Is Zip Code Destiny? Re-visiting Long-run Neighborhood Effects

Sadegh Eshaghnia

May 11, 2022

Introduction

- Children's incomes in adulthood vary remarkably by the local region where they grow up (Chetty et al. (2014)).
- Spatial variation in intergenerational mobility has been documented for the US and many other developed countries.
- What is the causal status of the link between neighborhood of residence and longrun economic well-being?
- To what extent do the differences in income mobility across geographical areas reflect causal effects of place (Chetty & Hendren (2018a,b); Chetty et al. (2020a,b); Chetty (2021))?
- This paper
 - documents life cycle heterogeneity in the neighborhood sorting
 - critically reviews the estimation procedures and underlying assumptions of the extant literature: causality or correlation?

Motivation

- Chetty & Hnedren (2018a) analyze data on families who moved across commuting zones (CZ) in the US and argue that neighborhoods shape various adulthood outcomes of children:
 - Adult incomes of children who moved converge to the adult incomes of children of permanent residents in the destination at a rate of 4% per year of exposure
- They interpret their results as causal effects of neighborhoods
- Chetty et al. (2020a) repeat the analysis at the Census tracts
- Replicated using data from other countries
- Chetty & Hendren (2018b): Causal effects of each county/CZ
- Chetty et al. (2020a) construct an "Opportunity Atlas"
- Touted as "zip code destiny" or "power of place"

- Influence on the design of housing policies
- Relocation policies as a way to promote upward mobility
- Creating Moves to Opportunity Experiment (CMTO) in Seattle and King county (Bergman et al. (2019))
- Should we invest in families and local amenities, or whether should we relocate families across neighborhoods?

This Paper

- Replicates Chetty et al. (2018) using Danish registers
- Investigates the mechanisms behind the exposure estimates
 - Can one interpret the results as causal effects of neighborhoods or "power of place"?
 - The role of **selection** and **sorting**
- Examines identifying assumptions in Chetty et al. (2018):
 Selection effects do not vary with the child's age when moving
 - This requires children potential outcomes to be orthogonal to their age when families move across neighborhoods
- Documents life cycle heterogeneity in the nbhd sorting process that invalidates the assumption of constant selection effects
- Conducts a placebo test to examine the credibility of the estimation strategies for identifying long-run nbhd effects

- I find similar estimates to those of Chetty et al. (2018)
- I provide evidence for a violation of the main identifying assumption (constant selection effects) in previous studies
 - Self-selection into "permanent residency" status and into timing of moves (wrt the age of children)
 - Families sort into heterogenous areas and the age of child when parents move is not orthogonal to the extent to which there is a positive sorting between parents and neighborhoods:
 - Higher correlation of later moves with income/family shocks
- Placebo tests suggest: exposure effect estimates in the literature reflect the correlational estimates of place effects

Section 1: Literature Review

Challenges and Questions

- What do we learn from previous works about the role of nbhd?
 - schools, crime, peer effects, air quality, etc
- Measurement errors
 - poor measures of neighborhood quality
 - static measures
- External validity:
 - not clear implication for non-movers: identification
 - large-scale impacts and GE effects
- Methodology:
 - output-based measures of neighborhood quality
 - rank-rank analysis (welfare implications)
 - lack of a life-cycle approach
 - statistical uncertainty surrounding neighborhood upward mobility estimates (Mogstad et al. (2022))
- Identifying assumptions
 - complementarity between early- and late-childhood investments
 - constant-in-age selection

Chetty et al. (2018):

THE IMPACTS OF NEIGHBORHOODS ON INTERGENERATIONAL MOBILITY I: CHILDHOOD EXPOSURE EFFECTS

- Data source: Federal income tax records
- **Data span:** 1996–2012
- **Sample:** Children who were born between 1980–1988
 - permanent residents (stayers/PR): subset of parents who reside in a single CZ c in 1996–2012.
 - movers: individuals in the main sample who are not PR
- Income type: Adjusted gross inc. (1040 tax return) + tax-exempt interest inc. and the nontaxable SSDI benefits
 averaged over 1996-2000 to get parent inc; age 24 for child
- Unit of Analysis: Family income
- Estimation Sample: Only PR and those who moved across NBHDs exactly once during 1996–2012


	Mean	Std. dev.	Median	Num. of obs.			
Variable	(1)	(2)	(3)	(4)			
Panel A: Permanent residents: Families	who do not	move across (Zs				
Parent family income	89,909	357,194	61,300	19,499,662			
Child family income at 24	24,731	140,200	19,600	19,499,662			
Child family income at 26	33,723	161,423	26,100	14,894,662			
Child family income at 30	48,912	138,512	35,600	6,081,738			
Child individual income at 24	20,331	139,697	17,200	19,499,662			
Child married at 26	0.25	0.43	0.00	12,997,702			
Child married at 30	0.39	0.49	0.00	6,081,738			
Child attends college between 18–23	0.70	0.46	1.00	17,602,702			
Child has teen birth (females only)	0.11	0.32	0.00	9,670,225			
Child working at age 16	0.41	0.49	0.00	13,417,924			
Panel B: Families who move 1-3 times a	cross CZs						
Parent family income	90,468	376,413	53,500	4,374,418			
Child family income at 24	23,489	57,852	18,100	4,374,418			
Child family income at 26	31,658	99,394	23,800	3,276,406			
Child family income at 30	46,368	107,380	32,500	1,305,997			
Child individual income at 24	19,091	51,689	15,600	4,374,418			
Child married at 26	0.25	0.43	0.00	2,867,598			
Child married at 30	0.38	0.49	0.00	1,305,997			
Child attends college between 18–23	0.66	0.47	1.00	3,965,610			
Child has teen birth (females only)	0.13	0.33	0.00	2,169,207			
Child working at age 16	0.40	0.49	0.00	3,068,421			
Panel C: Primary analysis sample: famili	ies who mov	e exactly onc	e across CZs				
Parent family income	97,064	369,971	58,700	1,553,021			
Child family income at 24	23,867	56,564	18,600	1,553,021			
Child family income at 26	32,419	108,431	24,500	1,160,278			
Child family income at 30	47,882	117,450	33,600	460,457			
Child individual income at 24	19,462	48,452	16,000	1,553,021			
Child married at 26	0.25	0.43	0.00	1,016,264			
Child married at 30	0.38	0.49	0.00	460,457			
Child attends college between 18–23	0.69	0.46	1.00	1,409,007			
Child has teen birth (females only)	0.11	0.32	0.00	769,717			
Child working at age 16	0.39	0.49	0.00	1,092,564			

