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1. General Perspective

Interviewer: What is your general approach to science and causality?

Heckman: The current literature on causality is filled with monologues of various partic-
ipants hawking their wares, ignoring what others have to say. I have read the literature in
statistics and computer science closely. It has had a big influence on many fields, including
on my own, and often to their detriment. As an example, discussions about “preferred
estimators” show its malign influence. Like much of the current “causal inference” litera-
ture, the emphasis on “preferred estimators” conflates estimation methods with conceptual
definitions of causality.

I am an economist trained (at the college level) in physics and mathematics. I switched
to economics out of interest in social and economic issues and in the belief that economics
can be a science and can contribute to understanding and resolving important policy de-
bates. The specificity of the policy problems addressed and the generality of the analytical
framework used to address them attracted me to the field. Starting with my graduate
training in economics at Princeton, I have also taken a strong interest in statistics as a tool
for sharpening empirical investigations. I have published papers in statistics journals and
symposia.

I have spent my entire professional life as an economist attempting to respect the high
standards and the rigorous protocols of hard science in my research and in that of my
students. I have sought to produce hard, verifiable (replicable), empirical evidence and to
influence others around me to do the same.

I seek non-tautological, rigorously justified models derived from theory and verified
on rigorously justified data. Measurement and theory together are the hallmarks of good
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science. No serious scientist pretends to “let the data speak for themselves,” nor would
they impose models on data that wouldn’t support them.

I have long practiced abductive inference (see, e.g., Josephson and Josephson, 1996),
building and testing models using all sources of data (quantitative and qualitative), which
may include censuses, cross-section surveys, experimental data, observer reports, newspa-
per accounts, interviews, ethnographic studies, and controlled and natural experiments.
No particular source of data is uniquely privileged, although more objective, carefully col-
lected and documented data are preferred if they are available. The goal is always to
obtain evidence as free of personal belief as possible. If better documented sources are not
available, other sources of data can be valuable even if they are less credible.

A rigorous scientific approach to any investigation requires admitting failure when it
happens, revising models in the light of failures when they occur, extracting new implica-
tions of old models, and testing the revised models so derived on fresh samples if possible.
The key to learning from data is being honest, determining and admitting multiple in-
terpretations of the evidence if they appear. One should constantly play devil’s advocate
and challenge one’s own work. The search for, care for, and consideration of alternative
explanations is the key to rigorous empirical work.

A central feature of hard science and rigorous economics is that it addresses well-
posed problems and presents qualified answers. It is not about seeking the estimand of
a “preferred” estimator. It is about having well-posed scientific questions and separating
anecdote and bias from hard evidence. It is a public activity that invites scrutiny and
challenge and not about any particular statistical procedure.

2. On Mentorship

Interviewer: Who would you consider your most important mentors and why?

Heckman: My mentors in economics include three great minds from an earlier generation:
Ragnar Frisch, who shared the first Nobel prize in economics and outlined the agenda of
econometric policy evaluation (1930, published 2010; 1938); his student Trygve Haavelmo
(1943; 1944) who formalized the notion of causality and simultaneous causality; and Jacob
Marschak (1953) who further developed the study of causality in pursuit of answering
well-posed policy problems.

The Cowles Commission at the University of Chicago (1939–1955), which supported
Haavelmo for part of his career, was led, for a while, by Marschak. It developed the first
rigorous framework for defining causality and making causal inferences. It defined and
analyzed causality in simultaneous systems. It was sketched by Frisch (1930, published
2010), initially for linear models. These frameworks have been greatly extended beyond
the early linear normal frameworks used by the Cowles pioneers, although some statisticians
to this day continue to attack economics for using linear normal models and continue to
claim that simultaneous causality is not possible, despite 80 years of research on the topic.
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Two other economists, both still alive, taught me by example the possibility of using
econometric models to answer the deep question of forecasting the demand for new goods
never previously experienced: Richard Quandt (1958; 1966; 1976) and Daniel McFadden
(1975).

