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Introduction

Twins studies have been extensively undertaken in economics, sociology, and behavioral
genetics to incorporate the role of genetic endowments in relations for a broad range of
social, demographic, and economic outcomes. However, the focus in these literature has
been distinct: On the one hand. the economic literature has been primarily concerned with
the need to control for unobserved endowments—including as a possibly important subset,

genetic endowments—in analyses that attempt to establish the impact of one variable,
often schooling, on a variety of economic, demographic, and health outcomes (Behrman,
Rosenzweig, and Taubman 1994, 1996). On the other hand. behavioral genetics analyses
have mostly been concerned with decomposing the variation in the outcomes of interest
into genetic, shared environmental, and non-shared environmental components, with recent
multivariate analyses investigating the contributions of genes and the environment to the
correlation and causation between variables (Plomin, DeFries, McClearn, and McGuffin
2005). Sociological research using twins has mostly built on either the economic or the
behavioral genetics approach (Conley and Bennett 2000; Freese 2008). Despite the fact
that data on twins and the recognition of the role of endowments are central to both the
economic and behavioral genetics literatures, the methodological developments in these
two areas have mostly evolved independently. And though both of these approaches are
increasingly valued within sociology and related social science fields as important tools to
investigate the interaction of social processes and social structures with genetic and related
biological processes (e.g., Bearman 2008: Conley, Strully, and Bennett 2003: Freese 2008:
Guo. Tong, and Cai 2008; Schnittker 2008), a detailed comparison and potential integration
of these two approaches to the study of twins data have been lacking so far.



This paper formally develops the relationship between the economic and behavioral
genetics approaches to the analyses of twins and discusses both the economic monozygotic
within (MZ) and the behavioral genetics ACE model within a unified conceptual frame-
work that highlights the similarities and differences between these models.! It also reviews
some of the approaches that are available to test and/or relax some of the key assumptions
underlying these methods. Most important, this paper also develops an extension of the
conventional ACE model, denoted ACE-$. that bridges between the economic within-MZ
approach and the behavioral genetics approach. The new features of this model include
that 1t allows the joint estimation of the causal relationship—denoted by f—between, say,
schooling and fertility or health and the contributions of genetic and social endowments to
the variation and covariation of outcomes within and across individuals. This model also
provides a definition of heritability A that appropriately captures the different pathways
through which genetic endowments affect both schooling x and outcomes y such as fertility
or health in an ACE-g framework where schooling has a direct effect on fertility (health).



In addition, extensions of our ACE-g model can identify the extent to which social interac-
tions between twins affect schooling or fertility /health, or the extent to which schooling 1s
affected by measurement error. In the instrumental variable version, the ACE-S model can
also provide estimates of all model parameters—including the casual effect of schooling
on fertility and the extent of heritability of the different outcomes—even if unique environ-
mental factors affecting schooling affect fertility (health) not only through schooling but
directly. The ACE-g8 model, therefore, both enriches the economic within-MZ approach
by providing a more finely grained picture about the influence of unobserved endowments
on schooling and fertility (health) and extends the ACE model, which has been one of the

cornerstones of research in behavioral genetics, by integrating causal pathways between
schooling and fertility (health).



The “cost” of the additional analytic leverage of the ACE-S model, which extends both
beyond the within-MZ model in economics and the ACE model in behavioral genetics, 1s
that the model 1s subject to more restrictive assumptions than the within-MZ approach
in economics. In particular, the model 1s subject to the same assumptions as the behav-
ioral genetics ACE model. The most relevant restrictions of the ACE model. beyond what
is already required in the within-MZ model, pertain to the underlying genetic model and
other assumptions required for decomposing the sources of variation into social and genetic
endowments and individual-specific factors. Specifically, the ACE-g model—just like the
ACE model in behavioral genetics—assumes (1) an additive genetic model with no assorta-
tive mating (albeit both can be relaxed with suitable data), which establishes the correlation
of genetic endowments between DZ twins, and (2) the absence of gene-environment inter-
actions, which implies that the latent endowments (genetic factors A, shared environments
C. and individual-specific factors E) are independent of one another and additively affect
the outcomes.?



