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1. Introduction
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• The dispersion of individual returns to experience, often referred to as 
heterogeneity of income profiles (HIP), is a key parameter in empirical human 
capital models, in studies of life-cycle income inequality, and in heterogeneous 
agent models of life-cycle labor market dynamics. 

• It is commonly estimated from age variation in the covariance structure of 
earnings. 

• In this study, I show that this approach is invalid and tends to deliver estimates 
of HIP that are biased upward.



Heckman 4

• The reason is that any age variation in covariance structures can be 
rationalized by age-dependent heteroscedasticity in the distribution of 
earnings shocks. 

• Once one models such age effects flexibly the remaining identifying variation 
for HIP is the shape of the tails of lag profiles. 

• Credible estimation of HIP thus imposes strong demands on the data since one 
requires many earnings observations per individual and a low rate of sample 
attrition. 

• To investigate empirically whether the bias in estimates of HIP from omitting 
age effects is quantitatively important, I thus rely on administrative data from 
Germany on quarterly earnings that follow workers from labor market entry 
until 27 years into their career. 
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• To strengthen external validity, I focus my analysis on an education group that 
displays a covariance structure with qualitatively similar properties like its 
North American counterpart.

• I find that a HIP model with age effects in transitory, persistent and permanent 
shocks fits the covariance structure almost perfectly and delivers small and 
insignificant estimates for the HIP component. 

• In sharp contrast, once I estimate a standard HIP model without age-effects the 
estimated slope heterogeneity increases by a factor of thirteen and becomes 
highly significant, with a dramatic deterioration of model fit. 

• I reach the same conclusions from estimating the two models on a different 
covariance structure and from conducting a Monte Carlo analysis, suggesting 
that my quantitative results are not an artifact of one particular sample.
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2. Relation to Literature
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• As of now, the debate about the importance of HIP does not seem to be 
settled, possibly because there is little work on credible identification of profile 
heterogeneity and because of the data limitations discussed in the 
introduction.

• I consider a considerably larger family of earnings processes, and I explicitly 
explore the relationship between controlling for age effects flexibly on the one 
hand and the validity of estimates of the HIP component on the other hand. 

• Furthermore, I explore identification by exploiting the equivalence between 
the common estimation method in the literature, referred to as equally 
weighted minimum distance estimation, and nonlinear least squares 
regression. 
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• This has at least two advantages. 

• First, I can address the case with many more moments than parameters, which 
commonly applies to minimum-distance estimation. In contrast, identification 
is usually established in the literature by selecting K moments that uniquely 
solve for K parameters, that is, the exactly identified case. 

• Second, conditions for identification in non-linear least squares are well 
understood and, as it turns out, can be checked quite easily for the family of 
models considered here. This facilitates the analysis of identification 
considerably, even though the earnings process considered here features three 
variance components distinguished by their persistence, all of which feature 
age-dependent heteroscedasticity and nonparametric time effects.



Heckman 9

• While a large literature uses earnings processes primarily to quantify the 
sources of individual life-cycle earnings variation and their changes over time, I 
study identification of profile heterogeneity and stress the omitted variable 
bias coming from omission of age effects in innovation variances. 

• The result that age profiles of covariance structures cannot credibly identify 
slope heterogeneity, and that the bias from not modeling age effects flexibly 
can be severe is, to the best of my knowledge, new.
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• Two areas of research on life-cycle earnings dynamics have received 
particularly much attention recently. 

• The first exploits the joint dynamics of consumption and earnings for 
parameter identification.

• The central points of my paper that profile heterogeneity imposes strong 
restrictions on the tails of lag profiles of covariance structures and that 
omission of age effects leads to an upward bias in the estimates of the variance 
of these abilities are hard-wired into a HIP process and are thus independent 
of whether a process for consumption choices is specified or not. 

• In practice, one important implication of my findings is that the restrictions on 
lag profiles imposed by a particular estimate of profile heterogeneity should be 
tested against the data if the estimation heavily relies on consumption data.
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• The second area of active research departs from the conventional approach to 
earnings dynamics by going beyond autocovariance structures for estimation.

• While these studies paint a richer picture of earnings dynamics than the 
process considered in my work, the focus is quite different. 

• Indeed, if interest is in quantifying the importance of intercept and slope 
heterogeneity, some parametric restrictions need to be imposed on the 
earnings process. 

