Notes on "Differential Rents and the Distribution of Earnings"

from Sattinger, Oxford Economic Papers 1979, 31(1)

James J. Heckman University of Chicago

Econ 350, Spring 2022

- This is a version of an hedonic model.
- It features 1-1 matches.
- Assume that we can rank workers and firms by a skill scale: ℓ is amount of labor skill, c is amount of capital owned by firm.
- $F(\ell,c)$ is output. Assume a common production technology. One worker one firm match $F_{\ell}>0$, $F_{c}>0$, $F_{\ell\ell}<0$, $F_{cc}<0$, no need to make scale restrictions.

- Can be increasing returns to scale technologies.
- Homogeneous output of firms, identical technologies.
- Let $G(\ell)$ be cdf of ℓ in population. Let K(c) be cdf of c in population. Assume both monotone strictly increasing, density has positive support no mass points.
- Let $W(\ell)$ be wage for worker of type ℓ .
- Let $\pi(c)$ denote "profit" for a firm of type c.

- Assume $\frac{\partial^2 F}{\partial \ell \partial c} > 0$ (opposite sign produces negative sorting).
- Assume wage function exists.
- This is something to be proved.
- Firm indexed by c.
- Profit maximization requires that

$$\max_{\ell}(F(\ell,c)-W(\ell))$$

FOC:
$$\frac{\partial F}{\partial \ell} = W(\ell)$$
 SOC: $\frac{\partial^2 F}{\partial \ell^2} - W'(\ell) < 0$

• Defines demand for worker of type ℓ for firm type c.

Differentiate FOC totally with respect to ℓ:

$$W'(\ell) - \frac{\partial^2 F(\ell, c)}{\partial \ell^2} - \frac{\partial^2 F}{\partial \ell \partial c} \frac{dc}{d\ell} = 0$$

$$\underbrace{\left(W'(\ell) - \frac{\partial^2 F(\ell, c)}{\partial \ell^2}\right)}_{>0, \text{ from SOC}} = \underbrace{\left(\frac{\partial^2 F}{\partial \ell \partial c}\right)}_{+} \frac{dc}{d\ell}$$
(1)

• $\therefore \frac{dc}{d\ell} > 0$ ("best firms match with best workers")

- Opposite true if we have $\frac{\partial^2 F}{\partial \ell \partial c} < 0$ (dc/dl < 0).
- Retain $\frac{\partial^2 F}{\partial \ell \partial c} > 0$ for specificity.
- Profits residually determined:

$$\pi(c) = F(\ell(c), c) - W(\ell(c)).$$

• Observe that the roles of ℓ and c can be reversed (labor hires capital) and labor incomes could be residually determined.

ullet The continuum hypothesis for skills \Longrightarrow local returns to scale

$$dF = F_{\ell}d\ell + F_{c}dc$$

- : we get product exhaustion locally.
- Residual claimant gets marginal product, no matter who is claimant.
- Now suppose number of workers (N_{ℓ}) .
- Number of capitalists (N_c) .

- Let W_R be the reserve price of workers (what they could get not working in the sector being studied). Let π_R be reserve price of capitalist. Let ℓ^* be the least productive worker (employed). We need $W(\ell^*) \geq W_R$.
- If all capital employed, and $c \in [\underline{c}, \overline{c}]$, ℓ^* works with \underline{c} , assuming that $\pi(\underline{c}) \geq \pi_R$.

- How to establish that decentralized wage setting is optimal and a wage function exists?
- Solve Social Planner's Problem.

$$\frac{\partial^2 F(\ell,c)}{\partial \ell \partial c} > 0 \Rightarrow$$

maximize total output by matching the best with the best.

Proof: trivial based on proof by contradiction

Take a discrete example

two workers
$$\ell_1 < \ell_2$$
 two firms $c_1 < c_2$

From complementarity (or supermodularity)

$$F(\ell_2, c_2) + F(\ell_1, c_1) > F(\ell_2, c_1) + F(\ell_1, c_2)$$

because

$$F(\ell_2, c_2) - F(\ell_1, c_2) > F(\ell_2, c_1) - F(\ell_1, c_1)$$

due to

$$\frac{\partial^2 F(\ell,c)}{\partial \ell \partial c} > 0.$$

- Using the fact that the best matches with the best, sort top-down.
- Assume densities "continuous" (absolutely continuous).

