## How To Correct for Sampling Biases

James J. Heckman University of Chicago

Econ 312, Spring 2022



#### Classical Models for Estimating Models with Limited Dependent Variables

#### References:

- Amemiya, Ch. 10
- Different types of sampling
  - a random sampling
  - **b** censored sampling
  - 6 truncated sampling
  - d other non-random (exogenous stratified, choice-based)



## Standard Tobit Model (Tobin, 1958) "Type I Tobit"

$$y_i^* = x_i \beta + u_i$$

• Observe, i.e.,

$$y_i = y_i^* \text{ if } y_i^* \ge y_0 \text{ or } y_i = 1 (y_i^* \ge y_0) y_i^*$$
  
 $y_i = 0 \text{ if } y_i^* < y_0$   
 $y_i = 1 (y_i^* < y_0) y_i^*$ 

 Tobin's example-expenditure on a durable good only observed if good is purchased



Figure 1





Note: Censored observations might have bought the good if price had been lower.

• Estimator. Assume  $y_i^*/x_i \sim N(x_i\beta, \sigma_u^2)$ 



#### **Density of Latent Variables**

$$g(y^{*}) = f(y_{i}^{*}|y_{i}^{*} < y_{0}) \Pr(y_{i}^{*} < y_{0}) + f(y_{i}^{*}|y_{i} \ge y_{0}) \cdot \Pr(y_{i}^{*} \ge y_{0})$$

$$\Pr(y_{i}^{*} < y_{0}) = \Pr(x_{i}\beta + u_{i} < y_{0}) = \Pr\left(\frac{u_{i}}{\sigma_{u}} < \frac{y_{0} - x_{i}\beta}{\sigma_{u}}\right) = \Phi\left(\frac{y_{0} - x_{i}\beta}{\sigma_{u}}\right)$$

$$f(y_{i}^{*}|y_{i}^{*} \ge y_{0}) = \frac{\frac{1}{\sigma_{u}}\phi\left(\frac{y_{i}^{*} - x_{i}\beta}{\sigma_{u}}\right)}{1 - \Phi\left(\frac{y_{0} - x_{i}\beta}{\sigma_{u}}\right)}$$

• Question: Why?

$$\Pr(y^* = y_i^* | y_0 \le y^*)$$

$$= \Pr(x\beta + u = y_i^* | y_0 \le x\beta + u)$$

$$\Pr\left(\frac{u}{\sigma_u} = \frac{y_i^* - x\beta}{\sigma_u} | \frac{u}{\sigma_u} \ge \frac{y_0 - x\beta}{\sigma_u}\right)$$



Note that likelihood can be written as:

$$\mathcal{L} = \underbrace{\Pi_0 \Phi \left( \frac{y_0 - x_i \beta}{\sigma_u} \right) \Pi_1 \left( 1 - \Phi \left( \frac{y_0 - x_i \beta}{\sigma_u} \right) \right)}_{\text{This part you would set with just a simple probit}} \underbrace{\Pi_1 \frac{\frac{1}{\sigma_u} \phi \left( \frac{y_i^* - x_i \beta}{\sigma_u} \right)}{\left\{ 1 - \Phi \left( \frac{y_0 - x_i \beta}{\sigma_u} \right) \right\}}_{\text{Additional information}}$$

- You could estimate  $\beta$  up to scale using only the information on whether  $y_i \gtrsim y_0$ , but will get more efficient estimate using additional information.
  - \* if you know  $y_0$ , you can estimate  $\sigma_u$ .



#### Truncated Version of Type I Tobit

Observe 
$$y_i = y_i^*$$
 if  $y_i^* > o$ 

( observe nothing for truncated observations example: only observe wages for workers )

Likelihood: 
$$\mathcal{L} = \Pi_1 \frac{\frac{1}{\sigma_u} \phi\left(\frac{y_i^* - x_i \beta}{\sigma_u}\right)}{\Phi\left(\frac{x_i \beta}{\sigma_u}\right)}$$

$$\Pr\left(y_i^* > 0\right) = \Pr\left(x\beta + u > 0\right)$$

$$= \Pr\left(\frac{u}{\sigma_u} > \frac{-x\beta}{\sigma_u}\right)$$

$$= \Pr\left(u < \frac{x\beta}{\sigma_u}\right)$$



## Different Ways of Estimating Tobit

- a if censored, could obtain estimates of  $\frac{\beta}{\sigma_u}$  by simple probit
- **b** run OLS on observations for which  $y_i^*$  is observed

$$E(y_i|x_i\beta+u_i\geq 0)=x_i\beta+\sigma_uE\left(\frac{u_i}{\sigma_u}|\frac{u_i}{\sigma_u}>\frac{-x\beta}{\sigma_u}\right) \qquad (y_0=0)$$