Twins and Twinning: Setting the Stage

To help set the stage for what follows, there are two kinds of twins: monozygotic (MZ)
or “identical” twins and dizygotic (DZ) or “fraternal” twins. Except for being born at the
same time, DZ twins are ordinary siblings in the sense that they are the product of two
different eggs and two different sperm. MZ twins are genetically identical at conception,
emerging from a single sperm and egg from which two separate eggs later emerge. Whereas
the rate of DZ twinning is affected by several factors, including maternal age and fertility
drugs, and 1s, therefore, subject to change over time, across women, and among countries,
MZ. twinning occurs at a relatively constant rate among contexts (Kiely and Kiely 2001).
[rrespective of context, MZ twins are rarer than DZ twins. In most pre-fertility drug popu-
lations, about | in 85 births are twins (Plomin et al. 2005), of which about a third are MZ,
a third same-sex DZ, and a third opposite-sex DZ (Keith, Papiernik. Keith. and Luke et al.
1995). Though some prominent datasets of twins raised apart exist (e.g., the Minnesota
Study of Twins Raised Apart, [Bouchard, Lykken, McGue, Segal, and Tellegen 1990] or
the Swedish Adoption/Twin Study on Aging |Bjorklund, Jéntti, and Solon 2005]), most
twins data include twins that were raised together. Important U.S. twins datasets, for exam-
ple. include the National Longitudinal Study of Adolescent Health (Add Health) Twin Data
(Harris, Halpern, Smolen, and Haberstick 2006), the Midlife Development in the United
States Study (Brim et al. 1996) and the National Academy of Science-National Research
Council Twin Registry of World War II Veterans (Page 2002). Extensive register-based
twins data exist in Denmark, Sweden, Norway, and Australia (Harris, Magnus, and Tambs
2002; Lichtenstein et al. 2002; Miller, Mulvey, and Martin 1997; Skytthe et al. 2002).



Because twins raised together share both genetic factors and important social and
economic contexts during childhood and adolescence, they provide a unique opportunity
to better understand how genetic and social endowments affect a variety of behaviors
and outcomes that are of key interest to social scientists. For example, in the economic
“fixed-effects” approach to twins data, twins have been extensively used to control for
genetic and other background, unobserved, confounding factors. Social scientists long have
used sibling comparisons for this purpose, reasoning that if brothers/sisters are similar
with respect to family background and other characteristics, using differences between
them in levels of schooling controls a great many relevant confounding factors.’> However,
twins are more attractive than other siblings data insofar as they share a birth. Differences
between twins are, therefore, not confounded by parental family life-cycle differences and,
in the case of MZ twins, genes at conception, both of which can have substantial con-
founding effects on both the outcome and explanatory variables in a particular study.*
To overcome these concerns, twins fixed-effects studies have been interested in estimat-
ing the causal effect of one (or more) variable (e.g., schooling, birth weight) that may
be partly determined directly by unobserved endowments on other variables (e.g., fertil-
ity, marital status, health-related behaviors and outcomes, social interactions, wages, and
well-being) that are themselves partly determined directly by endowments (e.g.. Behrman
and Rosenzweig 2004; Behrman et al. 1994, 1996:; Kohler. Behrman, and Skytthe 2005).



These analyses explicitly acknowledge that both schooling and outcomes such as fertility,
nuptiality, or health are possibly determined by unobserved genetic or social endowments.,
where examples of the latter include as an important dimension socioeconomic and psy-
chological characteristics of the twins’ parents, and these studies argue that twin designs

can be used to obtain correct estimates of the relevant relations even in the presence of such
unobserved endowments.



Use of Twins in Economics: The Fixed-Effects Approach

The general framework of our discussion in this paper 1s a context where a researcher
would like to infer the causal effect of some variable., x, which in our running example
will be schooling, on a second variable, y. For our methodological discussions, we will
use (completed) fertility as the running example for y and, in the empirical examples, we
will obtain estimates for the effect of schooling on health, spouse’s schooling (which 1s
an important indicator of marriage market outcomes), and fertility. The notion of causality
that underlies our discussions in this paper of the relationship of schooling with outcomes
such as health and fertility 1s thereby closely related to the recent discussion of causality
in the social sciences (Heckman 2008: Mofhtt 2005, 2009; Rosenzweig and Wolpin 2000;
Winship and Sobel 2000). A basic point in this literature, emphasized by Moffitt (2005)
among others, 1s that the causal effect of, say, schooling x on fertility y, cannot be esti-
mated without some type of assumption or restriction, even in principle. because of the
inherent unobservability of the counterfactual.® A cross-sectional regression coefficient on