$$egin{aligned} N_\ell \int_{\ell(c)}^\infty g(\ell) \ d\ell &= N_c \int_c^\infty k(c) \ dc \ N_\ell \left(1 - G(\ell(c))
ight) &= N_c \left(1 - K(c)
ight) \ \left(1 - G(\ell(c))
ight) &= \left(rac{N_c}{N_\ell}
ight) \left(1 - K(c)
ight) \ G^{-1} \left[1 - \left(rac{N_c}{N_\ell}
ight) \left(1 - K(c)
ight)
ight] &= \ell(c) \end{aligned}$$

• This defines the optimal sorting function.

Use survivor function:

$$S(x) = \Pr[X \ge x]$$

$$S_G(\ell) = 1 - G(\ell)$$

$$S_K(c) = 1 - K(c)$$

$$egin{align} S_G(\ell(c)) &= \left(rac{N_c}{N_\ell}
ight) S_{\mathcal{K}}(c) \ \ell(c) &= S_G^{-1}\left(rac{N_c}{N_\ell} S_{\mathcal{K}}(c)
ight) \ \end{cases}$$

• Defines a relationship:

$$\ell = \varphi(c)$$
 (most productive match with each order)

This function has an inverse from strictly decreasing survivor function assumption (density has no mass points or holes).

• Feasibility requires, using $\varphi^{-1}(\ell) = c$, that the lowest quality capitalist cover his/her reserve income outside the sector

$$\pi(\underline{c}) = F(\ell(\underline{c}), \underline{c}) - W(\ell^*) \ge \pi_R.$$

- If not satisfied we have unemployed capital.
- Jack up $c^* > c$ until constraint satisfied.

- From the allocation derived from the social planner's problem, we can derive the hedonic equation (instead of assuming it).

$$W(\ell) = \frac{\partial F}{\partial \ell}(\ell, \varphi^{-1}(\ell))$$

(the right-hand side determined by the equilibrium sorting).

• This defines the slope of hedonic line with a continuum of labor.

Note that if we totally differentiate the right-hand side,

$$W'(\ell) = F_{\ell\ell} + F_{\ell c} \frac{dc}{d\ell}$$

- ∴ SOC satisfied, because $W'(\ell) F_{\ell\ell} \ge 0$ as required.
- The marginal wage at minimum quality ℓ^* satisfies

$$W(\ell_*) = \frac{\partial F}{\partial \ell}(\ell^*, \varphi^{-1}(\ell^*)).$$

- Competitive labor market forces $W(\ell_*) = W_R$.
- You cannot pay any less than reserve wage.
- If you pay more, all workers from the "reserve" will want to work in the sector being studied and hence it forces wages down.

$$W(\ell) = \int_{\ell^*}^{\ell} \frac{\partial F}{\partial x}(x, \varphi^{-1}(x)) dx + W_R.$$
"hedonic function"

Similarly

$$\pi(c) = \int_{c}^{c} \frac{dF}{dz} (\varphi(z), z) dz + \pi_{R}.$$

(Reserve value of capital is nonnegative; $\pi_R \ge 0$.)

- Under our assumptions (more workers than firms and unemployed worker, $N_c > N_\ell$), rents are assigned to firms.
- Density of earnings is obtained from inverting wage function

$$w(\ell) = \eta(\ell)$$
 $\eta^{-1}(w) = \ell$ (exists under our assumptions)

Density of earnings is

$$g(\eta^{-1}(w))\frac{d\eta^{-1}(w)}{dw}$$

Density of profits obtained in a similar way.

Cobb Douglas Example

- $F(\ell, c) = \ell^{\alpha} c^{\beta}$, $\alpha > 0$, $\beta > 0$.
- Assume Pareto distribution of endowments:

$$g(\ell) = j\ell^{-\gamma}$$
 $\gamma > 2$, $\ell \ge 1$
 $k(c) = hc^{-\sigma}$ $\sigma > 2$, $c \ge 1$.

- This ensures finite variances. Obviously $F_{\ell c} > 0$.
- The higher γ , the more equal is the distribution of ℓ .
- The higher σ , the more equal is the distribution of c.