3. On Causality

Interviewer: What do you consider the core issues in causality?

Heckman: Before one can meaningfully talk about causality one must define counterfac-
tuals, which lie at its core. Counterfactuals that describe possible outcomes under different
conditions are an expression of human imagination and creativity. Different groups judge
the quality of the counterfactuals created by different standards. Counterfactuals are imag-
ined outcomes: mental constructs defined according to some set of rules, which may be
implicit.

There are no hard and fast rules for generating counterfactuals. Possibilities are only
limited by the imaginations of their creators. Counterfactuals are products of the mind
whose plausibility depends on how well they respect the rules invoked by their users.
Scientific communities emerge to establish rules for creating counterfactuals from rigorous
theory and to verify their construction. However standards vary across fields (see, e.g.,
Feynman, 1981 at https://vimeo.com/118188988).

Science doesn’t stop with possibilities. It is about the verification in objective data
of counterfactual predictions. Verification is the process of checking the ingredients, both
theory and evidence, and holding them up for public scrutiny, including replicability. Public
scrutiny is not a popularity contest, although it is often interpreted this way by networks of
like-minded individuals who ratify each other and ignore outsiders (see, e.g., Carrell et al.,
2022). At sufficient scale, such networks can prevent serious scrutiny of their core ideas.

While there may be many possible worlds, their plausibility depends on whether they
rely on credible ingredients. Scientific research demands careful measurement and rigorous
testing. It also asks that the counterfactuals generated are grounded in scientific principles
previously established in the body of previous research. Science is a cumulative process
that seeks consilience across studies.

Richard Feyman’s book The Character of Physical Law (1965) is a superb popular
discussion of how rigorous science works. He shows how abstract models of reality often
have astounding accuracy in analyzing and predicting real phenomena. It is their power in
making predictions in real data that creates their acceptance. Another famous physicist,
Eugene Wigner, wrote an influential paper (1960) that captures his amazement and that of
other scientists in how well abstract mathematical models predict real-world phenomena.
Abstract models in physics follow the rules of physics up to a point but then may extend
them. They are not empirical statements but—as Feyman and Wigner noted—they are
often powerful in explaining empirical phenomena.
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The acts of conceiving counterfactuals and their relationships—thought experiments—
and the acts of estimating and testing the validity of these imagined relationships are
fundamentally distinct. However, they are often confused, especially in fields without
guiding abstract principles and cumulative knowledge. Purely statistical approaches often
ignore the crucial point that science is an iterative process. Scientists build models, test
them, adapt them to fresh data and/or on new data, and/or examine further implications
of proposed new models to see if they hold up. It is by iteration and public argument that
scholars learn from data and build models to explain them. This feature is often absent
from many applications of “causal inference” in statistics.

There is no “correct” way to generate counterfactuals unless a set of generator rules is
postulated. If counterfactuals claimed to be generated by such rules are in fact inconsistent
with them, they are “incorrect” in terms of the announced rules. But there are no abso-
lutes in this business—just agreement with prior knowledge up to the point of discovery.
Arguments that counterfactuals are “nearest possible worlds” (see Lewis, 1973) flounder
on the lack of any metric (or topology) for “closeness” or enumeration of the set of possible
worlds.

When two (or more) counterfactuals are compared, a causal effect is obtained. Some
counterfactuals may be rooted in fact, others in fancy. Thus, if we compare US history
if the South had won the Civil War to US history if it had lost (as actually happened),
we define a “causal parameter” (really a causal scenario) holding all else the same. Of
course, the two counterfactuals differ greatly in terms of their anchor in fact. The first
opens up many possibilities, none of which necessarily occurred, unless the two histories
are identical. The second is a topic studied by historians. History itself is subject to
controversy, as heated academic disputes attest. Our beliefs about the quality of causal
effects are grounded in the quality of the counterfactuals underlying them.

