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Topics to be Covered

• Contributions

• What is a causal effect?
Key concept and discussion on how it is expressed/modeled

• Clarify the benefits of adopting more sophisticated causal analysis.

• Illustrate advantages through selected examples

Heckman Causal Analysis
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Topics to be Covered

• Examine Causal Frameworks

1 Causal model based on potential outcomes but no choice
mechanisms or explanations of outcomes
The Rubin-Holland causal model.

2 Causal model based on autonomous equations
Inspired by Haavelmo (1944).

3 Other causal frameworks based on Local Markov Conditions
(LMC):

• Judea Pearls’s Do-calculus (uses framework of structural
equations, but weird calculus).

• Empirical versus Hypothetical framework of Heckman and
Pinto (2015b).

Heckman Causal Analysis
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Structure

• Part 1: the language of potential outcomes (Holland, 1986).
• Simplicity: widely used for causal evaluation.
• Examples: Randomization, Matching, IV and Mediation.
• Unanswered questions

• Part 2: Autonomous Equations (Haavelmo, 1944).
• Benefits of a proper causal framework
• Example: The Roy Model, Mediation Model.
• Statistical tools are ill-suited to examine causality

(source of confusion)

• Part 3: Hypothetical/Empirical framework (Heckman and
Pinto, 2015b) and Do-calculus (Pearl, 2009b)

• Clarify benefits of enhanced causal framework
• Examples: based on more complex causal models
• Compare the approach with previous literature

Heckman Causal Analysis
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Selected Literature

• Holland (1986)
Statistics and Causal Inference (JASA)

• Imbens and Rubin (2015)

• Pearl (2009a)
Causal Inference in Statistics: An Overview

• Heckman and Pinto (2015b)
Causal Analysis after Haavelmo

• Freedman (2010)
Statistical Models and Causal Inference: A Dialogue with the
Social Sciences

Heckman Causal Analysis
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Frisch: “Causality is in the Mind ”

“. . . we think of a cause as something imperative which exists in the
exterior world. In my opinion this is fundamentally wrong. If we
strip the word cause of its animistic mystery, and leave only the part
that science can accept, nothing is left except a certain way of
thinking, [T]he scientific . . . problem of causality is essentially a
problem regarding our way of thinking, not a problem regarding
the nature of the exterior world.”

—Frisch 1930, p. 36, published 2011

Heckman Causal Analysis
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Part 1: The Language of Potential Outcomes
Definition and Applications: RCT, Matching, Meditation, IV

Heckman Causal Analysis
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Part 1: The Language of Potential Outcomes
Basic Definitions

• The Rubin-Holland causal framework of potential outcomes.

• Variables in common probability space (Ω,F ,P)

1 T Treatment choice
2 Y Outcome
3 X Baseline Characteristics

• Potential outcome Y of agent ω for fixed T = t is Yω(t).

• Causal effects of t ′ versus t for ω is Yω(t)− Yω(t
′).

• The observed outcome is given by Quandt (1958) switching
regression:

Y =
∑

t∈supp(T )

Y (t) · 1[T = t]

Heckman Causal Analysis
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Part 1: The Language of Potential Outcomes
First Example – RCT

Identification relies on statistical assumptions:

Randomized Controlled Trials (RCT):Y (t) ⊥⊥ T |X ,

Heckman Causal Analysis
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Full Compliance

X are variables used in the randomization protocol.
Y (t) ⊥⊥ T |X ⇒ counterfactual outcomes identified:

E(Y (t)|X ) =

 ∑
t∈supp(T )

Y (t) · 1[T = t]|X ,

 but Y (t) ⊥⊥ T |X

=

 ∑
t∈supp(T )

Y (t) · 1[T = t]|X ,T = t

 = E(Y |T = t,X ),

Average causal effects obtained as:

E (Y (t1)−Y (t0)) =

∫ (
E (Y |T = t1,X = x)−E (Y |T = t0,X = x)

)
dFX (x).

Heckman Causal Analysis
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Part 1: The Language of Potential Outcomes
First Example – RCT

• Key ideas of RCT Formalized by R.A. Fisher: Statistical
Methods for Research Workers, 1925)

• Average Treatment Effect:

E (Y (t1)− Y (t0)) ≡
∫ (

Yω(t1)− Yω(t0)
)
dF (ω)

=

∫
ω;Tω=t1

YωdF (ω)∫
ω;Tω=t1

dF (ω)
−
∫
ω;Tω=t0

YωdF (ω)∫
ω;Tω=t0

dF (ω)

=

∫
ω;Tω=t1

Yω
dF (ω)∫

ω;Tω=t1
dF (ω)︸ ︷︷ ︸−

∫
ω;Tω=t0

Yω
dF (ω)∫

ω;Tω=t0
dF (ω)︸ ︷︷ ︸

• Generally, we assume full support for both Tω = t1 and T − ω = t0.

• Indicated by underbrace: space of ω for which randomization implemented

Heckman Causal Analysis
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Part 1: The Language of Potential Outcomes
Second Example – Matching

Statistical assumption that Y (t) ⊥⊥ T |X is matching assumption.

• Agents ω are comparable when conditioned on observed values
X ,

• Causal effects are weighted average of treated and control
participants

• Conditional on their pre-intervention variables X .

1 Matching ⇒ exogenous variation of T under X by assumption

2 Randomization ⇒ exogenous variation of T under X by design

Heckman Causal Analysis



Do-Calculus Conclusion DAG Limitations Comparing

Part 1: The Language of Potential Outcomes
Third Example – Mediation Model

• Three observed variables:

1 T is the causal treatment choice

2 M is a mediator caused by T

3 Y is the outcome caused by both T and M

1 Yω(t) is the counterfactual outcome for T fixed at t

2 Yω(t,m) for T and M fixed to (t,m)

3 Mω(t) stands for the counterfactual mediator for T fixed at t

Heckman Causal Analysis
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Part 1: The Language of Potential Outcomes
Third Example – Mediation Model

• Causal parameters of mediation analysis:

Average Total Effect : ATE (t) = E (Y (t1)− Y (t0))
Average Direct Effect : ADE (t) = E (Y (t1,M(t))− Y (t0,M(t)))
Average Indirect Effect : AIE (t) = E (Y (t,M(t1))− Y (t,M(t0)))

Heckman Causal Analysis
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• The total effect is the sum of direct and indirect effects
(Robins and Greenland, 1992)

TE = E (Y (t1,M(t1))− Y (t0,M(t0)))

=
(
E (Y (t1,M(t1)))− E (Y (t0,M(t1)))

)
+
(
E (Y (t0,M(t1))− Yi (t0,M(t0)))

)
= DE (t1) + IE (t0)

=
(
E (Y (t1,M(t1)))− E (Y (t1,M(t0)))

)
+
(
E (Y (t1,M(t0))− Yi (t0,M(t0)))

)
= IE (t1) + DE (t0).

Heckman Causal Analysis
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Part 1: The Language of Potential Outcomes
Third Example – Mediation Model

T → M → Y

• Statistical Assumption: Sequential Ignorability (Imai et al.,
2010): conditional on background variable X :

(
Y (t ′,m),M(t)

)
⊥⊥ T |X

Y (t ′,m) ⊥⊥ M(t)|(T ,X ),

P(Y (t,m)|X ) = P(Y |X ,T = t,M = m) and P(M(t)|X ) = P(M|X ,T = t)

Heckman Causal Analysis
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Part 1: The Language of Potential Outcomes
Third Example – Mediation Model

• Counterfactual variables are identified by:

ADE (t) =

∫ (
E (Y |T = t1,M = m,X = x)

−E (Y |T = t0,M = m,X = x ,X = x)

)
dFM|T=t,X=x(m)dFX (x)

AIE (t) =

∫ ( E (Y |T = t,M = m,X = x)·[
dFM|T=t1,X=x(m)− dFM|T=t0,X=x(m)

] )
dFX (x).

Heckman Causal Analysis
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Part 1: The Language of Potential Outcomes
Third Example – Mediation Model

The Sequential Ignorability Assumption(
Y (t ′,m),M(t)

)
⊥⊥ T |X

• Assumes that T is exogenous conditioned on X .

• No unobserved variable that causes T and Y or T and M .

Y (t ′,m) ⊥⊥ M(t)|(T ,X )

• Assumes that M is exogenous conditioned on X and T

• Stronger than randomization

• None of those assumptions are testable.

Heckman Causal Analysis
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Part 1: The Language of Potential Outcomes
Fourth Example – The Instrumental Variable Model

• Statistical Assumption:

Exclusion Restriction : Y (t) ⊥⊥ Z ,

IV Relevance : Z ⧸⊥⊥ T

• Differs from the matching (ignorability)
• While matching assumptions suffice to identify causal effects
over the common support of X ,

• The exclusion restriction does not.

• Imbens and Angrist (1994) Monotonicity Tω(z0) ≤ Tω(z1) for
all units ω

• Identifies the causal effect of the treatment T for “compliers.”
Heckman Causal Analysis
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Part 1: The Language of Potential Outcomes
Fourth Example – The Instrumental Variable Model

• The exclusion restrictions are necessary but not sufficient to
identify causal effects

• Imbens and Angrist (1994) study a binary T and assume a
monotonicity criteria that identifies the Local Average
Treatment Effect (LATE ).

• Vytlacil (2006) studies categorical treatments T and evokes a
separability condition that governs the assignment of treatment
statuses.

• Heckman and Pinto (2018) present a monotonicity condition
that applies to unordered choice models with multiple
treatments, they investigate identifying assumptions generated
by revealed preference analysis.

Heckman Causal Analysis
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• Heckman and Vytlacil (2005) investigate the binary treatment,
continuous instruments and assume that the treatment
assignment is characterized by a threshold-crossing function.

• Lee and Salanie (2018) assume a generalized set of
threshold-crossing rules.

• Altonji and Matzkin (2005); Blundell and Powell (2003, 2004);
Imbens and Newey (2007) study control function methods
characterised by conditional independence and functional form
assumptions.

Heckman Causal Analysis
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Part 1: Main Criticisms of the Language of Potential
Outcomes

• Not a proper causal framework. Does not assess causal
relationships. (What does this mean? See below.)

• Instead, postulate conditional independence relationships.

• Causal relationships are implied, Z → T → Y , but never
formally articulated.

• Lack of tools to precisely determine causal relationships

• The method defined on the basis of only observed variables.

