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About the Lecture

Scope Introduce Causal Frameworks that enhance the Causal
Inference

Goal Tools that enable the analysis of arbitrarily complex causal
models.

Benefit Enable to explore nonparametric identification of models
with multiple variables

Beyond Matching, IV, and Mediation Models

Insights Expand the way you can model an empirical inquiry



Related Literature

@ Pearl (1995)
Causal Diagrams for Empirical Research

® Pearl (2012)
The Do-Calculus Revisited

©® Jaber, Zhang, Bareinboin (2018)
Causal Identification under Markov Equivalence

@ Heckman and Pinto (2020)
Causal Calculus for the Hypothetical Model Framework

@ Chalak and White (2011)
Extended class of instrumental variables for the estimation of causal
effects

® Richardson Evans and Robins (2017)
Nested Markov Properties for Acyclic Directed Mixed Graphs



Softwares

R Package

¢ Tikka and Karvanen (2019)
Identifying Causal Effects with the R Package causaleffect

Online Resource

¢ Online Software DAGitty
www.http://dagitty.net/

® Johannes Textor (2020)
Drawing and Analyzing Causal DAGs with DAGitty


www.http://dagitty.net/
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Defining Causal Models
Causal Model: defined by a 4 components:

® Random Variables that are observed and/or unobserved by the
analyst: 7 ={Y,U, X, V}.

® Error Terms that are mutually independent: ey, ey, ex, €y.
© Structural Equations that are autonomous : fy, fy, fx, fy.
O Causal Relationships that map the inputs causing each variable:

Y =fy(X,U,ey); X = fx(V,ex); U= fy(V,ey); V = fy(ey).

Econometric approach explicitly models unobservables that are often
the main object of study.



Review
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Structural Relationships / Autonomous Functions

Y = fy(X, U, ey), Y observed
X = fx(V, ex), X observed
U=1fuy(V,eu), U unobserved
V = fy(ev), V' unobserved

Directed Acyclic Graph (DAG) representation

Pinto and Heckman Causal Calculus
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Properties of this Causal Framework

® Recursive Property : No variable is descendant of itself.

® Autonomy + Indep. Errors + Recursivity = Bayesian Network

® Local Markov Condition (LMC): a variable is independent of
its non-descendants conditioned on its parents.

® Graphoid Axions (GA): new independence relations based on
the LMC relations

¢ Benefit of Bayesian Network Tools translates causal links into
independence relations
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A Useful Tool: Local Markov Condition (LMC):
(Kiiveri, 1984, Lauritzen, 1996)

LMC: A variable is independent of its non-descendants conditional
on its parents

XH»Y

® Forexample: Y 1LV |[(X,U)
~—~—~ ~—~—

-
descendants  Parents

e A fully non-parametric causal model can be equivalently
described by its LMCs.

Pinto and Heckman Causal Calculus
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Additional Tool: Graphoid Axioms (GA)
(Dawid, 1979)

Primary GA rules:

Weak Union: X 1L (W, Y)|Z = X 1L Y|(W, 2).
Contraction: X 1L W|(Y,Z) and X LL Y|Z = X 1L (W,Y)|Z.
Intersection: X 1L W|(Y,Z)and X LL Y|(W,Z)= X 1 (W,Y)|Z

Remaining GA rules:

Symmetry: X 1L Y|Z =Y 1L X|Z.
Decomposition: X 1L (W,Y)|Z = X 1L Y|Z.
Redundancy: X 1L Y|X.

Pinto and Heckman Causal Calculus



Building Blocks of Causal Relations

Common Cause Chain Collider

AlB e

Example: Example: Example:
Village size (A) Smoking (A) Firing squad
causes babies (B) causes tar (B) (B &C)
and storks (C) causes cancer (C)  shoot prisoner (A)
Cl: Cl: Cl:
BandC Aand C BandC
conditionally conditionally conditionally
independent independent dependent
given A given B given A
B 1 C|A Al C|B Bl C

but B i C|A



More general approaches?
Is there a more general approach to investigate independencies? Yes!

@ A linear-algebraic tool for conditional independence inference
Inference
Tanaka, Studeny, Takemura and Sei (2015)

® Efficient Algorithms for Conditional Independence Inference
Bouckaert, Hemmecke, Lindner, Studeny (2010)

© Probabilistic Conditional Independence Structures
Studeny (2005)

© See Lauritzen (1996) for the general theory of Bayesian Networks.



Analysis of Counterfactuals — The Fixing Operator

® Fixing: causal operation sets X-inputs of structural equations to x.

