PredictedDeclinel

+ α3CogPractices ∗ PredictedDeclinel + α4Baselines + χil + εils
(3)

26We also include fixed effects for the version of the test packet taken by each student, and a linear control for the
average fraction of students in the student’s school who got question i correct, which captures question difficulty. In
addition, when pooling across different test subjects, we allow the CogPractices term to vary by test subject, to allow
for different level effects across subjects. Finally, because the tests in higher grades had more questions (and therefore
observations), we also weight by the number of questions in the test so that each student-test receives equal weight.

27This allows for differences in baseline ability across schools. Results are similar if we do not compute this measure
separately by school, or use alternate approaches (see Table A.7).

28In our baseline specification, predicted declines were estimated within schools to allow for differences in decline
patterns across schools. We omit the school index from the regression notation for simplicity. Results are robust to
alternative predicted decline specifications (see Table A.7.

18



where PredictedDeclinel is as defined in Equation (2), and all other covariates are as defined in
Equation (1). The main coefficient of interest is α3, which captures the fraction of expected decline
that is mitigated by the treatment. Under our hypothesis, α3 will be positive: the treatment group
will decline less steeply than the control group. α1 captures the level effect: treatment effects at the
start of the test before declines set in. To account for the fact that PredictedDeclinel is estimated
from baseline data, we bootstrap standard errors.

4.4 Impacts on Cognitive Endurance

Table I presents the results from both estimation approaches. Col. (1) presents estimates from
Equation (1), pooling across subjects. Receiving Cognitive Practice improves average performance
in the second half of the test by 1.29 percentage points (pp) (p = 0.006), corresponding to a 21.6%
reduction in the amount of decline relative to the control group. In contrast, there is no discernible
difference between the treatment and control groups at the start of the tests; the estimated effect in
the first decile is -0.0027 (p = 0.45). In Panel B, Col. (1), we repeat the analysis disaggregating the
two sub-treatments. The Math and Games arm each lead to higher performance in the second half of
the tests by similar magnitudes, corresponding to reductions of 1.27 pp (21.2%, p = 0.021) and 1.31
pp (21.9%, p = 0.015), respectively. In addition, we detect no level effects for either sub-treatment:
the estimated effects in the first decile of the tests are small and insignificant.

The estimation approach in Equation (3) gives a similar pattern of results, shown in Col. (2).
receiving Cognitive Practice mitigates 9.27% of the expected decline over the test (p = 0.001).29

Looking at each of the two sub-treatment arms separately in Panel B, the effects for each are similar
in magnitude: the Math arm mitigates 9.8% of the expected decline (p = 0.003), and the Games
arm mitigates 8.8% of the expected decline (p = 0.007). As before, there is no discernible level
effect; for example, the estimated impact of Cognitive Practice in the beginning of the tests, before
declines set in, is -0.005 and insignificant (Panel A, Col. 2, p = 0.412).

Overall, these patterns indicate that each of the two approaches for cognitive practice—academic
and non-academic—reduce the severity of performance declines over time. Moreover, the treatments
have no discernible impact at the start of the tests when students are still cognitively fresh. These
patterns are especially consistent with cognitive endurance, and help distinguish our effects from
mechanisms that would raise performance across all questions, such as improved confidence or a
desire to try harder (discussed further Section 5 below).

The remaining columns in Table I disaggregate the results across subjects. Because each of
the experimental arms had different levels of math exposure, we first show overall results excluding
the math test in Col. (3). The results are similar to those in Col. (2). In Cols. (4)-(6), we report
effects for each of the three test subjects separately. In Panel A, receiving Cognitive Practice reduces
expected declines in math by 10.4% (p = 0.015), listening by 6.8% (p = 0.040), and Raven’s Matrices

29In the control group, pooling across tests, the average decline from the first to the fifth quintile is 12 percentage
points.
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by 9.7% (p = 0.031). We cannot reject that these three treatment effect coefficients are equal. These
findings indicate an improvement in cognitive endurance even in domains that are unrelated to what
was practiced in the treatments, such as the listening test. This is consistent with broad impact, and
supports the idea that cognitive endurance is a generalizable resource that is applicable in various
activities.

Panel B Cols. (3)-(6) provides fully disaggregated results. The Math sub-treatment generates
significant effects for each test subject, while some of the effects of the Games sub-treatment become
noisier when results are fully decomposed. As above, we see no evidence for any level effects from
either treatment arm—particularly for the listening and Ravens tests.30 While it would be interesting
to examine whether a sub-treatment has relatively larger impacts on performance declines when the
test subject is more closely related to the content that was practiced, we are underpowered for such
analysis. We cannot reject that each sub-treatment has the same effect on each test subject, but
this may mask meaningful subject-specific differences in effects across the two training approaches.
Finally, we document that treatment effects are very similar when restricting analysis to attempted
questions only (Appendix Table A.8), and are robust to alternate empirical specifications varying the
controls included (Appendix Table A.9). We do not find any significant heterogeneity in treatment
effect by student grade, gender, baseline average score or baseline decline in performance (Appendix
Table A.10, Panel A).

The magnitude of these effects is meaningful. For example, if the average treatment effect of
the cognitive practice treatments were applied to the TIMSS data, it would reduce the difference
in decline rates among Black versus White students by 37.5%. As a whole, we take the findings in
Table I as proof that cognitive endurance is malleable, and can be expanded through spending time
in effortful thinking—regardless of whether it is academic or non-academic in nature.

4.5 Persistence of Cognitive Endurance Effects

To test for persistent effects on cognitive endurance, we implement a follow-up round of the
performance decline tests. These tests are conducted 3-5 months after the end of treatment activities
across schools. They take place after the vacation break between when students progress from one
grade to the next. This enables us to examine effects after a break when students are not attending
school—a time during which there is often substantial decay in academic learning Cooper et al.
(1996); Alexander et al. (2007).

Table II tests for persistence. Cols. (1) and (2) show results for the pooled sample using each
30For the math test, we might expect some level effects since the Math and control arms spend their time solving

math problems while the Games arm does not. Consistent with this, we see some evidence the Games arm does
worse on the math test relative to the other arms even at the start of the test (Panel B, Col. 3, coefficient=-0.0165,
p = 0.12). These patterns become stronger when we examine level effects for non-remedial math questions; for such
questions, students in the math sub-treatment show a significant improvement in performance relative to the other
experimental arms. However, since we see no such evidence for learning effects for the listening and Ravens tests, the
results in Col. (4) offer an easily interpretable test for cognitive endurance changes.
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of our two estimation strategies (based on Equations 1 and 3, respectively). In each column, the
interaction term with the follow-up round dummy gives the differential effect of the treatment during
the follow-up, relative to the effect during the main experimental period.31 We see no evidence for
a decline in treatment effects 3-5 months after the cognitive practice intervention ends: in each
column, the interaction term is essentially zero and insignificant. For example, in Col. (2), being
assigned to cognitive practice mitigates 9.3% of the predicted decline during the main intervention
period (p = 0.002), in line with the results in Table I, Panel A, Col. (2). In addition, the interaction
term for effects in the follow-up round is essentially zero and insignificant (coefficient of −0.0012,
p = 0.978)—indicating no detectable change in treatment effects. We further decompose these
results to examine each sub-treatment independently and find similar evidence of persistence for
both the Math and Games arms (Cols. 3 and 4, respectively). At the bottom of the table, we report
the F-test p-values for the total effect of the treatment relative to the control group in the follow-up
period, and generally find evidence of sustained increases.

This provides evidence for some persistence, though of course does not speak to persistence over
longer horizons. Note that our ability to collect longer-horizon follow-up data was disrupted by
the Covid-19 pandemic. The schools stopped operating during the pandemic, and one school has
shut-down since the completion of our study. Whether we should expect persistence over longer
periods is ambiguous. Rather, by documenting that cognitive endurance is malleable, our study
opens the possibility that environmental factors could perpetuate differences across individuals. For
example, if richer students attend schools or have home environments that allow more time for
practicing concentration, as suggested by Figure II, then this could continually reinforce differences
in cognitive endurance.

5 Channels of Impact: Mechanisms and Confounds

Our findings indicate that cognitive endurance is malleable and can be improved through training.
This advances the literature on cognitive fatigue, and is arguably interesting regardless of the specific
mechanism underlying endurance effects. However, this does not shed light on whether we should
understand our effects as reflecting cognitive improvements, versus a broader view of perseverance
that could include factors such as motivation. Psychologists consider such “cognitive” and “non-
cognitive” channels to be inherently related. For example, sustained attention is an upstream input
into perseverance, self-control, and other behaviors that involve sustaining focus towards a goal
(Chun et al., 2011; Mischel, 2014; Zelazo et al., 2016). Consequently, we do not attempt to draw a
strong line between them. This informs our choice of the more general term “endurance” to describe
performance declines during cognitive tasks.

However, it is interesting to better understand the forces driving our effects. Consequently,
before turning to effects on school performance, we augment our findings above with supplementary

31The prior analysis pooled these follow-up tests with the main midline and endline tests for power.
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measures of mechanisms. We use these secondary measures to both provide positive support for our
results on cognitive endurance, and to explore channels. Finally, in Section 5.4, we examine factors
that may operate outside of cognitive endurance, such as confidence or memory.

5.1 Psychology Measures of Sustained Attention

We begin with traditional measures of attentional capacity used in the cognitive psychology
literature.32 The canonical measure for sustained attention—the ability to sustain cognitive thought
toward a goal over time—is the Sustained Attention to Response Task (SART). Students look at a
computer screen as various shapes (i.e. stimuli) randomly appear and then quickly disappear from
the screen. The student is tasked with simply pressing the space bar as quickly as possible each time
a particular shape (i.e. a bell) appears to show that she has seen it (Peebles and Bothell, 2004).33,34

If a student has lost focus (e.g. is daydreaming), then this will result in a slower reaction time in
pressing the space bar, or reduced accuracy such as missing the stimulus entirely. This provides an
abstract, context-free measure of whether the capacity for sustaining attention has improved. In
addition, we also examine impacts on a supplementary task used in the psychology literature—a
symbol matching task. Students are given pages containing a grid of randomly ordered pictorial
symbols. A specific set of 2-3 target symbols is displayed at the top of the sheet above the grid.
Students are asked to go through the grid, crossing out any of the target symbols they encounter.
We define performance using the standard metric of performance on these tasks: student’s correct
true positive rate z-score minus the false positive rate z-score.