• Does not allow for unobserved variables nor causal
relationships

• Rejection of unobservables is a key feature of this approach

• Does not allow for a confounding variable.

• Does it matter?

Heckman Causal Analysis
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Part 1: Remarks

1 Monotonicity is equivalent to separability in the confounding
variables and the instrument Vytlacil (2002).

2 Additional index model structure comes at no cost of generality.

3 Causal analysis using structural equations allows for richer
causal analysis.

Heckman Causal Analysis
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Part 1: Remarks on the Language of Potential Outcomes for
the Mediation Model

1 Sequential Ignorability does not hold under the presence of
either unobserved Confounders or Unobserved Mediators
(Heckman and Pinto, 2015a).

2 Autonomous equations (Frisch, 1938) allow us to clarify
these two sources of confounding

3 Does not allow for the specification of the causal relationships
of the unobserved confounding variables.

4 Autonomous equations allow for richer identification and
interpretation analysis

Heckman Causal Analysis
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Part 2: A Causal Model
Definition, Properties and Core Concepts

Fixing as a Causal Operator

Heckman Causal Analysis
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Part 2: A Causal Model – Why bother?

• The benefit of the language of potential outcomes relies on its
apparent simplicity.

• But the approach is not sufficiently rich for econometric causal
analysis.

• Formal causal framework substantially improves the possibilities
of causal analysis.

Heckman Causal Analysis
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Part 2: Goals of a Causal Model

• We use insight, linking causality to independent variation of
variables in a hypothetical model: Causality Is In The Mind

• Build a causal framework that solves tasks of causal
identification and estimation:

Heckman Causal Analysis
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Task Description Requirements
1 Defining Causal Models A Scientific Theory

A Mathematical Framework
Required for Formal Causal Models

2 Identifying Causal models Mathematical Analysis
from Known Population Connect Hypothetical Model

Distribution Functions of Data with Data Generating Process
(Identification in the Population)

3 Estimating models from Statistical Analysis
Real Data Estimation and Testing Theory

Heckman Causal Analysis
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Part 2: Components of a Causal Model

• Causal Model: defined by a 4 components:

1 Random Variables that are observed and/or unobserved by
the analyst: T = {Y ,U ,X ,V }. [Here: T is a set of relevant
variables.]

2 Error Terms that are mutually independent: ϵY , ϵU , ϵX , ϵV .

3 Structural Equations that are autonomous : fY , fU , fX , fV .

• By Autonomy we mean deterministic functions that are
“invariant” to changes in their arguments (Frisch, 1938).

• Also known as “Structural” (Hurwicz, 1962).

Heckman Causal Analysis
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(3) Causal Relationships that map the inputs causing each
variable:

Y = fY (X ,U , ϵY );X = fX (V , ϵX );U = fU(V , ϵU);V = fV (ϵV ).

• “All causes” model.

The econometric approach explicitly models unobservables that drive outcomes
and produce selection problems.
Distribution of unobservables is often the object of study.

Heckman Causal Analysis
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Part 2: Components of a Causal Model

Given the causal relationships, for instance:

Y = fY (X ,U , ϵY ), Y observed

X = fX (V , ϵX ), X observed

U = fU(V , ϵU), U unobserved

V = fV (ϵV ), V unobserved

A Few Simple Questions

• Which statistical relationships are generated by this (or any)
causal model?

• Is there an equivalence between statistical relationships and
causal relationships?

Heckman Causal Analysis
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Part 2: Directed Acyclic Graph (DAG) Representation

Model:
Y = fY (X ,U , ϵY );X = fX (V , ϵX );U = fU(V , ϵU);V = fV (ϵV ).

Causal Model Inside the Box

D Y
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R D Y

V
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R D Y
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X Y

UV

X Y

UV

X
~
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Notation of Directed Acyclic Graphs:

• Children: Variables directly caused by other variables:
Ex: Ch(V ) = {U ,X}, Ch(X ) = Ch(U) = {Y }.

• Descendants: Variables that directly or indirectly cause other
variables:
Ex: DE (V ) = {U ,X ,Y }, D(X ) = D(U) = {Y }.

• Parents: Variables that directly cause other variables:
Ex: Pa(Y ) = {X ,U}, Pa(X ) = Pa(U) = {V }.

Heckman Causal Analysis
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Part 2: Properties of this Causal Framework

• Recursive Property : No variable is descendant of itself
(acyclic graph).

Why is it useful?
Autonomy + Independent Errors

+ Recursive Property
⇒ Bayesian Network Tools Apply

Heckman Causal Analysis
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• Bayesian Network: Translates causal links into independence
relationships using Statistical/Graphical Tools.

• Statistical/Graphical Tools:

1 Local Markov Condition (LMC): a variable is independent of
its non-descendants conditioned on its parents.

2 Graphoid Axioms (GA): Independence relationshipships,
Dawid (1979).

• Application of these tools generate relationships such as:
Y ⊥⊥ V |(U ,X ), U ⊥⊥ X |V

Heckman Causal Analysis
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Local Markov Condition (LMC)
(Kiiveri, 1984, Lauritzen, 1996)

• If a model is acyclical, i.e., Y /∈ D(Y ) ∀ Y ∈ T then any
variable is independent of its non-descendants, conditional on
its parents:

LMC :Y ⊥⊥ T \ (D(Y ) ∪ Y )︸ ︷︷ ︸
set difference

|Pa(Y ) ∀ Y ∈ T .

Heckman Causal Analysis
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Graphoid Axioms (GA)
(Dawid, 1979)

Symmetry: X ⊥⊥ Y |Z ⇒ Y ⊥⊥ X |Z .
Decomposition: X ⊥⊥ (W ,Y )|Z ⇒ X ⊥⊥ Y |Z .

Weak Union: X ⊥⊥ (W ,Y )|Z ⇒ X ⊥⊥ Y |(W ,Z ).

Contraction: X ⊥⊥ W |(Y ,Z ) and X ⊥⊥ Y |Z ⇒ X ⊥⊥ (W ,Y )|Z .
Intersection: X ⊥⊥ W |(Y ,Z ) and X ⊥⊥ Y |(W ,Z ) ⇒ X ⊥⊥ (W ,Y )|Z
Redundancy: X ⊥⊥ Y |X .

Bonus
Exercise: Prove these relationships as a bonus question for the next
problem set.

Heckman Causal Analysis
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Part 2: Local Markov Condition (LMC)
A variable is independent of its non-descendants conditional on its

parents

Causal Model Inside the Box
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Causal Model LMC Relationships

V = fV (ϵV ) V ⊥⊥ ∅|∅
U = fU(V , ϵU) U ⊥⊥ X |V
X = fX (V , ϵX ) X ⊥⊥ U |V
Y = fY (X ,U , ϵY ) Y ⊥⊥ V |(U ,X )

Equivalence: Assuming a causal Model that defines causal
direction is equivalent to assume the set of Local Markov Conditions

for each variable of the model.
Causal Model ⇔ Set of LMCs (one for each variable)

Heckman Causal Analysis
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Part 2: Analysis of Counterfactuals – the Fixing Operator

• Fixing: causal operation sets X -inputs of structural equations to x .

Standard Model Model under Fixing

V = fV (ϵV ) V = fV (ϵV )
U = fU(V , ϵU) U = fU(V , ϵU)
X = fX (V , ϵX ) X = x
Y = fY (X ,U, ϵY ) Y = fY (x ,U, ϵY )

• Importance: Establishes a framework for counterfactuals.

• Counterfactual: Y (x) represents outcome Y when X is fixed at x .

• Linear Case: Y = Xβ + U + ϵY and Y (x) = xβ + U + ϵY ;

Heckman Causal Analysis
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Part 2: Joint Distributions

1 Model Representation under Fixing:

Y = fY (x ,U, ϵY );X = x ;U = fU(V , ϵU);V = fV (ϵV ).

2 Standard Joint Distribution Factorization:

P(Y ,V ,U|X = x) = P(Y |U,V ,X = x)P(U|V ,X = x)P(V |X = x).

= P(Y |U,V ,X = x)P(U|V )P(V|X = x)

because U ⊥⊥ X |V by LMC.

3 Factorization under Fixing X at x:

P(Y ,V ,U|X fixed at x) = P(Y |U,V ,X = x)P(U|V )P(V).

• Conditioning X on x affects the distribution of V .

• Fixing X on x does not affect the distribution of V .

Heckman Causal Analysis
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Part 2: Understanding the Fixing Operator
(Error Term Representation)

• The definition of causal model permits the following operations:

1 Through iterated substitution we can represent all variables
as functions of error terms.

2 This representation clarifies the concept of fixing.

Heckman Causal Analysis
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Part 2: Representing the Model Through Their Error Terms

Standard Model Model under Fixing

V = fV (ϵV ) V = fV (ϵV )
U = fU(fV (ϵV ), ϵU) U = fU(fV (ϵV ), ϵU)
X = fX (fV (ϵV ), ϵX ) X = x

Outcome Equation

Standard Model:Y = fY (fX (fV (ϵV ), ϵX ), fU(fV (ϵV ), ϵU), ϵY ).

Model under Fixing:Y = fY (x, fU(fV (ϵV ), ϵU), ϵY ).

Heckman Causal Analysis
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Part 2: Understanding the Fixing Operator

1 Cumulative error distribution function: Fϵϵϵ.

2 Conditioning: (Y = fY (fX (fU(ϵU), ϵX ), fU(ϵU), ϵY ))

∴ E (Y |X = x) =

∫
A
fY (fX (fV (ϵV ), ϵX ), fU(fV (ϵV ), ϵU), ϵY )

dFϵϵϵ(ϵ)∫
A dFϵϵϵ

Imposes term restriction on values error terms:

A = {ϵ ; fX (fV (ϵV ), ϵX ) = x}

3 Fixing: (Y = fY (x, ϵX ), fU(ϵU), ϵY ))

∴E (Y (x)) =

∫
fY (x, ϵX ), fU(fV (ϵV ), ϵU), ϵY )dFϵϵϵ(ϵ)

Imposes no restriction on values assumed by the error terms

Heckman Causal Analysis
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Fixing does not belong to nor can it be defined by standard
probability theory!!

• Fixing is a causal operator, not a statistical operator

• Fixing does not affect the distribution of its ancestors

• Conditioning is a statistical operator

• It affects the distribution of all variables

• Fixing has causal direction

• Conditioning has no direction

• ∴ statisticians have a hard time understanding it

Heckman Causal Analysis
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Part 2: Fixing ̸= Conditioning

Conditioning: Statistical exercise that considers the dependence
structure of the data generating process.