TABLE I	
SUMMARY STATISTICS FOR CZ PERMANENT RESIDENTS AND MOVERS	

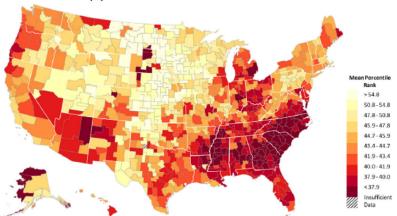
Geographical Variation in Outcomes of PR

- Given birth cohort s and CZ c, let p be the parents' percentile in the national income distribution
- Let y_i denote the child's national income rank in adulthood

Geographical Variation in Outcomes of PR- Cont'd

FIGURE I

Mean Child Income Rank versus Parent Income Rank for Children Raised in Chicago


$$y_i = \alpha_{cs} + \psi_{cs} p_i + \epsilon_i$$

then, estimate y_{pcs} , the mean rank of children with parents at percentile p of the income distribution in CZ c in birth cohort s, using the fitted values:

$$\bar{y}_{pcs} = \hat{\alpha}_{cs} + \hat{\psi}_{cs}p$$

For example, $\bar{y}_{25,c,1980} = 40.1$ for children growing up at the 25th percentile of the national income distribution and $\bar{y}_{75,c,1980} = 59.3$ for children growing up at the 75th percentile.

Mean Inc. Ranks for Children with Parents at 25th Pctile

(A) For Children with Parents at the 25th Percentile

Exposure effect at age *m*: the impact of spending year m of one's childhood in an area where PR's outcomes are 1 pp higher

Thought experiment: randomly assign children to new NBHD *d* starting at age *m* for the rest of childhood. The best linear predictor of children's outcomes y_i in the experimental sample, based on the PR's outcomes in CZ *d* (\bar{y}_{pds}):

$$y_i = \alpha_m + \beta_m \bar{y}_{pds} + \theta_i \quad (3)$$

Random assignment: $\theta \perp \bar{y}_{pds}$

Exposure effect at m: $\gamma_m = \beta_m - \beta_{m+1}$, the effect on y_i of spending the year from age m to age m + 1 in the destination Observational data: $b_m = \beta_m + \delta_m$

Bias = $\delta_m = \frac{cov(\theta_i, \bar{y}_{pds})}{var(\bar{y}_{pds})}$: parent inputs & unobserved det. of children's outcomes covary with PR's outcomes

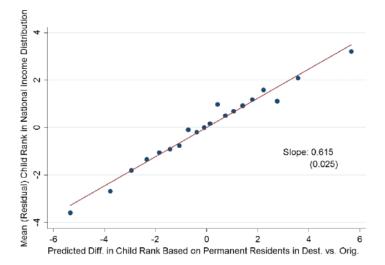
$$\mathsf{Bias} = \delta_m = rac{\mathsf{cov}(heta_i, ar{y}_{\mathsf{pds}})}{\mathsf{var}(ar{y}_{\mathsf{pds}})}$$

ASSUMPTION 1 (A.1): Selection effects do not vary with the child's age at move: $\delta_m = \delta$ for all m.

Under A.1, we obtain consistent estimates of exposure effects:

$$\gamma_m = (\beta_m + \delta_m) - (\beta_{m+1} + \delta_{m+1}) = b_m - b_{m+1}$$

- \blacksquare Selection effects δ cancel out when estimating the exposure effect.
- Rules out differential preferences among parents by age of child for local amenities (schools) not captured by income
- Even an stronger assumption when identifying county level estimates (Chetty & Hendren (2018b))


To begin, consider the set of children whose families moved when they were exactly m years old.

We can analyze how these children's incomes in adulthood are related to those of PR in their destination CZ using the following linear regression:

$$y_i = \alpha_{qos} + b_m \Delta_{odps} + \epsilon_{1i}, \quad (4)$$

where y_i denotes the child's income rank at age 24, α_{qos} is a fixed effect for the origin CZ o by parent income decile q by birth cohort s and $\Delta_{odps} = \bar{y}_{pds} - \bar{y}_{pos}$ is the difference in predicted income rank (at age 24) of permanent residents in the destination versus origin for the relevant parent income rank p and birth cohort s.