Equilibrium:

$$N_{c} \int_{c(\ell)}^{\infty} hx^{-\sigma} dx = N_{\ell} \int_{\ell}^{\infty} j\eta^{-\gamma} d\eta$$
$$c(\ell) = \left[\frac{N_{\ell}j}{N_{c}h} \frac{(\sigma - 1)}{(\gamma - 1)} \right]^{\frac{1}{1 - \sigma}} (\ell)^{\frac{1 - \gamma}{1 - \sigma}}.$$

- FOC (for wages) $\alpha \ell^{\alpha-1} c^{\beta} = W(\ell)$.
- Substitute for $c(\ell)$ to reach

$$W(\ell) = \alpha \left[\frac{N_{\ell} j(\sigma - 1)}{N_{c} h(\gamma - 1)} \right]^{\frac{\beta}{1 - \sigma}} \ell^{P}$$

$$P = \frac{(\alpha - 1)(1 - \sigma) + \beta(1 - \gamma)}{1 - \sigma} \geqslant 0$$

$$W(\ell) = \underbrace{\left[\frac{N_{\ell} j(\sigma - 1)}{N_{c} h(\gamma - 1)} \right]^{\frac{\beta}{1 - \sigma}}}_{\sigma_{1}} \cdot (\ell)^{\left(\frac{\alpha(1 - \sigma) + \beta(1 - \gamma)}{(1 - \sigma)}\right)} + k_{1},$$

and where k_1 is a constant of integration, determined by $W_R: W(\ell^*) \geq W_R$.

• Obviously $W(\ell) \uparrow$ as $\ell \uparrow$. Convexity or concavity in labor quality hinges on whether

$$P \leq 0$$

$$P = (\alpha - 1) + \beta \frac{(1 - \gamma)}{1 - \sigma}.$$

• If $\alpha + \beta = 1$ (CRS)

$$P = \beta \left[-1 + \frac{1 - \gamma}{1 - \sigma} \right]$$
$$= \beta \left[\frac{\sigma - \gamma}{1 - \sigma} \right] = \beta \left[\frac{\gamma - \sigma}{\sigma - 1} \right]$$

- Convexity or concavity of wage function depends on P.
- If $\gamma > \sigma$, $W(\ell)$ is convex in ℓ . (More firms out in tail than workers workers get scarcity payment).
- Firms less equally distributed (more "productive" firms out in tail).
- If $\beta \uparrow$ (from CRS) reinforces effect (Renders capital relatively more productive).

- If $\gamma = \sigma$ and $\beta + \alpha > 1$ (β big enough), P > 0 and hence produces convexity.
- Increasing returns to scale gives rise to convexity (scale of productivity of resources effect).

Profits can be written as

$$\pi(c) = \ell^{\alpha} c^{\beta} - w(\ell)$$

From the equilibrium matching condition we obtain

$$\ell = g_0(c)^{rac{1-\sigma}{1-\gamma}} \qquad g_0 = \left[rac{N_c h(\gamma-1)}{N_\ell j(\sigma-1)}
ight]^{rac{1}{1-\gamma}} \ \pi(c) = \left[g_0(c)^{rac{(1-\sigma)}{(1-\gamma)}}
ight]^{lpha} c^eta - g_1 \left(g_0(c)^{rac{(1-\sigma)}{(1-\gamma)}}
ight)^{rac{lpha(1-\sigma)+eta(1-\gamma)}{1-\sigma}} - k_1 \ rac{lpha(1-\sigma)}{1-\gamma} + eta = rac{lpha(1-\sigma)+eta(1-\gamma)}{1-\gamma}$$

$$\pi(c) = \left[g_0^{lpha} - g_1(g_0)^{rac{lpha(1-\sigma)+eta(1-\gamma)}{1-\sigma}}
ight] \cdot c^{rac{lpha(1-\sigma)+eta(1-\gamma)}{1-\gamma}} - k_1$$

For positive marginal productivity of capital, this requires that

$$\alpha + \frac{\beta(\gamma - 1)}{\sigma - 1} > \left\lceil \frac{N_c h(\gamma - 1)}{N_\ell j(\sigma - 1)} \right\rceil^{\frac{\gamma(\beta - 1)}{(\sigma - 1)(\gamma - 1)}}$$

• Otherwise, coefficient on $c^{\frac{\alpha(1-\sigma)+\beta(1-\gamma)}{1-\gamma}}$ is negative.

$$\pi(c) = ac^{\frac{\alpha(1-\sigma)+\beta(1-\gamma)}{1-\gamma}} - k_2$$

$$a = (g_0)^{\alpha} - g_1(g_0)^{\frac{\alpha(1-\sigma)+\beta(1-\gamma)}{1-\sigma}} > 0$$

(True if $N_c \gg N_\ell$, for example.)