• where  $E\left(y_i|x_i\beta+u_i\geq 0\right)$  is the conditional mean for truncated normal r.v and

$$\sigma_{u}E\left(\frac{u_{i}}{\sigma_{u}}|\frac{u_{i}}{\sigma_{u}}>\frac{-x\beta}{\sigma_{u}}\right)\longrightarrow\lambda\left(\frac{x_{i}\beta}{\sigma_{u}}\right)=\frac{\phi\left(\frac{-x\beta}{\sigma_{u}}\right)}{\Phi\left(\frac{\pi_{i}\beta}{\sigma_{u}}\right)}$$

•  $\lambda\left(\frac{x_i\beta}{\sigma_u}\right)$  known as "Mill's ratio"; bias due to censoring, can be viewed as an omitted variables problem

## Heckman Two-Step procedure

- Step 1: estimate  $\frac{\beta}{\sigma_n}$  by probit
- Step 2:

form 
$$\hat{\lambda} \left( \frac{x_i \hat{\beta}}{\sigma} \right)$$
regress
$$y_i = x_i \beta + \sigma \hat{\lambda} \left( \frac{x_i \beta}{\sigma} \right) + v + \varepsilon$$

$$v = \sigma \left\{ \lambda \left( \frac{x_i \beta}{\sigma} \right) - \hat{\lambda} \left( \frac{x_i \beta}{\sigma} \right) \right\}$$

$$\varepsilon = u_i - E(u_i | u_i > x_i \beta)$$



- Note: errors  $(v + \varepsilon)$  will be heteroskedatic;
- need to account for fact that  $\lambda$  is estimated (Durbin problem)
- Two ways of doing this:
  - Delta method
  - **6** GMM (Newey, Economic Letters, 1984)
  - Suppose you run OLS using all the data

$$E(y_i) = \Pr(y_i^* \le 0) \cdot 0 + \Pr(y_i^* > 0) \left[ x_i \beta + \sigma_u E\left(\frac{u_i}{\sigma_u} | \frac{u_i}{\sigma_u} > \frac{-x_i \beta}{\sigma} \right) \right]$$
$$= \Phi\left(\frac{x_i \beta}{\sigma}\right) \left[ x_i \beta + \sigma_u \lambda \left(\frac{x_i \beta}{\sigma}\right) \right]$$

- Could estimate model by replacing  $\Phi$  with  $\hat{\phi}$  and  $\lambda$  with  $\hat{\lambda}$ .
- For both (b) and (c), errors are heteroskedatic, meaning that you could use weights to improve efficiency.
- Also need to adjust for estimated regressor.
  - (d) Estimate model by Tobit maximum likelihood directly.

#### Variations on Standard Tobit Model

$$y_{1i}^* = x_{1i}\beta + u_{1i}$$
 $y_{2i}^* = x_{2i}\beta + u_{2i}$ 
 $y_{2i} = y_{2i}^* \text{ if } y_{1i}^* \ge 0$ 
 $= 0 \text{ else}$ 

#### Example

- y<sub>2i</sub> student test scores
- $y_{1i}^*$  index representing parents propensity to enroll students in school
- Test scores only observed for population enrolled



$$\begin{split} \mathcal{L} = & \Pi_{1} \left[ \text{Pr} \left( y_{1i}^{*} > 0 \right) f \left( y_{2i} | y_{1i}^{*} > 0 \right) \right] \Pi_{0} \left[ \text{Pr} \left( y_{1i}^{*} \leq 0 \right) \right] \\ f \left( y_{2i}^{*} | y_{1i}^{*} \geq 0 \right) = & \frac{\int_{0}^{\infty} f \left( y_{1i}^{*}, y_{2i}^{*} \right) dy_{1i}^{*}}{\int_{0}^{\infty} f \left( y_{1i}^{*} \right) dy_{1i}^{*}} \\ = & \frac{f \left( y_{2i} \right) \int_{0}^{\infty} f \left( y_{1i}^{*} | y_{2i}^{*} \right) dy_{1i}^{*}}{\int_{0}^{\infty} f \left( y_{1i}^{*} \right) dy_{1i}^{*}} \\ = & \frac{1}{\sigma^{2}} \phi \left( \frac{y_{2i}^{*} - x_{2i} \beta_{2}}{\sigma^{2}} \right) \cdot \frac{\int_{0}^{\infty} f \left( y_{1i}^{*} | y_{2i}^{*} \right) dy_{1i}^{*}}{\text{Pr} \left( y_{1i}^{*} > 0 \right)} \end{split}$$