• It is in this context that I study identification. 

• The focus on credible estimation of the HIP component is therefore one of the 
central features of my study that distinguishes it from these works.
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3. Econometric Framework, Estimation, and 
Identification
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3.1 The econometric model
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• Let 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒 be the log-earnings in period 𝑡𝑡 of individual 𝑖𝑖 born in year 𝑏𝑏 who 
belongs to education group 𝑒𝑒. 

• Assume that log earnings are described by the equation

where 𝜇𝜇𝑖𝑖𝑖𝑖𝑒𝑒 represents a set of education specific cohort-time fixed effects and 
�𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒 is the error term. 

• The focus of this study will be on the life-cycle dynamics of �𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒 . 

• Given that this is a regression error term that needs to be assumed to be 
conditionally independent from the observed part of (3.1), controlling flexibly 
for age, cohort, and education effects is important.

• The required flexibility is achieved by using the nonparametric specification in 
(3.1) for the observed part of the model rather than the more conventional 
Mincerian approach that estimates parametric linear regressions to obtain the 
residual of interest, �𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒 .



Heckman 15

• To describe the dynamics of �𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒 , some additional notation is required. 

• To avoid clutter in indexing variables, I suppress the education superscript for 
the rest of the paper.

• Let 𝑡𝑡0(𝑏𝑏) be the year a cohort 𝑏𝑏 enters the labor market and define              
𝑡𝑡0 = min{𝑡𝑡0(𝑏𝑏)}, which is the year the oldest cohort enters the data and 
hence the first sample period. 

• Assume that individuals of the same cohort and education group enter the 
labor market at the same time so that potential experience, interchangeably 
referred to as age, is given by ℎ𝑖𝑖𝑖𝑖 = 𝑡𝑡 − 𝑡𝑡0(𝑏𝑏). 
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• The model of �𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 is given by the following set of dynamic equations:
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• This model decomposes the life-cycle dynamics of residual log-earnings into 
three stochastic processes of different persistences. 

• The first term (𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑖𝑖 ∗ ℎ𝑖𝑖𝑖𝑖 + 𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖) is a permanent component, updated each 
period by a permanent shock 𝜈𝜈𝑖𝑖𝑖𝑖𝑖𝑖; the second term 𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖 is an AR(1)-process 
with persistence 𝜌𝜌 ∈ (0,1); and the third term 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 is a purely transitory 
component. 

• The set of parameters 𝑝𝑝𝑖𝑖, 𝜆𝜆𝑖𝑖,𝜙𝜙𝑖𝑖 𝑖𝑖≥𝑖𝑖0 are factor loadings, one for each 
component. 

• They allow the process of �𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 to change over time, so that different cohorts 
are subject to different life-cycle earnings dynamics.
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• Let 𝑥𝑥 be some random variable, and assume that experience-dependent 
heteroscedasticity in its distribution can be described by a polynomial of 
degree 𝐽𝐽𝑥𝑥 in ℎ. 

• All shocks and components of unobserved heterogeneity are assumed to have 
unconditional mean of zero and the following variance structure:
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• This specification leaves initial conditions of the three experience-variance 
profiles unrestricted, which plays an important role in the empirical 
implementation below. 

• No further distributional assumptions are required, but the factor loadings 
𝑝𝑝𝑖𝑖, 𝜆𝜆𝑖𝑖,𝜙𝜙𝑖𝑖 𝑖𝑖≥𝑖𝑖0 need to be normalized for some periods. 

• The following restrictions are sufficient for identification:

• This completes the description of the earnings process.
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3.2 Discussion
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• The process described by equations (3.2) to (3.8) is very flexible and nests the 
majority of specifications considered in the literature that feature 
heterogeneous returns to experience.

• A number of features are worth highlighting. 

• First, the process is the sum of a permanent, a persistent, and a purely 
transitory component, a decomposition that has been suggested as early as 
Friedman’s (1957) seminal study of individual consumption choices.
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• A second important feature of the earnings process described above is the rich 
specification of age effects. 

• It is the central result of this paper that a priori restrictions on age 
heteroscedasticity in the distribution of earnings shocks are a model 
misspecification that produces an upward bias in the estimate of profile 
heterogeneity.

• A flexible approach to modeling age heteroscedasticity is using polynomials, as 
in equations (3.6), (3.7), and (3.8).
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• A third feature worth emphasizing is the presence of time effects in innovation 
variances.