Movers' Outcomes versus Predicted Outcomes Based on PR in Destination- Movers at Age 13

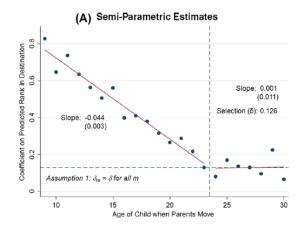
Childhood Exposure Effects on Inc. Ranks in Adulthood

$$y_{i} = \alpha_{qosm} + \sum_{m=9}^{30} b_{m} I(m_{i} = m) \Delta_{odps} + \sum_{s=1980}^{1987} \kappa_{s} I(s_{i} = s) \Delta_{odps} + \varepsilon_{2i},$$

 Δ_{qosm} : (origin × parent income decile × birth cohort × age) FE \hat{b}_m : the average effect on age-24 income rank y_i , conditional on moving from o to d at age m, of a 1 percentile increase in Δ_{odps}

Childhood Exposure Effects on Inc. Ranks in Adulthood

$$y_{i} = \alpha_{qosm} + \sum_{m=9}^{30} b_{m} I(m_{i} = m) \Delta_{odps} + \sum_{s=1980}^{1987} \kappa_{s} I(s_{i} = s) \Delta_{odps} + \varepsilon_{2i},$$


 Δ_{qosm} : (origin × parent income decile × birth cohort × age) FE \hat{b}_m : the average effect on age-24 income rank y_i , conditional on moving from o to d at age m, of a 1 percentile increase in Δ_{odps}

Alternative: parametric model estimating cohort- and age-specific slopes instead of FE

$$y_{i} = \sum_{s=1980}^{1988} I(s_{i} = s) \left(\alpha_{s}^{1} + \alpha_{s}^{2} \bar{y}_{pos}\right) + \sum_{m=9}^{30} I(m_{i} = m) \left(\zeta_{m}^{1} + \zeta_{m}^{2} p_{i}\right)$$

$$(6) \qquad + \sum_{m=9}^{30} b_{m} I(m_{i} = m) \Delta_{odps} + \sum_{s=1980}^{1987} \kappa_{s}^{d} I(s_{i} = s) \Delta_{odps} + \varepsilon_{3i}.$$

Results: \hat{b}_m as Function of Age m

FIGURE IV

Childhood Exposure Effects on Income Ranks in Adulthood

Results: \hat{b}_m as Function of Age m- Parametric Estimates

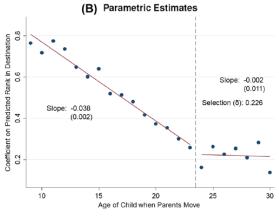


FIGURE IV

Childhood Exposure Effects on Income Ranks in Adulthood 22/

Childhood Exposure Effect Estimates- Specification

$$y_{i} = \sum_{s=1980}^{1988} I(s_{i} = s) \left(\alpha_{s}^{1} + \alpha_{s}^{2} \bar{y}_{pos}\right) + \sum_{m=9}^{30} I(m_{i} = m) \left(\zeta_{m}^{1} + \zeta_{m}^{2} p_{i}\right) + \sum_{s=1980}^{1987} \kappa_{s}^{d} I(s_{i} = s) \Delta_{odps} + I(m_{i} \leq 23) \left(b_{0} + (23 - m_{i})\gamma\right) \Delta_{odps}$$

(7)
$$+I(m_i > 23)(\delta + (23 - m_i)\delta')\Delta_{odps} + \varepsilon_{3i}.$$

Childhood Exposure Effect Estimates- Results

TABLE II CHILDHOOD EXPOSURE EFFECT ESTIMATES

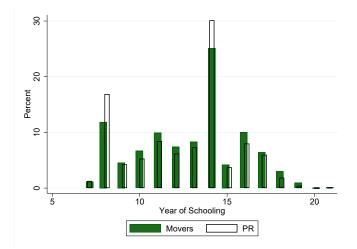
Specification:		Dependent variable: Child's income rank at age 24								
		Age ≤ 23 Age < 18		No cohort controls	Individual income	Child CZ FE	With family fixed effects			
	Pooled A		Age < 18				Baseline	No cohort controls	Time- varying controls	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	
Exposure effect (γ)	0.040	0.040 (0.002)	0.037 (0.005)	0.036	0.041 (0.002)	0.031 (0.002)	0.044 (0.008)	0.031 (0.005)	0.043	
Num. of obs.	1,553,021	1,287,773	687,323	1,553,021	1,553,021	1,473,218	$1,\!553,\!021$	$1,\!553,\!021$	1,553,021	

Section 2: Neighborhood Exposure Effects in Denmark

Data source: Danish registers

Data span: 1980–2017

Sample: Children who were born between 1970–1982


- permanent residents (stayers/PR): subset of parents who reside in a single *municipality (parish)* c in 1982–2000
- movers: individuals in the main sample who are not PR
- Income type: Disposable income
 - averaged over 1982–2000 to get parental income
- Unit of Analysis: Family income for parents and individual income for children

Summary Statistics

		0:1.1	N / 1:	
	Mean	Std. dev.	Median	Num. of obs.
Variable	(1)	(2)	(3)	(4)
Panel A: Permanent residents: Families				
who do not move across municipalities				
Child individual income at 30	25,495	9,710	25,415	536,993
Child family income at 30	43,090	19,368	44,476	536,072
Child cohabiting at 30	0.67	0.47	1.00	537,801
Child years of schooling by 30	14.68	2.37	14.50	524,959
Child individual property value at 30	81,794	99,120	69,070	529,849
Parent family income	43,832	13,272	42,660	527,670
Parent property value	109,882	79,499	106,692	525,677
Nuclear (intact) Family	0.62	0.49	1.00	484,164
Panel B: Families who move 1-3 times				
across municipalities				
Child individual income at 30	24,880	10,007	24,846	258,295
Child family income at 30	41,732	19,911	42,257	257,744
Child cohabiting at 30	0.65	0.48	1.00	258,592
Child years of schooling by 30	14.50	2.55	14.50	251,296
Child individual property value at 30	69,105	92,740	47,726	255,337
Parent family income	43,586	13,549	41,948	252,652
Parent property value	94,273	77,781	86,069	251,903
Nuclear (intact) Family	0.39	0.49	0.00	234,262
Panel C: Families who move exactly once				
across municipalities				
Child individual income at 30	25,197	10,066	25,146	157,428
Child family income at 30	42,313	19,955	42,968	157,119
Child cohabiting at 30	42,515 0.65	0.48	1.00	157,633
Child years of schooling by 30	14.63	2.51	14.50	153,221
Child individual property value at 30	72,892	2.31 94,934	54,975	155,601
Parent family income	44,180	13,879	42,528	154,143
Parent property value	100,761	13,879 78,964	42,528 94,480	153,667
	0.45	0.50	0.00	143,172
Nuclear (intact) Family	0.40	0.50	0.00	143,172