Standard Model Model under Fixing

V = f\/(e\/) V= fV(EV)

U= fu(\/,ﬁu) U= fu(V,Eu)
X:fx(\/,ex) X =x
Y:fy(X, U,Ey) Y:fy(x, U,Ey)

® Importance: Establishes the framework for counterfactuals.
* Counterfactual: Y(x) represents outcome Y when X is fixed at x.

® Linear Case: Y = X3+ U+ ey and Y(x) =x8+ U +ey;






Causal Calculus
What can you gain from additional structure?
A General Method to Examine Complex Models
Merging Statical Theory with Causal Analysis



How can we use the SMC to identify the Front-door Model?

V = fy(ey)
T =fx(V,eT)
M = (T, em)

Y =fy(M,V, ey)
Two Counterfactuals:

M(t) = fm(t,em) = M(t) LL T
Y(m) = fy(m,V,ey) but M LL V|T = Y(m) LL M|T

Thus the following equalities hold:
° P(M(t)) = P(M|T = 1)
o E(Y(M)|T=t)=E(YIM=m,T =1t)



Identifying the Counterfactual Mean E(Y(t))

XM Y]
Outcome Y = fy(M, V,€,) generates the following counterfactual:
V(0) = FM(0). Vo) = E(Y(2) = [ ECY(m))dFugo(m)
But P(M(t)) = P(M|T = t) and
E(Ym)|T=t)=E(YIM=m,T =t)

= E(Y(m)) = /E(Y\I\/I —m, T = t')dFr(¢)

/m</. (YIM=m,T = .dFT.)> dFy, g (m)

—_————
£( ;(’m)) dF ey (m)




What about this model?

® X is endogenous, Y(x) W X, indeed, ALL variables are endogenous
¢ No instruments

® Yet, causal effects are identified:

even= [ [ [ [ Eimsmm.T=0)

dF gy my,my 7=t (M3)
dFpty | my, T=t (M2)
dFpy, 7=t (m1)
dFr(t’)



And what about this model?

BV = [ [ [ E(YImoa, T = €)dFis x(m)dFs, oo () dFr(¥)



What about a General Framework for Causal Calculus?

® The goal of a framework for causal calculus is to deliver a standard
methodology that applies to any DAG.

® A set general of rules that can be used to assess counterfactual
outcomes whenever those are identified.

* A methodology/algorithm that be coded, so the researcher dos not
need to investigate case by case.

® Such framework is useful to investigate which properties of DAGs
are necessary /sufficient to render identification of causal parameters.

® Most important, a framework that facilitates to investigate the
identification of causal effect is more complex DAGs.



Moreover, Fixing is not Well-defined in Statistics

@ Fixing: causal operation that assigns values to the inputs of
structural equations associated to the variable we fix upon.

® Conditioning: Statistical exercise that considers the dependence
structure of the data generating process.

¢ Fixing has direction while conditioning does not.

® Question: How can we make statistics converse with causality?

® Answer: The hypothetical model
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The Hypothetical Model Framework
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The Causal Calculus using The Hypothetical Framework
Merging Statical Theory and Causal Analysis

® The mismatch between statistical theory and causal inference
motivated the study of the Hypothetical Model Framework

® The framework merges statical theory and causal analysis without
the necessity of defining new tools of analysis



Properties of the Hypothetical Model

¢ Insight: express causality through a hypothetical model
assigning independent variation to inputs determining
outcomes.

¢ Data: generated by an empirical model that shares some
features with the hypothetical model.

¢ Simplicity: the method does not rely on additional tools of
analysis beyond standard statistical theory

¢ |dentification: relies on evaluating causal parameters defined
in the hypothetical model using data generated by the empirical
model.



Example of Data Generating Model (DAG) Representation

Model: Y = fy(X U 6y = fX V 6X = fu(V,Eu); V = f\/(E\/).

¢ The Local Markov Condition (LMC) generates two independence
conditions:

o Y 1L V|(U,X) and U 1L X|V



Defining The Hypothetical Model
The hypothetical model stems from the following properties:
@ Same set of structural equations as the empirical model.
® Appends a hypothetical variable that we fix.
© Hypothetical variable not caused by any other variable.

O Replaces the input variables we seek to fix by the hypothetical
variable.

Usage:

Empirical Model: Governs the data generating process.
Hypothetical Model: Abstract model used to examine causality.



Example of the Hypothetical Model for fixing T

The Associated Hypothetical Model
Y =f(T,U,ey); T = fr(V,er); U= fy(V,ep); V = fi(ev).