x 1s necessarily estimated by comparing the values of y for different individuals who have
different values of x, not by comparing different values of y for a single person observed at
different levels of schooling x. Because individuals with different values of schooling x are
likely to differ in unobservable ways, the differences in their fertility y may not accurately
reflect the extent to which a specific person’s fertility would vary if this individual could
be observed at different levels of schooling. In light of this inherent identification problem
of the causal influence of, say, schooling x on fertility y, the literature on causal modeling
emphasizes that the estimation of a causal effect always requires a minimal set of identify-
ing assumptions and, moreover, that social science theory needs to guide these assumptions
because the minimal set of identifying assumptions for causal inference cannot be empir-
ically tested. Outside evidence, intuition, theory, or some other means outside the specific
empirical model and the specific data 1s required to justify any empirical approach to causal
modeling. Using the words of Moffitt (2005), “While the necessity to make these types of
arguments may at first seem dismaying, it can also be argued that they are what social sci-
ence 1s all about: using one’s comprehensive knowledge of society to formulate theories
of how social forces work, making informed judgments about these theories, and debating
with other social scientists what the most supportable assumptions are.”



We will argue 1n this paper that social science methods for twins data provide one
promising approach to the identification of causal effects that relies on transparent assump-
tions that are consistent with the contemporary understanding about the underlying social
and biological processes that determine social, demographic, and economic outcomes such
as schooling, nuptiality, fertility, wages and related aspects. By integrating the economic
and behavioral genetics approaches to the analyses of twins, we develop an approach that
combines the identification of causal effects, which dominates the economic literature, with
the decomposition of variances and covariances into genetic and environmental factors,
which 1s the primary goal of behavioral genetics approaches.



Figure 1 illustrates one possible conceptual framework about how unobserved genetic
and social endowments affect both schooling x and fertility y. Though the economic fixed-
effects approach is usually presented somewhat differently, the representation in Figure |
is observationally equivalent and facilitates our subsequent comparison with the behavioral
genetics models and the integration of both approaches.® Specifically, the conceptual
framework in Figure 1 assumes that schooling x;; of twin 7 in pair j has a direct and causal
influence on the fertility y; of twin 7 in pair j that is represented by the coefficient . In addi-
tion, each of the phenotypic variables, x;; and yj;. 1s potentially subject to influences from
the three latent sources: genetic endowments (Aj; and A'E.): common environmental influ-
ences (C; and C}'). which we refer to as social endowments that are shared by twins reared
together in the same family j: and unique or individual-specific environmental influences
E} and E,‘j that in the economic literature are sometimes referred to as shocks to either
schooling x;; or fertility y;;. In this path diagram in Figure 1, the paths @y and ¢y indi-
cate, respectively, the effects of the latent genetic component Aj; and shared environmental
component C,‘j on schooling x;;, while the paths ayyx and ¢y, reflect the effect of these latent
genetic and shared environmental factors on fertility y;. The path e,, measures the effect
of the unique environmental factors Ej; on schooling x;;, and eyy measures the effect of the
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unique environmental component Ej; on fertility yj;.
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Figure 1. Path-diagram for the economics fixed-effects model for twins.



As we will argue in more detail further, a required assumption of the standard eco-
nomic fixed-effects approach to twins data 1s that the unique environmental influences
affecting schooling x;; and the outcome yj. say fertility. are independent.” It is, therefore,
important to observe that, consistent with this assumption, we have drawn the path-diagram
in Figure 1 without a path ey, that would connect the unique environmental factor Ej; to
fertility yj;.

The economic “fixed-effects” approach to twins data rests on the insight that, 1f
unobserved genetic and social endowments affect the variables x and y together with
individual-specific environmental factors as outlined in Figure 1, MZ twins data—but not
other siblings data—can be used to estimate the causal effect of schooling x on fertility y.
This causal effect, which we have denoted with g in Figure I, 1s often a primary focus
of analyses in the social sciences. In the presence of unobserved endowments, however,
cross-sectional estimates or inferences based on sibling data (within-siblings analyses) are
generally not able to correctly infer these causal pathways.