3.1 Econometric Framework

Heckman: An elementary framework is helpful in understanding the econometric ap-
proach. Economic theory is grounded in abstract principles. Economic models are models
of possible outcomes. They are thought experiments. Consider a simple linear model:

Y = β0 + β1X1 + β2X2 + U. (1)

(X1, X2, U) are not necessarily random variables or generated by stochastic processes.
These can also be constants when used in functional relationships; e.g., letting
(Y,X1, X2, U) = (y, x1, x2, u), we can write (1) as

y = β0 + β1x1 + β2x2 + u. (2)

Equation (1) is an example of a function g : (X1, X2, U) → Y . Equation (2) is an example
of g evaluated at the specified values. Economists study how hypothetical variation in the
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arguments (X1, X2, U) affect Y when the other arguments are fixed (held constant). This
is a general functional relationship. One thought experiment imagines an increase in x1,
holding x2, u at fixed values. Of course in the real world, one may not be able to randomly
vary X1 without also varying X2 and U . That is an entirely different matter.

In Equation (1), β1 is the effect of a unit increase in X1, holding X2 and U fixed. Each
Y obtained by varying X1 holding (X2 = x2, U = u) is a possible (“potential”) outcome
over the support of (1). Such relationships are at the core of economic theory and have
been for over 130 years, and have been at the core of mathematics proper for centuries.
Marshall (1890) referred to β1 as the ceteris paribus effect of X1 on Y . Ceteris paribus
means “everything else the same.” Precisely the same types of qualifications are given
when examining the pull of gravity on a feather.

Thought experiments often illuminate real world policy debates. Thus, if Y is the
consumption of cigarettes and X1 is the price of cigarettes, the ceteris paribus variation
in X1 is informative about the possible effect of a tax (which increases the price) on
smoking. Hard science and rigorous economics are grounded in thought experiments like
these. Einstein is famous for his use of thought experiments, and Feynman (1965) illustrates
their usefulness. A variety of potential outcomes can be obtained by varying X1, X2, and
U in different ways.

I have deliberately used a linear model as my example of an abstract theoretical model.
I distinguish it from a familiar linear regression model, as is usually taught in statistics.
That model starts with a collection of random variables (Y,X1, X2, U). Up to now, I have
not had to specify whether Y,X1, X2, U are proper random variables or not.

Under normality of (X1, X2, U) (alternatively of (Y,X1, X2)) and taking conditional
expectations of (1),

E(Y |X1 = x1, X2 = x2) = β0 + β1x1 + β2x2 + E(U |X = x1, X2 = x2). (3)

If E(U |X = x1, X = x2) = 0, one obtains

E(Y |X1 = x1, X2 = x2) = β0 + β1x1 + β2x2. (4)

Evaluating Equation (1) at the values X1 = x1, X2 = x2, U = u gives Equation (2), which
is very similar to but conceptually distinct from Equation (4). Setting U in (2) at the
expected value of U(u = 0), one obtains

y = β0 + β1x1 + β2x2 (5)

which is exactly Equation (4).

The fact that the right-hand sides of Equations (4) and (5) are mathematically iden-
tical obscures a crucial difference: Equations (1), (2), and (5) are the result of thought
experiments. The analyst conceptually sets the values of X1, X2 and U . No data are in
sight, although the thought experiment may have been motivated by empirical studies. No
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properties of random variables need to be specified. In contrast, Equations (3) and (4) are
generated by another type of thought experiment: by taking conditional expectations used
to describe data. They are ingredients frequently used in statistical methods. In contrast,
Equation (5) is a causal relationship that determines the value of outcome y. The values of
x1, x2, u are hypothetically assigned to (X1, X2, U). Equation (4) is defined by a statistical
operation that might be used to estimate parameters from observed data over the support
of the data. Equation (5) is defined without invoking any statistics.

Many statisticians work in fields in which there is no formal methodology for describing
“setting” (or fixing) inputs like (x1, x2, u). The Kolmogorov (1956) axioms do not need
to be invoked in defining (5), although the laws describing mathematical functions are
required (e.g., Knopp, 2016). Abstract models like (1), (2), and (5) are outside of the
Kolmogorov framework. They are nonstochastic.