Empirical Model Hypothetical Model

LMC LMC
Y ILV|(U,T) Y1 (T,V)|(U,T)
UL TV ULl (T, TV
T (VT

T 1 (U,Y, TV




Why the hypothetical variable is useful?

Properties the Hypothetical Model:

©® Hypothetical Variable: T replaces the T-inputs of structural
equations.

® Characteristic: T is an external variable, i.e., no parents.
® Thus: Hypothetical variable has independent variation.

@ Usage: hypothetical variable T enables analysts to examine
fixing using standard tools of probability (conditioning).



Main Benefit

Fixing in the empirical model is translated to

statistical conditioning in the hypothetical model

Ee(Y(t)) = E(Y[T=1)
~—— | —
Causal Operation Empirical Model Statistical Operation Hypothetical Model

Causality is defined within Statistics/Probability
No additional Tools Required.
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Identification
® Hypothetical Model allows analysts to define and examine

causal parameters.

¢ Empirical Model generates observed /unobserved data;

Clarity: What is Identification?

The capacity to express causal parameters of the hypothetical model
through observed probabilities in the empirical model.

Tools: What does Identification require?

Probability laws that connect Hypothetical and Empirical Models.

Pinto and Heckman Causal Calculus
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Connecting Hypothetical and Empirical Models:
Two Useful Conditions

Only two conditions suffice to investigate the identification of causal parameters!
For any disjoint set of variables Y, W, we have that:

Rule 1:Y 1L T|(T, W) =
Pu(Y|T, T=t,W)=Py(Y|T =t ,W)=Pg(Y|T =t W)

Rule 2:Y 1L T|(T, W) =
Pu(Y|T =t, T,W)=Py(Y|T =t, W) =Pg(Y|T =t, W)

Pinto and Heckman Causal Calculus



o If Y 1L T|(T,W)or Y 1L T|(T, W) occurs

® We can connect hypothetical and empirical models!
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How to use this Causal Framework?
Rules of Engagement
@ Define the empirical and associated hypothetical model.

® Hypothetical Model: Generate statistical relationships
(LMC, GA)

© Express P(Y|T) in terms of other variables.

O Connect this expression to the empirical model using
Y UL T(T,W)orY 1L T|(T,W)

Pinto and Heckman Causal Calculus



Example of the Hypothetical Model for Fixing X

Empirical Model Hypothetical Model

O
X Y<—;(

Local Markov Condition Local Markov Condition
YLVIUX) Y LXK
Ul XV XJ_L(U,Y,X)\V

® Ec(Y(x)|V) = E4(Y|X = x, V) by the main property of the HM
@ X 1L (U,Y,X)|V=X 1L Y|(X, V) holds by LMC

©® En(Y|X =x,V)=Eg(Y|X =x, V) by rule 2
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Rule 2 is a Matching Property

If there exist V such that, T LL Y|V, T, then Eq(Y|V, T =1t) in
hypothetical model is equal to Eg(Y(t)| T = t) in empirical model.

® Main Property of the Hypothetical Model implies that
counterfactual outcome Eg(Y(x)) can be expressed as

Ee(Y(t)) = / En(Y|V =v, T =t)dFy(v)

o LMC for the hypothetical model generates Y L T|(V, T).
* ByRule2, Ey(Y|V=v,T=t)=E(Y|V=v,T=t)

® Thus, the counterfactual outcome Eg(Y'(t)) can be obtained by:

Ee(Y (1) = [ Ee(YIV = v, T = 0)dFu(v)

In Empirical Model by Rule 2

Pinto and Heckman Causal Calculus



Causal Model 1: Revisiting the Front-door Model

Empirical Front-door Model Hypothetical Front-door Model

Observed Variables Observed Variables
T =f(V,eT) T =f(V,eT)
M = fM(T,eM) M = fM(T,eM)
Y = fy(V, /\/l,ey) Y = fy(V, /\/I,ey)
Y = fy(V7 M,6y)
Exogenous Variables Exogenous Variables
% vV, T
Unobserved Variables Unobserved Variables

V = fv(EV) V = fV(6V)




Independence Relations for Front-Door Model

Empirical Model Hypothetical Model

V|-
T —|V
M 1L V|T
Y 1L T|(V, M)

Useful independence relations in the Front-Door hypothetical model:
® Y 1L T|(MT)(dueto Y 1L TIM & (T, M) 1L (T, V))
oML T|T
eT LT



General ldentification Criteria

@ Given a Causal Model represented by a DAG,

® The counterfactual outcome Y/(t) is identified if

© There exists a set of observable variable K that bridges

@ The conditional independence Y 1L T|(T,K)into T 1L T.