Table IV presents intent-to-treat estimates of the impact of the intervention on these measures.
Relative to the control group, the treatments increase average performance on the psychology mea-
sures of sustained attention by 0.081 SDs (Table IV, Col. 1, p = 0.028). We decompose these
effects in the remaining columns. Notably, performance on SART increases by 0.108 SDs (Col. 2,
p = 0.047). The average effect on the symbol matching task is 0.065 SDs, but this difference is not
significantly significant (Col. 3, p = 0.148).

In Col. 4, we examine impacts separately by each sub-treatment. The Math and Games arms
improve average performance by 0.088 SD and 0.075 SD, respectively (p = 0.040 and p = 0.085).
Moreover, we cannot reject that the effect of both sub-treatments is the same (p = 0.756). Overall,

32Psychologists decompose attention into three core functions: i) selection among competing items, ii) modulation
of the selected item (i.e. processing efficacy and efficiency), and iii) sustained attention or vigilance: sustaining focus
towards a chosen goal (Chun et al., 2011). In this section, we examine effects on measures of sustained attention
to help provide positive evidence on mechanisms. However, in the paper as a whole, we use the broader phrase
“cognitive endurance”—both because our goal is not to take a stance on whether our core results are driven by
sustained attention versus other related mechanisms, and because these related mechanisms have similar implications
for the field behaviors we examine.

33This task is the outcome we examine that is not a paper-and-pencil measure. In order to distinguish it to the
extent possible from tablet based training, we conduct the task on computers with large screens and external keyboards
where the space bar is marked in red tape to clearly identify the appropriate key to press when a stimulus appears.

34We modify the traditional SART task slightly to make it more child-friendly. For example, we adjust the frequency
of the target stimuli and use shapes rather than numbers.
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these findings suggest that the treatments improved sustained attention as measured by psycholo-
gists.

5.2 Attentiveness in the Classroom

Do improvements in cognitive endurance translate to changes in observed classroom behavior?
We monitor students’ behavior during their regular class periods and assess them on measures
of attentiveness. Our rubric draws on components of a diagnostic teacher rating scale commonly
used to measure attention in the classroom, which we adapt to our setting.35 We examine student
behavior along three dimensions: (1) whether students attend to and carry out instructions from the
teacher (e.g. writing down their information in a particular location on a paper and turning it in five
minutes later as they transition to a new activity);36 (2) their response to auditory stimuli (noticing
and attending to new sound during class); and (3) their physical signs of inattention (fidgeting,
looking out the window, or pestering a classmate during the teacher’s lecture).

These observations are conducted with students while in their normal class section (i.e. so
that students from different treatment arms are mixed in the room). Student behavior along each
dimension is rated by classroom observers who are blind to treatment status and sit quietly in the
back of the room for the entire class. Note that students are unlikely to think their behavior is being
observed in this context. Rather, it is common to have a teaching assistant or head teacher sit at
the back of the room and observe the class.

Students who receive cognitive practice are more attentive during their classes, with an average
improvement of 0.094 SDs on the index measures overall (Table V, Col. 1, p = 0.006). In addition,
the two sub-treatments, Math and Games, each improves classroom attentiveness by 0.117 and 0.070
SDs (Col. 5, p = 0.003 and p = 0.075, respectively); we cannot reject that these two coefficients
are the same. These results suggest that practicing focused cognitive activity—whether academic
or non-academic in nature—improves students’ basic attentiveness in the classroom.

5.3 Motivation and Cognitive Endurance

What is the role for motivation in the endurance effects we see? For example, did the cognitive
practice treatments prompt students to try harder in school, or train them to have an improved
capacity to keep going when they are tired? To better understand the potential role for motivation,
we examine two supplementary pieces of evidence.

35The measures draw on the Vanderbilt Attention-Deficit/Hyperactivity Disorder (ADHD) Diagnostic teacher rating
scale which is commonly used to assess students for signs of ADHD prior to a formal diagnosis.

36Teachers asked students to move their school materials from one side of the classroom to another, and to write
their roll number (i.e. their seat number, known to all students and used ubiquitously to identify them) on the upper
right corner of a paper and turn it in five minutes later. For a student to successfully complete this, they need to
have listened and attended to the specific details in the teacher’s instruction (i.e. the number should be written in
the upper left corner), and then had the presence of mind to carry it out five minutes later rather than forgetting.
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First, the results in Table I indicate that students are not simply trying harder in general, since
that would lead to improvements at the start of the test as well. Mean control group performance in
the first decile of the declines tests is roughly 50%, leaving ample scope for treatment effects in the
beginning. This would require a more specific type of motivational mechanism: one that operates
specifically when students start to become cognitively fatigued. Alternately, test performance may
not be elastic early in the test; it is possible that increased motivational drive only becomes relevant
later when fatigue has set in and effort is needed to keep going.

Consequently, second, we implement a more direct test for whether being more driven reduces
performance declines. For a subset of the declines tests, we randomize incentives so that students
earn toys and other prizes for higher test scores. Specifically, students are told they will be able
to choose a specific prize based on their quartile of performance, with higher quartiles having more
attractive prize options. These prizes range from stickers to colored pencil sets to highly coveted
toys. We used focus groups with students to come up with the prizes and rank order them in quartile
sets to ensure effectiveness of the incentives. This design provides an incentive for all students to try
harder, across the skill distribution. We randomize at the school-grade-test level: within a school,
students within the same grade have the same incentive treatment status within a given test subject
(e.g. Ravens).

Receiving incentives significantly increases average performance on the tests (Table VI, Col. 1).
In addition, there is no differential impact of the incentives among students who receive cognitive
practice and those who do not (Col. 2). In Cols. (3), we examine effects over the course of the
exam. When students are more motivated to do well, their performance in the first decile of the
test increases sharply by 0.168 SDs (p = 0.001). This indicates that performance is highly elastic to
effort even at the start of the tests when students are fresh.

However, we see no evidence that being more driven reduces performance declines later in the
test; if anything, in Col. (3), the coefficient on “Decile 6-10*Incentive” is actually negative in sign.37

Rather, these patterns suggest that when students are motivated to try harder, they do better
throughout the test (i.e. from the beginning), with similar levels of decline over the course of the
test. We find similar results using our alternate estimation strategy using predicted decline in Col.
(4).

The above tests, while informative, may not capture all dimensions of motivation. Consequently,
we view these exercises as exploratory. However, coupled with the positive evidence on sustained
attention above, they indicate at least some role for cognitive improvements.

37If being more motivated led to less performance decline, this coefficient would be positive and significant. A
negative coefficient may indicate that because students try harder earlier in the test, cognitive fatigue may set in
faster for them (Iyengar and Kamenica, 2010; Kamenica, 2012).
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5.4 Alternate Mechanisms

The cognitive practice treatments could arguably boost students’ performance through other
channels. For example, they may have taught some subject content, increased confidence or excite-
ment about school, or improved alternate cognitive abilities such as working memory. Note that a
priori, the most straightforward version of all these explanations should lead to improvements across
the duration of the declines tests, including at the beginning—in contrast to our findings. Such
explanations could affect the slope of performance declines, but if they were driving the declines
results, it is unclear why they should not manifest as students also doing somewhat better early in
the tests.

In addition, our design and choice of outcomes also makes some of these other explanations less
likely. For example, neither the Games or Math arm could have taught students subject content
that would have made them do better in the listening comprehension test; this test asks students
to recall simple details from short audio stories, and so by design is not a test of content knowledge
or skills. Similarly, if the treatments improved working memory, it is not clear why there would be
only slope effects and no change in levels at the start of the tests. For example, the listening test
questions ask about details in random order (and so uncorrelated with the order in which the details
appear in the story). An improved ability to hold an object in working memory and manipulate
it may make a student better at a Ravens test,but this should also affect performance on the first
Raven’s question. Note that our results also cannot be explained by improvements in test taking
strategy, or increased familiarity with tablets.38,39 In summary, the treatments could plausibly have
affected various other channels. However, any potential channel would need to explain effects for
both the Math and Games sub-treatments, across the disparate tests such as listening and Ravens
Matrices, and why there are no changes in performance at the start of the tests.

Finally, we examine whether parents responded to the treatments by changing inputs at home.
This is not a confound, but is relevant for interpreting mechanisms and the magnitude of our
treatment effects. While our data on out of school activities is limited, we collected some measures
of time use from students in an endline survey, presented in Appendix Table (Table A.11). We
find no reported impacts on the amount of time spent at home in cognitive practice, on homework,
on homework help from parents, or on whether students eat breakfast before school. While not
definitive, this indicates that it is unlikely that changes in home behaviors drive a substantial portion

38A potential concern is treated students intuit better test-taking strategies, such as skipping hard questions. It is
difficult to see how this skill could be developed via the Games sub-treatment. We also directly mitigate this concern
by ensuring sufficient time and high completion rates for tests. Consistent with this, results are very similar if we
restrict to attempted questions (Appendix Table A.8). Finally, recall that a subset of our tests (e.g. listening or
SART) mechanically do not permit students to skip around or move faster through the tests (see above).