• There is a large literature emphasizing the need to control flexibly for age and 
time effects when estimating empirical life-cycle models of conditional first 
moments of the earnings distribution, as reviewed above. 

• The age and time structure of the model in (3.2) to (3.8) is an application of 
similar ideas to second moments of life-cycle earnings dynamics. 

• Indeed, changes of innovation variances over the life cycle can be driven by 
either age or time effects. 

• For consistent estimation of the former, it is thus crucial to control for the 
latter. 

• As a consequence, the covariance structure needs to be disaggregated to the 
cohort level, which imposes large demands on the data.
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• The model could be enriched further, for example, by adding an MA(𝑞𝑞)
component or allowing for ARCH or GARCH in the distribution of shocks.

• I do not consider the former for two major reasons. 

• First, introducing a MA(𝑞𝑞) component would break point identification 
without changing the main result of the paper that omission of age effects 
causes an omitted variable bias of slope heterogeneity. 

• Second, in empirical implementations I have found the MA(𝑞𝑞) component to 
be insignificant. 

• I do not allow for ARCH or GARCH because it would carry the process out of 
the family of processes that can be estimated from autocovariance structures. 

• More importantly, the type of heteroscedasticity specified in equations (3.6), 
(3.7), and (3.8) can generate complex variance dynamics themselves, and it is 
neither clear that adding ARCH or GARCH would improve model validity nor 
that its parameters would be point identified.
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3.3 Estimation
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• The model generates theoretical autocovariances

where 𝑘𝑘 is the order of the lag, 𝑓𝑓𝑢𝑢(ℎ𝑖𝑖𝑖𝑖, 𝛿𝛿0, … , 𝛿𝛿𝐽𝐽𝜈𝜈) is a polynomial of order 
(𝐽𝐽𝜈𝜈 + 1) that is linear in the 𝛿𝛿𝑗𝑗′𝑠𝑠, 1(𝑘𝑘 = 0) is an indicator function for the 
variance elements, and the term Var(𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖) follows the recursion
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• In stationary models, equation (3.11) can be shown to have a closed-form 
solution that is highly nonlinear in model parameters. 

• With factor loadings on the persistent shocks, the resulting process is 
nonstationary and does not have a closed-form solution.

• As a consequence, this expression has to be evaluated numerically.

• In principle, one can estimate the model by matching 𝑀𝑀 appropriately chosen 
moments, where 𝑀𝑀 is the number of parameters. 

• This is the approach commonly used to prove identification theoretically.

• However, it is statistically inefficient and selects the “targets” fairly arbitrarily.

• Hence, I follow the majority of the literature and adopt a Minimum Distance 
Estimator (MD).
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• Let �̂�𝐶𝑖𝑖 be the estimated covariance matrix for a cohort born in year 𝑏𝑏. 

• A typical element �̂�𝑐𝑖𝑖𝑖𝑖𝑏𝑏 is the cohort-specific covariance between residual 
earnings in period 𝑡𝑡 with residual earnings 𝑘𝑘 periods apart. 

• Collecting nonredundant elements of �̂�𝐶𝑖𝑖 in a vector �̂�𝐶𝑖𝑖vec and stacking them 
yields the vector of empirical moments to be matched, denoted �̂�𝐶vec. 

• Each element �̂�𝑐𝑖𝑖𝑖𝑖𝑏𝑏 in �̂�𝐶vec has a theoretical counterpart described by (3.10). 

• Denoting the parameter vector by 𝜃𝜃 and observables by 𝑍𝑍, I write the stacked 
version of these theoretical autocovariance matrices as 𝐺𝐺(𝜃𝜃,𝑍𝑍). 
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• To be clear, 𝑍𝑍 is composed of observable objects entering equation (3.10), such 
as age, birth year, time, the lag, and various nonlinear functions of these 
variables. 

• The (MD) estimator for 𝜃𝜃 solves

• where 𝑊𝑊 is some positive definite weighting matrix. 

• As demonstrated by Altonji and Segal (1996), using 𝑊𝑊 can introduce sizable 
small-sample biases, and it has become customary to use the identity matrix 
instead. 

• In this case, �̂�𝜃 in (3.13) becomes the Equally Weighted Minimum Distance 
Estimator (EWMD).
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• A seldomly used, though very useful result, is the equivalence between EWMD 
estimation and nonlinear least squares (NLS). 