$$y_{1i} \sim N(x_{1i}\beta_1, \sigma^2)$$
  
 $y_{2i} \sim N(x_{2i}\beta_2, )$ 



$$\begin{aligned} y_{1i}^* \mid y_{2i}^* \sim N \left( x_{1i}\beta_1 + \frac{\sigma_{12}}{\sigma_2^2} \left( y_{2i} - x_{2i}\beta_2 \right), \sigma_1^2 - \frac{\sigma_{12}}{\sigma_2^2} \right) \\ E \left( y_{1i}^* \mid u_{2i} = y_{2i}^* - x_{2i}\beta \right) = & x_{1i}\beta_1 + E \left( u_{1i} \mid u_{2i} = y_{2i}^* - x_{2i}\beta \right) \end{aligned}$$



## Estimation by MLE

$$L = \Pi_0 \left[ 1 - \Phi \left( \frac{x_{1i}\beta}{\sigma_1} \right) \right] \Pi_1 \frac{1}{\sigma_2} \cdot \phi \left( \frac{y_{2i}^* - x_{2i}\beta_2}{\sigma_2} \right)$$
$$\cdot \left\{ 1 - \Phi \left( \frac{-\left\{ x_{1i}\beta_1 + \frac{\sigma_{12}}{\sigma_2^2} \left( y_{2i} - x_{2i}\beta_2 \right) \right\}}{\sigma^{\mathsf{x}}} \right) \right\}$$



#### Estimation by Two-Step Approach

• Using data on  $y_{2i}$  for which  $y_{1i} > 0$ 

$$E(y_{2i}|y_{1i} > 0) = x_{2i}\beta + E(u_{2i}|x_{i}\beta + u_{1i} > 0)$$

$$= x_{2i}\beta + \sigma_{2}E\left(\frac{u_{2i}}{\sigma_{2}} \mid \frac{u_{1i}}{\sigma_{1}} > \frac{-x_{1i}\beta_{1}}{\sigma_{1}}\right)$$

$$= x_{2i}\beta + \alpha_{2}\frac{\sigma_{12}}{\sigma_{1}\alpha_{2}}E\left(\frac{u_{1i}}{\sigma_{1}} \mid \frac{u_{1i}}{\sigma_{1}} > \frac{-x_{1i}\beta_{1}}{\sigma_{1}}\right)$$

$$= x_{2i}\beta_{2} + \frac{\sigma_{12}}{\sigma_{1}}\lambda\left(\frac{-x_{i}\beta}{\sigma}\right)$$



#### Example: Female labor supply model

$$\max_{x \in \mathcal{L}} u(L, x)$$
s.t.  $x = wH + v \quad H = 1 - L$ 

where H: hours worked

v : asset income

w given

 $P_x = 1$ 

L : time spent at home for child care

$$rac{rac{\partial u}{\partial L}}{rac{\partial u}{\partial x}} = w$$
 when  $L < 1$ 

reservation wage =  $MRS \mid_{H=0} = w_R$ 



#### Example: Female labor supply model

We don't observe w<sub>R</sub> directly.

Model 
$$w^0 = x\beta + u$$
 (wage person would earn if they worked)  $w^R = z\gamma + v$   $w_i = w_i^0$  if  $w_i^R < w_i^0$   $= 0$  else

• Fits within previous Tobit framework if we set

$$y_{1i}^* = x\beta - z\gamma + u - v = w^0 - w^R$$
  
$$y_{2i} = w_i$$



## Incorporate choice of H

$$w^0 = x_{2i}\beta_2 + u_{2i}$$
 given  
 $MRS = \frac{\frac{\partial u}{\partial L}}{\frac{\partial u}{\partial x}} = \gamma H_i + z_i'\alpha + v_i$ 