39All of our primary outcomes—the declines tests (math, listening, and Ravens) and school grades—are based
on traditional paper-pencil assessments. One of our supplementary measures, SART, which must be electronic to
accurately measure reaction times, is computer-based. For this, students simply press the space bar when a stimulus
appears on a screen, and we administer the task on a laptop with an external keyboard to make it as distinct as
possible from the tablet-based interventions.
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of our results. Of course, they do not rule out the general relevance of students’ home environments
in developing cognitive endurance.

6 Results II: School Performance

In this section, we examine overall impacts on students’ school grades. This enables us to test for
impacts on regular field behavior and outcomes. Changes in school performance would indicate that
simply engaging in thinking for sustained periods can improve students’ capacity to build traditional
human capital—an interesting and meaningful policy outcome irrespective of mechanism.

The findings above suggest several ways in which our treatments could affect students’ ability
to learn and their academic performance in school. For example, our listening results indicate that
treated students may be able to sustain attention toward a teacher while she is lecturing for longer.
The broad applicability of cognitive endurance would suggest potential similar improvements during
other activities—such as maintaining focus while reading a textbook, or thinking through a challeng-
ing concept at the end of a long class session. In addition, conditional on their academic knowledge,
students may receive higher scores on exams and assignments simply due to their ability to sus-
tain performance for longer. Note that these are all implications of improved cognitive endurance,
regardless of one’s view of the precise underpinning for cognitive endurance effects.

In our setting, the core academic subjects are Hindi, English, and Math. These are taken by
all students in our sample, and are the only subjects offered universally to all students across our
schools. In addition to their intrinsic importance for basic literacy and numeracy, these subjects
also enable us to test for broad impact of our intervention. Neither treatment arm taught students
Hindi or English—making these subjects wholly unrelated to the content of the Cognitive Practice
treatments.40 In addition, we had no engagement with students’ regular academic classes or assess-
ments; these academic grades are determined as usual by the school without any consultation or
inputs from the research team.41

We examine effects in Table III. Overall, receiving Cognitive Practice improves school perfor-
mance by 0.0897 SDs (Panel A, Col. 1, p = 0.010). These sizable gains are present even in Hindi and
English, with impacts of 0.0989 SDs (p = 0.012) and 0.0919 SDs (p = 0.024), respectively (Panel A,
Cols. 3-4). Panel B disaggregates these results by sub-treatment arm. Each of the Math and Games
arms generally has significant effects on each of the three core academic subjects. The effects across
the two arms are similar and statistically indistinguishable from each other. However, given the size
of the confidence intervals, there is a possibility that one sub-treatment could have larger impacts
than the other. For example, for math grades, the coefficient on Math Practice is 12% larger than

40A subset of the questions in the Math Practice did include minor English text (e.g. “Add” 1 and 4). The questions
for the Control arm study hall were drawn from the same question bank. However, neither the Math nor the Games
arm involved any additional exposure to Hindi whatsoever.

41As we discuss in Section 3.3 above, we did not share students’ treatment status with teachers, and teachers played
no role in getting students to their program classes.
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that on Games Practice, but we cannot reject that they are the same.42

The magnitude of these effects is substantial, especially when compared to prominent interven-
tions in the education literature. For example, Project Star reduced class sizes in the US for an
entire year, and had a similar impact on academic gains of 0.12 SD of kindergarten through grade
3 students (Krueger and Whitmore, 2001).43 Tracking students by ability in Kenya or remedial
education with an additional teacher in India each had impacts of about 0.14 SD (Duflo et al.,
2011; Banerjee et al., 2007). Each of these three interventions involve continuous exposure each day
throughout the entire school year, and specifically target academic learning in the subjects tested.
In contrast, our results arise from 10-20 hours of cognitive practice, without any academic learning
(e.g. in the Games arm).

How much of these impacts stems from increased learning versus being less fatigued in later parts
of homework assignments or tests? A back of the envelope exercise which applies the reductions in the
rate of performance decline found in the Listening, Raven’s Matrices, and Math exams to expected
rates of decline on the school administered exams finds that approximately 1/3 of the impact on
grades is driven by improved test performance. This suggests that the remaining 2/3 of the effect is
likely due to a mixture of learning and or other related effects on effects (e.g., in assignments and
school exams, later questions cover progressively more difficult concepts, and students often do not
reach the end).

However, the composite measure of overall school performance is an important and policy relevant
educational outcome. It is a standard proxy for academic attainment, and is consequential for
students’ future success—for example, it used by educators and employers to rank students for
promotion to the next grade or college admissions. In addition, both the learning and fatigue
channels are relevant beyond school; as our examples in Section 8 below show, productivity at work
depends both on how much you know, and your ability to sustain performance over the course of a
task or work shift.

As a whole, the results in Table III indicate that simply spending time in effortful thinking—
without learning any subject content—improves traditional measures of human capital. Moreover,
such thinking need not even be academic in nature: even the students who receive Games Practice
do substantially better in their academic classes. This directly supports the possibility that the
process of receiving an education, through the experience of cognitive practice, can improve human
capacity.

42We do not find any significant heterogeneity in treatment effect by student grade, gender, baseline average score
(Appendix Table A.10, Panel B). It does appear there is a marginally smaller treatment effect for students who had
worse cognitive endurance at baseline (p = 0.056).

43Results in Krueger and Whitmore (2001) were presented in percentile point changes. We assume a normal
distribution to adjust to a standard deviation metric.
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7 Supplementary Evidence: Impact of Schooling on Cognitive En-
durance

Our intervention expands cognitive endurance by increasing time in effortful thinking—an activ-
ity that is inherent in the experience of formal education. However, in our study, this is accomplished
through an outside intervention introduced into schools. In this section, we augment our evidence
by examining whether the natural experience of schooling helps develop cognitive endurance. Using
supplementary data, we exploit variation in years of schooling based on birthday cutoffs for kinder-
garten enrollment. If schooling improves cognitive endurance, we might expect reduced performance
declines among students who are just above the enrollment cut-off (i.e. who have one additional year
of schooling conditional on age).

We test this idea using data from Brown and Andrabi (2021), which includes a sample of over
5,300 nine to eleven year-olds across 66 schools in Pakistan. This larger dataset offers both the
necessary power for a regression discontinuity analysis and also allows us to examine heterogeneity
by school quality. In addition, the data has the unique feature that exams—covering math, science,
English, and Urdu—have randomized question order across students, enabling us to identify effects
on performance declines. Appendix Figure A.8 documents that we see substantial performance
declines in each of the four test subjects. On average, the probability of answering a given question
correctly declines by 16 percentage points (p.p.) from the first to the last decile of the test.

In Pakistan, the birthday cutoff for kindergarten admission is December 31; students born on
January 1 or later are supposed to wait an additional year to enroll in school. By examining per-
formance declines among students born just before versus after this cut-off, we compare students
who are nearly the same age, but differ in their current years of schooling. This exercise has its
limitations—for example, enrolling in school earlier versus later could also change other inputs—and
we therefore view it as only suggestive.44 However, despite these limitations, we view it as offering
a helpful signal that complements our field experiment results. Because we do not have perfect
compliance with he birth month cutoff, we use a fuzzy regression discontinuity approach, where we
instrument for years of schooling with the birth month cutoff. Our key specification is:

First stage:

YrsofSchoolings = α0 + α1MOBs + α2MOB2
s + α31[MOBs ≤ 6] + µs (4)

Second stage:
44The “treatment” is entering kindergarten at age 5 versus staying home for an additional year and entering at age

6. Note that this approach necessarily compares a student who is the youngest in their class (i.e. the “treated” group
with an additional year of school) to those who are the oldest students in their class (i.e. the “control” group with one
fewer year of schooling). Lower relative age (and therefore emotional maturity) could, for example, impede learning,
with the direction of effects on cognitive endurance unclear. Being at home longer before enrolling in school could
also change non-school inputs.
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Correctils = β0 + β1 ̂Y rsofSchoolings + β2PredictedDeclinel

+ β3 ̂Y rsofSchoolingsPredictedDeclinel ++β4MOBs + β5MOB2
s

+ β6MOBs ∗ PredictedDeclinel + β7MOB2
s ∗ PredictedDeclinel + εils (5)

where YrsofSchoolings captures the total years of schooling student s has received at the time of
the exam. MOBs is the student’s month of birth, which is the running variable in the regression
discontinuity framework. 1[MOBs ≤ 6] is an indicator that equals one if the student was born in the
second half of the year (i.e. July to December, before the cut-off) and zero otherwise.45 Correctils

is a binary variable that captures whether student s correctly answered question item i appearing
in location (decile) l. PredictedDeclinel is calculated in a parallel fashion to Eq. 2, where for each
test subject we take the difference between the average score in decile 1 minus the average score in
decile l.46 The coefficient of interest is β3, which captures the extent to which an additional year of
schooling mitigates the predicted performance decline.

Controlling for month of birth, we find students who are just older than the cutoff have 0.22
more years of schooling (p < 0.000) at age 9-11. The imperfect compliance is due to some parents
choosing to hold their child back to start when they are older or schools choosing to implement their
own birthday cutoff. The coefficient and statistical significance remain the same when we control
for month of birth linearly or using a quadratic. We also do not find evidence of manipulation in
the birth month variable around the cutoff (McCrary test p = 0.504).

Table VII presents the effect of an additional year of schooling on cognitive endurance. In Col.
(1), YrsofSchooling x PredictedDecline provides the estimate of β3. We find that, conditional on age,
an additional year of schooling mitigates the rate of performance decline by 31% (p = 0.030). This
estimate is similar regardless of whether we control for a linear or quadratic function of the running
variable (Cols. 1-2).47 Since the average student sees a 15 p.p. performance decline over the course
of a given test, these results indicate that those with an additional year of school would see only a
10 p.p. decline on the same exam. The magnitudes in Cols. (1)-(2) imply that the impact of a full
year of schooling is 3.4 times larger than the effect of our more limited experimental intervention
(Table I, Col. 2).