• : convexity of $\pi(c)$ is determined by sign of

$$\frac{\alpha(1-\sigma)+\beta(1-\gamma)}{1-\gamma}-1$$

$$=\frac{\alpha(1-\sigma)+(\beta-1)(1-\gamma)-1+\gamma}{1-\gamma}$$

$$=\frac{(\gamma-1)(\beta-1)+(\sigma-1)\alpha}{\gamma-1}$$

$$=(\beta-1)+\left(\frac{\sigma-1}{\gamma-1}\right)\alpha.$$

- Observe if $\alpha + \beta > 1$ then both $\pi(c)$ and $W(\ell)$ can be convex in their arguments. With CRS one must be concave, the other convex.
- Linearity arises when we have $\gamma=\sigma$ and $\alpha+\beta=1$.

- γ big relative to σ (scarcity of labor at top firms (high c firms)).
- α, β big scale effects we get convexity at top of distribution.
- Suppose we invoke full employment conditions for capital:

$$N_{\ell} > N_{c}$$
 $\pi(1) \geq \pi_{R}$

- We need to determine the constants for the wage equation.
- Minimum quality labor earns its opportunity cost outside of the sector.
- Rents accrue to other workers.

At lowest level of employment, we have (from matching function $c(\ell)$)

$$1 = \left[rac{N_{\ell}j(\sigma-1)}{N_{c}h(\gamma-1)}
ight]^{rac{1}{1-\sigma}} (\ell^{*})^{rac{1-\gamma}{1-\sigma}} \ dots \ \ell^{*} = \left[rac{N_{\ell}j(\sigma-1)}{N_{c}h(\gamma-1)}
ight]^{rac{1}{\gamma-1}} \ \mathcal{W}(\ell^{*}) = \mathcal{W}_{R}$$

$$\therefore k_1 =$$

$$W_R - rac{lpha(1-\sigma)}{lpha(1-\sigma)+eta(1-\gamma)} \left[rac{ extstyle e$$

 $\pi(c)$ defined residually. (Need to check $\pi(1) > \pi_R$).

- Pigou's Problem: Why doesn't the distribution of earnings resemble the distribution of ability?
- Distribution of earnings: (generated from distribution of endowments by the pricing function).
- Look at distribution of translated earnings (translated around the constant k_1).

$$(W(\ell) - k_1) \sim (W - k_1)^{-\left[1 + \frac{(\gamma - 1)(\sigma - 1)}{\alpha(\sigma - 1) + \beta(\gamma - 1)}\right]}$$

Distribution of raw skills $\sim \ell^{-\gamma}$.

• Higher γ is associated with more equality in the distribution of labor skills.

- One way to measure the market-induced change in inequality is the change in the wage distribution from γ .
- Example:

$$1 + \frac{(\gamma - 1)(\sigma - 1)}{\alpha(\sigma - 1) + \beta(\gamma - 1)} < \gamma$$

(wage inequality > inequality in ℓ)

• For this to happen,

$$\frac{1}{\alpha + \beta \frac{(\gamma - 1)}{(\sigma - 1)}} < 1$$

- The higher $\alpha + \beta$, the more unequal the distribution of wages.
- Higher $\gamma > \sigma$ (capital more unequally distributed) the greater the wage inequality.

- If $\gamma = \sigma$, $\alpha + \beta = 1$, no induced change in inequality.
- If $\gamma = \sigma$, $\alpha + \beta > 1$, *more* inequality in wages than skills.
- If $\sigma \ll \gamma$, then more inequality in wages than skills (Demand for top talent).
- It is not "superstars" but "superfirms".

- The wage equation is an hedonic function.
- Hedonic Functions (Tinbergen, 1951, 1956; Rosen, 1974). What can you estimate when you regress W on ℓ ? Obviously we can estimate k_1 ,

$$\frac{\alpha(\sigma-1)+\beta(\gamma-1)}{(\sigma-1)}$$

and slope coefficient (g_1) .