@ Moreover, the identification formula for Y(t) can be expressed as
an alternate pattern.



Conditions for Causal Model 1 (Front-door)
Variable M bridges the independence Y 1L T|(T,M)to T 1L T :

Connection
y L 7T (@M = p.T. 7= m=r(vT=[ M)
Wl o T = PuM|T=t,T)=Peg(MT=t)

Tu T |# N Pu(T = T) = Pe(T = )

The identification Formula that follows the alternate pattern:

Pu(Y|T =1t) =

=S Pu(YIm T =[BT = )Pu(m|T = ¢, T = ¢)Pu(T =[BT = o)

=> Pe(Y|m, T = [@)Pe(m|T = t)Pe(T =),
.-




Identifying Equations (Front-door Model)

Categorical Variables:

En(Y|T =t) =
=> Ee(Y|m, T =) Pe(m|T = t)Pe(T = i),
e m

Continuous Case:
E(Y (1) = / [ EVim T~ W, (m)aFr(HD

Previous Equation:

EW(’-‘)):/(/E E(Y|M=m, T = .dFT.)> 7 (M)

—_— —
dFp(ey(m)

E(Y(m))



What if We Assume Linearity? (Chalack and White, 2013)
The Front Door Model

1) X = a,.U,
(2) z _' 7.X +a.U,
(3) Y =275, + Uy o,

where U, L (U, Uy)

and U, L U,.
v GRAPH 10 (Gg) Conditional instruments

BXIC = (X X) T (X'Z)) x {[Z/(1 = X(X'X) ™' X)Z] M [Z/(X - X(X'X) "' X)Y]).

E(Y(t)=>_ P(M=m|X = x)(z E(Y|m,x")P(X = x')>

x!



What if We Assume Linearity? (Chalack and White, 2013)
The Matching Model

(1) W £ ayU,
(2) X £, W+ auU,
(3) Y £ X'B,+ W'y, + Upao,

where U, U,, and U,
are jointly independent.

GRAPH 7b (G;,) Conditioning instruments

B = (X'(1 — WW'W)"'W)X}~H{X'(T - WWW)~'W)Y}.

® This is the Frisch—Waugh—Lovell (double errors) theorem



What if We Assume Linearity?
Conditional Instruments

\
1 U,
N,
2N Y
* 1

(1) U, =6.Uy U
(2) U-’Iz = 5-1:2Uw

(3) Uy f%Uw + 0y, Us,y

(4) W £ U,

(5) Z= .U,

(6) X = Yar 4 + A2, Uy

(1) X = ag,Us,

(8) Y = X[y + X}By + Ujvo,

where Uy, LU,. GRAPH 14 (Gu4) Conditionally exogenous
o instruments and causes, given
conditioning instruments (XCI|1)

BN = [Z/(1 — WW'W)T'WHX]'[Z/ (1 — WW'W)"'W)Y].

® (Z,X2) 1L Uy|W holds under linearity

e Conditional Instruments: Z = [Z, X,]



Causal structure (Conditional) Estimator
among observables exogeneity
AIT Jprer
=X X)XN
XC:X LU, A
REZLG AY =@'xy'@'n)

XCILX 1 Uy | W

B =[x a-ww wy'wx T
(X (- W W) W)

XIC: Z1 Uy|X
and X L U

‘é;'UIC = (X'X)_I(.Y'Z)
« [ZI-XXX'xHZ!
x [Z'I- XX X)'X )7

XL ZLU | W

B = [z (- W Wy WX
< [Z7(-WW wy'w¥)

el

®

XCIT:
ZX) Ly | W

B =12 @ wow wy'woxt'
« [2' (I-wWw wylw)1]

where X=[X}/, X3°]’ and
Z=[zX%]

C

XI|CTL:

ZLG|XwW
and

X1U

BP9 = (X X' (X"Z)
x [ZT-w (W w )z
x (2T =W (W' W)WY

where W= [X', W]’







Example: Causal Model 2

Empirical Model Hypothetical Model
Observed Variables Observed Variables
T = fr(V1, Va,e7) T = fr(V1, Vo, e7)

M, = f/\//l(\/3, T, 6/\//1) My = fMl(V3, T, fMl)

M, = fM2(V2, M1,6M2) M, = sz(VQ, Ml;EMQ)