This observation helps explain the rise of interest in Pearl’s (2009) do-calculus in some
quarters of statistics and social science. His “do operator” works by setting inputs in a
formal structure like (1) and creating special rules outside of formal statistics to interpret
operations like “fixing” or “setting.” However, his calculus is not needed to accomplish
this task (see Pinto and Heckman, 2022).

Elsewhere, Heckman and Pinto (2015) formally extend conventional probability the-
ory to include “fixing” or “setting” in the Kolmogorov system by introducing a new class
of random variables. They develop an intuitive framework that enables analysts to ex-
press causal operations using only standard probability and statistical theory without the
elaborate non-statistical rules used in the do-calculus.

Representations like Equation (1) arise from thought experiments. Building on our
cigarette example, raising a price (X1) likely reduces cigarette demand. Holding everything
else constant, the law of demand suggests that β1 < 0, i.e., as X1 ↑, Y ↓ holding X2, U
fixed. A huge body of economic theory and evidence supports this prediction (see, e.g.,
Mas-Colell et al., 1995). One can set X1 = x1 and vary it to create different counterfactual
worlds.

It may occur that in actual data, Equation (4) coincides with, or is very “close” to,
Equation (5), but that is a separate issue. In the cigarette example, as in many other
studies of demand, the correspondence between theory and evidence is quite close. In the
language of econometrics, this would correspond to Equation (5) (or (1)) being identified
(see, e.g., Matzkin, 2007 for a discussion of identification). The basic distinction between
a thought experiment generating different values of y by varying x1, keeping x2 (and u)
constant, and conditional expectations ((3) and (4)) is at the heart of what economists
bring to the causality table. This point was first formalized by Haavelmo (1943) and more
recently advanced in Heckman and Pinto (2015).

The mathematics is trivial. The conceptual distinction between (1) (or (5)) and (4) is
not trivial and is the source of enormous confusion in statistics and in quarters of economics
that follow and implement statistical frameworks that ignore thought experiments. (For a
leading example, see Pratt and Schlaifer, 1984.)
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Causal model (1) is defined independently of any estimator. In Equation (1), β1 may
or may not be an estimand of a regression of Y on X1 and X2. If the estimand from
Equation (4) based on observed data coincides with Equation (5), we are in company with
Wigner (1960) in admiring the unreasonable effectiveness of theory (1) in predicting reality.
But theory and inference are logically different. See Table 1.

Table 1: Two Distinct Tasks That Arise in the Analysis of Causal Models

Task Description Requirements

1 Defining the set of hypotheticals or counterfactuals A well-specified theory
2 Identifying and estimating causal parameters from data Mathematical analysis of point or

set identification in hypothetical
samples along with estimation and
testing theory

Appreciating the distinction between functions (like (1) or (5)) and estimands (like (3)
and (4)) is key to understanding the contribution of economics to the study of causality.
A function g (like (1) or (5)) maps x → y. Formally,

g : x → y.

Functions are defined to be stable maps between X and Y over their entire support, re-
gardless of the variation of its inputs. No special language or additional conditions such as
those in “SUTVA” are required (see Pinto and Heckman, 2022). Moreover, systems of in-
terdependent (non-recursive) equations are readily formulated. Mathematics and economic
theory are replete with systems of equations (see, e.g., Mas-Colell et al., 1995):

F : Z → W, (6)

where Z is a collection of variables, W is a set of outcomes of any dimension, and F is a
vector of functions that may include g from our previous example. State space equations
are widely used in engineering, economics, and chemistry to list only a few applications.
Simultaneity and interactions are readily characterized by such systems of functions. Many
of the approaches current in “causal” analyses in statistics ignore the benefits of abstract
theoretical models and thought experiments. They limit the range of causal questions that
can be investigated by their practitioners.