• I heavily rely on this equivalence in my discussion of identification because 
regression models have been studied extensively and are commonly viewed as 
transparent and intuitive. 

• It also guides how to estimate standard errors when autocovariance structures 
are large. 
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• To see equivalence of (EWMD) and (NLS), define the regression error 
�̂�𝜒𝑖𝑖𝑖𝑖𝑏𝑏 �𝜃𝜃,𝑍𝑍𝑖𝑖𝑖𝑖𝑏𝑏, �̂�𝑐𝑖𝑖𝑖𝑖𝑏𝑏 = �̂�𝑐𝑖𝑖𝑖𝑖𝑏𝑏 − 𝐺𝐺( �𝜃𝜃,𝑍𝑍𝑖𝑖𝑖𝑖𝑏𝑏). 

• Here, �̂�𝑐𝑖𝑖𝑖𝑖𝑏𝑏 is an element in �̂�𝐶vec uniquely determined by cohort, year, and lag. 

• Similarly, 𝐺𝐺( �𝜃𝜃,𝑍𝑍𝑖𝑖𝑖𝑖𝑏𝑏) is the theoretical counterpart, the nonlinear function of 
parameters and observables given by equation (3.10). 

• The level of observation is cohort–year–lag. 

• By definition, �̂�𝜃 solves

which is the (NLS)-estimation criterion, whereby one regresses 
autocovariances on the nonlinear parametric function 𝐺𝐺(𝜃𝜃,𝑍𝑍).
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• A consistent estimator of var(�̂�𝜃), the standard error of the �̂�𝜃, is readily 

available, but depends on the matrix of fourth-order moments of residual 
earnings. 

• This matrix has size dim �̂�𝐶vec 2
. 

• Given the length of my data and its administrative nature, using a consistent 
estimator is infeasible. 

• Instead, I use cluster-robust standard errors of the NLS-estimator in (3.14), 
where clusters are defined by birth cohort. 

• Since this involves data that are aggregated to the cohort-year-lag level rather 
than individual-level earnings panel data, there is clearly an information loss, 

and consistent estimation of var(�̂�𝜃) will require additional assumptions. 

• In the appendix, I describe under which assumptions this approach delivers an 
asymptotically valid estimator of var(�̂�𝜃).
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3.4 Identification
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• Since NLS and EWMD estimation are identical, the estimator �̂�𝜃 solves the 
system of dim(𝜃𝜃) first-order conditions

where 𝐽𝐽𝜃𝜃(𝑍𝑍) = 𝜕𝜕𝜕𝜕(𝜃𝜃,𝑍𝑍)
𝜕𝜕𝜃𝜃′ is the Jacobian of 𝐺𝐺( �𝜃𝜃,𝑍𝑍) at �𝜃𝜃 = 𝜃𝜃, a matrix of size 

dim(𝑍𝑍) × dim(𝜃𝜃). 

• If the model structure is linear in parameters, that is, 𝐺𝐺(𝜃𝜃,𝑍𝑍) = 𝑍𝑍′ ∗ 𝜃𝜃, then 
the (NLS) estimator is equivalent to OLS: �̂�𝜃 = 𝑍𝑍′ ∗ 𝑍𝑍 −1 ∗ 𝑍𝑍′ ∗ �̂�𝐶vec.

• Notice that the level of observation is an element in the covariance structure, 
not individual earnings.
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• For general nonlinear models, there is no closed-form solution, but sufficient 
conditions for local point identification and consistency of the NLS-estimator �̂�𝜃
have been established and are as follows:
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• As argued above, the EWMD estimator is the NLS estimator of the model

where χ is an i.i.d. error term.

• Now suppose that the model is well specified. 

• As indicated by the notation above, it is assumed that the covariance structure 
is disaggregated to the cohort level. 

• It is also assumed that recorded life cycles are sufficiently long for an order 
condition for identification to be satisfied.
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• Then the conditions for parametric identification have the following key 
implications:

(Implication 1) The parameters �𝜎𝜎𝛼𝛼2 and �𝜎𝜎𝑢𝑢0
2 cannot be separately identified.

(Implication 2) If 𝜌𝜌 < 1 all other model parameters are locally point identified.

(Implication 3) Age profiles of variances are uninformative about HIP.