Do these benefits vary by school quality? The data include measures based on video recordings
of students’ classes; observers code the videos using the CLASS rubric, a common tool for assessing
pedagogical quality (Araujo et al., 2016; Pianta et al., 2012).48 Table VII, Columns (3)-(8) show

45The sample is restricted to students born from July 2007 to June 2009. MOB begins at 1 for July 2007 goes
up to 12 for June 2008 and then resets to 1 for July 2008 and goes up to 12 again for June 2009. The definition of
1[MOBs ≤ 6] identifies a discrete jump at January in expected years of schooling. We use the 6 months before/after
each January 1 cut-off to create non-overlapping samples of treatment and control students for the stacked RD across
grades.

46We use students who are born in May through August as our “control group” to calculate Predicted Decline.
47Our running variable only takes 12 values; despite this, results are similar regardless of whether we use a linear

or quadratic functional form.
48The rubric contains rating of the class operations along 12 dimensions, from classroom climate, feedback provided
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the heterogeneity in the effect of an additional year by three measures of quality. In each column,
Higher quality captures the quartile rank in the given quality dimension from 0 to 3, with 0 denoting
the bottom quartile and 3 denoting the top quartile. Note that the dataset does not contain direct
information on socioeconomic status; however, in other contexts, higher SES schools are associated
with higher quality scores on the CLASS rubric.

In Cols. (3)-(4), we examine heterogeneity by overall school quality: the school’s average score
on all 12 components of the CLASS rubric (including classroom climate, use of higher order thinking
skills, time in independent practice, feedback, etc). Among the schools in the bottom quartile of the
quality distribution, we cannot reject that additional schooling has no effect on cognitive endurance.
However, as we move up the quality distribution for each quartile rank increase, an additional year
of school reduces performance declines by 22% (p = 0.034). Results are similar when examining the
quality of pedagogy in the student’s specific grade (Cols. 5-6). Finally, in Cols. (7)-(8), we test for
heterogeneity by time spent in independent focused practice during class. Again, we see a similar
pattern of results: additional schooling only mitigates performance declines when students spend
time in independent practice. Of course, this measure is correlated with, and therefore may reflect,
other dimensions of quality.

Overall, the results in Table VII provide suggestive evidence for the role of schooling in devel-
oping cognitive endurance. However, they also indicate that the school’s institutional and teaching
environment is important: better schools appear substantially more effective in enabling students
to develop this ability. This strengthens the interpretation of the motivational patterns in Section
2. Coupled with the results from our experiment, the complementary results in this section sug-
gest that differential access to good quality schooling could widen economic disparities through the
development of cognitive endurance.

8 Conclusion: Discussion and Broader Relevance

We conclude by discussing the broader implications of our findings. We first begin by presenting
evidence for socioeconomic differences in cognitive endurance in behaviors outside of schooling. Using
supplementary data, we present two examples from substantially different high-stakes activities:
productivity among data entry workers, and voting at the ballot box.49

to students, time on task, use of higher order thinking skills, etc. Brown and Andrabi (2021) describes the scoring
and quality assurance process used in reviewing the classroom videos. Note that while all 66 schools are part of
the same private school chain, there is substantial heterogeneity across them, with different schools serving different
demographics and charging different levels of school fees.

49The choice of these examples is driven by data availability to fulfill two requirements: (i) situations where declines
over time are interpretable as cognitive fatigue effects due to the absence of obvious confounders (e.g. the task itself
does not get harder over time); and (ii) situations where differences between low versus high SES individuals are not
severely confounded by differential selection into the task. As an example, looking at cognitive endurance among
doctors would violate condition (ii), since the types of low SES individuals who select into being a doctor are surely
positively selected. Their performance relative to high SES doctors would therefore be difficult to interpret as reflecting
general performance decline differences between the two groups.
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In Figure IVa, we plot the hourly performance of full-time data entry workers over nine months
using data from Kaur et al. (2015). Workers’ earnings are comprised of a piece rate for each accurate
field entered. Mistakes are costly: an inaccurate entry means that the worker has exerted the effort to
enter the field but is not compensated for it. On average, error rates increase roughly 12% between
10am and 4pm.50 Less educated workers (i.e. those without a high school degree) experience a
decline in accuracy that is twice as large as that of more educated workers. This accounts for 10%
of the productivity gap between more and less educated workers in the sample.

We find similar patterns in voting behavior, building on the work by Augenblick and Nicholson
(2015). Using quasi-random variation in the order of ballot initiatives, the authors find that, when
items are further down-ballot, individuals are substantially more likely to vote the default option
(i.e. less likely to make a non-default choice). These effects are substantial: an additional 6% of
propositions would have become laws if they had appeared earlier in the ballot. Using data obtained
from the authors, we use racial composition of a voting precinct as a proxy for socioeconomic status
(since income is not available in their data). In the early items on the ballot, the likelihood of
picking the default option is quite similar for neighborhoods with more white vs. more non-white
residents (Figure IVb). However, over time, the propensity to make an active (i.e. non-default)
choice declines much more quickly for lower socioeconomic status individuals. Specifically, high
socioeconomic status groups decline 29.3% less quickly between the first and last quartile of ballot
positions.

These patterns are in line with previous work showing that cognitive endurance is relevant for
many aspects of daily life.51 In addition, while the examples in Figure IV are certainly not exhaustive,
they indicate the possibility that those from disadvantaged backgrounds continue to exhibit worse
cognitive endurance as adults—with potential implications for their labor earnings, decision-making,
and myriad other outcomes. For example, could high traffic accident rates in developing countries be
influenced by more rapid attentional declines while driving, especially in the long shifts worked by
truck and taxi drivers? In addition, the patterns in Figure IV raise the question of how we should
understand SES differences in cognitive endurance among adults. For example, this may reflect
persistence from childhood training, or reflect the fact that those working in higher skilled jobs may
receive more cognitive practice through work—reinforcing and perpetuating differences over the life
cycle. These possibilities are of course only speculative, but given their implications, warrant further
research.

Our study indicates that systematic differences in cognitive endurance are not a given; they can be
ameliorated. Our intervention exemplifies a policy lever that may be useful in improving endurance

50In this study, workers are recruited irrespective of their experience or educational background, mitigating some
of the differential selection into the sample by education level (the only proxy for SES in this dataset). Analysis is
conducted using 10 am - 4 pm to avoid compositional effects of workers arriving and departing. The piece rate would
need to increase by an estimated 2.4% at the end of the day to undo the performance decline (based on the effort
elasticity of 0.33 from Kaur et al. (2015)).

51While the previous literature has documented performance declines in various settings, the examples we present
above are the first documentation of SES heterogeneity in cognitive endurance among adults of which we are aware.
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among lower-income children: incorporating opportunities for them to engage in effortful thinking
for sustained periods of time at school or home. The supplementary data we present in Sections 2.2
and 7 indicate that better quality schools are already employing such strategies, but those attended
by less privileged students are not. This may be due to real barriers, such as disruptions, unruly
peers, or heterogeneous achievement levels within a class. In our setting, using tablets to both
engage students and address heterogeneous levels was an effective solution. In other settings, other
approaches may be more appropriate for getting students to undertake mentally challenging activity.
As an example, in low income US settings, some “testing schools”, which place strong emphasis on
giving children frequent assessment tests, have been successful at raising student outcomes. Because
this approach creates frequent periods where students must sit and concentrate for long stretches
(i.e. during weekly tests), it may have the ancillary benefit of also improving cognitive endurance.
The fact that we find gains using both academic and non-academic practice suggests that a broad
array of approaches could be effective.

More broadly, we view our study as tracing one of the many potential pathways through which
schooling may shape human capacities—beyond its effects on academic skills. Additional work
linking specific elements of schooling to these capacities can help further our understanding of why
education has such broad and persistent benefits. It may also offer normative insights on how to
address disparities in human capital development.
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UNIVERSITY OF CALIFORNIA, BERKELEY AND NATIONAL BUREAU OF ECONOMIC
RESEARCH, UNITED STATES
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Table I: Treatment Effects on Performance Declines

Dependent Variable: 1[Question Correct]
Test Subject

All All Non-Math Math Listening Ravens
(1) (2) (3) (4) (5) (6)

Panel A: Pooled Treatments

Cog. Practice x Deciles 6-10 0.0129***
(0.0047)

Cog. Practice x Deciles 2-5 0.0084*
(0.0049)

Deciles 6-10 -0.0597***
(0.0051)

Deciles 2-5 -0.0115***
(0.0037)

Cog. Practice x Predicted Decline 0.0927*** 0.0818*** 0.104** 0.0677** 0.0972**
(0.0285) (0.0285) (0.0428) (0.0329) (0.0451)

Cognitive Practice -0.0027 -0.0050 -0.0018 -0.0089 -0.0013 -0.0049
(0.0060) (0.0061) (0.0042) (0.0091) (0.0068) (0.0100)

Panel B: Disaggregated by Sub-treatment

Math Practice x Deciles 6-10 0.0127**
(0.0055)

Games Practice x Deciles 6-10 0.0131**
(0.0054)

Math Practice x Deciles 2-5 0.0034
(0.0057)

Games Practice x Deciles 2-5 0.0135**
(0.0057)

Math Practice x Predicted Decline 0.0976*** 0.0993*** 0.0955* 0.0895** 0.112**
(0.0329) (0.0341) (0.0488) (0.0393) (0.0540)

Games Practice x Predicted Decline 0.0881*** 0.0639* 0.115** 0.0457 0.0815
(0.0329) (0.0328) (0.0501) (0.0384) (0.0516)

Math Practice -0.0050 -0.0053 -0.0042 -0.0011 -0.0050 -0.0098
(0.0070) (0.0070) (0.0049) (0.0103) (0.0078) (0.012)