M; = fM3(V3, M2,6M3) Mz = fM3(V3, Mo, 6M3)
Y = fy(Vi, M3, ey) Y = fy(Vh, M3, ey)

Exogenous Variables Exogenous Variables

Vi, Vo, V3 Vi, Vo, V3, T




DAG of Causal Model 2

Directed Acyclic Graph of the Empirical Model

Directed Acyclic Graph of the Hypothetical Model




Causal Model 2 - Connecting Hypothetical and Empirical

Applying LMC and GA to the hypothetical model generates the following
indep. relations:

y 1 T |(FE, JVg, v, M)
g o BRI(T M)
My 1L T |(NE, )
Wl LT
T U always hold
Observe that:
® The sequence of observed variables M; — M, — M3 forms a bridge
o from Y L T|(T,Ms, Mo, My) (initial relation)

e to T AL T (final relation)



Causal Model 2 - Connecting Hypothetical and Empirical

Using the two probability rules, we can achieve identification:

Hypothetical Model

Empirical Model

(alternate pattern)

Pu(Y|T = f)—Em&m%ml
PH(Y]m3,m2,m1,T—.l,T: t)
Pru(Ms = ms|my, mi, T =, T = t)
PH(M2—m2‘m17T:l,:f: t)
PH(Ml—mﬂT:.,'T': t)
Pu(T=[IT = ¢)
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Small Detour: On the Do-Calculus

® Creates a special set of rules that combine:

@ Graphical conditions
® Conditional independence statements
© Probability equalities as postulates

In contrast, the hypothetical model framework does not require any tool
outside of standard probability theory, provided we endow the space of
hypotheticals with a probability measure

Major Achievement: The do-calculus is Complete!

Pinto and Heckman Causal Calculus
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Limitation of the Do-Calculus:
IV model is not ldentified

® The necessary assumptions the identify the IV model are
monotonicity/separability conditions

® These are functional form assumptions
® They refer to properties of the structural functions

® Beyond the DAG information
(Causal direction among variables remains the same)

¢ The do-calculus cannot identify the IV model

® The algorithm simply returns that the IV model is not identified

Pinto and Heckman Causal Calculus



Causal Model 2 - Comparison Hypothetical vs Do-Calculus

Equation from do-calculus is different, but equivalent:
Hypothetical Model (alternate pattern):

Pe(Y(t)) = Z Pe(Y|ms, mo, ml,l)PE(m3!m2, mi, t)

ma,mz,mh.
Pe(ma|my, [ Pe(m| ¢ ) Pe(JE)

Do-calculus:

Pe(Y(t)) = > Pe(mi|t)Pe(ms|t, my, m;)-

my,mz,ms3
(Z PE PE m2|t m1)>

Z PE PE m2]t ml)PE(Y|t m1,m2,m3)

!
tm2



Causal Model 3

Empirical Model
Observed Variables

Hypothetical Model
Observed Variables

X; = fx,(Va, V3, €x,)
Xy = fx,(Va, X1, €x,)
T = fT(Vla Vz, V4,X1,6T)
M = fp( X1, Tyenm)

Y = f'—y(\/l7 V3,X2, M,ﬁy)

X; = fx,(Va, V3, €x,)
Xo = fx,(Va, X1, €x,)
T = fT(\/l, V2, V~4,X1,€T)
M = fy(X1, T,em)

Y = fy(\/l, \/3,)(27 M,Ey)

Exogenous Variables

Exogenous Variables

Vi, Vo, V3, V4

Vi, Vo, Vs, Vg, T

Unobserved Variables
Vi = fu(ev,), Vo = fu,(ew),
V3 = fV3(€V3)7 Vy = fV4(€V4)

Unobserved Variables
Vl = fV1(€V1)7 V2 = fV2(6V2)
V3 = fV3(€V3)’ Vg = fV4(6V4)




DAG of Empirical Model 3

Directed Acyclic Graph of the Empirical Model




DAG of Hypothetical Model 3
Directed Acyclic Graph of the Hypothetical Model

Y L TI(T, X1, M)

Mo BRICT X))

X; AL ﬂ




Causal Model 3 - Connecting Hypothetical and Empirical

LMC and GA give you the following conditions:

y 0 T M. X)

v BT
. H

T 1L ” always hold

® The sequence of observed variables M — X; forms a bridge
o from Y AL T|(T, Xy, M) (initial relation)

e to T 1L T (final relation)



Causal Model 3 - Connecting Hypothetical and Empirical

Using the two probability rules, we can achieve identification:

Hypothetical Model Py(Y|T = t)= g,
,M, X1
Pu(Y|mx, T=M0.T=t)
P(M:m\xl,T_ 7%: t)
PH(X1:X1|T— ,T: t)
Pu(T =T = t)

Empirical Model

(alternate pattern)



Causal Model 3 - Do-calculus Identifying Equation

Equation from do-calculus is different, but equivalent:
Using Hypothetical Model (alternate pattern):

Pe(Y(t)) =
Z PE(Y’muXL T = .l)PE(m|X1, T=t )PE(X]_‘T = .)PE(T = tl)
m,xl,!