To illustrate this within-MZ twins approach and its underlying assumption in more
detail, consider the following formal statement of the model in Figure 1 that 1s based on
a linear representation of a reduced-form equation relating fertility y; of twin 7 in pair j
to his or her schooling x;; and to three sets of unobserved variables representing (1) social
endowments €} and Cj’ affecting schooling x;; and fertility y; that are common among both
members of twins pair j (e.g., exogenous features of the parental family environment in
childhood, including family income, parents” human capital, average genetic endowments
among siblings, local schooling, and health-related options), (2) genetic endowments Aj;

and A; that additively affect both x;; and y; and that are correlated among the members of
each twins pair, and (3) unique individual environmental influences Ej; and E; that capture
random “‘shocks™ to the schooling attainment and fertility outcomes of twin i in pair j. For
schooling, the path diagram in Figure | then implies the specification

Xjj = dyy ; + CI.IC_L;- + EHE}; (1)

where Aj;, C; and Ej; are independently distributed and standardized to mean of zero and a
variance of one.



Schooling x;; 18 assumed to have a direct causal effect, denoted by g, on fertility yj
for twin i in pair j. In addition, we assume that y;; is also influenced by unobserved endow-
ments. On the one hand, y;; is assumed to possibly depend on the shared environmental
factors Cj and the genetic endowments Aj; that also affect schooling of the twin i in pair
J- In addition, fertility y; 1s potentially affected by unobserved endowments and shocks
that are specific to fertility y: (1) social endowments C; that are common for both twins in
pair j., (2) genetic endowments AL which are correlated within a twins pair, and (3) a ran-
dom individual-specific shock E; that also includes measurement error. Assuming a linear
relationship, we thus obtain:

Yij = IBI:}' + Ay ; + ijxcf + a‘ﬁ‘-A:r + C}r_-_.-C; + E_-‘.-}.-E;;, (2)
where A; C; and E; are independently distributed and standardized to mean of zero and
a variance of one. In addition, the model in Egs. (1-2) and Figure 1 also assumes, as we
have mentioned earlier, that the random shocks EF; affecting schooling x;; of twin 7 in pair
J have no direct effect on the fertility y; and that these random shocks affect the fertility yj;
of twin 7 in pair j only through their effect on schooling (in the path diagram in Figure 1
this assumption is equivalent to specifying e,, = 0.). The coefficients ay, and ¢, in Eq. (2),
which reflect the importance of the “cross-paths™ in Figure 1 from the endowments Aj

and C7? to the fertility y;;, indicate the extent to which the endowments affecting school-
ing x;; and fertility y;; are interrelated. For example, when studying the effect of schooling

attainment on labor market outcomes or fertility, this interrelation 1s conceivably strong—
and the path coefficients a,, and c¢,, are correspondingly large—because unobserved differ-
ences 1n abilities and preferences tend to affect both decisions about schooling and fertility
and other outcomes of interest such as wage rates.



As 1s well known, the parameter g in Eq. (2) 1s not identified in standard cross-
sectional regression analyses if at least one of the coefficients ay, or ¢y, 1s not zero: that
s, if the unobserved endowments C; and Aj; affecting schooling Xij have also a direct
effect on fertility y;. In this case, g 1s estimated with bias if Eq. (2) 18 estimated across
individuals with different values of € and A; The extent of bias in these cross-sectional
analyses depends on the covariance between the unobserved determinants of x; and yj
in Egs. (1-2). It can be shown that the cross-sectional OLS regression coefficient g for
schooling is equal to
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where g 1s the “true” effect of schooling x on fertility y from Eq. (2). The cross-sectional
OLS estimate of g 1s, therefore. biased unless both ayy and ¢y, equal zero: that 1s, unless
the genetic and social endowments affecting schooling have no effect on y;; except through
their effect on x;;. This assumption, however, 1s not plausible in many empirical applica-
tions. Thus, generally, the cross-sectional estimate of the association between schooling
and fertility 1s a biased estimate of the causal impact of schooling on fertility because
schooling is partially proxying for genetic, family backeround, and other endowments.