This simple example readily generalizes to considering a definition of causality. Abstract
theoretical equations need not be linear. Normality is not an essential feature of them.
Equation (1) can be replaced by a system of simultaneous equations such as (6). “SUTVA”
is irrelevant. Causal effects are by definition manipulations of input variables (by a thought
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experiment) that generates hypothetical outputs. They are defined independent of any
estimation technique or availability of data. Simultaneous causality is readily defined and
poses no necessary paradox or contradiction to logic (see Matzkin, 2008 and Heckman and
Pinto, 2015).

Human knowledge is produced by constructing counterfactuals and theories. Blind em-
piricism unguided by theoretical frameworks for interpreting facts leads nowhere. Many
statisticians are uncomfortable with counterfactuals. Their discomfort arises in part from
the need to specify abstract models to interpret and identify counterfactuals. Many statis-
ticians are not trained in science or social science and adopt as their credo that they “should
stick to the facts.” An extreme recent example of this discomfort is expressed by Dawid
(2000), who denies the need for, or validity of, counterfactual analysis.

Economists since the time of Haavelmo (1943; 1944) have recognized the need for pre-
cise models to construct counterfactuals and to answer causal questions and more general
policy evaluation questions, including making out-of-sample forecasts. The econometric
framework is explicit about how counterfactuals are generated and how interventions are
conducted (i.e., the rules of assigning “treatment”). The sources of unobservables, in both
treatment assignment equations and outcome equations, and the relationship between the
unobservables and observables are studied. Rather than leaving the rules governing se-
lection of treatment implicit, the econometric approach explicitly models the relationship
between the unobservables in outcome equations and the choice of outcome equations to
identify causal models from data and to clarify the nature of identifying assumptions. The
theory of structural modeling in econometrics is based on these principles. Modeling choice
also enables analysts to distinguish objective counterfactuals (e.g., did the drug work?) and
subjective counterfactuals (e.g., what is the pain and suffering experienced by users of the
drug?). Answers to both questions are valuable in evaluating the impact of any treatment.

Ambiguity in model specification implies ambiguity in the definition of counterfactuals
and hence in the notion of causality. The more complete the model of counterfactuals,
the more precise the definition of causality. The ambiguity and controversy surrounding
discussions of causal models are consequences of analysts wanting something for nothing:
a definition of causality without a clearly articulated model of the phenomenon being
described (i.e., a model of counterfactuals). They want to describe a phenomenon as being
modeled “causally” without producing a clear hypothetical model of how the phenomena
being described are generated or what mechanisms select the counterfactuals that are
observed in hypothetical or real samples.

In the words of Holland (1986), they want to model the “effects of causes” without
modeling the causes of effects. Science is all about constructing models of the causes
of effects. Such models are essential in analyzing policy problems, as in our cigarette
example. Economic (and scientific) problems dictate the choice of an abstract model and
the definitions of causal parameters—not some estimand from one or another procedure.

In summary, causality is a property of a model of hypotheticals. A fully articulated
model of the phenomena being studied precisely defines hypothetical or counterfactual
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states. A definition of causality drops out of a fully articulated model as an automatic
by-product. A model is a set of possible counterfactual worlds constructed under some
rules. The rules may be the laws of physics, the consequences of utility maximization, or
the rules governing social interactions, to take only three of many possible examples. A
model is in the mind. As a consequence, causality is in the mind.

3.2 Policy Evaluation

Heckman: In empirical studies of causality, there are some standard problems: (1) se-
lection bias; and (2) that for any causal question, at most one of many counterfactuals
is known empirically (i.e., what is actually observed). These problems have been formal-
ized at least since the time of Cox (1958), if not before. There are three different policy
evaluation problems that are fruitfully distinguished but often conflated:

P1 Evaluating the causal impacts of actual interventions, including their impact in terms
of welfare.

This is the problem of identifying a given treatment effect or a set of treatment effects in
a given environment (Campbell and Stanley, 1963). This is the policy question usually
addressed in the epidemiological and statistical literatures on causality. A drug trial for a
particular patient population is the prototypical problem in that literature where investi-
gators typically focus on objective outcomes, e.g., the effect of a drug treatment on health
rather than the subjective wellbeing of the patient.