Games Practice -0.0050 -0.0046 0.0008 -0.0165 0.0025 0.0003
(0.0071) (0.0070) (0.0048) (0.0107) (0.0079) (0.0115)

p-value: Math Decline = Games Decline 0.7273 0.3161 0.7707 0.2895 0.5824
Control Decline 0.12 0.12 0.05 0.18 0.06 0.03
Observations 329349 329349 129115 200234 66932 62183

Notes: This table examines the impact of cognitive practice on the rate of performance decline over time. Panel
A estimates treatment effects for both treatments pooled relative to the control group. Panel B shows effects
for the Math and Games sub-treatments (each relative to the control group) separately. Col. (1) corresponds to
the specification in Equation 1. Col (2) corresponds to the specification in Equation 3. “Cognitive Practice” is a
binary indicator that equals 1 if the student was assigned to a treatment (either the Math or Games Practice).
“Predicted Decline” is the amount of average decline in each quintile of the test location, relative to the first
quintile of the test, within each given school. “Deciles 2-5” and “Deciles 6-10” are binary indicators that equal one
if the question appears in the second through fifth deciles of the test or the second half of the test, respectively.
Cols. (1) and (2) estimate treatment effects for all three tests pooled. Cols. (3)-(6) show effects for the non-Math
tests (Listening and Ravens), then Math, Listening, and Ravens tests separately, respectively. The Coefficients in
Cols. (3)-(5) are estimated from a single regression on all the data. Question item order was randomized across
students. All regressions contain question and test version fixed effects, and baseline controls. Observations are
at the student-test-question level. Standard errors are clustered by student, and bootstrapped in columns (2)-(6).
The dependent variable mean is 0.47 in the control group. The coefficient on “Predicted Decline” is -0.15 in Col.
2 (p < 0.001). * p<0.10, ** p<0.05, *** p<0.01.
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Table II: Persistence of Treatment Effects

Dependent Variable: 1[Question Correct]
Definition of Treat Variable

Cognitive Practice Math Practice Games Practice
(1) (2) (3) (4)

Cog. Practice x Deciles 6-10 0.0143***
(0.0051)

Cog. Practice x Deciles 6-10 x Follow-up -0.0044
(0.0113)

Cog. Practice x Predicted Decline 0.0933*** 0.1104*** 0.0764**
(0.0304) (0.0341) (0.0338)

Cog. Practice x Predicted Decline x Follow-up -0.0012 -0.0182 0.0155
(0.0434) (0.0512) (0.0504)

F-test p-value: sum of 2 coefficients = 0 0.3249 0.0325 0.0683 0.0628
Observations 329349 329349 219341 217223

Notes: This table examines the persistence of the treatment effects over time. “Follow-up” is a binary indicator that
equals one if the test is a follow-up test, administered roughly 3 to 5 months after the end of the intervention. “Deciles
6-10” is a binary indicator that equals one if the question appears in the second half of the test. “Predicted Decline” is
the amount of average decline in each quintile of the test location, relative to the first quintile of the test, within each
given school. Question item order was randomized across students. All regressions contain baseline controls, question
fixed effects, and test version fixed effects. Observations are at the student-test-question level. Standard errors are
corrected to allow for clustering by student, and bootstrapped in columns (2)-(4). * p<0.10, ** p<0.05, *** p<0.01.
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Table III: Impacts on School Performance

Dependent Variable: Z-score of Student’s Grades

Subject: All Non-Math Hindi English Math
(1) (2) (3) (4) (5)

Cognitive Practice 0.0897** 0.0923** 0.0989** 0.0919** 0.0849**
(0.0348) (0.0386) (0.0393) (0.0407) (0.0377)

Sub-treatments:
Math Practice 0.0916** 0.0926** 0.0962** 0.0978** 0.0902**

(0.0402) (0.0445) (0.0452) (0.0471) (0.0437)
Games Practice 0.0877** 0.0920** 0.1015** 0.0860* 0.0795*

(0.0399) (0.0444) (0.0453) (0.0469) (0.0428)

p-value: Math Practice = Games Practice 0.9232 0.9899 0.9063 0.8013 0.7999
Observations 11320 7539 3780 3759 3781

Notes: This table reports treatment effects on students’ regular school performance (pooling mid-year and end-of-
year grades) in the three core subjects offered by all schools in the study (Hindi, English and math). The dependent
variable is the student’s z-score on the test. “Cognitive Practice” denotes receiving any treatment, “Math Practice”
and “Games Practice” denote the Math or Games practice sub-treatments, respectively. Cols. (1)-(5) regress a z-
score of student performance on a dummy for Cognitive Practice, in the first row, and on dummies for Math and
Games Practice, in the second and third rows, respectively. All regressions include class section (strata) fixed effects
and baseline controls. Observations are at the student-subject-exam level. Column (1) includes all three subjects.
Columns (2) restricts to English and Hindi, and Col. (3)-(5) present each subject separately. Standard errors clustered
by student. * p<0.10, ** p<0.05, *** p<0.01.
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Table IV: Measures of Sustained Attention

Dependent Variable: Z-score
Test Subject

Pooled SART Symbol Matching Pooled
(1) (2) (3) (4)

Cognitive Practice 0.0814** 0.1080** 0.0650
(0.0371) (0.0543) (0.0449)

Sub-treatments:
Math Practice 0.0883**

(0.0429)
Games Practice 0.0747*

(0.0434)

p-value: Math Pratice = Games Practice 0.7560
Observations 9704 3897 5807 9704

Notes: This table examines the impact of cognitive practice on traditional measures of attention in
the psychology literature. The Sustained Attention to Response Task (SART) task measures focus via
reaction times and accuracy to stimuli displayed on a computer. Symbols Matching is a task in which
students cross out instances of symbols listed at the top of the page in a grid below. Outcomes are
measured as true positive z-score - false positive z-score, winsorized at the 99th percentile. Clustered
standard errors are in parentheses. Regressions control for baseline test scores classroom fixed effects.
Observations are student-tests. * p<0.10, ** p<0.05, *** p<0.01.
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Table V: Attentiveness in the Classroom

Dependent Variable: Z-score

Pooled Task Completion Response to Stimuli Physical Signs Pooled
(1) (2) (3) (4) (5)

Cognitive Practice 0.0940*** 0.0971* 0.1363** 0.0452
(0.0340) (0.0572) (0.0623) (0.0582)

Sub-treatments:
Math Practice 0.1174***

(0.0393)
Games Practice 0.0703*

(0.0394)

p-value: Math Practice 0.2335
= Games Practice

Observations 1206 1198 1197 1196 1206

Notes: This table examines the impact of cognitive practice on classroom based measures of attention adapted from
the Vanderbilt ADHD diagnostic teacher rating scale. Classroom observers were blind to students’ treatment status.
The “Pooled” measure is a simple average of the z-scores for the individual outcomes within the scale. The “Physical
Signs” measure was reversed so that a larger number corresponds to a better outcome, as is true of the other two
outcome measures. All regressions include grade fixed effects. Clustered standard errors are in parentheses. * p<0.10,
** p<0.05, *** p<0.01.
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Table VI: Effect of Incentives on Test Performance

Dependent Variable: 1[Question Correct]
(1) (2) (3) (4)

Incentive 0.0916** 0.111** 0.168*** 0.146***
(0.0414) (0.0417) (0.0505) (0.0490)

Cog. Practice x Incentive -0.0293 -0.0466 -0.0377
(0.0334) (0.0474) (0.0446)

Decile 6-10 x Incentive -0.0583
(0.0391)

Cog. Practice x Decile 6-10 x Incentive 0.0152
(0.0421)

Predicted Decline x Incentive -0.354*
(0.201)

Cog. Practice x Predicted Decline x Incentive 0.0765
(0.186)

Observations 11515 11515 11515 11515

Notes: This table reports the effect of offering students an incentive for their performance on the test
(randomized during a subset of the exams administered by the study). “Incentive” is a binary indicator
that equals 1 if the student was provided a toy if they reached a certain score on the exam. “Cog.
Practice” is a binary indicator that equals 1 if the student was assigned to treatment (either the Math or
Games sub-treatment). “Predicted Decline” is the amount of average decline in each quintile of the test
location, relative to the first quintile of the test, within each given school. “Deciles 6-10” is a each binary
indicators that equals one if the question appears in the second half of the test. The omitted category
are the questions in decile 1 (i.e. the beginning) of the test. Question item order was randomized
across students. All regressions contain question and test version fixed effects, and baseline controls.
Observations are at the student-test-question level. Standard errors are clustered at the test-school-class
level, the unit of randomization for the incentive treatment. The dependent variable mean is 0.47 in the
control group. * p<0.10, ** p<0.05, *** p<0.01.
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Table VII: Effect of an Additional Year of Schooling on Performance Declines

Dependent Variable: 1[Question Correct]
Dimension of Quality: School Quality Class Pedagogy Independent Practice Time

(1) (2) (3) (4) (5) (6) (7) (8)

Yrs of Schooling x Predicted Decline 0.309** 0.337** -0.0132 0.0103 0.0458 0.0664 0.0320 0.0547
(0.143) (0.144) (0.183) (0.184) (0.158) (0.160) (0.177) (0.178)

Yrs of Schooling x Predicted Decline x Higher Quality 0.223** 0.222** 0.219* 0.219* 0.188** 0.185**
(0.105) (0.104) (0.115) (0.113) (0.0920) (0.0911)

Observations 276043 276043 276043 276043 276043 276043 276043 276043
Running variable func. form Linear Quadratic Linear Quadratic Linear Quadratic Linear Quadratic