(Implication 4) Age profiles of high-order autocovariances are also 
uninformative about HIP.

(Implication 5) A credible source of identification of HIP are the tails of lag 
profiles.
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Example 3.1

• Restricting the identifying variation for slope heterogeneity to the behavior of 
lag profiles at high orders can be achieved via controlling flexibly for age effects 
in innovation variances, as is the case for the earnings process (3.2)–(3.8). 

• Conversely, if one does not allow for age effects even though they are 
important, then assumption (ii) is violated and slope heterogeneity will also be 
identified from the shape of age profiles, as discussed in Guvenen (2009). 

• In this case, empirical estimates of the HIP component confound slope 
heterogeneity with age effects in variances of various types of shocks.

• This can be framed in terms of a classical omitted variable bias.
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• To illustrate this point, suppose that the true earnings process is a simple 
version of (3.2)–(3.8), described by

• This combines a HIP model and a unit roots process with linear age effects in 
innovation variances. The autocovariance structure (3.10) reduces to

• This model is linear in parameters so that the EWMD estimator is equivalent to 
OLS.

• Estimation is performed on aggregate covariance structures, and I therefore 
drop the index 𝑖𝑖 on the right-hand side. 

• The level of observation is the 𝑘𝑘th order autocovariance in year 𝑡𝑡 for 
individuals of birth cohort 𝑏𝑏.
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• Now suppose one erroneously neglects the age effect in innovation variances, 
corresponding to the a priori restriction 𝛿𝛿1 = 0. 

• Defining 𝑧𝑧𝑖𝑖𝑖𝑖 = ℎ𝑏𝑏𝑏𝑏∗(ℎ𝑏𝑏𝑏𝑏+1)
2 , 𝑥𝑥𝑖𝑖𝑖𝑖𝑏𝑏 = ℎ𝑖𝑖𝑖𝑖 ∗ (ℎ𝑖𝑖𝑖𝑖 + 𝑘𝑘), and                                        

�̂�𝑐𝑖𝑖𝑖𝑖𝑏𝑏 = �cov( �𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖, �𝑦𝑦𝑖𝑖𝑖𝑖,𝑖𝑖+𝑏𝑏), the parameter estimate for 𝜎𝜎𝛽𝛽2 is given by             

�𝜎𝜎𝛽𝛽2 = ∑𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏−�𝑥𝑥 ∗�𝑐𝑐𝑏𝑏𝑏𝑏𝑏𝑏
∑𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏−�𝑥𝑥

2 and the omitted-variable bias formula for OLS implies 

that asymptotically

• Since cov(𝑥𝑥𝑖𝑖𝑖𝑖𝑏𝑏 , 𝑧𝑧𝑖𝑖𝑖𝑖) > 0, the bias is positive if 𝛿𝛿1 > 0: If variances increase 
over the life cycle quadratically due to an increase in the dispersion of 
permanent shocks, and if heteroscedasticity is not properly controlled for, then 
the EWMD estimator mistakenly assigns all of the convexity in the experience 
profile to the estimate of slope heterogeneity �𝜎𝜎𝛽𝛽2.
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Example 3.2 

• It is helpful to demonstrate graphically the predictions of various model parts 
on the autocovariance structure. 

• To this end, I compute theoretical experience profiles corresponding to various 
model components, using the parameter estimates from a similar model in 
Baker and Solon (2003).

• Results are shown in the six panels of the Online Appendix, Figure 1.
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4. Data and Descriptive Analysis
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4.1 Sample Construction
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• How important quantitatively is the bias in estimates of slope heterogeneity 
when failing to properly control for age effects in innovation variances? 

• This is an empirical question and requires data. 

• The discussion of identification above suggests that two data features are 
crucial for addressing this question convincingly. 

• First, one requires panel data with many earnings observations per worker. 

• Second, the attrition rate from the sample needs to be small. 

• Optimally, one would also like to have a sample with an externally valid 
covariance structure. 

• A data set that satisfies all of these requirements is the confidential version of 
the IABS, a 2% extract from German administrative social security records for 
the years 1975 to 2004.
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4.2 Sample sizes
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• After imposing all sample restrictions, the oldest cohort in the secondary 
degree group, which is the education group I will focus on for reasons 
explained below, is born in 1955 and enters the labor market in 1978. 