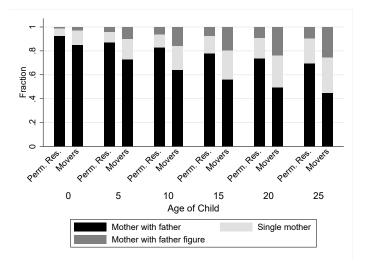
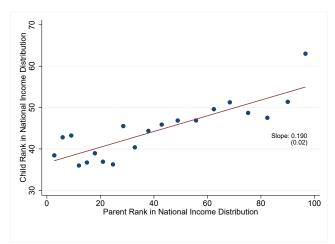

Table 1: Summary Statistics for Municipality Permanent Residents and Movers

Figure: Distribution of Years of Schooling by Permanent Residency Status

Family Structure of Movers and Residents


Figure: Family Structure over the Life Cycle by Permanent Residency Status

Neighborhood Exposure Effects

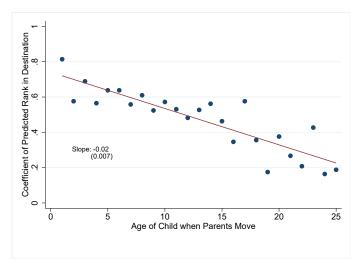
Mean Income Ranks for Children of PR of Copenhagen

Figure: Mean Child Inc. Rank vs Parent Inc. Rank for Children

Movers' Outcomes versus Predicted Outcomes Based on PR in Destination- Movers at Age 13

Childhood Exposure Effect Estimates- Specification

$$y_{i} = \sum_{s=1980}^{1988} I(s_{i} = s) \left(\alpha_{s}^{1} + \alpha_{s}^{2} \bar{y}_{pos}\right) + \sum_{m=9}^{30} I(m_{i} = m) \left(\zeta_{m}^{1} + \zeta_{m}^{2} p_{i}\right) + \sum_{s=1980}^{1987} \kappa_{s}^{d} I(s_{i} = s) \Delta_{odps} + I(m_{i} \leq 23) \left(b_{0} + (23 - m_{i})\gamma\right) \Delta_{odps}$$


00

(7)
$$+I(m_i > 23)(\delta + (23 - m_i)\delta')\Delta_{odps} + \varepsilon_{3i}.$$

1000

Childhood Exposure Effects on Inc. Ranks

Figure: Childhood Exposure Effects on Income Ranks in Adulthood

Dependent Variable: Child's Income Rank in Adulthood (Age 30)											
							Family FE				
Specification:	Pooled	$\mathrm{Age} <= 23$	Age < 18	No cohort controls	Family Income	Child nbhd FE	Baseline	No cohort controls	Time- varying controls		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)		
US: Exposure Effect (γ)	0.040	0.040	0.037	0.036	0.041	0.031	0.044	0.031	0.043		
	(0.002)	(0.002)	(0.005)	(0.002)	(0.002)	(0.002)	(0.008)	(0.005)	(0.008)		
Denmark: Exposure Effect (γ)	0.023	0.023	0.019	0.016	0.016	0.021	0.020	0.017	0.023		
	(0.003)	(0.003)	(0.005)	(0.003)	(0.003)	(0.003)	(0.013)	(0.009)	(0.015))		
Number of Obs.:	107,289	102,521	80,237	107,289	107,123	107,252	107,289	107,289	107,289		

Table 3: Heterogeneity of Childhood Exposure Effect Estimates

							Family FE				
Pooled	$\mathrm{Age} <= 23$	Age < 18	No cohort	Family Income	Child nbbd FF	Baseline	No cohort controls	Time- varying controls			
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)			
Panel A: Homeowners											
0.027 (0.006)	0.027 (0.006)	0.024 (0.008)	0.026 (0.005)	$\begin{array}{c} 0.018 \\ (0.006) \end{array}$	0.025 (0.006)	0.001 (0.020)	0.000 (0.016)	-0.028 (0.031))			
37,503	33,122	24,544	37,503	37,444	37,494	37,503	37,503	37,503			
			Panel B	: Renters							
0.018 (0.006)	0.018 (0.006)	0.011 (0.007)	$\begin{array}{c} 0.015 \\ (0.005) \end{array}$	$\begin{array}{c} 0.013 \\ (0.006) \end{array}$	0.016 (0.006)	$\begin{array}{c} 0.035 \\ (0.019) \end{array}$	0.026 (0.012)	0.031 (0.024))			
56,646	52,574	43,459	56,646	56,547	56,621	56,646	56,646	56,646			
	(1) 0.027 (0.006) 37,503 0.018 (0.006)	(1) (2) 0.027 0.027 (0.006) (0.006) 37,503 33,122 0.018 0.018 (0.006) (0.006)	(1) (2) (3) 0.027 0.027 0.024 (0.006) (0.006) (0.008) 37,503 33,122 24,544 0.018 0.018 0.011 (0.006) (0.006) (0.007)	(1) (2) (3) controls (4) Panel A: F (0.027 (0.024 (0.005) (0.006) (0.008) (0.005) 37,503 33,122 24,544 37,503 Panel E 0.018 0.018 0.011 0.015 (0.006) (0.007) (0.005) 10.015	(1) (2) (3) (4) (5) Panel A: Homeowne 0.027 0.027 0.028 0.006 0.008 0.005 0.006 (0.006) (0.006) (0.008) 0.0205 (0.006) 0.018 0.006 37,503 33,122 24,544 37,503 37,444 Panel B: Renters 0.018 0.011 0.015 0.013 (0.006) (0.006) (0.007) (0.005) (0.006)	Controls Income nbhd FE (1) (2) (3) (4) (5) (6) Panel A: Homeowners Panel A: Homeowners 0.025 (0.006) (0.016) (0.016) (0.016) (0.006)	(1) (2) (3) (4) (5) (6) (7) Panel A: Homeowners 0.027 0.027 0.028 0.018 0.026 0.006 (0.006) (0.006) (0.007) (0.006) 0.020 0.024 0.026 0.018 0.025 0.006 (0.006) (0.006) (0.006) (0.006) (0.007) (0.007) 0.018 0.027 0.027 0.027 0.026 0.018 0.025 0.013 0.006 (0.007) 0.013 0.013 0.016 0.0335 0.006 (0.006) (0.019) 0.006 (0.019) 0.016 0.016 0.015 0.013 0.016 0.015 0.013 0.016 0.035 (0.006) (0.006) (0.019) 0.015 0.013 0.016 0.015 0.016 0.016 0.015 0.013 0.016 0.025 0.016 0.016 0.015 0.013 0.016 0.015 0.016 0.016 0.016 0.016 0.015 0.016 0.016	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			