However interesting that may be, most policy evaluation is designed with an eye toward
the future and toward decisions about new policies and application of old policies to new
environments. I distinguish a second task of policy analysis:

P2 Forecasting the impacts (constructing counterfactual states) of interventions imple-
mented in one environment in other environments, including their impacts in terms
of welfare (subjective wellbeing).

Included in these interventions are policies described by generic characteristics (e.g., tax
or benefit rates, etc.) that are applied to different groups of people or in different time
periods from those studied in previous implementations of policies. This is the problem of
external validity : transporting a structural parameter or a set of parameters estimated in
one environment to another environment. The “environment” includes the characteristics
of individuals and their social and economic setting. This is the forecasting problem long
studied in economics.

Finally, the most ambitious problem is forecasting the effect of a new policy, never
previously experienced:

P3 Forecasting the impacts of interventions (constructing counterfactual states associated
with interventions) never historically experienced to current or different environ-
ments, including their impacts in terms of welfare.
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This problem requires that one uses past experience to forecast the consequences of new
policies. It is a fundamental problem in knowledge. It requires that one use abstract
models to connect the future to ingredients from the past. This is the focus of structural
estimation. Marschak (1953) and Domencich and McFadden (1975) are outstanding exam-
ples of how economists answer P3. I discuss these different scientific problems in greater
detail elsewhere (Heckman, 2008).

P3 has been consistently ignored by statisticians because they cannot or will not deal
with abstract models of counterfactuals like Equation (1). Holland (1986) boasts that
statistics deals with the “effects of causes”—in the terminology of this paper, outcomes of
comparisons of counterfactuals—rather than the causes of the effects (models like (1) that
determine the counterfactuals studied).

A prime example of the limits to this approach is the claim that one can never learn the
causal effect of race on outcomes because race cannot be randomly assigned. An estimand
(the outcome of an RCT) is used to define causal parameters. In contrast, the abstract
theory-based approach investigates which factors (X in Equation (1)) are important for
producing outcomes. Having determined this, one can conceptually equalize the factors
across persons of different race groups. That may not be an easy empirical task, but
there is a large scholarly literature examining the factors leading to various outcomes (e.g.,
productivity in a job). Whatever the quality of the empirical work, the thought experiment
remains valid even if a reliable estimate of the causal effect is difficult to obtain.

4. On Dominance of Specific Models

Interviewer: What are the advantages and disadvantages of the recent interest in ran-
domized trials within economics?

Heckman: I have written on this elsewhere (Heckman, 1992, 2020). Experiments are use-
ful for certain problems but are far from being a panacea and are frequently corrupted in
practice, producing misleading inference. A good example is the analysis of a recent Head
Start experiment (Kline and Walters, 2016). Families randomized out of the program at
one location went to other Head Start locations or even better programs. The inconclusive
treatment effect reported from the simple mean difference RCT “causal effect” was a re-
sult of uncontrolled “contamination bias” (see Heckman et al., 2000). The “control group”
participated in programs as good or better than the program being evaluated, so the “gold
standard” estimated treatment effects were negative, when in fact estimates that correct
for contamination bias show strong positive effects. Often, clean RCTs do not exist, and
we always have to judge the causal claims of each study on a case by case basis.

Interviewer: What are your thoughts on the current dominance of propensity scores,
diffs-in-diffs, regression discontinuity, and synthetic controls?
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Heckman: There are many estimation methods out there, each justified by different as-
sumptions. There is no universal best estimator. The conditional nature of (causal) knowl-
edge alarms some analysts who seek absolute knowledge of “causal effects.” One needs to
understand the science behind a phenomena before one can select appropriate estimators.
However, this is not often done in many statistical studies. An “effect” is estimated without
a clear interpretation of what precisely it captures and how it is generated.