Y Conditioned on X ⇒ Y |X = x

Linear Case: E (Y |X = x) = xβ +E (U|X = x)E (U|X = x)E (U|X = x);E (ϵY |X = x) = 0.

Fixing: causal exercise that hypothetically assigns values to inputs of the
autonomous equation we analyze.

Y when X is fixed at x ⇒ Y (x) = fY (x ,U, ϵY )

Linear Case: E (Y (x)) = xβ +E (U)E (U)E (U);E (ϵY ) = 0.

Average Causal Effects:
X is fixed at x , x ′ :

ATE = E(Y (x))− E(Y (x ′))

Heckman Causal Analysis
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Part 2: A Causal Model – Bayesian Networks

• Bayesian Networks conveniently represents a causal model as a
Directed Acyclic Graph (DAG).

• See Lauritzen (1996) for the theory of Bayesian Networks.

• Causal links are directed arrows,

• observed variables displayed as squares and unobserved
variables by circles.

Heckman Causal Analysis
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Figure 1: DAG for the IV Model

Z T Y

V

• LMC implies: Y ⊥⊥ Z |V ,T and under fixing, Y (t) ⊥⊥ T |V
• Thus, V is a matching variable

• It generates a matching conditional independence relation.

• Note Y (t) can be random variable because of ϵY which is
independent of T and V .

Heckman Causal Analysis
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Part 2: A Causal Model – Theoretical Benefits

1 Causal directions and counterfactual outcomes are clearly defined,

2 Allows for the investigation of complex causal models.

3 Allows for the definition and examination of unobserved
confounding variables.

4 Allows for the precise assumptions regarding
the interaction between unobserved confounding variables and
observed variables.

Heckman Causal Analysis
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Part 2: A Causal Model – Theoretical Benefits

In the language of potential outcomes,
statistical independence relationships among variables are assumed.
In a causal model,
independence relationships come as a consequence of the causal
relationships of the model.

Heckman Causal Analysis
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Part 2: A Causal Model – Reexamining IV Model

• Generalized Roy Model (Heckman and Vytlacil, 2005) is based
on the IV equations

• Under two additional assumptions:

1 the treatment is binary, that is, supp(T ) = {0, 1}
2 Causal function T = fT (Z ,V )
3 Assumption: T = fT (Z ,V ) is governed by a separable

equation on Z and V , that is T = 1[ϕ(Z ) ≥ ξ(V )].

Heckman Causal Analysis
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• The separable equation just stated can be conveniently restated
as:

T = 1[P ≥ U] (1)

where P = P(T = 1|Z ) is the propensity score,

and U = Fξ(V )(ξ(V )) ∼ Uniform[0, 1]

U = Fξ(V )(ξ(V )) ∼ Uniform[0, 1]

stands for a transformation of the confounding variable V .

Heckman Causal Analysis
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Part 2: A Causal Model – Reexamining IV Model

• Separability is equivalent to the monotonicity of Imbens
and Angrist (1994) (see Vytlacil (2002)).

• Thus, additional structure imposes no cost of generality

• But allows for a far superior causal and interpretive analysis
(Heckman and Vytlacil, 2005).

• The marginal treatment effect:

∆MTE (p) = E (Y (1)− Y (0)|U = p)

• The causal effect of T on Y for the population that is
indifferent among treatments at a value U = p ∈ [0, 1].

• The language of counterfactuals does not allow analysts to
state or formalize the separability assumption

• Nor allows for MTE
Heckman Causal Analysis
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Part 2: A Causal Model – Benefits of the Roy model

• Powerful analysis.

• Range of causal parameters can be expressed as a weighted
average of the ∆MTE (p) :

ATE =

∫ 1

0
∆MTE (p)W ATE (p)dp; W ATE (p) = 1

TT =

∫ 1

0
∆MTE (p)WTT (p)dp; WTT (p) =

1− FP(p)∫ 1
0

(
1− FP(t)

)
dt

TUT =

∫ 1

0
∆MTE (p)WTUT (p)dp; WTUT (p) =

FP(p)∫ 1
0

(
1− FP(t)

)
dt

PRTE =

∫ 1

0
∆MTE (p)W PRTE (p)dp; W PRTE (p) =

FP∗ (p)− FP(p)∫ 1
0

(
FP∗ (p)− FP(p)

)
dt

IV =

∫ 1

0
∆MTE (p)W IV (p)dp; W IV (p) =

∫ 1
p

(
t − E(P)

)
dFP(t)∫ 1

0

(
t − E(P)

)2
dFP(t)
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Part 2: A Causal Model – Reexamining the Mediation Model

• Sequential Ignorability based on strong assumptions

1 No confounders
2 No unobserved mediator.

• The model just presented is a general model that allows for
these sources of confounding variables.

• The three observed variables are the regular treatment status
T , mediator M and outcome Y .

• The additional two variables are unobserved variables that
account for potential confounding effects:

1 A general confounder V is an unobserved exogenous variable
that causes T , M and Y .

2 The unobserved mediator U is caused by T and causes
observed mediator M.
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Part 2: A Causal Model – Reexamining the Mediation Model

• The three observed variables are the regular treatment status
T , mediator M and outcome Y .

• The additional two variables are unobserved variables that
account for potential confounding effects:

1 A general confounder V is an unobserved exogenous variable
that causes T , M and Y .

2 The unobserved mediator U is caused by T and causes
observed mediator M.

Treatment: T = fT (V , ϵT ), (2)

Unobserved Mediator: U = fU(T ,V , ϵU), (3)

Observed Mediator: M = fM(T ,U ,V , ϵM), (4)

Outcome: Y = fY (M ,U ,V , ϵY ) (5)

Independence: V , ϵT , ϵU , ϵM , ϵY . (6)
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Figure 2: DAG for the Mediation Model with Confounders and
Unobserved Mediators

V

T M Y

U

• Sequential Ignorability implies two causal assumptions:

1 Unobserved confounding V is assumed to be observed (in X );
2 No Unobserved mediator U causes the mediator M (and

outcome Y ).

• Very strong faith in quality of available data.
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Part 2: A Causal Model – Understanding Sequential
Ignorability

• Mediation DAG reveals that Sequential Ignorability assumes
that:

1 the confounding variable V is observed, that is, the
pre-treatment variables X ; and

2 that there are no unobserved mediator U.

• Assumption is unappealing

• Solves the identification problem generated by unobserved
confounding variables by assuming that they do not exist.

• But additional exogenous variation is needed to solve the
general problem.

• What about an IV?
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Part 2: A Causal Model – Identification Analysis

• Mediation model is hopelessly unidentified as it stands.

• Both variables T ,M are endogenous.

• T ⧸⊥⊥ (M(t),Y (t ′)) and M ⧸⊥⊥ Y (m).

• One possibility: seek an instrument Z that directly causes T

• Can be used to identify the causal effect of T on M ,Y

• Can be used to identify the causal effect of M on Y .

• How? By examining the causal relation of unobserved variables!
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Part 2: A Causal Model – Mediation Identification Analysis

Consider the following model:

Treatment: T = fT (Z ,VT , ϵT ), (7)

Unobserved Mediator: U = fU(T , ϵU), (8)

Observed Mediator: M = fM(T ,U ,VT ,VY , ϵM), (9)

Outcome: Y = fY (M ,U ,VY , ϵY ), (10)

Independence: VT ,VY , ϵT , ϵU , ϵM , ϵY . (11)
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Figure 3: DAG for the Mediation Model with IV and
Confounding Variables

VT

T M Y

U

Z

VY

• T and M are endogenous.

• T ⊥⊥ M(t) does not hold due to confounder VT ,

• VY and unobserved mediator U invalidate M ⊥⊥ Y (m, t)

• T ⊥⊥ Y (t) does not hold due to VT ,VY .

• Model still generates three sets of IV properties! How?
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Part 2: A Causal Model – Independence Relations of the
Mediation Model

• The following statistical relationships hold in the mediation
model (7)–(10):

Targeted IV Exclusion
Causal Relation Relevance Restrictions

Property 1 for T → Y Z ⧸⊥⊥ T Z ⊥⊥ Y (t)
Property 2 for T → M Z ⧸⊥⊥ T Z ⊥⊥ M(t)
Property 3 for M → Y Z ⧸⊥⊥ M |T Z ⊥⊥ Y (m)|T

• Property 3 is nonstandard. Prove it!
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Part 2: A Causal Model – Properties of the Mediation Model

• Property 1 implies that Z is an instrument for the causal
relation of T on Y .

• Property 2 states that Z is also an instrument for T on M .

• Relationships arise from the fact that Z direct causes T

• And does not correlate with the unobserved confounders VT

and VM .

• Z plays the role of an IV for T

• And observed variables M and Y are outcomes
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Part 2: A Causal Model – Properties of the Mediation Model

• Property 3: Z ⧸⊥⊥ M |T and Z ⊥⊥ Y (m)|T
• Z is an instrument for the causal relation of M on Y IF (and
only if) conditioned on T .

• Z ⊥⊥ Y (m)|T holds, but Z ⊥⊥ Y (m) does not.

• Arises from the fact that T is caused by both Z and VT and
because VT ⊥⊥ Z .

• Conditioning on T induces correlation between Z and VT .

• But VT causes M and does not (directly) cause Y .

• Thus, conditioned on T , Z affects M (via VT )

• And does not affect Y by any channel other than M .
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Part 2: A Causal Model – Properties of the Mediation Model

• Assumption on the causal relationships among unobserved
variables generates identification

One instrument used to evaluate THREE causal effects!

E (Y (m)− Y (m′)) , E (Y (t)− Y (t ′)) , E (M(t)−M(t ′))
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Part 2: A Causal Model – A Disagreement
Statistical Tools Versus Causal Analysis

• A causal model allows to clarify a major source of confusion

• Statistical tools are not well-suited to examine causality

• Fixing not defined (it is outside of standard statistics) (Pearl,
2009b; Spirtes et al., 2000)

• Fixing differs from conditioning.

• Conditioning affects the distribution of all variables

• Fixing only affects the distribution of the variables caused by
the variable being fixed.

• Fixing has direction while conditioning does not.

• How to solve this problem?