Dependent Variable: Child's Income Rank in Adulthood (Age 30)

Discussion of the Identifying Assumptions: A Statistical Approach

Identification

Exposure effect at age *m*: the impact of spending year m of one's childhood in an area where PR's outcomes are 1 pp higher

Thought experiment: randomly assign children to new NBHD *d* starting at age *m* for the rest of childhood. The best linear predictor of children's outcomes y_i in the experimental sample, based on the PR's outcomes in CZ *d* (\bar{y}_{pds}):

$$y_i = \alpha_m + \beta_m \bar{y}_{pds} + \theta_i \quad (3)$$

Random assignment: $\theta \perp \bar{y}_{pds}$

Exposure effect at m: $\gamma_m = \beta_m - \beta_{m+1}$, the effect on y_i of spending the year from age m to age m + 1 in the destination Observational data: $b_m = \beta_m + \delta_m$

Bias = $\delta_m = \frac{cov(\theta_i, \bar{y}_{pds})}{var(\bar{y}_{pds})}$: parent inputs & unobserved det. of children's outcomes covary with PR's outcomes

$$\mathsf{Bias} = \delta_m = rac{\mathsf{cov}(\theta_i, \bar{y}_{\mathsf{pds}})}{\mathsf{var}(\bar{y}_{\mathsf{pds}})}$$

ASSUMPTION 1 (A.1): Selection effects do not vary with the child's age at move: $\delta_m = \delta$ for all m.

Under A.1, we obtain consistent estimates of exposure effects:

$$\gamma_m = (\beta_m + \delta_m) - (\beta_{m+1} + \delta_{m+1}) = b_m - b_{m+1}$$

Even in observational data because the selection effects δ cancel out when estimating the exposure effect.

Rules out differential preferences among parents by age of child for local amenities, such as school quality, that are not fully captured in adult income percentile rank \bar{y}_{pds}

What if Assumption A.1 Is violated?

Under A.1:

$$\gamma_m = (\beta_m - \beta_{m+1}) + (\delta_m - \delta_{m+1}) = b_m - b_{m+1}$$

If A.1 is violated:

- If sorting decreases in child's age: $\delta_m > \delta_{m+1} \quad \forall m \in \{\underline{m}, ..., \overline{m}\} \Rightarrow equ (3)$ overestimates the exposure effect, γ_m
- 2 If sorting becomes stronger as age increases: $\delta_m < \delta_{m+1} \quad \forall m \in \{\underline{m}, ..., \overline{m}\} \Rightarrow equ (3) \text{ underestimates the exposure effect, } \gamma_m.$
- **3** Unclear if sorting not monotonically changes over the age support exploited for the estimation.

Parental Selection based on Education

Chetty (2018) estimates:

$$y_i = \alpha + \beta_m \Delta_{odps} + \epsilon_i, \quad (4)$$

Parent's education level is one of the omitted variables affecting both child's outcome and quality of the move across NBHDs.

Let's assume that the true model is as follows:

$$y_i = \alpha + \beta_m \Delta_{odps} + \beta_e edu_i^p + u_i, \quad (5)$$

Then,

$$Plim \ \hat{\beta}_{m} = \beta_{m} + \beta_{e} \frac{cov(edu_{i}^{p}, \Delta_{pds})}{var(\Delta_{pds})}$$
$$= \beta_{m} + \beta_{e}\delta_{m}$$

$$Plim \ \hat{\gamma}_m = (\beta_m - \beta_{m+1}) + \beta_e(\delta_m - \delta_{m+1})$$

Figure: Intensity of Sorting b/w Parent's Education and Quality of Move

(a) Parental Education (b) Selection Bias by Age 74 8-Mother's Years of Schooling 12.5 13 13.5 Selection Bias 05 0 Slope: -0.037 (0.0013) Slope: -0.005 (0.000005) 4 25 25 10 15 20 5 10 15 20 Age of Child when Parents Move Age of Child when Parents Move

To evaluate the size of the bias, $\beta_e(\delta_m - \delta_{m+1})$:

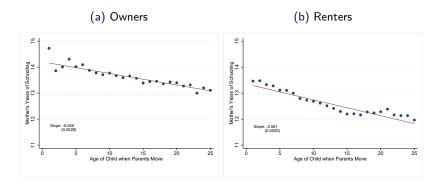
- **1** Using equ (5), obtain some estimates for β_e : $\hat{\beta}_e \in [0.82, 1.15]$
- **2** Using the slope of covariance term (between parents' education level and quality of the move) over age of child, obtain an estimate for $(\delta_m \delta_{m+1})$: $(\delta_m \delta_{m+1}) \approx 0.005$

What Does an Economic Model of Neighborhood Choice Predict?