[t 1s important to emphasize that, in situations where the paths ayy and ¢y, in Figure |
cannot be assumed to be both equal to zero. using sibling rather than standard cross-
sectional data for the estimation does not provide a remedy. Though siblings from the
same family j have the same shared enviroments C} in common, siblings (other than MZ

twins) do not share all genetic endowments and, therefore, A*’fj £ Agj.s Sibling data thus
do not (fully) control for unobserved genetic endowments and, if ayy # 0 in Eq. (2), the
estimate of g 1s biased also in sibling analyses. With no further assumptions, it is, there-
fore, clear that 8 1s not 1dentified even if sibling-pair data are used in the estimation of 8.
This is because of the individual-specific genetic endowments Aj; that are not equal for sib-
lings, expect for MZ twins. As long as families or individuals respond to individual-specific
differences in endowments, and such differences are important, sibling estimators do not
provide unbiased estimates (Behrman et al. 1994, 1996). In recognition of this problem,
researchers have employed samples of MZ twins, between whom there are as minimal as
possible endowment differences at conception, to identify 8 in estimates of relations (1-2).



One potential solution to the dilemma of identifying the effect g of schooling x on
fertility y 1s provided by using MZ twins, because Eqs. (1-2) can be rewritten for MZ
twins as:

xF[Z = lxx f + C_HC}: + ExxE}ff (3)
= Bx)” + apAT + 0 Cf + ayn A + ¢,,C) + ey Ej,. (4)
where for MZ twins we can assume that Aff- = gj = Af (and, by definition, for shared

environments CL = ng = C;). Relations parallel to Egs. (3) and (4) can be written for the
other member k of twins pair J.



The fixed-effects MZ twins estimation, or a within-MZ twins estimation, of Egs. (3)
and (4) then controls for all right-side variables in these relations that are common to both
members of an MZ twinship: the genetic endowments A; and A} and the social endow-
ments C} and C:;' In particular, the within-MZ-twins estimator for the effect g of schooling
x on fertility y 1s obtained by subtracting relations (3) and (4) for twins 1 and 2 in each
twins pair j. With such a within-MZ-twins estimator, all of the unobserved endowment
components in Eqgs. (3) and (4) are swept out so that consistent estimates of 8 can be
obtained from within-MZ estimation under the maintained assumption that ey, = 0 (i.e.,
the assumption that the individual-specific shocks to schooling E; of twin 7 in pair j are not
correlated with the unobserved shocks to fertility y;):

Z MZ X 24
xl;»} _-"‘:y :EII(EU_ gj)

ViZ — it = B)iE — X55) + ey (B} — (E3)



In summary, under the assumption noted here, MZ fixed-effects estimators can be
used to identify the true reduced-form impact g of schooling x on fertility y. In addition,
comparisons can be made with estimates of relation (2) for the same fertility outcomes
to learn to what extent the estimates of the impact of schooling on fertility g are biased
in cross-sectional estimates that fail to control for unobserved endowments C; and Aj.
Comparisons can also be made between the within-MZ estimates for females and males,
between racial and ethnic groups, across birth cohorts, across levels of socioeconomic sta-
tus SES, over time, and across countries. Comparisons can also be made between MZ
fixed-effects and DZ fixed-effects estimators to see whether the unobserved individual
specific genetic endowments Aj; are important so that within-sibling estimates that con-
trol only for common family endowments C; are misleading. Finally, comparisons can be
made between DZ fixed-effects and ordinary sibling fixed-effects estimators controlling
for birth spacing to investigate the impact of changes in the timing of births and birth order
on the estimated impacts.