Heckman Causal Analysis



Do-Calculus Conclusion DAG Limitations Comparing

Problem: Causal Concepts are not Well-defined in Statistics

Causal Inference Statistical Models

Directional Lacks directionality
Counterfactual Correlational
Fixing Conditioning
statistical tools do not apply statistical tools apply

1 Fixing: causal operation that assigns values to the inputs of structural
equations associated to the variable we fix upon.

2 Conditioning: Statistical exercise that considers the dependence structure
of the data generating process.
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Problem: Causal Concepts are not Well-defined in Statistics
of Potential Outcomes

Some Solutions in the Literature
1 Heckman & Pinto Hypothetical Model.

2 Pearl’s do-calculus.
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Fixing is a Causal (not statistical) Operation

• Problem: Fixing is a Causal Operation defined Outside of
standard statistics.

• Comprehension: Its justification/representation does not
follow from standard statistical arguments.

• Consequence: Frequent source of confusion in statistical
discussions.

• Question: How can we make statistics converse with causality?
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Part 3: The Hypothetical Model – Making Statistics
converse with Causality

• Selected Literature
• Pearl (2009a)

Causal Inference in Statistics: An Overview
• Heckman and Pinto (2015b)

Causal Analysis after Haavelmo
• Chalak and White (2011)

An Extended Class of Instrumental Variables for the
Estimation of Causal Effects

• Chalak and White (2012)
Identification and Identification Failure for Treatment Effects
Using Structural Systems
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Frisch and Haavemo Contributions to Causality:

1 Frisch Motto: “Causality is in the Mind ”

2 Formalized Yule’s credo: Correlation is not causation.

3 Laid the foundations for counterfactual policy analysis.

4 Distinguished fixing (causal operation) from conditioning
(statistical operation).

5 Clarified definition of causal parameters from their
identification from data.

6 Developed Marshall’s notion of ceteris paribus (1890).

Most Important
Causal effects are determined by the impact of hypothetical
manipulations of an input on an output.

Heckman Causal Analysis



Do-Calculus Conclusion DAG Limitations Comparing

Key Causal Insights:

1 What are Causal Effects?
• Not empirical descriptions of actual worlds,
• But descriptions of hypothetical worlds.

2 How are they obtained?
• Through Models – idealized thought experiments.
• By varying–hypothetically–the inputs causing outcomes.

3 But what are models?
• Frameworks defining causal relationships among variables.
• Based on scientific knowledge.
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Revisiting Ideas on Causality

• Insight: express causality through a hypothetical model
assigning independent variation to inputs determining
outcomes.

• Data: generated by an empirical model that shares some
features with the hypothetical model.

• Identification: relies on evaluating causal parameters defined
in the hypothetical model using data generated by the empirical
model.

• Tools: exploit the language of Directed Acyclic Graphs (DAG).

• Comparison: how a causal framework inspired by Haavelmo’s
ideas relates to other approaches (Pearl, 2009b) .

Heckman Causal Analysis



Do-Calculus Conclusion DAG Limitations Comparing

Introducing the Hypothetical Model: Our Tasks

1 Present New Causal framework inspired by the hypothetical
variation of inputs.

• Hypothetical Model for Examining Causality
• Benefits of a Hypothetical Model
• Identification: connecting Hypothetical and Empirical Models.

2 Compare Hypothetical Model approach with Do-calculus.
• Hypothetical Model : relies on standard statistical tools

(Allows Statistics to Converse with Causality)
• Do-calculus: requires ad hoc graphical/statistical/probability

tools [will leave as an exercise]
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How to Connecting Statistics with Causality?
Properties the Hypothetical Model

1 New Model: Define a Hypothetical Model with desired
independent variation of inputs.

2 Usage: Hypothetical Model allows us to examine causality.

3 Characteristic: usual statistical tools apply.

4 Benefit: Fixing translates to statistical conditioning.

5 Formalizes the motto “Causality is in the Mind”.

6 Clarifies the notion of identification.

Identification:
Expresses causal parameters defined in the hypothetical model using
observed probabilities of the empirical model that governs the data
generating process.
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Defining The Hypothetical Model

Formalizing Causality Insight
Empirical Model: Governs the data generating process.
Hypothetical Model: Abstract model used to examine causality.

• The hypothetical model stems from the following properties:

1 Same set of structural equations as the empirical model.
2 Appends hypothetical variables that we fix.
3 Hypothetical variable not caused by any other variable.
4 Replaces the input variables we seek to fix by the hypothetical

variable, which conceptually can be fixed.
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Hypothetical Variables

• Hypothetical Variable: X̃ replaces the X -inputs of structural
equations.

• Characteristic: X̃ is an external variable, i.e., no parents.

• Usage: hypothetical variable X̃ enables analysts to examine
fixing using standard tools of probability.

• Notation:

1 Empirical Model: (TE,PaE,DE,ChE,PE,EE) denote– variable
set, parents, descendants, Children, Probability and
Expectation of the empirical model.

2 Hypothetical Model: (TH,PaH,DH,ChH,PH,EH) denote –
variable set,parents, descendants, Children, Probability and
Expectation of the hypothetical model.
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The Hypothetical Model and the Data Generating Process

The hypothetical model is not a speculative departure from the
empirical data-generating process but an expanded version of it.

• Expands the number of random variables in the model.

• Allows for thought experiments.
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Example of the Hypothetical Model for fixing X

The Associated Hypothetical Model

Y = fY (X̃ ,U , ϵY );X = fX (V , ϵX );U = fU(V , ϵU);V = fV (ϵV ).

Empirical Model Hypothetical Model

D Y

V

X

M

U

R D Y

V

X

M

U

R

R D Y

VX

R D Y

V

X Y

UV

X Y

UV

X
~

D Y

V

X

M

U

R D Y

V

X

M

U

R

R D Y

VX

R D Y

V

X Y

UV

X Y

UV

X
~

LMC LMC

Y ⊥⊥ V |(U,X ) Y ⊥⊥ (X ,V )|(U, X̃ )

U ⊥⊥ X |V U ⊥⊥ (X , X̃ )|V
X̃ ⊥⊥ (U,V ,X )

X ⊥⊥ (U,Y , X̃ )|V
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Example of the Standard IV Model : Empirical and
Hypothetical Models

Empirical IV Model Hypothetical IV Model

Z T Y

V

Z T Y

V

T~
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Variable Set Be = {V ,Z ,T ,Y } Bh = {V ,Z ,T ,Y , T̃}

V = fV (ϵV ) V = fV (ϵV )
Model Z = fZ (ϵZ ) Z = fZ (ϵZ )

Equations T = fT (Z ,V , ϵT ) T = fT (Z ,V , ϵT )

Y = fT (T ,V , ϵY ) Y = fT (T̃ ,V , ϵY )

• V is an unobserved vector that generates bias.
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Models for Mediation Analysis

1. Empirical Model 2. Total Effect of X on Y

X M Y

X M Y

X̃

3. Indirect Effect of X on Y 4. Direct Effect of X on Y for Observed X

X M Y

X̃

X M Y

X̃
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Benefits of a Hypothetical Model

• Formalizes Haavelmo’s insight of Hypothetical variation;

• Statistical Analysis: Bayesian Network Tools apply
(Local Markov Condition; Graphoid Axioms);

• Clarifies the definition of causal parameters;

1 Causal parameters are defined under the hypothetical model;
2 Observed data is generated through empirical model;

• Distinguish definition from identification;

1 Identification requires us to connect the hypothetical and
empirical models.

2 Allows us to evaluate causal parameters defined in the
Hypothetical model using data generated by the Empirical
Model.
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Benefits of a Hypothetical Model

1 Versatility: Targets causal links, not variables.

2 Simplicity: Does not require to define any statistical operation
outside the realm of standard statistics.

3 Completeness: Automatically generates Pearl’s do-calculus
when it applies (Pinto 2013).

Most Important

Fixing in the empirical model is translated to statistical conditioning
in the hypothetical model:

EE(Y (t))︸ ︷︷ ︸
Causal Operation Empirical Model

= EH(Y |T̃ = t)︸ ︷︷ ︸
Statistical Operation Hypothetical Model

Causality Now Within the Realm of Statistics/Probability!
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Some Remarks on Our Causal Framework

• We do not a priori impose statistical relationships among
variables, but only causal relationships among variables.

• Statistical relationships come as a consequence of applying
LMC and GA to models.

• Causal effects are associated with the causal links replaced by
hypothetical variables.

• Our framework allows for multiple hypothetical variables
associated with distinct causal effects (such as mediation).

• Easy Manipulation:

TT = EH(Y |T̃ = 1,T = 1)− EH(Y |T̃ = 0,T = 1)

TUT = EH(Y |T̃ = 1,T = 0)− EH(Y |T̃ = 0,T = 0)
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Identification

• Hypothetical Model allows analysts to define and examine
causal parameters.

• Empirical Model generates observed/unobserved data;

Clarity: What is Identification?
The capacity to express causal parameters of the hypothetical model
through observed probabilities in the empirical model.

Tools: What does Identification requires?
Probability laws that connect Hypothetical and Empirical Models.
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Part 3: The Hypothetical Model versus Empirical Model

• Distribution of variables in hypothetical/empirical models
differs.

• PE for the probabilities of the empirical model
• PH for the probabilities of the hypothetical model

Counterfactuals obtained by simple conditioning!

PE (Y (t)) = PH(Y |T̃ = t).

Causal parameters are defined as conditional probabilities in the
hypothetical model PH and are said to be identified if those can be
expressed in terms of the distribution of observed data generated by
the empirical model PE .

Identification
Identification depends on bridging the probabilities of empirical and
hypothetical models.
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How to connect Empirical and Hypothetical Models?

1 By sharing the same error terms and structural equations,
conditional probabilities of some variables of the hypothetical
model can be written in terms of the probabilities of the
empirical model.

2 Conditional independence properties of the variables in the
hypothetical model also allow for connecting hypothetical and
empirical models.

3 Probability Laws are not assumed/defined

4 But come as a consequence of standard theory of
statistic/probability
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Three Laws Connecting Hypothetical and Empirical Models
(Prove on next homework: 15 bonus points)

1 L-1: Let W ,Z be any disjoint set of variables in TE \ DH(X̃ ) then:

PH(W |Z ) = PH(W |Z , X̃ ) = PE(W |Z ) ∀ {W ,Z} ⊂ TE \ DH(X̃ ).

2 T-1: Let W ,Z be any disjoint set of variables in TE then:

PH(W |Z ,X = x , X̃ = x) = PE(W |Z ,X = x) ∀ {W ,Z} ⊂ TE.