Using Do-calculus:

Pe(Y(t)) = Y Pe(mlx, T = t)Pe(xo|x1)Pe(x)

X1,X2,m

(S, Pe(Y|xa, T = t',x0, m)Pe(xalxa, T = t/)Pe(T = tf\xl)PE(xl))

(PE(X2|X1)PE(X1))







The Do-calculus

The most substantial contribution to the theory of causality is the last
decades.

® Do-calculus (Pearl, 1995) three causal inference rules.

e Software

@ Free Software DAGitty (only for indepence conditions,
matching variables and finding Instruments)
® R-package causaleffect



The Do-calculus

¢ Goal: Counterfactual manipulations using the empirical model.
® No Hypothetical Model
® Tools: Uses causal/graphical/statistical rules outside statistics.

* Fixing: Uses do(X) = x for fixing X at x in the DAG for all
X-inputs (does not allow to target causal links separately).

® Flexibility: Does not easily define complex treatments, such as
treatment on tNhe treated, i.e., N
Ee(YIX=1,X=1)— Eg(Y|X=1,X=0).

Difference: ldentification using the hypothetical model does not
require additional causal rules, only standard statistical tools.



Definition the Do-operator (which is Fixing)

The Do-operator is based on the Truncated Factorization of the
probability factor of the fixed variable is deleted:

Let X C V: Then

Pr(V(x) =v) =Pr(Vi = vi,..., Vintn = Vmtn, |do(X) = x) and:

[Tv.ev\x P(Vi = vilpa(V})) if v is consistent with x;

Pr(V(x) = v) = { ;

if v is inconsistent with x.



Example of the Do-operator

L —» X —»Y

Variables: Y, X, Z
* Factorization:

Pr(Y,X,Z) =Pr(Y|Z,X)Pr(X|Z)Pr(2)
= Pr(Y|X)Pr(X|Z)Pr(2)

® Do-operator: Pr(Z, Y|do(X) = x) = Pr(Y|X = x)Pr(2)

Conditional operator:

Pr(Y,Z|X =x)=Pr(Y|Z,X = x)Pr(Z|X = x)
= Pr(Y|X = x)Pr(Z|X = x)

Do-operator targets variables, not causal links.



Comparison: Hypothetical Model and Do-Operator

Fixing within Standard Probability Theory

Fixing in the empirical model is translated to statistical conditioning
in the hypothetical model:

B(Y() =  E(YIR=x)
——— —_——
Causal Operation Empirical Model Statistical Operation Hypothetical Model

do-Operator and Statistical Conditioning

Let X be the hypothetical variable in Gy associated with variable X

in the empirical model Gg, such that Chy(X) = Chg(X), then:

Pu(7e \ {X}IX = x) = Pe(Te \ {X}|do(X) = x).



Defining the Do-calculus

What is the do-calculus?

A set of three graphical/statistical rules that convert expressions of
causal inference into probability equations.

©® Goal: Identify causal effects from non-experimental data.

® Application: Bayesian network structure, i.e., Directed Acyclic
Graph (DAG) that represents causal relationships.

© ldentification method: Iteration of do-calculus rules to
generate a function that describes treatment effects statistics
as a function of the observed variables only (Tian and Pearl
2002, Tian and Pearl 2003).



Characteristics of Pearl’s Do-Calculus

©® Information: DAG only provides information on the causal
relation among variables.

® Not Suited for examining assumptions on functional forms.

© ldentification: If this information is sufficient to identify
causal effects, then:

© Completeness:
@® There exists a sequence of application of the Do-Calculus that
@ generates a formula for causal effects based on observational
quantities (Huang and Valtorta 2006, Shpitser and Pearl 2006)

® Limitation: Does not allow for additional information outside
the DAG framework.
@® Only applies to the information content of a DAG.
@ 1V is not identified through Do-calculus
@ Why? requires assumptions outside DAG: linearity,
monotonicity, separability.