Heckman and Robb (1985, 1986) compare the identifying assumptions underlying a
large array of cross-section, repeated cross-section, and panel data estimators, including
“diffs-in-diffs.” Many users of the methods you describe do not have a clear problem in
mind and instead chant “ATE, TOT,” or whatever sells that day. It’s like a fashion show
in Milan with different inferential techniques coming down the runway at different times.
Most users have no clear question in hand, just an “estimand” that will get them published.
The estimands are well defined; the problems they address often much less so. Whether the
estimands are relevant for solving the stated problems is an entirely different issue that is
rarely addressed. Many users do not have a question in hand. They just want an estimate
of a not so clearly defined something.

A good example of this phenomenon is the literature in economics on estimating the
“return” to schooling. It focuses on estimating the coefficient of schooling in an equation
relating log earnings (y) to factors determining earnings. A close reading of the literature
reveals its focus on one element of β in Equation (4) free of any bias arising from correlations
between U and the associated X.

The recent “credibility” revolution in economics focuses on “credible” estimators for β
(see, e.g., Angrist and Pischke, 2010). It emphasizes easily computed, easily replicated sta-
tistical methods. These are surely desirable features of any inferential procedure. Missing,
however, is any clear statement of why βs so obtained answer relevant economic questions.
Heckman et al. (2006) demonstrate that the “return” featured in the “credibility revolu-
tion” answers interesting economic questions only under very special circumstances and
that a deeper analysis is required to estimate the economically interesting return to school-
ing. The credibility revolutionaries create clean estimators for generally uninterpretable
estimands. They conflate tasks 1 and 2 of Table 1.

Interviewer: How do you see the trade-offs between more parametric approaches (SEM)
versus less parametric approaches such as DAGs?

Heckman: I don’t agree with the premise of the question. Structural models (SEM) es-
timating abstract theoretical models can be and often are nonparametric or at least semi-
parametric. Heckman and Pinto (2015) and Pinto and Heckman (2022) show that Pearl’s
DAGs and the rules of do-calculus do not accommodate instrumental variable methods or
selection bias models. They account for simultaneity only by “shutting down equations”
without regard for the properties of systems so generated, while structural econometric
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models readily accommodate simultaneity, as Matzkin establishes in her many papers (e.g.,
Matzkin, 2007, 2004, 2008).

5. On Treatment Effects

Interviewer: How would you describe the differences between average causal effects and
your “marginal treatment effect” (Heckman and Vytlacil, 1999)?

Heckman: The choice of a parameter should be dictated by the problem one seeks to
address, not by some arbitrary convention. The marginal treatment effect (MTE) is useful
for determining benefits or costs to people at margins of choice (see, e.g., Eisenhauer et al.,
2015). MTE is a building block from which all other conventional treatment effects can be
constructed under appropriate support conditions. It does not replace treatment effects—it
is a device for unifying them. It also links choice equations to outcome equations. Heckman
and Vytlacil (2005) show that a variety of policy relevant causal parameters outside the
basic toolkit can be formed from marginal treatment effects.

This approach has its origins in the insights of calculus: the relationship between deriva-
tives and integrals. The marginal treatment effect can be interpreted in some settings as
the marginal willingness to pay for a good for a subset of people who are indifferent be-
tween buying it or not. The common treatment effects aggregate over all people who buy
the good with their different intensity of preferences.

Interviewer: What are the relative advantages and disadvantages of local treatment
effects?

Heckman: Local treatment effects are the building blocks from which all treatment effects
can be constructed. They can be used to establish the relationships among the various
treatment effects using a common conceptual tool. It unifies knowledge. See Heckman
and Vytlacil (2007a,b). Local treatment effects characterize choices at margins which are
central to economic analysis.

6. On Mediation

Interviewer: Do you find mediation/path-specific inference a useful or promising area of
causal research and application?