3 Matching: Let Z ,W be any disjoint set of variables in TE such that, in
the hypothetical model, X ⊥⊥ W |(Z , X̃ ), then

PH(W |Z , X̃ = x) = PE(W |Z ,X = x),

Bonus
C-1: Let X̃ be uniformly distributed in the support of X and let W ,Z be any
disjoint set of variables in TE then:

PH(W |Z ,X = X̃ ) = PE(W |Z ) ∀ {W ,Z} ⊂ TE.
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Some Intuition on Connecting
Hypothetical and Empirical Models

Same error terms and structural equations generate:

1 Distribution of non-children of X̃ (i.e. Q ∈ TE \ ChH(X̃ )) are the
same in hypothetical and empirical models.

PH(Q|PaH(Q)) = PE(Q|PaE(Q)),Qϵ(TE \ ChH(X̃ ))

2 Distribution of children of X̃ (i.e. Q ∈ ChH(X̃ )) are the same in
hypothetical and empirical models whenever X and X̃ are
conditioned on x .

PH(Q|PaH(Q) \ {X̃}, X̃ = x) = PE(Q|PaE(Q) \ {X},X = x).
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Connecting Empirical and Hypothetical Models

Moreover, we prove that:

1 Distribution of non-descendants of X̃ are the same in
hypothetical and empirical models.

2 Distribution of variables conditional on X and X̃ at the same
value of x in empirical model and in the hypothetical model is
the same as the distribution of variables conditional on X = x
in the empirical model.

3 Distribution of an outcome Y ∈ TE when X is fixed at x is the
same as the distribution of Y conditional on X̃ = x in Y ∈ TH.
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T–2 : L–1, T–1, and Matching Can Be Rewritten by

• Let (Y ,V ) be any two disjoint sets of variables in TE, then:

1 PH(Y |PaH(Y )) = PE(Y |PaE(Y )) ∀ Y ∈ TE \ ChH(T̃ ),
2 PH(Y |PaH(Y ), T̃ = t) = PE(Y |PaE(Y ),T = t) ∀ Y ∈

ChH(T̃ ).
3 PH(Y |V ,T = t, T̃ = t) = PE(Y |V ,T = t);
4 Y ,V /∈ DH(T̃ ) ⇒ PH(Y |V ) = PH(Y |V , T̃ ) = PE(Y |V ); .
5 T ⊥⊥ Y |(V , T̃ ) ⇒ PH(Y |V , T̃ = t) = PE(Y |V ,T = t).
6 T̃ ∼ Unif(supp(T )) ⇒ PH(Y |V ,T = T̃ ) = PE(Y |V );

Bonus
Prove.
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Intuition of T–2

• Item (1): the distribution of variables not directly caused by
the hypothetical variable remains the same in both the
hypothetical and the empirical models when conditioned on
their parents.

• Item (2): Children of T̃ have the same distribution in both
models when conditioned on the same parents.

• Item (3): variables in both models share the same conditional
distribution when the hypothetical variable T̃ and the variable
being fixed T take the same value t.

• Item (4): hypothetical variable does not affect the distribution
of its non-descendants.

• Item (5): refers to the method of matching (Heckman, 2008;
Rosenbaum and Rubin, 1983). If T and Y are independent

conditioned on V and T̃ , then we can assess the causal effect
of T on Y by conditioning on V .
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Matching: A Consequence of Connecting
Empirical and Hypothetical Models

Matching Property

If there exist a variable V not caused by X̃ , such that,
X ⊥⊥ Y |V , X̃ , then EH(Y |V , X̃ = x) under the hypothetical model
is equal to EH(Y |V ,X = x) under empirical model.

• Obs: LMC for the hypothetical model generates X ⊥⊥ Y |V , X̃ .

• Thus, by matching, treatment effects EE(Y (x)) can be obtained by:

EE(Y (x)) =

∫
EH(Y |V = v , X̃ = x)dFV (v)︸ ︷︷ ︸

In Hypothetical Model

=

∫
EE(Y |V = v ,X = x)dFV (v)︸ ︷︷ ︸

In Empirical Model

• But if V is unobserved, then the model is unidentified without
further assumptions.
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How to use this Causal Framework?
Rules of Engagement

1 Define the Empirical and associated Hypothetical model;

2 Hypothetical Model: Generate statistical relationships
(LMC,GA);

3 Express PH(Y |X̃ ) in terms of other variables.

4 Connect this expression to the Empirical model (T–2).
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First Example

1 Defining Hypothetical and Empirical Models
Empirical Model Hypothetical Model

D Y

V

X

M

U

R D Y

V

X

M

U

R

R D Y

VX

R D Y

V

X Y

UV

X Y

UV

X
~

D Y

V

X

M

U

R D Y

V

X

M

U

R

R D Y

VX

R D Y

V

X Y

UV

X Y

UV

X
~

2 Useful Hyp. Model C.I. Relationships: X ⊥⊥ Y |(V , X̃ ), X̃ ⊥⊥ (U,V ,X )

3 Express PH(Y |X̃ ) in terms of other variables:

PH(Y |X̃ = x) =
∑
V

PH(Y |X̃ = x ,V )PH(V |X̃ = x)

=
∑
V

PH(Y |X = x , X̃ = x ,V )PH(V ) By C.I.

4 Map into the Empirical model:

PH(Y |X̃ = x) =
∑
V

PH(Y |X = x , X̃ = x ,V )PH(V )

=
∑
V

PE(Y |X = x ,V )︸ ︷︷ ︸
Item (3) of T-2

PE(V )︸ ︷︷ ︸
Item (1) of T-2
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Second Example : The Front-door Model

Empirical Front-door Model Hypothetical Front-door Model
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Z
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Y

X Z

U

Y
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U

Y X Z

U

Y

X Z

U

Y

XZ

U

Y

XZ

U

Y

XZ

U

Y
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Y
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Y

X M

U

Y XZ

U

Y

X X
~ ~

X M

U

Y X M

U

Y

X M

U

Y X M

U

Y

Pa(U) = ∅, Pa(U) = Pa(X̃ ) = ∅,
Pa(X ) = {U} Pa(X ) = {U}
Pa(M) = {X} Pa(M) = {X̃}

Pa(Y ) = {M,U} Pa(Y ) = {M,U}

L-2: In the Front-Door hypothetical model:

1 Y ⊥⊥ X̃ |M ,

2 X ⊥⊥ M , and

3 Y ⊥⊥ X̃ |(M ,X )
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Lemma 1
In the Front-Door hypothetical model,

(1) Y ⊥⊥ X̃ |M, (2) X ⊥⊥ M, and (3) Y ⊥⊥ X̃ |(M,X )

Proof:

1 By LMC for X , we obtain (Y ,M, X̃ ) ⊥⊥ X |U.

2 By LMC for Y we obtain Y ⊥⊥ (X , X̃ )|(M,U).

3 By Contraction applied to (Y ,M, X̃ ) ⊥⊥ X |U and
Y ⊥⊥ (X , X̃ )|(M,U) we obtain (Y ,X ) ⊥⊥ X̃ |(M,U).

4 By LMC for U we obtain (M, X̃ ) ⊥⊥ U.

5 By Contraction applied to (M, X̃ ) ⊥⊥ U and(Y ,M, X̃ ) ⊥⊥ X |U we
obtain(X ,U) ⊥⊥ (M, X̃ ).

6 By Contraction on (Y ,X ) ⊥⊥ X̃ |(M,U) and (M, X̃ ) ⊥⊥ U we obtain
(Y ,X ,U) ⊥⊥ X̃ |M.

7 Relationships follow from Weak Union and Decomposition.
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Using the Hypothetical Model Framework (Front-door)

PH(Y |X̃ = x)

=
∑

m∈supp(M)

PH(Y |M = m, X̃ = x)PH(M = m|X̃ = x) by L.I.E.

=
∑

m∈supp(M)

PH(Y |M = m)PH(M = m|X̃ = x) by Y ⊥⊥ X̃ |M of L-2

=
∑

m∈supp(M)

( ∑
x′∈supp(X )

PH(Y |X = x ′,M = m)PH(X = x ′|M = m)

)
PH(M = m|X̃ = x)

=
∑

m∈supp(M)

( ∑
x′∈supp(X )

PH(Y |X = x ′,M = m)PH(X = x ′)

)
PH(M = m|X̃ = x)

=
∑

m∈supp(M)

( ∑
x′∈supp(X )

PH(Y |X = x ′, X̃ = x ′,M = m)PH(X = x ′)

)
PH(M = m|X̃ = x)

=
∑

m∈supp(M)

( ∑
x′∈supp(X )

PE(Y |M,X = x ′)︸ ︷︷ ︸
by T-1

PE(X = x ′)︸ ︷︷ ︸
by L-1

)
PE(M = m|X = x)︸ ︷︷ ︸

by Matching

.
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• The second equality from (1) Y ⊥⊥ X̃ |M of L-2.

• The fourth equality from (2) X ⊥⊥ M of L-2.

• The fifth equality from (3) Y ⊥⊥ X̃ |(M ,X ) of L-2.
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Third Example

1 Defining Hypothetical and Empirical Models

Empirical Causal Model Hypothetical Causal Model

X

Z T

V

G Y

U

T̃

X

Z T

V

G Y

U

T̃

2 Useful Hypothetical Model Conditional Independence Relationships:

Y ⊥⊥ T̃ |(G ,X ), T ⊥⊥ G |X , Y ⊥⊥ T̃ |(G ,T ), T̃ ⊥⊥ X
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Third Example

3 Express PH(Y |T̃ = t) in terms of other variables:
PH(Y |T̃ = t) =

=
∑

x∈supp(X )

∑
g∈supp(G)

( ∑
t′∈supp(T )

PrH(Y |T = t′, T̃ = t′, G = g, X = x)PrH(T = t′|X = x)

)
×

×
(
PrH(G = g|T̃ = t)PrH(X = x)

)

4 Identification: Map into the Observed Quantities of the
Empirical model:

PH(Y |T̃ = t) =

=
∑

x∈supp(X )

∑
g∈supp(G)

( ∑
t′∈supp(T )

PH(Y |T = t′, T̃ = t′, G = g, X = x) PH(T = t′|X = x)

)
×

×
(

PH(G = g|T̃ = t)PrH(X = x)

)
=

∑
x∈supp(X )

∑
g∈supp(G)

( ∑
t′∈supp(T )

PE(Y |T = t′, G = g, X = x)︸ ︷︷ ︸
Item (3) of T–2

PE(T = t′|X = x)︸ ︷︷ ︸
Item (4) of T–2

)
×

×
(

PE(G = g|T = t)︸ ︷︷ ︸
Item (2) of T–2

PE(X = x)︸ ︷︷ ︸
Item (1) of T–2

)
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Part 3: The Hypothetical Model – Two Useful Conditions

Only two conditions suffice to investigate the identification of causal parameters!