Notes: This table reports the effect of an additional year of school on student performance declines on exams and compares the effect of an additional year
for higher and lower quality schools/classes. “Years of Schooling” is instrumented using whether the student’s birthday is above or below the kindergarten
entrance cutoff, controlling for birth month. “Predicted Decline” captures the average decline in performance for a given question item relative to the
first decile of the test. Column (1) and (2) present the results of an additional year of school across all schools in our sample. Columns (3)-(8) show
the heterogeneity in the effect of an additional year by school/class quality. “Higher Quality” captures the school or class’s quartile rank in the given
quality dimension from 0 to 3, with a value of 0 for schools/classes in the bottom quartile up to 3 for schools/classes in the top quartile. We use three
different measures of school/class quality all of which are based on scoring 20 minute classroom videos using the CLASS observation rubric (Araujo et
al., 2016; Pianta et al., 2012). “School Quality” captures the school’s average score on all 12 components of the CLASS rubric (ranging from classroom
climate, time on task, use of higher order thinking skills, etc). “Class Pedagogy” captures the average score on all 12 components in the student’s current
grade level. “Independent Practice Time” restricts to one of the 12 components which focuses on the quantity and quality of time students spend working
independently on cognitively challenging material. Columns (1), (3), (5) and (7) include birth month as a linear control, and columns (2), (4), (6) and (8)
include the quadratic of birth month as well. Data comes from a sample of 5,353 9-11 year olds in Pakistan (Brown and Andrabi, 2021). The F-statistic
on the first stage is 15.9. Question order was randomized on the exams. Observations are at the student-test-question level. Standard errors are clustered
by student. * p<0.10, ** p<0.05, *** p<0.01.
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FIGURE I: Performance Declines in Achievement Tests
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(F) Science, US sample
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(G) Reading, US sample
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(H) Mathematics, global sample
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(I) Science, global sample
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(J) Reading, global sample
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Notes: TIMSS data and PISA data, authors’ calculations. Question order is block randomized. In the TIMSS US sample
(A-B), high and low SES students are proxied by race (white and non-white, respectively). In the TIMSS global sample,
(C-D) high (low) SES countries are proxied by the top (bottom) quartile of GDP/capita. In the PISA data (E-J), high (low)
SES is proxied by the top (bottom) quartile of the ESCS measure, an index of SES included in the PISA data. Question
location in test denotes where in the exam the question item appeared normalized on a scale of 0 to 1.
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FIGURE II: Differences in Schooling Practices by Socioeconomic Status
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(D) US sample
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Notes: The figures show the relationship between income and schooling environment. Panels A and B present
data from the TIMSS teacher survey on pedagogy used within the classroom. The y-axis is the fraction of class
time spent on independent practice. Teachers rate how often students engage in this type of activity on a 4-pt
scale from “never” (coded as 0) to “every or almost every lesson” (coded as 0.75). In Panel A, the sample is all
countries, and the x-axis is Log of GDP. In Panel B, the sample is the US, and the x-axis is the percent of students
within the school who are not disadvantaged (where the fraction of disadvantaged students is reported by school
administrators from among 4 discrete options). Panels C and D present data from the PISA teacher survey. The
x-axis is a student-level SES index constructed by PISA. The y-axis is the fraction of classes in which there is noise
and disorder, rated by teachers on a 4-pt scale from “never” (coded as 0) to “every lesson” (coded as 1). The data
is grouped into ventiles, presenting the average within each ventile (blue dots). In each plot, the red line is the line
of best-fit.
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FIGURE III: Experimental Treatment Effects: Performance Declines
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(B) Ravens Matrices

.4
2

.4
3

.4
4

.4
5

.4
6

.4
7

.4
8

.4
9

P
ro

ba
bi

lit
y 

C
or

re
ct

, r
es

id

0 .2 .4 .6 .8 1
Question Location in Ravens Test

Control
Math Practice
Games Practice

(C) Math
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Notes: This figure plots declines in performance over the course of three tests in the RCT: (a) listening, (b) Raven’s Matrices, and (c) math. Question
order is randomized in each exam. In each plot, the y-axis is the probability a question was answered correctly, and the x-axis is the percent location
of the question on the test (where 0 is the beginning of the test and 1 is the end of the test). Data is residualized to remove question fixed effects. In
each plot, the initial level at the start of the test is normalized to the control group mean in quintile 1 for that test for ease of interpretation of decline
magnitudes. Each line displays performance over time for the control group (solid black line), Math Practice (short blue dashes), and Games Practice
(long green dashes). Observations are at the student-test-question level; N = 66,932 (listening), 62,193 (Raven’s Matrices), and 200,234 (math). Table
I presents the full set of corresponding treatment effects estimates.
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FIGURE IV: Cognitive Endurance among Adults: Differences by Socioeconomic Status
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(B) Cognitive effort in the voting booth
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Notes: Panel A plots declines in entry accuracy among full-time data entry workers over the course of the work day. Data are from Kaur et al.
(2015). The sample is 8,382 worker-hours of data entry (90 workers). The x-axis is the hour of the day and y-axis is the accuracy rate (proportion of
fields entered with no errors). Data are residualized after removing worker fixed effects. High SES is defined as 1 if the worker has above high school
education (corresponding to the median split of the sample). The sample is restricted to paydays (when attendance is high to mitigate selection
concerns) and workers who were present from 10am-4pm on a given day (so that the composition of workers is constant within a worker-day during
these hours). Patterns are similar without these restrictions. Panel B plots declines in active decision-making while voting in elections. Data are
from Augenblick and Nicholson (2015) and the United States census. Item order in the voting data is quasi-random. The x-axis is the location of an
initiative on the ballot and the y-axis is whether the voter selects a choice other than the default option. High (low) SES denotes polling precincts
where the fraction of non-Hispanic white residents is above (below) the median. With the exception of the census data, all data was provided by the
authors of each respective study.
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A Supplementary Tables and Figures

Table A.1: Evidence on Pedagogy and Declines in Performance from the TIMSS Exam

Time Spent on Indep. Practice Item Correct

(1) (2) (3)

Log GDP 0.0105*** 0.0704***
(0.00230) (0.00199)

Question Location -0.0393*** -0.133***
(0.00376) (0.0121)

Time Spent on Indep. Practice 0.0885*** 0.0695***
(0.0204) (0.0202)

Question Location x Time Spent on Indep. Practice 0.0317*** 0.0278***
(0.00682) (0.00700)

Question Location x GDP 0.00954***
(0.00113)

Constant 0.422*** 0.513*** -0.175***
(0.0224) (0.0107) (0.0218)

R2 0.005 0.136 0.152
Observations 7476337 8217081 7476337

Notes: This table uses data from the TIMSS exam administered to fourth graders around the world, and GDP
data collected from the World Bank, to show: 1) differences in pedagogy by income (col 1), and 2) differences in
rate of decline of performance by SES and pedagogy (cols 2 and 3). “Time Spent on Independent Practice” is the
fraction of study time students spend working independently. * p<0.10, ** p<0.05, *** p<0.01.



Table A.2: Baseline Balance

(1) (2) (3) (4) T-test
Control Cog. Practice (Pooled) Games Practice Math Practice P-value

Variable N Mean/SE N Mean/SE N Mean/SE N Mean/SE (1)-(2) (1)-(3) (1)-(4) (3)-(4)

Panel A: Student Characteristics

Grade 548 2.746
(0.062)

1115 2.706
(0.044)

555 2.739
(0.062)

560 2.673
(0.061)

0.594 0.931 0.403 0.452

School Income Tercile 548 2.254
(0.035)

1115 2.248
(0.025)

555 2.261
(0.035)

560 2.236
(0.035)

0.903 0.878 0.717 0.604

Income Tercile 548 1.960
(0.024)

1115 1.960
(0.016)

555 1.971
(0.024)

560 1.948
(0.023)

0.994 0.735 0.723 0.485

Baseline Ability Tercile 548 1.989
(0.028)

1115 1.992
(0.019)

555 1.991
(0.028)

560 1.993
(0.027)

0.933 0.961 0.922 0.962

Female 541 0.351
(0.021)

1097 0.364
(0.015)

548 0.349
(0.020)

549 0.379
(0.021)

0.620 0.927 0.343 0.297

Panel B: Student Baseline Scores

Baseline Listening (mean) 499 0.559
(0.017)

1027 0.549
(0.012)

507 0.542
(0.017)

520 0.555
(0.017)

0.615 0.485 0.857 0.600

Baseline Math (mean) 493 0.398
(0.010)

995 0.412
(0.007)

493 0.411
(0.010)

502 0.413
(0.009)

0.218 0.325 0.253 0.892

Baseline Ravens Matricies (mean) 491 0.367
(0.012)

1004 0.370
(0.008)

493 0.360
(0.012)

511 0.379
(0.012)

0.841 0.671 0.452 0.242

Baseline Listening (decline) 487 -0.002
(0.020)

1001 -0.020
(0.014)

495 -0.026
(0.021)

506 -0.014
(0.020)

0.461 0.406 0.648 0.698

Baseline Math (decline) 493 -0.070
(0.017)

995 -0.064
(0.012)

493 -0.070
(0.017)

502 -0.058
(0.017)

0.771 0.998 0.614 0.623

Baseline Ravens Matricies (decline) 460 -0.071
(0.025)

951 -0.027
(0.023)

462 -0.024
(0.040)

489 -0.030
(0.026)

0.246 0.316 0.256 0.894

Notes: This table presents summary statistics for student baseline covariates by treatment group. Columns (1), (2), (3) and (4) present the sample size and mean for
each covariate by treatment status. Column (2) pools students who are in either treatment group and Column (3) and (4) separates students by their sub-treatment.
Columns (5)-(8) present p-values for the test of equality of means. Panel A includes student characteristics. Student, baseline ability and income were provided from
school. Students for who income or ability tercile was not available for the school were coded as being in the middle tercile. Students’ gender was determined based
on their name. For 1.6% of the sample students’ name was gender neutral, so we leave the variable missing. School Income Tercile is based on the school the student
attended which two of the six program schools designated in each tercile. Panel B presents students’ performance each of the decline tasks, showing the average score on
the task (mean) and the performance at the end of the task minus the beginning (decline). * p<0.10, ** p<0.05, *** p<0.01.
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Table A.3: Attrition