Heckman: Yes, it is. But note that “mediation” analysis has long been conducted in
econometrics and is very useful for many questions. Adelman and Adelman (1959) sim-
ulated the dynamic multiperiod Klein-Goldberger (1955) model of the US economy using
what is now called “mediation.” They based their analysis on “dynamic impact multipli-
ers,” which chart the impact of policy changes in one period on the output, consumption,
and investment of future periods. Long ago, Sewall Wright (Wright, 1934) pioneered the
mediation approach, calling it path analysis, and there is a long tradition of using it in
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social science. Mediation analysis enables analysts to understand causes of effects rather
than stopping at just reporting effects. It is essential for policy analysis that aims to im-
prove outcomes. It tells analysts which levers to pull to make effective policies, and it is
valuable for the intellectually curious who seek to know why treatment outcomes occur.

7. On Bounds and Sensitivity Analyses

Interviewer: For informing policy decisions, do you find bounding or sensitivity analyses
useful?

Heckman: Yes. But there is usually much more information available than the numerical
information on the supports of random variables that is featured in recent work on bounds.
This additional information is useful in doing sensitivity analysis (e.g., newspaper accounts,
common sense, etc.), but it is rarely used. It often requires too much subject matter
knowledge for most “causal analysts.” See Heckman and Singer (2017).

For example in estimating the impact of a new law on social outcomes, it is helpful to
get point estimates or bounds on point estimates for an outcome. However, newspaper ac-
counts, related indicators, and witness reports are also informative. For a brilliant example
of this approach see Katz and Singer (2007).

8. On Limiting Assumptions

Interviewer: How do you approach the common assumptions in causal inference that
appear limiting given real data?

Heckman: I discussed this both thirty years ago and in a recent paper (Heckman and
Robb, 1985, 1986; Heckman and Pinto, 2015; Pinto and Heckman, 2022). Many standard
methods for analyzing social interactions and general equilibrium effects, simultaneity, and
feedback violate the “causal framework” protocols of statistics but answer interesting policy
questions outside that straightjacket. The SUTVA assumption is a good example.

One aspect of “SUTVA” is “structural invariance” or “autonomy” developed by Frisch
(1938) and Hurwicz (1962). It characterizes functional relationships like Equations (1)
or (5). It is a core idea applied more than eighty years ago in econometrics. The other
aspect of “SUTVA” is the assumption of no interaction among agents. That rules out a
lot of the study of interesting social phenomena. Simultaneity and interaction have been
studied for decades. For instance, much research in economics focuses on general equilib-
rium environments, ruled out by SUTVA. A sizeable literature in economics is devoted to
the study of peer-effects (see Blume et al., 2011).

The goal of this literature is precisely the evaluation of the “interference” (really in-
teraction) among randomization units, which is ruled out by SUTVA. Interactions are
treated as a problem in statistics but are, in fact, a source of information in economics
and social science more broadly. SUTVA is an artifact of the obsession of many statis-
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ticians and their followers on single-agent RCTs. I believe statisticians’ ignorance of the
econometrics literature with respect to simultaneity and social interactions has harmed
the advance of knowledge. Information about the mechanisms producing “interference” is
useful for analyzing the propagation of disease, economic shocks, network externalities, etc.

Interviewer: Has there been progress on the topic of nonrecursive causal effects?

Heckman: Econometrics offers a clear discussion of non-recursive causal effects. Cowles’
Monograph 10 (Koopmans et al., 1950) and Monograph 13 (Hood and Koopmans, 1953)
present the basic framework. Rosa Matzkin (2008; 2004; 2007) has substantial work study-
ing systems of equations which are non-recursive models. Fisher (1966) presents a general
analysis of identification in both linear and nonlinear simultaneous equations systems. I
already mentioned the work of Blume et al. on social interactions. The common analysis
of market prices and quantities requires nonrecursive models. Time series econometrics
and financial economics abound with nonrecursive models.

9. On Machine Learning

Interviewer: Do you think machine learning will be useful in causality?

Heckman: Machine learning is a useful tool but it’s only a computational device for
prediction, estimation, and establishing empirical relationships. It offers no insight about
causality per se, other than what is learned from careful descriptions of phenomena. It is
useful to have good descriptions of phenomena as material on which to build interpretative
causal models.
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