Theorem 2

For any disjoint set of variables Y ,W in Be , we have that:

Y ⊥⊥ T̃ |(T ,W ) ⇒ PH(Y |T̃ ,T = t ′,W ) = PH(Y |T = t ′,W ) = PE (Y |T = t ′,W )

Y ⊥⊥ T |(T̃ ,W ) ⇒ PH(Y |T̃ = t,T ,W ) = PH(Y |T̃ = t,W ) = PE (Y |T = t,W )

If Y ⊥⊥ T̃ |(T ,W ) or Y ⊥⊥ T |(T̃ ,W ) occurs in the hypothetical model,
then we are able to equate variable distributions of the hypothetical and empirical
models!
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Part 3: Third Example

Empirical Model Hypothetical Model

Observed Variables Observed Variables

T = fT (V1,V2, ϵT ) T = fT (V1,V2, ϵT )

M1 = fM1(V3,T , ϵM1) M1 = fM1(V3, T̃ , ϵM1)
M2 = fM2(V2,M1, ϵM2) M2 = fM2(V2,M1, ϵM2)
M3 = fM3(V3,M2, ϵM3) M3 = fM3(V3,M2, ϵM3)
Y = fY (V1,M3, ϵY ) Y = fY (V1,M3, ϵY )

Exogenous Variables Exogenous Variables

V1,V2,V3 V1,V2,V3, T̃
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Part 3: The Hypothetical Model – DAG of Example 3

Directed Acyclic Graph of the Empirical Model

V1 V2

T M1 M2 M3 Y

V3

Directed Acyclic Graph of the Hypothetical Model

T̃ V1 V2

T M1 M2 M3 Y

V3
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Part 3: The Hypothetical Model – Useful Independence
Relationships

In order to identify the causal effect of T on Y , we seek for conditional
independence relationships in the hypothetical model that comply with
the statements of Theorem 2. Those are the conditional independence
relationships (12)–(16) below. For now, we simply state that the
following conditional independence relation hold for the hypothetical
model:

Y ⊥⊥ T̃ |(T ,M3,M2,M1) (12)

M3 ⊥⊥ T |(M1,M2, T̃ ) (13)

M2 ⊥⊥ T̃ |(T ,M1) (14)

M1 ⊥⊥ T |T̃ (15)

T ⊥⊥ T̃ (16)
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Part 3: The Hypothetical Model – Basic Definitions

For sake of notational simplicity, let’s consider that all variables are discrete. It is
useful to show how Relationships (12)–(16) can be used to factorize the joint

distribution of P(Y ,M3,M2,M1,T |T̃ ) :

Ph(Y ,M3,M2,M1,T , T̃ ) =

= Ph(Y |M3,M2,M1,T , T̃ )Ph(M3|M2,M1,T , T̃ )Ph(M2|M1,T , T̃ )Ph(M1|T , T̃ )Ph(T |T̃ ),
(17)

= Ph(Y |M3,M2,M1,T )Ph(M3|M2,M1, T̃ )Ph(M2|M1,T )Ph(M1|T̃ )Ph(T ). (18)

Factorization (17) always hold.
Factorization (18) uses Relationships (12)–(15)
to eliminate variables T or T̃ of each term of the factorization (17).

Identification formula comes from applying standard statistical tools.
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Part 3: The Hypothetical Model – Basic Definitions

We seek to identify Pe(Y (t)), expressed by Ph(Y |T̃ = t).

Can express Ph(Y |T̃ = t) through the following sum:

Ph(Y |T̃ = t) =

=
∑

t′,m3,m2,m1

Ph(Y |m3,m2,m1,T = t′)Ph(m3|m2,m1, T̃ = t)Ph(m2|m1,T = t′)Ph(m1|T̃ = t)Ph(T = t′)

=
∑

t′,m3,m2,m1

Pe(Y |m3,m2,m1,T = t′)Pe(m3|m2,m1,T = t)Pe(m2|m1,T = t′)Pe(m1|T = t)Pe(T = t′),

Simply uses the Factorization,
Relationships (12)–(15)
And the mapping theorem 2

to equate hypothetical and empirical probabilities.
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1. Pearl’s (2000) Do-calculus

Link to Pearl Appendix
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2. Conclusion
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Examined Haavelmo’s fundamental contributions

• Distinction between causation and correlation (first formal
analysis).

• Distinguished definition of causal parameters (though process
of creating hypothetical models) from their identification from
data.

• Explained that causal effects of inputs on outputs are defined
under abstract models that assign independent variation to
inputs.

• Clarified concepts that are still muddled in some quarters of
statistics.

• Formalizes Frisch’s notion that causality is in the mind.
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Causal Framework Inspired by Haavelmo’s Ideas

• Contribution: causal framework inspired by Haavelmo,

• Introduce: hypothetical models for examining causal effects,

• Assigns independent variation to inputs determining outcomes.

• Enables us to discuss causal concepts such as Fixing using an
intuitive approach.

• Fixing is easily translated to statistical conditioning.

• Eliminates the need for additional extra-statistical graphical/
statistical rules to achieve identification (in contrast with the
do-calculus).

• Identification relies on evaluating causal parameters defined in
the hypothetical model using data generated by the empirical
model.

• Achieved by applying standard statistical tools to
fundamentally recursive Bayesian Networks.
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Beyond DAG

• We discuss the limitations of methods of identification that rely
on the fundamentally recursive approach of Directed Acyclic
Graphs.

• Haavelmo’s framework can be extended to the fundamentally
non-recursive framework of the simultaneous equations model
without violating autonomy.

• Simultaneous equations are fundamentally non-recursive and
falls outside of the framework of Bayesian causal nets and
DAGs.

• Haavelmo’s approach also covers simultaneous causality
whereas other frameworks cannot, except through ad hoc rules
such as “shutting down” equations;

• Haavelmo’s framework allows for a variety of econometric
methods can be used to secure identification of this class of
models (see, e.g., Matzkin, 2012, 2013.)
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Appendix On Do Operators
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Comparing Analyses Based on the Do-calculus
with those from the Hypothetical Model

• We illustrate the use of the do-calculus and the hypothetical
model approaches by identifying the causal effects of a
well-known model that Pearl (2009b) calls the “Front-Door
model.”

• It consists of four variables: (1) an external unobserved variable
U ; (2) an observed variable X caused by U ; (3) an observed
variable M caused by X ; and (4) an outcome Y caused by U
and M .
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“Front-Door” Empirical and Hypothetical Models

1. Pearl’s “Front-Door” Empirical Model 2. Our Version of the “Front-Door” Hypothetical Model

T = {U, X ,M, Y} T = {U, X ,M, Y , X̃}
ϵ = {ϵU , ϵX , ϵM , ϵY } ϵ = {ϵU , ϵX , ϵM , ϵY }
Y = fY (M,U, ϵY ) Y = fY (M,U, ϵY )
X = fX (U, ϵX ) X = fX (U, ϵX )

M = fM (X , ϵM ) M = fM (X̃ , ϵM )
U = fU (ϵU ) U = fU (ϵU )

U

MX Y

U

MX Y

X̃

Pa(U) = ∅, Pa(U) = Pa(X̃ ) = ∅,
Pa(X ) = {U} Pa(X ) = {U}
Pa(M) = {X} Pa(M) = {X̃}

Pa(Y ) = {M,U} Pa(Y ) = {M,U}
Y ⊥⊥ X |(M,U) Y ⊥⊥ (X̃ , X )|(M,U)

M ⊥⊥ U|X M ⊥⊥ (U, X )|X̃
X ⊥⊥ (M, X̃ , Y )|U

U ⊥⊥ (M, X̃ )

X̃ ⊥⊥ (X ,U)

PE(Y ,M, X ,U) = PH(Y ,M, X ,U, X̃ ) =

PE(Y |M,U) PE(X |U) PE(M|X ) PE(U) PH(Y |M,U) P(X |U) PH(M|X̃ ) PH(U) PH(X̃ )

PE(Y ,M,U|do(X ) = x) = PH(Y ,M,U, X |X̃ = x) =

PE(Y |M,U) PE(M|X = x) PE(U) PH(Y |M,U) P(X |U) PH(M|X̃ = x) PH(U)

Heckman Causal Analysis



Do-Calculus Conclusion DAG Limitations Comparing

• The do-calculus identifies P(Y |do(X )) through four steps
which we now perform.

• Steps 1, 2 and 3 identify P(M |do(X )), P(Y |do(M)) and
P(Y |M , do(X )) respectively.

Heckman Causal Analysis



Do-Calculus Conclusion DAG Limitations Comparing

1 Invoking LMC for variable M of DAG GX , (DAG 1 of Table ??) generates
X ⊥⊥ M. Thus, by Rule 2 of the do-calculus, we obtain
P(M|do(X )) = P(M|X ).

2 Invoking LMC for variable M of DAG GM , (DAG 1 of Table ??) generates
X ⊥⊥ M. Thus, by Rule 3 of the do-calculus, P(X |do(M)) = P(X ). In
addition, applying LMC for variable M of DAG GM , (DAG 2 of Table ??)
generates M ⊥⊥ Y |X . Thus, by Rule 2 of do-calculus,
P(Y |X , do(M)) = P(Y |X ,M).

Therefore P(Y |do(M)) =
∑

x′∈supp(X )

P(Y |X = x ′, do(M))P(X = x ′|do(M))

=
∑

x′∈supp(X )

P(Y |X = x ′,M)P(X = x ′),

where “supp” means support.