• The oldest cohort in the other education group is born in 1957 and enters the 
labor market in 1976. 

• In total, there are 4,752,287 income observations for the first and 414,231 
income observations for the second education group.
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4.3 Descriptive analysis



Heckman 48

• Figure 1 plots autocovariances at different lags against potential experience ℎ
for the secondary degree group. 

• Separate figures are provided for four different cohort groups, all of which 
display similar qualitative patterns in their covariance structures. 

• First, autocovariances are converging gradually towards a positive constant as 
the lag increases, consistent with a random effects model that incorporates an 
AR process. 

• Second, variance and autocovariance profiles at low lags decline over the first 
20 to 30 quarters and increase slowly and steadily afterwards.

• Third, starting at a lag of approximately 20 quarters, the profiles become linear 
and strictly increasing, a possible evidence for the presence of a random walk 
component in earnings innovations. 

• Fourth, earnings inequality as measured by the variance of log-earnings 
residuals is significantly larger for younger cohorts, and the same is true for 
higher-order covariances.
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Figure 1. Life cycle profiles of autocovariances at different lags, by 
cohorts. Sample: Secondary Degree Group.
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• Earnings processes do not only have implications for the shape of life-cycle 
profiles of autocovariances, but also for the relationship between 
autocovariances and the lag, holding constant labor market experience. 

• I present lag profiles at different levels of experience for the secondary-degree 
group in Figure 2. 

• Again, I split the full sample into four cohort groups. Autocovariances are 
gradually and monotonically decreasing, eventually converging to some 
positive constant. 

• Other than for small lags, the profiles for older workers within cohort lie 
significantly above those for younger workers.
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Figure 2. Lag profiles of autocovariances for different experience 
groups, by cohorts. Sample: Secondary Degree Group.
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5. Empirical Results
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• In this section, I explore quantitatively how omission of age effects in 
innovation variances can affect estimates of profile heterogeneity. 

• I start with showing that a slightly more restrictive model than (3.2) to (3.8) 
can be viewed as well specified in the sense that it fits the main empirical 
features of the covariance structure exceptionally well.

• This benchmark specification delivers estimates of slope heterogeneity that are 
not significantly different from zero. 

• Afterwards, I demonstrate that imposing restrictions on this benchmark 
specification that are common in the literature dramatically alters this 
conclusion. 

• I use Monte Carlo analysis to demonstrate that (i) the model parameters can 
be estimated precisely from data of the same size and structure as the IABS 
even if age heteroscedasticity is modeled flexibly and that (ii) the central result 
of the paper that failing to control for such age effects produces substantial 
biases in estimates of HIP can be replicated in simulated data.
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• A pretesting stage is required to determine the order of the age polynomials 
that govern the life-cycle variance dynamics of the process.

• This stage yields insignificant age effects for the unit roots process and the 
transitory component of the earnings process. 

• This result can be anticipated from inspecting Figures 1 and 2. 

• For the lower envelope of empirical age profiles is close to linear, consistent 
with a homoscedastic unit-roots process, and lag profiles are smooth around a 
lag of zero, suggesting that a transitory component is unlikely to be important. 
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• Given these results, I treat a specification that restricts 𝛿𝛿𝑗𝑗 = 𝜑𝜑𝑗𝑗 = 0 for all      
𝑗𝑗 > 0 in equations (3.6) and (3.8) as my benchmark. 

• The parameters 𝛿𝛿0 and 𝜑𝜑0 can then be interpreted, respectively, as the 
variance of permanent and transitory shocks for any age group. 

• In contrast, I find robust and significant age effects in the persistent 
component, and I use a polynomial of order 4, corresponding to 𝐽𝐽𝜉𝜉 = 4 in 
equation (3.7).
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5.1 Estimates from the benchmark 
specification
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• Parameter estimates for the benchmark specification are shown in the first 
column of Table 1.

• The model fit is shown in Figure 3. 

• Each of the panels plot theoretical against empirical autocovariances for four 
cohort groups, keeping constant the lag order. 

• The exercise is carried out for life-cycle profiles of autocovariances at a lag of 0, 
4, 20, and 40 quarters. 
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Table 1. Parameter estimates for baseline specifications: Secondary 
degree group.
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Figure 3. Fit of benchmark model: secondary degree group.
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• As can be seen from the figures, the model can generate qualitatively and 
quantitatively all the features of the autocovariance structure highlighted 
above, most importantly its evolution over the life cycle and over time. 