Although the MZ fixed-effects literature emphasizes the value of controlling for
endowments in the context of twins, there are other potential estimation strategies to
break the correlation between the disturbance term and the right-side schooling variable
in relation (2). Although these approaches are popular, data on twins may be prefer-
able. Continuing with the schooling example, the dominant alternative has been to use
instrumental variables (IV) or two-stage least squares (2SLS) in which actual schooling
in relation (2) 1s replaced by the estimated value of schooling based on first-stage instru-
ments that predict schooling but are not correlated with the disturbance term in relation
(2). These approaches will be discussed later in more detail. Perhaps the most widespread
example 1s the use of changes in compulsory schooling regulations as a first-stage instru-
ment to predict schooling (Angrist and Krueger 1991; Lleras-Muney 2005). However, as
noted by several scholars (Amin, Behrman, and Spector 2010; Behrman et al. forthcom-
ing: Lundborg 2008), these IV estimates tend to be local average treatment effects that are
relevant for individuals who are at the margin to be affected by the instruments used (e.g.,
at the margin of completing only compulsory schooling levels); however, IV estimates are
not average treatment effects for the broader population beyond this margin (Angrist and
Krueger 1991; Mofhtt 2009). Because within-MZ schooling differences exist over most
schooling levels, the MZ fixed-effects estimate are likely to be closer to ATE rather than
LATE.



Extensions of the Fixed-Effects Approach

Several extensions of the fixed-effects approach to twins data have been developed to
address the concern that, at least in some applications, the assumptions required for the
within-MZ estimator to identify the causal effect g of schooling on, say, fertility may not
hold. In our further discussion, we address some of the concerns that have received the
most emphasis in the literature, and we present some of the approaches that have been
developed to address or remedy these concerns.



Gene-Environment Correlations

The model in Egs. (I1-2) and Figure 1 has been presented under an assumption that there
are no gene-environment correlations. One aspect of this assumption is that the genetic
endowments (A* and AY) are independent of the social endowments (C* and C*) and the
unique environmental effects (E* and EY). Though this 1s a necessary assumption for the
behavioral genetics models discussed further, this assumption is overly restrictive for the
economic fixed-effects models. For the within-MZ estimator in Eqs. (3—4) to give an unbi-
ased estimator of 8. it 1s sufficient that, within MZ twins. the individual-specific influences
(shocks) Ej; and E; that affect schooling x;; and fertility y; are independent of the endow-
ments A7, A} C; and Cj' that are common to both members of an MZ twins pair. It is not
necessary that the genetic and social endowments (A; and Ajf'J and (C; and C;) are inde-
pendent of each other, as will be assumed later on when we discuss the behavioral genetics
analyses of twins data. Moreover, the independence of the individual-specific influences
of the social and genetic endowments in the within-MZ analyses is a relatively innocu-
ous assumption because the variance of the variables x; and y; in MZ twins can always
be decomposed into within-MZ twins pair variation resulting from the individual-specific
influences and between-twins pair variation that results from social and genetic endow-
ments. It is, therefore, important to point out that the ability of the within-MZ model to
correctly estimate f§ is not affected if there is a gene-environment correlation between the
genetic endowments (A" or AY) and the corresponding social endowments (C* and CV)



For
example, if children with a higher-than-average genetic ability, which 1s reflected in the
genetic endowments A*, also grow up in families that foster intellectual development more
than the average family, the genetic endowment A" is positively correlated with the social
endowment C*. Though a gene-environment correlation of this sort 1s potentially prob-
lematic for a behavioral genetics model and can result in biased estimates of heritability
and related parameters, the within-MZ model provides an unbiased estimate of g in the
presence of gene-environment endowment correlations.



There 1s an another form of gene-environment interaction that merits consideration
if “environment” 1s interpreted to include observed right-side variables such as schooling
X;. Eq. (2) is written in a linear form, which means that the marginal impact of school-
ing x; on fertility y; of twin i in pair j is assumed to be a constant g independent of the
genetic—and social, for that matter—endowments. Though this linear form 1s widely used,
the preceding approach can be modified to accommodate some alternative functional forms
with different implications. For example, 1f log-linear functions are used by defining the
variables to be all in logarithmic form, the marginal impact of schooling x;; on fertility y;
no longer is, by assumption, the constant g independent of the genetic and social endow-
ments. Instead, this marginal effect is 8 multiplied by y;;/x;;. In this specification, thus, this
marginal effect depends on both genetic and social endowments because y;;/x;; depends
on both genetic and social endowments. This particular specification 1is restrictive to be
sure regarding the possible interactions between endowments and schooling. And given
that the endowments are unobserved latent variables, more flexible specifications are not
easily tractable. However, does permit at least some exploration of schooling—endowment
interactions.