Notation for the Do-calculus

More notation is needed to define these rules:

DAG Notation
Let X, Y, Z be arbitrary disjoint sets of variables (nodes) in a causal
graph G.
¢ Gx: DAG that modifies G by deleting the arrows pointing to X.
® Gx: DAG that modifies G by deleting arrows emerging from X.

® Gy z: DAG that modifies G by deleting arrows pointing to X
and emerging from Z.




Examples of DAG Notation

()
>C<h
9
9
I<

X —Y X Y X —Y X —Y



Example of DAG Notation

Gx = Gz Gz
Z Y X Z
Gxz Gx .z




Do-calculus Rules

® Rule 1: Insertion/deletion of observations:

Y I Z|(X, W) under G = P(Y|do(X), Z, W) = P(Y|do(X), W)

® Rule 2: Action/observation exchange:

Y UL Z|(X, W) under Gx,_, = P(Y|do(X),do(Z), W) = P(Y|do(X), Z, W)

® Rule 3: Insertion/deletion of actions:

Y 1L Z|(X, W) & G = P(Y|do(X), do(Z), W) = P(Y|do(X), W)

X, Z(W)
where Z(W) is the set of Z-nodes that are not ancestors of any
W-node in Gx.



Understanding the Rules of Do-Calculus

Let G be a DAG then for any disjoint sets of variables X, Y, Z, W :
Rule 1: Insertion/deletion of observations

If Y 1L Z|(X,W) under  Gx then
N -~ o v
Statistical Relation Graphic Criterion

Pr(Y|do(X), Z, W) = Pr(Y|do(X), W)
Equivalent Pro;arbility Expression




Do-Calculus Exercise

G Gx
V—U V—U
X—Y X Y

® LMC to X under Gx generates X 1L (U,Y)|V = X 1L (U, Y)|V.

® Now if X LL (U, Y)|V holds under Gy, then, by Rule 2,
P(Y|do(X), V) =P(Y|X, V).

 E(Y|do(X) = x) = / E(Y|V = v, do(X) = x)dFy(v)

Using do(X),i.e. Fixing X

:/E(Y|V: v, X = x)dFy(v)

Replace “do” with Standard Statistical Conditioning



Do-Calculus Exercise : The Front-door Model



Using the Do-Calculus : Task 1 — Compute Pr(Z|do(X))

Gx

X Z Y

XUz

® X 1L Zin Gx, by Rule 2, Pr(Z|do(X)) = Pr(Z|X).



Using the Do-Calculus : Task 2 — Compute Pr(Y|do(Z))

Gz Gz

X Z—»Y X Z Y

Z1X Z1Y|X

® Z U X in Gz, by Rule 3, Pr(X|do(Z)) = Pr(X)
® Z 1l Y|X in Gz, by Rule 2, Pr(Y|X,do(Z)) = Pr(Y|X, Z)
Adding these results, we have that:

Pr(Y|do(2)) = > Pr(Y|X,do(2))Pr(X|do(Z))
X

= Pr(Y|X,Z)Pr(X)



Using the Do-Calculus : Task 3 — Compute Pr(Y|Z, do(X))

Gx Gxz

[N

X Z Y X Z Y

Y 1L Z|X Y 1l X|Z

® Y 1L Z|X in Gx z, by Rule 2, Pr(Y|Z,do(X)) = Pr(Y|do(Z), do(X))
® Y 1L X|Z in Ggz, by Rule 3, Pr(Y|do(X), do(Z)) = Pr(Y|do(Z))

Adding these results, we have that:

. Pr(Y|Z,do(X)) = Pr(Y|do(Z), do(X)) = Pr(Y|do(Z))



Using the Do-Calculus : Final Task — Compute Pr(Y|do(X))

Using Tasks 1,2 and 3, we have that:

Pr(Y|do(X ZPr Y|Z, do(X)) Pr(Z|do(X))

= ZPr Y|do(Z), do(X)) Pr(Z|do(X))
= ZPr Y |do(Z)) Pr(Z|do(X))
= Z (Z Pr(Y|X’',Z)Pr(X )> Pr(Z|X)

N—_——

Task 1

Task 2



Summarizing Do-calculus of Pearl (2009) and
Hypothetical Model Framework

Hypothetical Model Do-calculus

Features in Common Features in Common

Autonomy Autonomy

(Frisch, 1938) (Frisch, 1938)

Errors Terms: Error Terms:

€ mutually independent € mutually independent
Statistical Tools: Statistical Tools:

LMC and GA apply LMC and GA apply
Counterfactuals: Counterfactuals:

Fixing is a Causal Operation Uses “do” for Fixing

Complete Method Complete Method

Solution: Haavelmo's Inspired Solution: Graphical/Statistical rules
Where They Depart Where They Depart

Introduces Creates

Py (hypothetical model) Three Graphical /Statistical rules
Identification: Identification:

Connect Py and Pg Reiteration of do-calculus rules
Versatility: Versatility:

Standard Statistical Tools apply ~ Standard Statistical Tools do not apply
Need an extra statistical /graphical theory




Research Questions

@ The Do-calculus is complete, the hypothetical model was not shown
to be complete.