(Assume functional form for utility function that yields this)



$$w' (H_i = 0) = z_i'\alpha + v_i$$

$$\text{work if} \quad w^0 = x_{2i}\beta_2 + u_{2i} > z_i\alpha + v_i$$

$$\text{if work, then} \quad w_i^0 = MRS \Longrightarrow x_{2i}\beta_2 + u_{2i} = \alpha H_i + z_i\alpha + v_i$$

$$\Longrightarrow \quad H_i = \frac{x_{2i}\beta_2 - z_i'\alpha + u_{2i} - v_i}{\gamma}$$

$$= x_{1i}\beta_1 + u_{1i}$$

$$\text{where} \quad x_{1i}\beta_1 = (x_{2i}\beta_2 - z_i\alpha)\gamma^{-1}$$

$$u_{1i} = u_{2i} - v_i$$



## Type 3 Tobit Model

$$y_{1i}^* = x_{1i}\beta_1 + u_{1i} \leftarrow \text{hours}$$

$$y_{2i}^* = x_{2i}\beta_1 + u_{2i} \longleftarrow \mathsf{wage}$$

$$y_{1i} = y_{1i}^*$$
 if  $y_{1i}^* > 0$   
= 0 if  $y_{1i}^* \le 0$ 

$$y_{2i} = y_{2i}^*$$
 if  $y_{1i}^* > 0$   
= 0 if  $y_{1i}^* \le 0$ 



Here 
$$H_i = H_i^*$$
 if  $H_i^* > 0$   
= 0 if  $H_i^* \le 0$ 

$$w_i = w_i^0$$
 if  $H_i^* > 0$   
= 0 if  $H_i^* \le 0$ 

• Note: Type IV Tobit simply adds

$$y_{3i} = y_{3i}^*$$
 if  $y_{1i}^* > 0$   
= 0 if  $y_{1i}^* \le 0$ 



- Can estimate by
  - maximum likelihood
  - 2 Two-step method

$$E(w_i^0 \mid H_i > 0) = \gamma H_i + z_i \alpha + E(v_i \mid H_i > 0)$$



## Type V Tobit Model of Heckman (1978)

$$y_{1j}^* = \gamma y_{2i} + x_{1i}\beta + \delta_2 w_i + u_{1i}$$
  
$$y_{2i} = \gamma_2 y_{1i}^* + x_{2i}\beta_2 + \delta_2 w_i + u_{2i}$$

- Analysis of an antidiscrimination law on average income of African Americans in ith state.
- Observe  $x_{1i}$ ,  $x_{2i}$ ,  $y_{2i}$  and  $w_i$

$$w_i = 1 \text{ if } y_{1i}^* > 0$$
  
 $w_i = 0 \text{ if } y_{1i}^* \le 0$ 

- $y_{2i}$  = average income of African Americans in the state
- $y_{1i}^* =$  unobservable sentiment towards African Americans
- $w_i = \text{if law is in effect}$



- Adoption of Law is endogenous
- Require restriction  $\gamma \delta_2 + \delta_1 = 0$  so that we can solve for  $y_{1j}^*$  as a function that does not depend on  $w_i$ .
- This class of models known as "dummy endogenous variable" models.

# Coherency Problem (Suppose Restriction Does Not Bind?)

See notes on "Dummy Endogenous Variables in simultaneous equations."



#### Relaxing Parametric Assumptions in the Selection Model

#### References:

- Heckman (AER, 1990) "Varieties of Selection Bias"
- Heckman (1980), "Addendum to Sample Selection Bias as Specification Error"
- Heckman and Robb (1985, 1986)

$$y_1^* = x\beta + u$$
  
 $y_2^* = z\gamma + v$   
 $y_1 = y_1^* \text{ if } y_2^* > 0$ 



## Relaxing Parametric Assumptions in the Selection Model

$$E(y_1^* \mid \text{observed}) = x\beta + E(u \mid x, z\gamma + u > 0) + [u - E(u \mid x, z\gamma + u > 0)]$$

$$\frac{\int_{-\infty}^{\infty} \int_{-\infty}^{-z\gamma} uf(u, v \mid x, z) dvdu}{\int_{-\infty}^{\infty} \int_{-\infty}^{-z\gamma} f(uv \mid x, z) dvdu}$$

• Note:

$$\Pr(y_2^* > 0 \mid z) = \Pr(z\gamma + u > 0 \mid z) = P(Z) = 1 - F_{\nu}(-z\gamma)$$



$$\Rightarrow F_{\nu}(-z\gamma) = 1 - P(Z)$$

$$\Rightarrow -z\gamma = F_{\nu}^{-1}(1 - P(Z)) \text{ if } F_{\nu}$$

- Can replace  $-z\gamma$  in integrals in integrals by  $F_v^{-1}(1-P(Z))$  if in addition  $f(u, v \mid x, z) = f(u, v \mid z\gamma)$  (index sufficiency)
- Then

$$E(y_1^* \mid y_2 > 0) = x\beta + g(P(z)) + \varepsilon$$
 where  $g(P(Z))$ 

is bias or "control function."

• Semiparametric selection model-Approximate bias function by Taylor series in  $P(z\gamma)$ , truncated power series.