Treatment Disaggregated Sub-Treatments

Control Cog. Practice p-value Math Practice Games Practice p-value p-value p-value
1 = 2 1 = 4 1 = 5 4 = 5

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: School Administered Exams
Pooled 0.8957 0.8955 0.99 0.8980 0.8930 0.88 0.87 0.75

(0.011) (0.008) (0.011) (0.011)
Math 0.8957 0.8955 0.99 0.8980 0.8930 0.88 0.87 0.75

(0.011) (0.008) (0.011) (0.011)
Hindi 0.8957 0.8955 0.99 0.8980 0.8930 0.88 0.87 0.75

(0.011) (0.008) (0.011) (0.011)
English 0.8957 0.8955 0.99 0.8980 0.8930 0.88 0.87 0.75

(0.011) (0.008) (0.011) (0.011)

Panel B: Psychology and Classroom Measures
Pooled 1.0000 1.0000 1.00 1.0000 1.0000 1.00 1.00 1.00

(0.000) (0.000) (0.000) (0.000)
Symbol Matching 0.9969 0.9962 0.80 0.9939 0.9985 0.43 0.56 0.18

(0.002) (0.002) (0.003) (0.002)
SART 0.9089 0.9377 0.05 0.9289 0.9469 0.26 0.02 0.25

(0.013) (0.008) (0.012) (0.010)

Panel C: Experimental Exams: Listening, Ravens Matrices, and Math
Pooled 0.9708 0.9777 0.32 0.9778 0.9776 0.39 0.41 0.98

(0.006) (0.004) (0.005) (0.005)
Math 0.9615 0.9744 0.09 0.9752 0.9736 0.13 0.18 0.85

(0.007) (0.004) (0.006) (0.006)
Listening 0.9668 0.9692 0.76 0.9687 0.9697 0.84 0.75 0.91

(0.007) (0.004) (0.006) (0.006)
Ravens 0.9602 0.9698 0.23 0.9687 0.9710 0.37 0.25 0.79

(0.007) (0.004) (0.006) (0.006)

Notes: This table presents the extent of attrition by treatment and test. The outcome is whether we observe at
least one (non baseline) test each year. Panel A provides data for the school administered end of term exams.
Panel B is for the psychological and classroom measures of attention (SART and Symbol Matching). Panel C
presents the results for the listening, ravens and math tests. Columns (1), (2), (4) and (5) present the percent of
students for whom we have the respective exam. Columns (3) and (6)-(8) test for whether attrition is differential
by treatment. * p<0.10, ** p<0.05, *** p<0.01.
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Table A.4: Test Characteristics

Test Length (minutes) Baseline Midline/Endline Date

Math 30 Yes Dec 2017; Feb, Apr and Dec 2018; Feb and Apr 2019
Listening 12-15 Yes Dec 2017; Feb, Apr and Dec 2018; Feb and Apr 2019
Ravens 15-20 Yes Dec 2017; Apr and Dec 2018; Feb and Apr 2019
SART 8 No Dec 2017; Apr and Dec 2018; Feb and Apr 2019
Symbol matching 15 Yes Dec 2017; Feb, Apr and Dec 2018; Feb and Apr 2019

Notes: This table reports the length and timing of tests administered by the research team.
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Table A.5: Average Question Difficulty by Question Location and Treatment

Test Quintile

1 2 3 4 5

Math Practice -0.00571 -0.00493 0.00128 -0.000778 -0.00355
(0.231) (0.256) (0.659) (0.854) (0.397)

Games Practice 0.00166 0.00303 0.00176 -0.00650 0.00155
(0.734) (0.473) (0.545) (0.129) (0.726)

Mean of dependent variable 0.490 0.443 0.456 0.443 0.468
SD of dependent variable 0.276 0.249 0.261 0.246 0.276
Number of observations 77148 52698 71712 52698 80266

Notes: This table presents the average question difficulty in each quintile of the test
by treatment status to confirm that difficulty was not differential over time by treatment
status. The outcome variable is the control group mean performance on the question item.
“Math Practice” is a dummy for whether the student was part of the math sub-treatment
and “Games Practice” is a dummy for whether the student was part of the games sub-
treatment. Data is at the student-question item level and is from the three tests used
to measure student declines: Math, Listening and Ravens. Each column restricts to
question items in the given quintile of the test (e.g., column (1) restricts to the first 20%
of the test). Standard errors are clustered at the student level. * p<0.10, ** p<0.05, ***
p<0.01.
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Table A.6: Test Completion

Math Listening Ravens

% attempted 0.773 0.996 0.992
% skipped 0.151 0.001 0.005
% of students completing last question item 0.793 0.996 0.983
Avg last question completed location 0.933 0.997 0.993

Notes: This table presents information about how much of each test students
completed. “% attempted” is the percentage of individual question items stu-
dents provided an answer to. “% skipped” is the percent of questions in which
students left a question blank but answered at least one subsequent question.
“% of students completing last question item” captures the percent of students
who provided an answer on the last question of the exam, proxying for “finish-
ing” the exam. “Avg. last question completed location” captures the average
location of the last question item a student completed on the test as a percent
of the total test. The listening and ravens tests are multiple choice tests and
the math exam is free response.

56



Table A.7: Declines in Performance - Robustness to Predicted Decline

Dep. Var.: 1[Question Correct]
Average Predicted Decline:

Overall by School by School-Test
(1) (2) (3)

Panel A: Pooled Treatment Arms

Cog. Practice x Predicted Decline 0.0684** 0.0927*** 0.0662**
(0.0273) (0.0285) (0.0269)

Cog. Practice -0.0010 -0.0050 0.0012
(0.0057) (0.0061) (0.0053)

Panel B: Disaggregated Treatment Arms

Math Practice x Predicted Decline 0.0692** 0.0976*** 0.0664**
(0.0308) (0.0329) (0.0306)

Games Practice x Predicted Decline 0.0677** 0.0881*** 0.0670**
(0.0311) (0.0329) (0.0309)

Math Practice -0.0006 -0.0050 0.0018
(0.0065) (0.0069) (0.0060)

Games Practice -0.0015 -0.0050 0.0006
(0.0066) (0.0070) (0.0062)

Observations 329349 329349 329349

Notes: Panel A estimates treatment effects for both treatments pooled relative
to the control group. Panel B shows effects for the Math Practice and Games
Practice sub-treatments (each relative to the control group) separately. “Cog-
nitive Practice” is a binary indicator that equals 1 if the student was assigned
to a treatment (either the Math or Games Practice).“Predicted Decline” is the
amount of average decline in each quintile of the test location, relative to the
first quintile of the test, overall (column 1), within each school (column 2),
and within each school-test (column 3). Question item order was randomized
across students. All regressions contain question difficulty controls and base-
line controls. Observations are at the student-test-question level. Standard
errors clustered by student.
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Table A.8: Treatment Effects on Decline in Performance Over the Length of the Test - Restricting
to Attempted Questions

Dependent Variable: 1[Question Correct]
Test Subject

All All Math Listening Ravens
(1) (2) (3) (4) (5)

Panel A: Pooled Treatment Arms

Cog. Practice x Deciles 6-10 0.136***
(0.0045)

Cog. Practice x Predicted Decline 0.0922*** 0.1064** 0.0671** 0.0983**
(0.0279) (0.0432) (0.0327) (0.0455)

Cognitive Practice -0.0006 -0.0025 -0.0021 -0.0014 -0.0043
(0.0060) (0.0061) (0.0092) (0.0067) (0.0101)

Panel B: Disaggregated Treatment Arms

Math Practice x Deciles 6-10 0.0133**
(0.0053)

Games Practice x Deciles 6-10 0.0138***
(0.0051)

Math Practice x Predicted Decline 0.1014*** 0.1005** 0.0883** 0.1192**
(0.0323) (0.0484) (0.0390) (0.0543)

Games Practice x Predicted Decline 0.0829** 0.1132** 0.04657 0.0769
(0.032) (0.0504) (0.0380) (0.0519)

Math Practice 0.0009 -0.0038 0.0026 -0.0050 -0.0089
(0.0068) (0.0071) (0.0103) (0.0077) (0.0120)

Games Practice -0.0021 -0.0015 -0.0071 0.0022 0.0004
(0.0070) (0.0071) (0.0107) (0.0078) (0.0115)

Observations 279570 279570 150777 66929 61864

Notes: This table examines the impact of cognitive practice on the rate of decline in performance over
the course of the exam, restricting to only question items in which the student provided an answer.
Panel A estimates treatment effects for both treatments pooled relative to the control group. Panel B
shows effects for the Math Practice and Games Practice sub-treatments (each relative to the control
group) separately. Col. (1) corresponds to the specification in Equation 1. Col (2) corresponds to
the specification in Equation 3. “Cognitive Practice” is a binary indicator that equals 1 if the student
was assigned to a treatment (either the Math or Games Practice).“Predicted Decline” is the amount
of average decline in each quintile of the test location, relative to the first quintile of the test, within
each given school. “Deciles 6-10” is a binary indicator that equal one if the question appears in the
second half of the test. The omitted category are the questions in decile 1 (i.e. the beginning) of the
test. Cols. (1) and (2) estimate treatment effects for all three tests pooled. Cols. (3), (4), and (5)
show effects for the Math, Listening, and Ravens tests separately, respectively.The Coefficients in Cols.
(3)-(5) are estimated from a single regression on all the data. “Control Decline” captures the average
score in the first quintile of the test minus the fifth quintile of the test for students in the control
group,controlling for question fixed effects. Question item order was randomized across students. All
regressions contain question and test version fixed effects, and baseline controls. Observations are at the
student-test-question level. Standard errors clustered by student. ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01.
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Table A.9: Declines in Performance - Robustness to Choice of Controls

Dependent Variable: 1[Question Correct]
(1) (2) (3) (4) (5) (6)