A Simple Framework

- Consider a set of heterogeneous families who are different with respect to:
 - Information about neighborhood impacts
 - Access to credit markets
 - Children's potential gains from exposure to better neighborhoods
 - Altruistic preferences
- Assume that each family is allowed to move only once during the first 18 years after arrival of their first child.
- Assume that house price is a sufficient statistic for neighborhood quality.

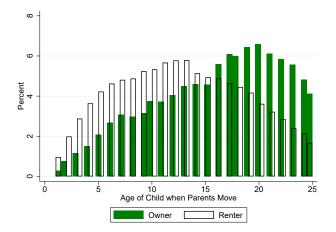
- Families who are less credit constraints move earlier
- More informed parents are willing to pay higher interest rates to move earlier
- Families sort on the gain from moves: families with high potential children move earlier
- The sorting pattern is more pronounced under dynamic complementarity


Section 3: Further Empirical Evidence: Life Cycle Heterogeneity in the Neighborhood Sorting Process

(A) Selection and Age of Child at Move:

(A.i) Parental Characteristics

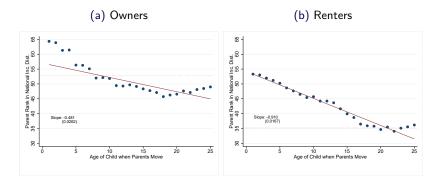
(A.i-1) Education


Figure: Age of Child at Move and Parental Edu. by Ownership Status

▶ parish

Distribution of Age of Child at Move- by Ownership Status

Figure: Timing of Moves across Neighborhoods by Home Ownership



(A) Selection and Age of Child at Move:

(A.i) Parental Characteristics

(A.i-2) Income

Figure: Parental Income Rank and Age of Child when Parents Move

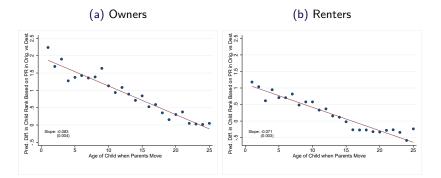
(A) Selection and Age of Child at Move:

(A.i) Parental Characteristics

(A.i-3) Family Structure

(A) Selection and Age of Child at Move:

(A.i) Parental Characteristics


(B) Parental Sorting to Neighborhoods:

(B.i) Quality of Moves

(B.i-1) Difference in Mean Income Ranks of Children of PR's in Orig. vs Dest.

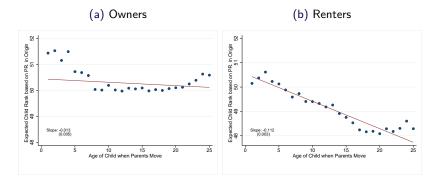

The Quality of Moves and Age of Child at Move

Figure: The Quality of Moves by Ownership Status

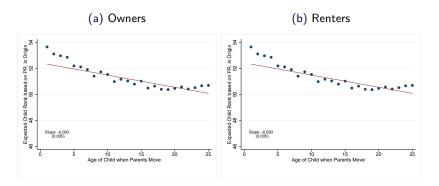
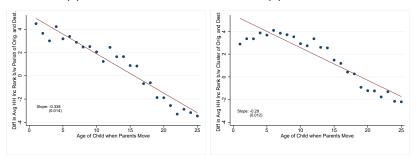

The Quality of Origin and Age of Child at Move

Figure: The Quality of Moves by Ownership Status

The Quality of Destination and Age of Child at Move

Figure: The Quality of Moves by Ownership Status

(B) Parental Sorting to Neighborhoods:

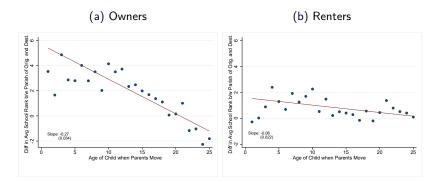

(B.i) Quality of Moves

(B.i-2) NBHD Avg Inc Rank at Orig. vs Dest.

Figure: Change in NBHD Inc Rank and Age of Child

(a) Parish Level

(b) Cluster Level



(B) Parental Sorting to Neighborhoods:

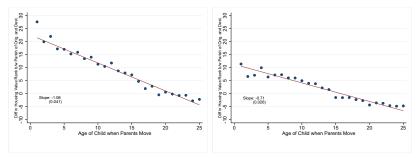
(B.i) Quality of Moves

(B.i-3) School Quality Rank at Orig. vs Dest.