- Do not recover any single parameter of interest. We get lowest ℓ in market and from distribution of ℓ and c, we can get γ , σ , h (if c fully employed).
- If we assume $\alpha + \beta = 1$ (CRS) and we observe distributions of the factors, we get σ , γ and hence α , β .

- If we know ℓ^* , we can get j.
- If we know N_{ℓ} and N_c , we can identify γ , σ but α , β are unknown.
- $\alpha + \beta$ is known.
- CRS $\Rightarrow \alpha$, β known.

Identify the Technology

- Idea (Rosen, 1974). Two-stage estimation procedure. Assume perfect data.
- Assume $\alpha \neq 1$.
- No error term in model, no omitted variables.
- Use FOC for firm,

$$\ln \alpha + (\alpha - 1) \ln \ell + \beta \ln c = \ln W(\ell)$$

i.e.,

$$\ln \ell = -\frac{\ln \alpha}{\alpha - 1} + \frac{\ln W(\ell)}{\alpha - 1} - \frac{\beta \ln c}{\alpha - 1}.$$

- Apparently, we can regress $\ln \ell$ on $\ln W(\ell)$.
- Notice however that from the sorting condition,

$$\ln \ell = \ln g_0 + \left(rac{\sigma-1}{\gamma-1}
ight) \ln c.$$

- We get no independent variation. In $W(\ell)$ is redundant.
- Alternatively, In $W(\ell)$ and In c are perfectly collinear.

More general principle:

FOC:
$$\frac{\partial^2 F}{\partial \ell^2} d\ell + \frac{\partial^2 F}{\partial \ell \partial c} dc = dW(\ell)$$

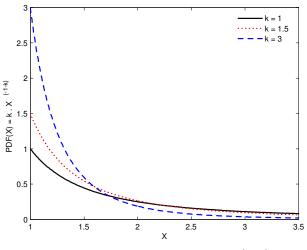
$$d\ell = \frac{1}{\left(\frac{\partial^2 F}{\partial \ell^2}\right)} d[W(\ell)] - \frac{\frac{\partial^2 F}{\partial \ell \partial c}}{\frac{\partial^2 F}{\partial \ell^2}} dc.$$

• Functional dependence between c and $W(\ell)$ does not necessarily imply linear dependence.

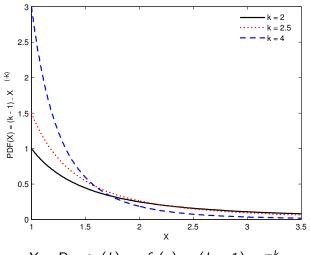
- ... we might be able to identify the model.
- Need shifter in regression.
- Functional dependence ⇒ linear independence

$$y = \alpha_0 + \alpha_1 X + \alpha_2 X^2.$$

- Obviously X and X^2 only dependent but not linearly dependent.
- We return to this in a bit.

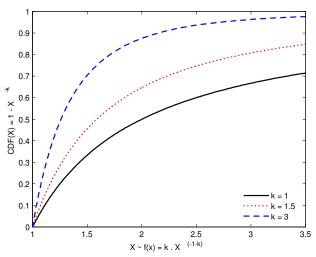


 $X \sim \mathsf{Pareto}(k) o f_X(x) = k \cdot x^{-(1+k)}$

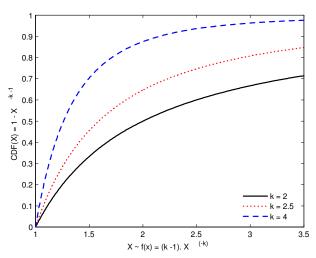


 $X \sim \mathsf{Pareto}(k) \to f_X(x) = (k-1) \cdot x^{-k}$

THE UNIVERSITY OF

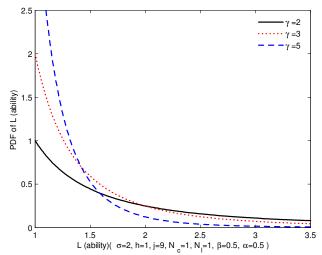


$$X \sim \mathsf{Pareto}(k) \to F_X(x) = 1 - x^{-k}$$

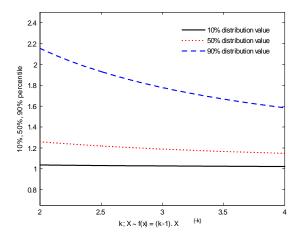


$$X \sim \mathsf{Pareto}(\mathit{k}) o \mathit{F}_X(x) = 1 - x^{-(\mathit{k}+1)}$$