3 Invoking LMC for variable M of DAG GX ,M , (DAG 3 of Table ??)

generates Y ⊥⊥ M|X .
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Do-Calculus and the Front-Door Model
1. Modified Front-Door Model GX = GM 2. Modified Front-Door Model GM

U

MX Y

U

MX Y

(Y ,M) ⊥⊥ X |U (X ,M) ⊥⊥ Y |U
(X ,U) ⊥⊥ M (Y ,U) ⊥⊥ M |X

3. Modified Front-Door Model GX ,M 4. Modified Front-Door Model GX ,M

U

MX Y

U

MX Y

(X ,M) ⊥⊥ (Y ,U) (Y ,M ,U) ⊥⊥ X
U ⊥⊥ M

These rules are intended to supplement standard statistical tools with a new
set of “do” operations.
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1 Thus, by Rule 2 of the do-calculus, P(Y |M, do(X )) = P(Y |do(M), do(X )). In addition,
applying LMC for variable X of DAG GX ,M , (DAG 4 of Table ??) generates

(Y ,M,U) ⊥⊥ X . By weak union and decomposition, we obtain Y ⊥⊥ X |M. Thus, by
Rule 3 of the do-calculus, we obtain that P(Y |do(X ), do(M)) = P(Y |do(M)). Thus
P(Y |M, do(X )) = P(Y |do(M), do(X )) = P(Y |do(M)).

2 We collect the results from the three previous steps to identify P(Y |do(X )) :

P(Y |do(X ) = x)

=
∑

m∈supp(M)

P(Y |M, do(X ) = x)P(M|do(X ) = x)

=
∑

m∈supp(M)

P(Y |do(M) = m, do(X ) = x)︸ ︷︷ ︸
Step 3

P(M = m|do(X ) = x)

=
∑

m∈supp(M)

P(Y |do(M) = m)︸ ︷︷ ︸
Step 3

P(M = m|do(X ) = x)

=
∑

m∈supp(M)

( ∑
x′∈supp(X )

P(Y |X = x ′,M)P(X = x ′)

)
︸ ︷︷ ︸

Step 2

P(M = m|X = x)︸ ︷︷ ︸
Step 1

.
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• We use the do-calculus to identify the desired causal parameter,
using the approach inspired by Haavelmo’s ideas.

• We replace the relationship of X on M by a hypothetical
variable X̃ that causes M .

• We use PE to denote the probability of the Front-Door model
that generates the data and PH for the hypothetical model.
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Lemma 3

In the Front-Door hypothetical model,
(1) Y ⊥⊥ X̃ |M ,
(2) X ⊥⊥ M , and
(3) Y ⊥⊥ X̃ |(M ,X )
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Proof

By LMC for X , we obtain (Y ,M , X̃ ) ⊥⊥ X |U . By LMC for Y we
obtain Y ⊥⊥ (X , X̃ )|(M ,U). By Contraction applied to
(Y ,M , X̃ ) ⊥⊥ X |U and Y ⊥⊥ (X , X̃ )|(M ,U) we obtain
(Y ,X ) ⊥⊥ X̃ |(M ,U). By LMC for U we obtain (M , X̃ ) ⊥⊥ U . By
Contraction applied to (M , X̃ ) ⊥⊥ U and(Y ,M , X̃ ) ⊥⊥ X |U we
obtain(X ,U) ⊥⊥ (M , X̃ ). The second relationship of the Lemma is
obtained by Decomposition. In addition, by Contraction on
(Y ,X ) ⊥⊥ X̃ |(M ,U) and (M , X̃ ) ⊥⊥ U we obtain
(Y ,X ,U) ⊥⊥ X̃ |M . The two remaining conditional independence
relationships of the Lemma are obtained by Weak Union and
Decomposition.
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Applying these results,

PH(Y |X̃ = x)

=
∑

m∈supp(M)

PH(Y |M = m, X̃ = x)PH(M = m|X̃ = x)

=
∑

m∈supp(M)

PH(Y |M = m)PH(M = m|X̃ = x)

=
∑

m∈supp(M)

( ∑
x′∈supp(X )

PH(Y |X = x ′,M = m)PH(X = x ′|M = m)

)
PH(M = m|X̃ = x)

=
∑

m∈supp(M)

( ∑
x′∈supp(X )

PH(Y |X = x ′,M = m)PH(X = x ′)

)
PH(M = m|X̃ = x)

=
∑

m∈supp(M)

( ∑
x′∈supp(X )

PH(Y |X = x ′, X̃ = x ′,M = m)PH(X = x ′)

)
PH(M = m|X̃ = x)

=
∑

m∈supp(M)

( ∑
x′∈supp(X )

PE(Y |M,X = x ′)︸ ︷︷ ︸
by T1

PE(X = x ′)︸ ︷︷ ︸
by Lemma1

)
PE(M = m|X = x)︸ ︷︷ ︸

by M1

.
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• The second equality comes from relationship (1) Y ⊥⊥ X̃ |M of
Lemma 3.

• The fourth equality comes from relationship (2) X ⊥⊥ M of
Lemma 3.

• The fifth equality comes from relationship (3) Y ⊥⊥ X̃ |(M ,X )
of Lemma 3.

• The last equality links the distributions of the hypothetical
model with the ones of the empirical model.
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• The first term uses Theorem 1 to equate
PH(Y |X = x ′, X̃ = x ′,M = m) = PE(Y |M ,X = x ′).

• The second term uses the fact that X is not a child of X̃ , thus
by Lemma, PH(X = x ′) = PE(X = x ′).

• Finally, the last term uses Matching applied to M . Namely,
LMC for M generates M ⊥⊥ X |X̃ in the hypothetical model.

• Then, by Matching, PH(M |X̃ = x) = PE(M |X = x).
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• Both frameworks produce the same final identification formula.

• The methods underlying them differ greatly.

• Concept in the framework inspired by Haavelmo is the notion of
a hypothetical model.
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The Do-calculus

• Attempt: Counterfactual manipulations using the empirical
model.

• Intent: Expressions obtained from a hypothetical model.

• Tools: Uses causal/graphical/statistical rules outside statistics.

• Fixing: Uses do(X ) = x for fixing X at x in the DAG for all
X -inputs (does not allow to target causal links separately).

• Flexibility: Does not easily define complex treatments, such as
treatment on the treated, i.e.,
EE(Y |X = 1, X̃ = 1)− EE(Y |X = 1, X̃ = 0).

In Contrast: Identification using the hypothetical model is
transparent and does not require additional causal rules, only
standard statistical tools.
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Definition the Do-operator (which is Fixing)

The Do-operator is based on the Truncated Factorization of the
probability factor of the fixed variable is deleted:
Let X ⊂ V : Then
Pr(V (x) = v) = Pr(V1 = v1, . . . ,Vm+n = vm+n, |do(X ) = x) and:

Pr(V (x) = v) =

{ ∏
Vi∈V \X P(Vi = vi |pa(Vi )) if v is consistent with x ;

0 if v is inconsistent with x .
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Example of the Do-operator
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• Variables: Y ,X ,Z

• Factorization:

Pr(Y ,X ,Z ) = Pr(Y |Z ,X ) Pr(X |Z ) Pr(Z )
= Pr(Y |X ) Pr(X |Z ) Pr(Z )

• Do-operator: Pr(Z ,Y |do(X ) = x) = Pr(Y |X = x) Pr(Z )

• Conditional operator:

Pr(Y ,Z |X = x) = Pr(Y |Z ,X = x) Pr(X |Z ,X = x) Pr(Z |X = x)

= Pr(Y |X = x) Pr(Z |X = x)

Do-operator targets variables, not causal links.
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Example of the Do-operator
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• Variables: Y ,X ,U,V

• Factorization: Pr(V ,U,X ,Y ) = Pr(Y |U,X ) Pr(X |V ) Pr(U|V ) Pr(V )

• Do-operator: Pr(V ,U,Y |do(X ) = x) = Pr(Y |U,X = x) Pr(U|V ) Pr(V )

• Conditional operator:

Pr(V ,U,Y |X = x) = Pr(Y |U,V ,X = x) Pr(U|V ,X = x) Pr(V |X = x)

= Pr(Y |U,X = x) Pr(U|V ) Pr(V |X = x)

Do-operator targets variables, not causal links.
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Comparison: Hypothetical Model and Do-Operator

Fixing within Standard Probability Theory

Fixing in the empirical model is translated to statistical conditioning
in the hypothetical model:

EE(Y (x))︸ ︷︷ ︸
Causal Operation Empirical Model

= EH(Y |X̃ = x)︸ ︷︷ ︸
Statistical Operation Hypothetical Model

do-Operator and Statistical Conditioning

Let X̃ be the hypothetical variable in GH associated with variable X
in the empirical model GE, such that ChH(X̃ ) = ChE(X ), then:

PH(TE \ {X}|X̃ = x) = PE(TE \ {X}|do(X ) = x).
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Defining the Do-calculus

What is the do-calculus?

A set of three graphical/statistical rules that convert expressions of
causal inference into probability equations.

1 Goal: Identify causal effects from non-experimental data.

2 Application: Bayesian network structure, i.e., Directed Acyclic
Graph (DAG) that represents causal relationships.

3 Identification method: Iteration of do-calculus rules to
generate a function that describes treatment effects statistics
as a function of the observed variables only (Tian and Pearl
2002, Tian and Pearl 2003).
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Characteristics of Pearl’s Do-Calculus

1 Information: DAG only provides information on the causal
relation among variables.

2 Not Suited for examining assumptions on functional forms.

3 Identification: If this information is sufficient to identify
causal effects, then:

4 Completeness:
i There exists a sequence of application of the Do-Calculus that
ii generates a formula for causal effects based on observational

quantities (Huang and Valtorta 2006, Shpitser and Pearl 2006)

5 Limitation: Does not allow for additional information outside
the DAG framework.

i Only applies to the information content of a DAG.
ii IV is not identified through Do-calculus
iii Why? requires assumptions outside DAG: linearity,

monotonicity, separability.
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Notation for the Do-calculus

More notation is needed to define these rules:

DAG Notation
Let X ,Y ,Z be arbitrary disjoint sets of variables (nodes) in a causal
graph G .

• GX : DAG that modifies G by deleting the arrows pointing to X .

• GX : DAG that modifies G by deleting arrows emerging from X .

• GX ,Z : DAG that modifies G by deleting arrows pointing to X
and emerging from Z .

Heckman Causal Analysis



Do-Calculus Conclusion DAG Limitations Comparing

Examples of DAG Notation
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Example of DAG Notation
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Do-calculus Rules

• Assumes the Local Markov Condition and independence of ϵ.

Let G be a DAG and let X ,Y ,Z ,W be any disjoint sets of
variables. The do-calculus rules are:

• Rule 1: Insertion/deletion of observations:
Y ⊥⊥ Z |(X ,W ) under GX

⇒ P(Y |do(X ),Z ,W ) = P(Y |do(X ),W ).