• With EWMD estimation being equivalent to NLS, the 𝑅𝑅2 is an informative 
summary measure of the goodness-of-fit. 

• As can be expected from the graphical illustration, this value is very high: Over 
96% of the variation in autocovariances can be explained by the model. 

• This is quite remarkable given that I am matching 56,072 autocovariances with 
only 62 parameters.
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• All parameter estimates but the variance of slopes, �𝜎𝜎𝛽𝛽2, are significant on the 
10%, and with few exceptions, on the 1% level. 

• There is substantial heterogeneity in the intercept and the initial condition of 
the persistent component, with estimated variances of �𝜎𝜎𝛼𝛼2 = 0.023 and    
�𝜎𝜎𝜉𝜉0
2 = 0.092, respectively. 

• The estimated persistence of shocks to the AR(1) process on the quarterly 
level is �𝜌𝜌 = 0.88, a fairly low value. 

• Age effects in the variance of the persistent component as captured by the 
polynomial specification is estimated to be important, with all four coefficients 
on the monomials in experience being statistically significant. 
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• The variance of the transitory component, while statistically significant, is very 
small, with a value of 𝜑𝜑0 = 0.004. 

• Since both, the variance of earnings intercepts, �𝜎𝜎𝛼𝛼2, and of the transitory 
component, 𝜑𝜑0, translate one-to-one into log-earnings inequality, their 
magnitude can be directly related to overall log-earnings inequality.

• With a sample average of 0.094 for the 1488 variance elements in the 
autocovariance structure, the permanent component can explain 
approximately one quarter (0.023/0.094) of the total variation in log earnings 
in the group of the high school educated.

• Controlling for age, permanent inequality has remained almost unchanged, 
while persistent inequality has nearly quadrupled.
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• Turning to the HIP component, the estimated heterogeneity in slopes �𝜎𝜎𝛽𝛽2 is 
insignificant on any conventional level and very small in magnitude, but its 
covariance with intercept heterogeneity �𝜎𝜎𝛼𝛼𝛽𝛽 is highly significant. 

• At first sight, this finding is counterintuitive, but inspection of equation (3.10) 
clarifies that there is no intrinsic restriction by the model that forces �𝜎𝜎𝛼𝛼𝛽𝛽 to be 
insignificant whenever �𝜎𝜎𝛽𝛽2 is. 

• It is therefore important to document a test statistic for the joint significance of 
the two parameters. 

• The null hypothesis (𝜎𝜎𝛼𝛼𝛽𝛽,𝜎𝜎𝛽𝛽2) = (0,0) is rejected on the 1% level.
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• The HIP hypothesis is about the heterogeneity of returns to human capital 
accumulation, 𝜎𝜎𝛽𝛽2, and not about its covariance with the intercept term. 

• Since the results in column (1) of the table do not provide any evidence in 
favor of this hypothesis, I also estimate the benchmark specification with the a-
priori restriction (𝜎𝜎𝛼𝛼𝛽𝛽,𝜎𝜎𝛽𝛽2) = (0,0). 

• The estimates are listed in column (2) of the same table. 

• The 𝑅𝑅2 decreases by only 0.005, indicating that omission of the HIP 
component has no noticeable effect on the model fit. 

• However, a number of estimates change substantially; most of all the variance 
of intercept heterogeneity �σ2α, which decreases by a half to a value of 0.012.
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• Estimates of earnings processes commonly rely on annual, rather than 
quarterly data. 

• I therefore compute the map from my parameter estimates to their annual 
counterparts, which does not have a closed form. 

• To this end, I simulate quarterly worker-level panel data of log-earnings in a 
first step, using the model, its parameter estimates, and a data structure that is 
identical to the one in my sample. 

• In a second step, I translate these data into earnings levels, aggregate them to 
the annual level, transfer them back into log earnings and estimate the model 
on the resulting covariance structure of annual log earnings.

• The most interesting estimate coming out of this exercise is the persistence of 
the AR(1) process. 

• On the quarterly level, this number has been estimated to be 0.88. This 
translates into a persistence of 0.632 on the annual frequency.
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5.2 HIP and age effects: Results from 
misspecified models
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• The discussion of identification above, in particular implications (4) and (5), 
predict that omission of age effects will yield inconsistent estimates of profile 
heterogeneity. 