Panel A: Pooled Treatment Arms

Cognitive Practice x Deciles 6-10 0.0121** 0.0129*** 0.0125***
(0.00474) (0.00474) (0.00474)

Cog. Practice x Predicted Decline 0.0903*** 0.0927*** 0.0527**
(0.0292) (0.0285) (0.0219)

Panel B: Disaggregated Treatment Arms

Math Practice x Deciles 6-10 0.0112** 0.0127** 0.0122**
(0.00548) (0.00548) (0.00547)

Games Practice x Deciles 6-10 0.0130** 0.0131** 0.0127**
(0.00541) (0.00539) (0.00540)

Math Practice x Predicted Decline 0.0967*** 0.0976*** 0.0466*
(0.0338) (0.0329) (0.0251)

Games Practice x Predicted Decline 0.0842** 0.0881*** 0.0591**
(0.0336) (0.0329) (0.0246)

Observations 329349 329349 329349 329349 329349 329349

Notes: Panel A estimates treatment effects for both treatments pooled relative to the control group. Panel B
shows effects for the Math Practice and Games Practice sub-treatments (each relative to the control group)
separately. Col. (1) - (3) correspond to the specification in Equation 1. Col (4) - (6) correspond to the
specification in Equation 3. “Cognitive Practice” is a binary indicator that equals 1 if the student was assigned
to a treatment (either the Math or Games Practice). “Deciles 6-10” is a binary indicator that equal one if
the question appears in the second half of the test. The omitted category are the questions in decile 1
(i.e. the beginning) of the test. “Predicted Decline” is the amount of average decline in each quintile of the
test location, relative to the first quintile of the test, within each given school. Col. (1) and (4) control
for version, col (2) and (5) add in question fixed effects and col (3) and (6) add in student fixed effects.
Question item order was randomized across students. All regressions contain question difficulty controls and
baseline controls. Observations are at the student-test-question level. Standard errors clustered by student.
∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01.
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Table A.10: Heterogeneous Treatment Effects on Declines and School Performance

Panel A: Decline on Listening, Math and Ravens Tests

Dependent Variable: 1[Question Correct]
(1) (2) (3) (4)

Covariate: Grade Female Baseline Mean Baseline Decline

Cog. Practice x Predicted Decline 0.1430** 0.0919** 0.1295 0.0809***
(0.0724) (0.0378) (0.0907) (0.0290)

Cog. Practice x Predicted Decline x Covariate -0.0173 0.0086 -0.0814 0.0543
(0.0199) (0.0583) (0.1601) (0.1553)

p-value: Cog. Practice x Pred. Decline 0.0213 0.0216 0.540 0.381
+ Cog. Practice x Pred. Decline x Covariate = 0

Observations 329349 325311 317346 316676

Panel B: School Tests

Dependent Variable: Z-score of Student’s Grades
(1) (2) (3) (4)

Covariate: Grade Female Baseline Mean Baseline Decline

Cog. Practice 0.0793 0.0452 0.1138 0.0849*
(0.1020) (0.0561) (0.1058) (0.0459)

Cog. Practice x Covariate -0.0008 0.0821 -0.0958 -0.4354*
(0.0301) (0.0938) (0.1979) (0.2276)

p-value: Cog. Practice 0.303 0.0909 0.869 0.120
+ Cog. Practice x Covariate = 0

Observations 11320 11162 10983 10965

Notes: The table shows whether there was a heterogeneous treatment effect of the program on decline in
performance (Panel A) or students’ school tests (Panel B) by student covariate. “Covariate” varies by column. In
column (1), it is grade, which ranges from 1-5. In column (2), it is a binary indicator for whether the student
is female. In column (3), it is student’s baseline average percent of questions correct on the listening, math and
Ravens tests, and in column (4), it is the difference between student’s performance in the first quintile of the test
versus the last quintile on the baseline tests.

Panel A: Panel A uses the same specification as in Table I col (2) and adds in an interaction term with each
covariate. The dependent variable is whether the student got the question item correct. “Cog. Practice” is a
binary indicator that equals 1 if the student was assigned to a treatment (either the Math or Games Practice).
“Predicted Decline” is the amount of average decline in each quintile of the test location, relative to the first quintile
of the test, within each given school. Question item order was randomized across students. All regressions con-
tain question and test version fixed effects, and baseline controls. Observations are at the student-test-question level.

Panel B: Panel B uses the specification from Table III, col (1) and adds in an interaction with each covariate. The
dependent variable is the students’ endline score on their regular school test in z-score. All regressions include class
section (strata) fixed effects and baseline controls. Observations are at the student-subject-exam level.

In both panels, standard errors are clustered by student. Additional level and interaction coefficients are not included
for brevity. * p<0.10, ** p<0.05, *** p<0.01.
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Table A.11: Effect of Treatment on Behaviors Outside of School

(1) (2) (3) (4)
Breakfast Practice HW Time HW Help

Cognitive Practice -0.0370 0.0588 -0.0174 -0.0179
(0.0629) (0.0761) (0.0598) (0.0625)

Dep. Var. Mean 1.656 3.194 1.603 1.055
Dep. Var. SD 0.760 0.927 0.743 0.735
Observations 706 706 706 706

Notes: This table shows the effect of treatment assignment on behaviors
outside of school, such as homework practices. “Cognitive Practice” is
dummy for whether the student was assigned the treatment. “Assets”
is a measure of the total number of assets students have at home from
the following list: book, fan, mixer, refrigerator, phone, computer, car,
motorbike. “Breakfast” is a measure of the total items a student had
for breakfast that day from the following list: egg, bread, rice, paratha,
cereal, milk, tea, fruit, meat, other. “Practice” is a measure of how
much time the student spent after school on cognitively-focused practice
activities, ranging from 0-5. “HW Time” is a measure for how much time
students spend on homework from 0 (less than 45 minutes), 1 (about 45
minutes), 2 (more than 45 minutes). “HW Help” captures the number
of individuals (family members, tutor, etc) that help them with their
homework. All outcomes are based on student self-report from a survey
conducted at the end of the study. The survey was conducted with a
subset of the total sample of students who were re-surveyed at endline.
Specifications include controls for student school, grade, and classroom.
∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01.

61



FIGURE A.1: Example Classrooms from Study Schools

Notes: The photographs show two example classrooms from our study’s schools to provide context.
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FIGURE A.2: Treatment Tablet Software

(a) Math practice treatment

(b) Games practice treatment

Notes: These figures show example screenshots from the treatment tablet software used
throughout the intervention. For the Math Practice, we use the imagineMath software, de-
veloped by Pixatel. For the Games Practice, we use simple games with limited animation
downloaded from the Android app store.
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FIGURE A.3: Program Treatment Classes

Notes: The photographs show two example treatment program classes.
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FIGURE A.4: Experiment timeline

July Aug Sept Oct Nov Dec Jan Feb Mar Apr May June

Intervention Intervention

Baseline Midline Endline

Follow-up

Notes: This figure shows the timeline of the intervention. Program treatment and control
classes were administered from August to early December and again in January. Baseline tests
were conducted in July and August (before the start of program classes). Midline tests were
conducted during the intervention break in December, and endline tests were conducted in
early February. Follow-up tests were conducted from late April through June. The experiment
was administered from July 2017-June 2019.
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FIGURE A.5: Randomization Balance of Test Versions

(a) Math Test
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Notes: These figures show the distribution of p-values for 4,478 coefficients of whether the
student received a given test version on dummies for treatment status. These regressions are
calculated within each test-round-school-grade. This allows to test whether allocation of test
versions as balanced across treatment status. For a perfectly random allocation of test versions,
in the limit, we would expect each bar to approach 10%.
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FIGURE A.6: Performance Over the Length of the Test by Treatment
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(b) Ravens Matrices
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(c) Math
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Notes: This figure plots the declines in performance across time on three tests administered as a part of the study: (a) listening, (b) Raven’s Matrices,
and (c) math. Question order is randomized in each exam. Each figure plots the probability a question was answered correctly (y-axis) against the
percent location of the question on the test (where 0 is the beginning of the test and 1 is the end of the test, x-axis). Data is residualized to remove
question fixed effects. Each line displays performance over time for the control group (solid black line), Math arm (short blue dashes), and Games arm
(long green dashes), respectively. Observations are at the student-test-question level; N = 66,932 (listening), 62,183 (Raven’s Matrices), and 200,234
(math). Table I presents the full set of corresponding treatment effects estimates.
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FIGURE A.7: Attempted Questions Only: Performance Over the Length of the Test by Treatment

(a) Listening
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(b) Ravens Matrices
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(c) Math
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Notes: This figure plots the declines in performance on attempted questions only across time on three tests administered as a part of the study: (a)
listening, (b) Raven’s Matrices, and (c) math. Question order is randomized in each exam. Each figure plots the probability a question was answered
correctly (y-axis) against the percent location of the question on the test (where 0 is the beginning of the test and 1 is the end of the test, x-axis). Data is
residualized to remove question fixed effects. For each plot, the initial level at the start of the test is normalized to the control group mean in decile 1 for
that test for ease of interpretation of decline magnitudes. Each line displays performance over time for the control group (solid black line), Math Practice
(short blue dashes), and Games Practice (long green dashes), respectively. Observations are at the student-test-question level; N = 66,929 (listening),
61,864 (Raven’s Matrices), and 150,777 (math). Table A.8 presents the corresponding treatment effects estimates.
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FIGURE A.8: Performance Over the Length of the Test by Subject

(a) Math
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Notes: This figure plots the declines in performance over the length of the exam by test subject
using data from Brown and Andrabi (2021). Question order on the tests is randomized. The figure
plots the probability a question was answered correctly (y-axis) against the percent location of the
question on the test (where 0 is the beginning of the test and 1 is the end of the test, x-axis).
Observations are at the student-test-question level; N = 217,516.
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