• Rule 2: Action/observation exchange:
Y ⊥⊥ Z |(X ,W ) under GX ,Z

⇒ P(Y |do(X ), do(Z ),W ) = P(Y |do(X ),Z ,W ).

• Rule 3: Insertion/deletion of actions:
Y ⊥⊥ Z |(X ,W ) under GX ,Z(W )

⇒ P(Y |do(X ), do(Z ),W ) = P(Y |do(X ),W ),
where Z (W ) is the set of Z -nodes that are not ancestors of
any W -node in GX .
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Understanding the Rules of Do-Calculus

Let G be a DAG then for any disjoint sets of variables X ,Y ,Z ,W :
Rule 1: Insertion/deletion of observations

If Y ⊥⊥ Z |(X ,W )︸ ︷︷ ︸
Statistical Relation

under GX︸︷︷︸
Graphic Criterion

then

Pr(Y |do(X ),Z ,W ) = Pr(Y |do(X ),W )︸ ︷︷ ︸
Equivalent Probability Expression
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Do-Calculus Exercise

G GX

V

X

U

Y

V

X

U

Y

1 LMC to X under GX generates X ⊥⊥ (U,Y )|V ⇒ X ⊥⊥ (U,Y )|V .

2 Now if X ⊥⊥ (U,Y )|V holds under GX , then, by Rule 2,

P(Y |do(X ),V ) = P(Y |X ,V ). (19)

∴ E (Y |do(X ) = x) =

∫
E (Y |V = v , do(X ) = x)dFV (v)︸ ︷︷ ︸

Using do(X),i.e. Fixing X

=

∫
E (Y |V = v ,X = x)dFV (v)︸ ︷︷ ︸

Replace “do” with Standard Statistical Conditioning

by Equation(19)
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Do-Calculus Exercise : The Front-door Model
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Using the Do-Calculus : Task 1 – Compute Pr(Z |do(X ))

X ⊥⊥ Z in GX , by Rule 2, Pr(Z |do(X )) = Pr(Z |X ).
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Using the Do-Calculus : Task 2 – Compute Pr(Y |do(Z ))

Z ⊥⊥ X in GZ , by Rule 3, Pr(X |do(Z )) = Pr(X )
Z ⊥⊥ Y |X in GZ , by Rule 2, Pr(Y |X , do(Z )) = Pr(Y |X ,Z )

∴ Pr(Y |do(Z )) =
∑
X

Pr(Y |X , do(Z )) Pr(X |do(Z ))

=
∑
X

Pr(Y |X ,Z ) Pr(X )
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Generalized Roy Model

R D Y
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This figure represents causal relationships of the Generalized Roy
Model. Arrows represent direct causal relationships. Circles
represent unobserved variables. Squares represent observed variables
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Key Aspects of the Generalized Roy Model

1 T is caused by Z ,V ;

2 U mediates the effects of V on Y (that is V causes U);

3 T and U cause Y and

4 Z (instrument) not caused by V ,U and does not directly cause
Y ,U .

We are left to examine the cases whether:

1 V causes X (or vice-versa),

2 X causes Z (or vice-versa),

3 X causes T ,

4 X causes U ,

5 T causes U , and

6 X causes Y .

The combinations of all these causal relationships generate 144
possible models (Pinto, 2013).

Heckman Causal Analysis



Do-Calculus Conclusion DAG Limitations Comparing

Key Aspects of the Generalized Roy Model (Pinto, 2013)
R D Y

VX
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R D Y

VX

A

D
~

D
~

Z T Y

UV
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UVX
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UVX

Dashed lines denote causal relationships that may not exist or, if
they exist, the causal direction can go either way. Dashed arrows
denote causal relationships that may not exist, but, if they exist, the
causal direction must comply the arrow direction.
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Marginalizing the Generalized Roy Model

• We examine the identification of causal effects of the
Generalized Roy Model using a simplified model w.l.o.g.

• Suppress variables X and U .

• This simplification is usually called marginalization in the DAG
literature (Koster (2002), Lauritzen (1996), Wermuth (2011)).
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Marginalizing the Generalized Roy Model

G = GZ
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This figure represents causal relationships of the Marginalized Roy
Model. Arrows represent direct causal relationships. Circles
represent unobserved variables. Squares represent observed variables
Note: Z is exogenous, thus conditioning on Z is equivalent to
fixing Z .
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Examining the Marginalized Roy Model – 1/4

• Y ⊥⊥ Z in GX , by Rule 1

Pr(Y |do(X ),Z ) = Pr(Y |do(X ))

• Y ⊥⊥ Z , in GX ,Z , by Rule 3

Pr(Y |do(X ),Z ) = Pr(Y |do(X ))

• Y ⊥⊥ Z |X in GX ,Z , by Rule 2

Pr(Y |do(X ), do(Z )) = Pr(Y |do(X ),Z )

GX = GX ,Z = GX ,ZXZ
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Examining the Marginalized Roy Model – 2/4

• Under GX , Y ⧸⊥⊥ X , thus Rule 2 does not apply.

• Under GX ,Z , Y ⧸⊥⊥ X |Z , thus Rule 2 does not apply.

GX = GX ,Z
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Examining the Marginalized Roy Model – 3/4

• GZ ⇒ Y ⊥⊥ Z , thus by Rule 2 Pr(Y |do(Z )) = Pr(Y |Z ).
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Examining the Marginalized Roy Model – 4 of 4
Modifications

• Under GX ,Z , Y ⧸⊥⊥ (X ,Z ), thus Rule 2 does not apply.
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Conclusion of Do-calculus and the Roy Model

The Do-Calculus applied to the Marginalized Roy Model generates:

1 Pr(Y |do(X ), do(Z )) = Pr(Y |do(X ),Z ) = Pr(Y |do(X )),

2 Pr(Y |do(Z )) = Pr(Y |Z )
These relationships only corroborate the exogeneity of the
instrumental variable Z and are not sufficient to identify
Pr(Y |do(X )).

Identification of the Roy Model
To identify the Roy Model, we make assumption on how Z impacts
X , i.e. monotonicity/separability.
These assumptions cannot be represented in a DAG.
These assumptions are associated with properties of how Z causes
X and not only if Z causes X .
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3. Limitations of Do-calculus for Econometric Identification
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Failure of Do-Calculus
Does not Generates Standard IV Results

The simplest instrumental variable model consists of four variables:

1 A confounding variable U that is external and unobserved.

2 An external instrumental variable Z .

3 An observed variable X caused by U and Z .

4 An outcome Y caused by U and X .
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4.1 Do-Calculus Non-identification of the IV Model

• Limitation: IV model is not identified by literature that relies
exclusively on DAGs.

• Why?: IV identification relies on assumptions outside the
scope of DAG literature.

• LMC: generates the conditional independence relationships:
Y ⊥⊥ Z |(U ,X ) and U ⊥⊥ Z .

• TSLS: X ⧸⊥⊥ Z holds, thus, the IV model satisfy the necessary
criteria to apply the method of Two Stage Least Squares
(TSLS).

• Assumption Outside of DAGs: TSLS identifies the IV model
under linearity.
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Do-Calculus and IV

The Do-Calculus applied to the IV Model generates:

1 Pr(Y |do(X ), do(Z )) = Pr(Y |do(X ),Z ) = Pr(Y |do(X )),

2 Pr(Y |do(Z )) = Pr(Y |Z )
Only establishes the exogeneity of the instrumental variable Z .
Insufficient to identify Pr(Y |do(X )).

• The instrumental variable model is not identified applying the
rules of the do-calculus.

• Indeed, in this framework it is impossible to identify the causal
effect of X on Y without additional information.

• The instrumental variable model is identified under further
assumptions such as linearity, separability, monotonicity.

• However, these assumptions are outside the scope of the
do-calculus.
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“Front-Door” Empirical and Hypothetical Models

1. Pearl’s “Front-Door” Empirical Model 2. Our Version of the “Front-Door” Hypothetical Model

T = {U, X ,M, Y} T = {U, X ,M, Y , X̃}
ϵ = {ϵU , ϵX , ϵM , ϵY } ϵ = {ϵU , ϵX , ϵM , ϵY }
Y = fY (M,U, ϵY ) Y = fY (M,U, ϵY )
X = fX (U, ϵX ) X = fX (U, ϵX )

M = fM (X , ϵM ) M = fM (X̃ , ϵM )
U = fU (ϵU ) U = fU (ϵU )

U

MX Y

U

MX Y

X̃

Pa(U) = ∅, Pa(U) = Pa(X̃ ) = ∅,
Pa(X ) = {U} Pa(X ) = {U}
Pa(M) = {X} Pa(M) = {X̃}

Pa(Y ) = {M,U} Pa(Y ) = {M,U}
Y ⊥⊥ X |(M,U) Y ⊥⊥ (X̃ , X )|(M,U)

M ⊥⊥ U|X M ⊥⊥ (U, X )|X̃
X ⊥⊥ (M, X̃ , Y )|U

U ⊥⊥ (M, X̃ )

X̃ ⊥⊥ (X ,U)

PE(Y ,M, X ,U) = PH(Y ,M, X ,U, X̃ ) =

PE(Y |M,U) PE(X |U) PE(M|X ) PE(U) PH(Y |M,U) P(X |U) PH(M|X̃ ) PH(U) PH(X̃ )

PE(Y ,M,U|do(X ) = x) = PH(Y ,M,U, X |X̃ = x) =

PE(Y |M,U) PE(M|X = x) PE(U) PH(Y |M,U) P(X |U) PH(M|X̃ = x) PH(U)
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4. Summary of Do-calculus and Haavelmo
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Summarizing Do-calculus of Pearl (2009b) and
Haavelmo’s Inspired Framework

• Common Features of Haavelmo and Do Calculus:

1 Autonomy (Frisch, 1938)
2 Errors Terms: ϵ mutually independent
3 Statistical Tools: LMC and GA apply
4 Counterfactuals: Fixing or Do-operator is a Causal, not

statistical, Operation.
• Distinct Features of Haavelmo and Do Calculus:

Haavelmo Do-calculus
Approach: Thinks Outside the Box Applies Complex Tools
Introduces: Hypothetical Model Graphical Rules
Identification: Connects PH and PE Iteration of Rules
Versatility: Basic Statistics Apply Extra Notation/Tools

Heckman Causal Analysis



Do-Calculus Conclusion DAG Limitations Comparing

Return to main text
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