• This is a standard omitted variable bias because data variation that is 
consistent with various channels, such as age-dependent risk, contributes to 
identification of HIP. 

• I now investigate the quantitative importance of this bias.
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• Parameter estimates for a standard HIP model as favored in the heterogeneous 
agent literature are shown in column (2) of Table 2. 

• This is a model with intercept and slope heterogeneity, an AR(1)-process 
without an initial condition, a purely transitory component, and factor loadings 
on both persistent and transitory shocks. 

• There are no factor loadings for the HIP component.

• For a direct comparison with the benchmark specification, I reproduce its 
estimates in column (1) of the table.

• I also show results for a simple RIP model that does not have any time or age 
effects in column (3) of the table.

• The next four columns of the table explore which components of the 
benchmark model have a particularly large effect on the estimates of the HIP 
component.
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Table 2. Robustness of parameter estimates: Secondary degree group.
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Table 2. Robustness of parameter estimates: Secondary degree group, 
Cont’d.
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5.3 Further analysis: Robustness and a 
Monte Carlo analysis
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• To explore further the interaction between controlling for age effects in 
innovation variances flexibly and the identification of HIP, I conduct two 
additional exercises. 

• The first replicates the empirical analysis using a different sample, namely the 
workers in the IABS data who have no formal educational degree. 

• The second investigates using Monte Carlo simulation on how well my 
estimation performs in finitely-sized samples.
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How robust are the conclusions? 
Results from the high school dropout sample.

• Generally, the results from estimating my benchmark specification on the 
sample of high school dropouts are remarkably consistent with those found 
from the secondary-degree sample. 

• In fact, they are even more extreme. 

• The estimation of the benchmark specification delivers an estimate of zero for 
𝜎𝜎𝛽𝛽2, while it is highly significant when estimating the more restrictive HIP 
specification. 

• These results are interesting because the covariance structures for the two 
samples are quite different. 

• Hence, the quantitative results documented in this paper are unlikely to be an 
artifact of one particular data set, and thus should have external validity.
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A Monte Carlo analysis 

• One concern with my quantitative results is that the EWMD estimator may be 
poorly behaved in samples of finite size, especially if one models age-
heteroscedasticity flexibly. 

• In particular, empirically it may be hard to distinguish between HIP and age-
heteroscedasticity since identification of the former relies on the tail behavior 
of lag profiles, which is a second-order feature of the data. 

• I address this concern with a Monte Carlo analysis. 

• The main conclusion from this exercise is that a data set of the size of the IABS 
is sufficient to precisely estimate all model parameters. 

• Most importantly, I do not find any systematic biases in the estimates of HIP 
and the parameters describing age heteroscedasticity, and the sampling 
variance across 1000 Monte Carlo repetition is small relative to the magnitude 
of the true parameter values.
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6. Concluding Discussion
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• The finding that heterogeneity in the returns to human capital accumulation 
needs to be identified from the joint distribution of earnings that are received 
many years apart may be discouraging, for two main reasons. 

• On the one hand, lag profiles are most likely affected by endogenous sample 
attrition. 

• On the other hand, patterns in the tails of lag profiles are second-order 
features of the data so that large sample sizes will be needed for precise 
parameter estimation.
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• This however is not a methodological problem of matching autocovariances via 
EWMD or relying on earnings data only. 

• Rather, it is a manifestation of the fact that it is difficult to statistically 
distinguish slope heterogeneity from other elements of earnings processes, 
such as heteroscedastic persistent shocks or a unit roots component. 

• In practice, this means that data requirements for estimation of earnings 
processes are large, highlighting the importance of administrative data for 
future research.
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• It is important to notice that my results do not imply that slope heterogeneity 
is unimportant generally. 

• There may be samples and groups of workers for which the autocovariance 
structure of earnings is consistent with substantial profile heterogeneity.

• Instead, my results state that the HIP component will be estimated with an 
upward bias if age heteroscedasticity is not properly controlled for. 

• This result carries over directly to any structural heterogeneous agents model 
in which individuals make choices about consumption or job search, as long as
the underlying earnings process contains a HIP component. 

• Hence, the behavior of the right tail of lag profiles of earnings covariances 
provide variation for a simple and powerful overidentifying test for HIP.
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