® Go beyond an algorithm.

Every DAG can be described by a Binary Matrix
Generate a criteria, i.e. a formula (not an algorithm) that
determines if a causal effect is identified or not

Only need to test if the bridge pattern holds

The identification formula is immediate given the pattern



Do-Calculus Exercise : The Roy Model



Generalized Roy Model

The Generalized Roy Model stems from six variables:

® V: Unobserved confounding variable V' not caused by any
variable;

® X: observed pre-treatment variables X caused by V/;
©® Z: instrumental variable Z caused by X;

@ T: treatment choice T that caused by Z, V and X;
® U: unobserved variable U caused by T,V and X;
® Y: outcome of interest Y caused by T, U and X.



Generalized Roy Model

1

This figure represents causal relations of the Generalized Roy Model.
Arrows represent direct causal relations. Circles represent
unobserved variables. Squares represent observed variables

—> T > Y




Key Aspects of the Generalized Roy Model

® 7T is caused by Z, V,
® U mediates the effects of V on Y (that is V causes U);
® T and U cause Y and
© Z (instrument) not caused by V, U and does not directly cause
Y, U.
We are left to examine the cases whether:
® V causes X (or vice-versa),
@® X causes Z (or vice-versa),
©® X causes T,
O X causes U,
® T causes U, and
® X causes Y.

The combinations of all these causal relations generate 144 possible
models (Pinto, 2013).



Key Aspects of the Generalized Roy Model (Pinto, 2013)

Z Y

Dashed lines denote causal relations that may not exist or, if they
exist, the causal direction can go either way. Dashed arrows denote
causal relations that may not exist, but, if they exist, the causal
direction must comply the arrow direction.



Marginalizing the Generalized Roy Model

® We examine the identification of causal effects of the
Generalized Roy Model using a simplified model w.l.0.g.

® Suppress variables X and U.

e This simplification is usually called marginalization in the DAG
literature (Koster (2002), Lauritzen (1996), Wermuth (2011)).



Marginalizing the Generalized Roy Model

G=Gy

ZH» XY

This figure represents causal relations of the Marginalized Roy
Model. Arrows represent direct causal relations. Circles represent
unobserved variables. Squares represent observed variables

Note: Z is exogenous, thus conditioning on Z is equivalent to
fixing Z.



Examining the Marginalized Roy Model — 1/4

Y1 Zin Gg, by Rule 1
Pr(Y|do(X),Z) = Pr(Y|do(X))
® Y 1l Z in Ggz, by Rule 3
Pr(Y|do(X), Z) = Pr(Y|do(X))
* Y 1L Z|X in Gx 2, by Rule 2
Pr(Y|do(X), do(Z)) = Pr(Y|do(X), Z)

Ox = Gxz = Gx z




Examining the Marginalized Roy Model - 2/4

¢ Under Gy, Y 4 X, thus Rule 2 does not apply.
® Under Gyz, Y U X|Z, thus Rule 2 does not apply.

Gx = Gy 7




Examining the Marginalized Roy Model — 3/4
® Gz =Y 1L Z, thus by Rule 2 Pr(Y|do(Z)) = Pr(Y|Z2).

Gz




Examining the Marginalized Roy Model — 4 of 4
Modifications

e Under Gx 7z, Y M (X, Z), thus Rule 2 does not apply.

Gx z

)




Conclusion of Do-calculus and the Roy Model

The Do-Calculus applied to the Marginalized Roy Model generates:
® Pr(Y|do(X),do(Z)) = Pr(Y|do(X), Z) = Pr(Y|do(X)),
® Pr(Y|do(Z)) = Pr(Y|2)
These relations only corroborate the exogeneity of the instrumental
variable Z and are not sufficient to identify Pr(Y|do(X)).

Identification of the Roy Model

To identify the Roy Model, we make assumption on how Z impacts
X, i.e. monotonicity/separability.

These assumptions cannot be represented in a DAG.

These assumptions are associated with properties of how Z causes
X and not only if Z causes X.
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