Figure: Change in nbhd School Rank (Math Grades) and Age of Child

(B) Parental Sorting to Neighborhoods:

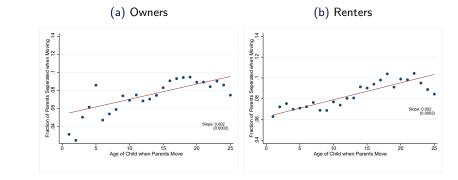
(B.i) Quality of Moves


(B.i-4) Average Neighborhood House Price Rank

Neighborhood (Parish) House Price Rank and Age of Child at Move

Figure: Change in NBHD House Price Rank. and Age of Child

(a) Owners


(b) Renters

(C) Timing of Moves and Lifecycle Shocks

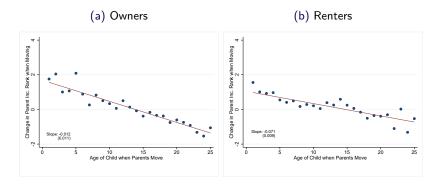

(C.i) Divorce

Figure: Age of Child at Move & Frac. of Parents Separated when Moving

(C) Timing of Moves and Lifecycle Shocks

(C.ii) Change to Income when Moving

Figure: Age of Child at Move and the Change to Family Inc. Rank

(D) Family Fixed Effect and Exogeneity Assumption

 Authors address time-varying selection possibility by adding family FE to the parametric model (and, separately, by controlling for changes in parents' income and marital status):

$$y_{i} = \sum_{s=1980}^{1988} I(s_{i} = s) \left(\alpha_{s}^{1} + \alpha_{s}^{2} \bar{y}_{pos}\right) + \sum_{m=9}^{30} I(m_{i} = m) \left(\zeta_{m}^{1} + \zeta_{m}^{2} p_{i}\right)$$

$$(6) \qquad + \sum_{m=9}^{30} b_{m} I(m_{i} = m) \Delta_{odps} + \sum_{s=1980}^{1987} \kappa_{s}^{d} I(s_{i} = s) \Delta_{odps} + \varepsilon_{3i}.$$

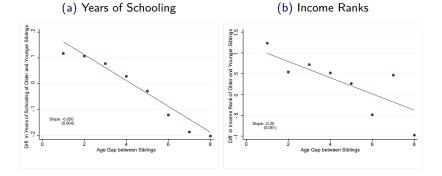
 Regression is now should estimated entirely on sample of families with 2 children. Intuitively, family-level mean effects are taken out.

Childhood Exposure Effect Estimates- Results

TABLE II CHILDHOOD EXPOSURE EFFECT ESTIMATES

Specification:	Dependent variable: Child's income rank at age 24										
	Pooled (1)	Age ≤ 23 (2)	Age < 18 (3)	No cohort controls (4)		Child CZ FE (6)	With family fixed effects				
					Individual income		Baseline (7)	No cohort controls (8)	Time- varying controls (9)		
					(5)						
Exposure effect (γ)	0.040	0.040 (0.002)	0.037 (0.005)	0.036	0.041 (0.002)	0.031 (0.002)	0.044 (0.008)	0.031 (0.005)	0.043		
Num. of obs.	1,553,021	1,287,773	687,323	1,553,021	1,553,021	1,473,218	$1,\!553,\!021$	$1,\!553,\!021$	1,553,021		

Discussion: Family Fixed Effect Model


• Suppose we can write $\epsilon_i = \hat{\theta}_{fam,i} + e_i$

- $\hat{\theta}_{fam,i}$: fixed family inputs (culture, parents' HC, etc.)
- *e_i*: variable inputs (e.g., wealth shocks, noise)

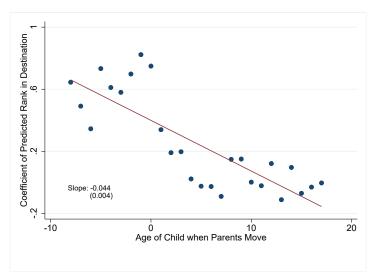
• The selection assumption: $\delta_m = \frac{cov(\epsilon_i, \bar{y}_{pds})}{var(\bar{y}_{pds})}$ is constant in age

- Including family fixed effects controls for $\hat{\theta}_{fam}$: if higher-skill families choose better neighborhoods at earlier ages
- To interpret results as *causal* still need $\frac{cov(e_i, \bar{y}_{pds})}{var(\bar{y}_{pds})}$ cons. in age
 - May be violated if shocks to wealth are corr. with child's age
 - One such shock correlated with first child's age: the birth of a 2^{nd} child
 - Meaningful differences between families where kids are 2 years vs. 8 years apart.

Figure: Time Space and Differences in Sibling Outcomes

Section 4: Placebo Tests Using Later Cohorts (1997-2005)

Placebo Tests

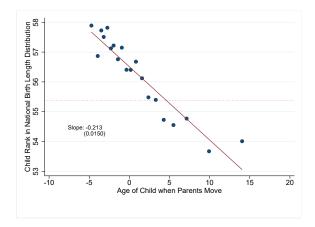

- Examine the credibility of the estimation strategies for identifying long-run neighborhood effects
- The extent to which nbhd exposure estimates are driven by the sorting of heterogeneous families across nbhd with different amenities rather than by causal impacts of nbhd on children
- Data on birth characteristics of children born between 1997-2005 in Denmark
- Chetty & Hnedren (2018a) investigate how children's earnings in adulthood are related to the quality of the destination neighborhood and the child's age when moving
- I examine how a child's birth length is related to such factors
- One expects to find insignificant estimates. Otherwise, the effect would be preceding the cause

$$\begin{split} bl_i &= \sum_{s=1997}^{2005} \kappa_s I(s_i = s) (\alpha_s^1 + \alpha_s^2 \bar{b}l_{pos}) + \sum_{m=1}^{20} I(m_i = m) (\zeta_m^1 + \zeta_m^2 p_i) \\ &+ \sum_{m=1}^{20} \beta_m I(m_i = m) \Delta_{odps}^{bl} + \sum_{s=1997}^{2004} \kappa_s^d I(s_i = s) \Delta_{odps}^{bl} + \epsilon_{3i}, \end{split}$$

where bl_i denotes the child's percentile rank on her position in the national birth length distribution relative to all others in her birth cohort, and $\Delta_{odps}^{bl} = \bar{b}l_{pds} - \bar{b}l_{pos}$ is the mean difference in permanent residents' birth length ranks between the destination and origin for the relevant parent income rank p and birth cohort s.