Ability Distributions

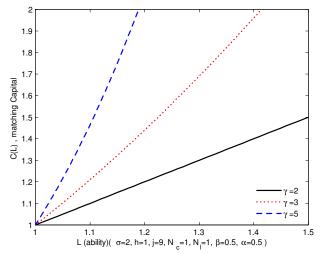


Pareto Percentiles

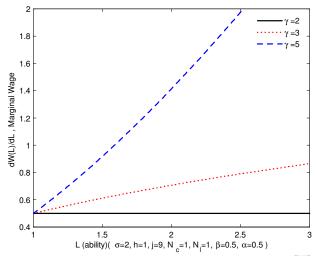


Pareto 10%, 50%, 90% Percentiles for $k \in [2, 4]$

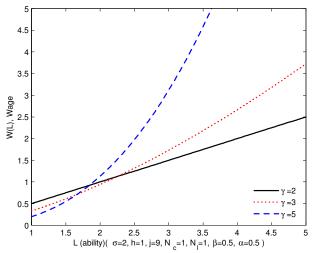
Capital/ability relation



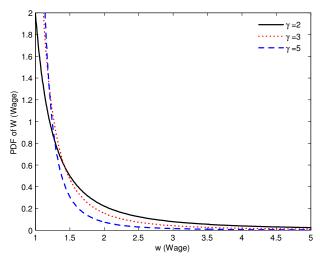
Wage derivative with respect to ability $\frac{\partial W(L)}{\partial L}$



Wage as a function of ability

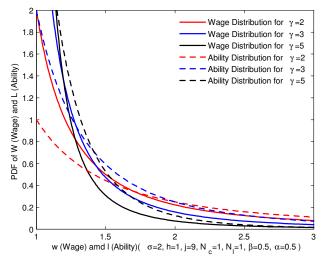


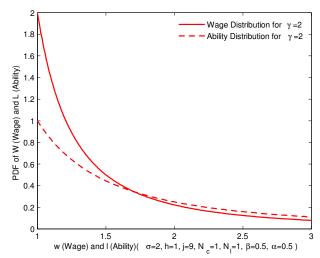
Wage distribution

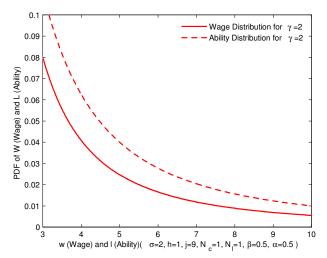


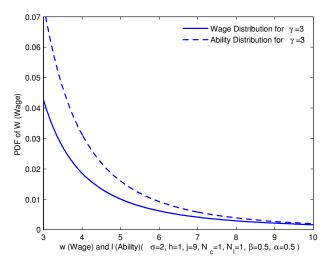
Wage distribution

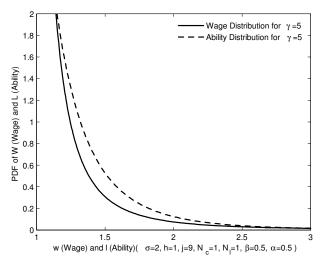


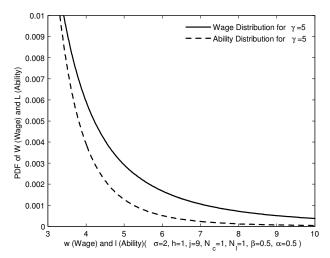




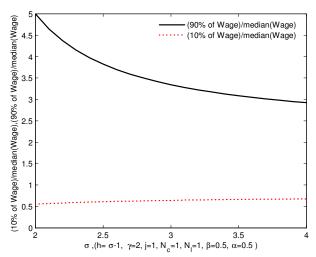




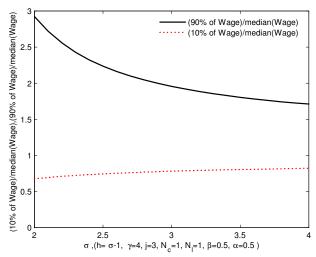




Wage percentile ratios



Wage percentile ratios



Wage percentile ratios

