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Identifying Policy Parameters

e Commonly used specifications

Y1 = w1 (X) + U, Yo = po(X) + Uo, C=pc(2) + U,

(1)
where (X, Z) are observed by the analyst, and Uy, Ui, Uc are
unobserved.
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¢ Define Z to include all of X.

® Variables in Z not in X are instruments.

o Z 1 (Uy, Uy, Ug)|X

°* pb=EY1i—Yo—C|Z)=pup(2)—V
1o(2) = E(ua(X) — po(X) — nc(2) | )
V=—EU — Uy— Uc|I).

® Choice equation:

D= 1(up(2) > V). (2)

® In the early literature that implemented this approach po(X),
p1(X), and pc(Z) were assumed to be linear in the parameters,
and the unobservables were assumed to be normal and
distributed independently of X and Z
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Useful fact (previously discussed):

Choice Probability:  P(z) =Pr(D=1|Z=2)
= Pr(up(z) =2 V)
= Pr (MD_(Z) > 1)

oy oy

v
> ; Uniform(0, 1)
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Pa=pe (£ (107) 275 (50)

= Pr(P(z) > Up)

P(z) is the p(z)*" quantile of Up.

po(2)
oy

® It is also a monotonic transformation of the mean utility

® So P(z) is a monotonic transformation of utility
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-
Recall

Y=DY,+(1-D)Y,
= Yo+ D(Yi — Yo)

Keep X implicit (condition on X = x)
EY|Z=2=EYy)+EY1— Yo | D=1,Z=2)P(2)

Vv
from law of iterated expectations

=EYo)+ E(Y1— Yo | P(2) > Up)P(2)

.. It depends on Z only through P(Z).
EY|Z=2)=EYo)+EY1— Yo | P(Z) > Up)P(Z)
Index Sufficiency

® Question: Why? Under what conditions?



.
® What is E(Y1 — Yo | P(z) > Up)? (Treatment on the treated)

Derivation

Let the joint density of (Y1 — Yo, Up) be

v~ Yo,Up (Y1 — Y0, UD)-

It does not depend on Z.

® [t may, in general, depend on X.

E(Ys — Yo | P(2) > Up)
oo P(2)
I 1 = y0)f—yo,up(y1 — o, up) dupd(y1 — yo)
_ 0

N Pr(P(z) > Up)

Heckman Interpreting 1V: More On Roy Model



® Recall that y
Up=F — .
o=(z) (o)

® Up is a quantile of the V/oy distribution.
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® By construction, Up is Uniform(0, 1) (this is the definition of a
quantile).

L fUD(UD) =1.

e Also, Pr(P(z) > Up) = P(2).

Notice, by law of conditional probability,

fyi—vo.up(¥1 — Y0, up) = fv,—vy.up(¥1 — Yo | Up = up) fu,(up) .
]
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E(Y]_ - Y() | P(Z) > UD)

P(Z) o0
I J 01— y0)fvi—ve,upn(y1 — Yo, up) d(y1 — yo) dup
0 —o0
a P(2)
E(Y]_ - YO | P(Z) > UD)
P(Z) o0
[ J n—y0)fvi—vo,up(y1 — o | Up = up) d(y1 — yo) dup
B P(2)
P(2)

f E(Yl — YO ’ UD = UD) dUD
0

P(2)
® Definition: E(Y; — Yo | Up = uy) is marginal treatment effect
(MTE)
e If P(z) = Uy, agent with Z = z is indifferent between “0" and
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P(z)
E(Y’ Z= Z) = E(Yo) + / E(Yl - Y ’ Up = UD)dUD
0

DE(Y| Z = 2)
——  =HKY1— Yy | Up=P
P dn Yl %= P2
EOTM or marginal gains for
people with Up=P(z)

P(Z)
EY|Z=7)= E(Y) + / E(Y1 — Yo | Up = up)dup

0
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e Consider mean of Y for two different values of Z
® Suppose P(z) > P(Z)
“EY|Z=2-EKY|Z=2)=
P(z)

_ / E(Ys — Yo | Up = up)dup
P(Z)
= E(Y1— Yo | P(2) > Up > P(Z)) Pr(P(2) > Up > P(Z))
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Notice

P(2)

Pr(P(z) > Up > P(Z)) = dup
J
— P2) - P(2)
EY|Z=2-EKY|Z=72)
= E(Y1— Yo | P(2) > Up > P(Z))(P(2) — P(Z))

e This is LATE: will see why in next slides

Heckman Interpreting 1V: More On Roy Model



EY|Z=2)—EY|Z=2)
P(z) — P()

— LATE(z, 7)

P(z)
f MTE(UD)dUD
6D

P(z) - P(Z)
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