Placebo Tests

Figure: Placebo Effects Using Birth Length


$$\begin{split} bl_i &= \sum_{s=1997}^{2005} \kappa_s I(s_i = s) (\alpha_s^1 + \alpha_s^2 \bar{b} l_{pos}) + \sum_{m=1}^{20} I(m_i = m) (\zeta_m^1 + \zeta_m^2 p_i) \\ &+ \sum_{s=1997}^{2004} \kappa_s^d I(s_i = s) \Delta_{odps}^{bl} + I(m_i \ge 0) (b_0 + m_i \gamma) \Delta_{odps}^{bl} \\ &+ I(m_i < 0) (\delta_0 + m_i \delta') \Delta_{odps}^{bl} + \epsilon_{3i}, \end{split}$$

		Dependent	Variable: C	hild's Birth Le	ength Rar.	.ık			
		Age $\geq = 0$	Age < 22	No cohort controls	Family Level	Child nbhd FE			
Specification:	Pooled						Baseline	No cohort controls	Time- varying controls
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
US: Exposure Effect (γ)	0.040	0.040	0.037	0.036	0.041	0.031	0.044	0.031	0.043
	(0.002)	(0.002)	(0.005)	(0.002)	(0.002)	(0.002)	(0.008)	(0.005)	(0.008)
Denmark: Placebo Effect (γ)	0.044	0.045	0.031	0.044	-	0.043	0.028	0.033	0.029
	(0.006)	(0.006)	(0.006)	(0.006)	-	(0.006)	(0.014)	(0.014)	(0.014)
Number of Obs.:	127,536	73,746	133,159	127,536	_	127,536	127,536	127,536	127,536

	Pooled (1)	Age >= 0 (2)	Age < 22 (3)	No cohort controls (4)	Family Level (5)	Child nbhd FE (6)	Family FE			
Specification:							Baseline (7)	No cohort controls (8)	Time- varying controls (9)	
Placebo Effect (γ)	0.048	0.048	0.027	0.046	-	0.048	0.038	0.044	0.037	
	(0.010)	(0.010)	(0.007)	(0.010)	-	(0.010)	(0.022)	(0.021)	(0.022)	
Number of Obs.:	56,541	40,115	58,616	56,541	-	56,541	56,541	56,541	56,541	
				Panel	B: Renters					
Placebo Effect (γ)	0.040	0.040	0.028	0.040	-	0.038	0.010	0.023	0.011	
	(0.009)	(0.009)	(0.007)	(0.009)	-	(0.009)	(0.022)	(0.021)	(0.022)	
Number of Obs.:	45,923	27,053	48,479	48,918		45,923	45,923	45.923	45,923	

Age of Child at Move and Child Potential Outcomes

Figure: Birth Length Rank and the Age of the Child at the Time of the Move

Age of Child at Move and Child Potential Outcomes

Figure: Birth Weight Rank and the \mbox{Age} of the Child at the Time of the Move

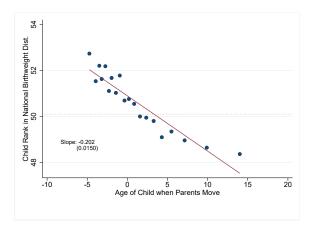
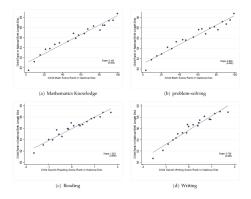
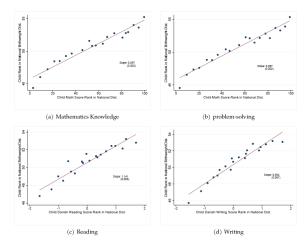




Figure: Birth Length Rank and the Age of the Child at the Time of the Move

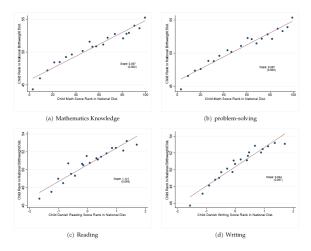

Birth Weight and Academic Achievement

Figure: Birth Weight Rank and the Age of the Child at the Time of the Move

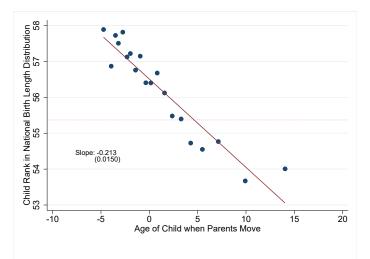

Academic Achievement and Income Ranks

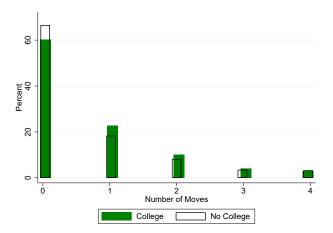
Figure: Test Scores and Adulthood Income Rank

Age of Child at Move and Child Potential Outcomes

Figure: Birth Weight Rank and the Age of the Child at the Time of the Move

Conclusion

- Recent studies have exploited quasi-experimental strategies to identify the causal impact of NBHDs on children.
- One of the main challenges in estimating the causal impact of NBHDs on child is the endogeneity of NBHD quality.
- I investigate the methodology and main identifying assumptions of the influential studies in the literature.
- Parental sorting into NBHDs has an important lifecycle gradient; it is not orthogonal to age of children at the time of the move.
- The constant selection effects assumption in recent empirical works is violated → overestimating NBHD impacts on children
- The placebo tests clearly showcase the methodological problems of the popular studies in the literature.


Thanks!

Appendix

Geographical Variation in Outcomes of PR- across CZs

Figure: Number of Moves by Education Level