Correlated Cross-equation Shocks

Perhaps the most emphasized criticism of the economic fixed-effects approach to the anal-
yses of twins data (as opposed to more general criticisms that also apply to other uses,

such as that twins are basically different from singletons) pertains to the assumption noted
earlier that the path ey, in Figure [ and Eq. 2 is assumed to be zero. As mentioned earlier,
this assumption implies that the individual-specific shock Ej; to schooling x does not have
a direct effect on the fertility yj. If this assumption holds, the individual-specific factors
affecting schooling are not correlated with the individual-specific factors affecting fertil-
ity y. Conversely, if between-twins differences in schooling reflect unobserved factors that
also directly determine fertility (or whatever 1s the dependent variable in Eq. 2), the esti-
mated schooling-fertility association is still biased in the within-twins estimator (Bound
and Solon 1999; Griliches 1979). Somewhat more formally, suppose that there exists a
path ey, in Eq. (4) such that the unobserved individual shocks Ej; have a direct effect on
fertility v, as in

"}};“Ir — ﬁxﬂ + {1-”: f{ + E}'.I'Cj- + EF_IEE' + H}TAZ. ‘I‘ C}vy C; + E}-}.-E;. (SJ



In this case, the individual-specific influences affecting schooling x;; and fertility y; are
correlated because some of the unobserved individual twin-specific factors contained in Ej;
directly affect both the schooling and fertility of twin 7 in pair j. Hence, if ey, # 0, some of
the shocks affecting schooling are “persistent’” and also affect later-life outcomes such as
fertility; if eyy > O, the impact of the persistent shock on schooling is in the same direction
as the impact on fertility, and schooling and fertility are affected in opposite directions
if ey, is negative. An example for the latter case, for instance, is an unintended teenage
pregnancy that disrupts schooling and increases completed fertility.



Within-MZ-twins estimators are obtained by subtracting relations (1) and (5) within
twins pairs. Though the unobserved endowment components A;, Ay, G and Cj' are,
again, swept out when using this within-MZ estimator, there remains the difference in
the unobserved twin-specific persistent shocks:

-"’Ilﬁir'IZ - Ejz = ex(Ej; — Ey)) (6)

Ftr!z - ‘FIEE-!Z = ﬁ(-?'frlir!z - EJZJ + E}'}-‘(EL - EEJ) + E?-I{Efj - éj} (7



Because of the presence of ey, in Eq. (7), therefore, the unobserved determinants of school-
ing differences within twins pairs are correlated with the unobserved residuals affecting
differences 1n fertility within twins pairs. The within-MZ estimator in Eq. (7) thus no longer
gives an unbiased estimate of the effect g of schooling on fertility. The sign of the bias 1s
determined by the sign of the correlation of the unobserved factors in Egs. (6-7). which 1s
equal to the sign of eyy. This sign 1s positive (negative) if the impact of the shock on school-
ing is in the same (opposite) direction as the impact of the shock on fertility. The estimate
of g from Eq. (7), then, is an overestimate (underestimate) or upper (lower) bound of the
true value of g. For example, if more favorable in utero environments due to proximity to
the placenta increase both schooling and fertility beyond any effect through schooling, as
might be suggested by the results in Behrman and Rosenzweig (2004), then the estimate
of B from Eq. (7) 1s an overestimate of the true value of g. Although in utero influences
receive considerable attention, this overestimate due to positively correlated shocks 1s not
limited to the early life course: The same holds if an accident or illness limits schooling
and has persistent effects on later fertility.



Empirical studies have examined some of the implications of these concerns. Some
studies, for example, have explored how sensitive the estimates of interest are to the exclu-
ston of outliers regarding schooling differences between twins based on the argument that
large differences are more likely to be based on persistent factors that directly affect both
schooling and fertility in relation (2). In some cases, excluding such outliers does not
change the estimates substantially (Amin and Behrman 2010a, 2010b; Amin et al. 2010).
but in at least one case 1t does. Amin (2010) reports that the Bonjour et al. (2003) estimates
change a great deal 1f a single outlier 1s eliminated. Another possible approach 1s to include
additional variables that might have persistent effects on both schooling and the outcome
of interest, such as measures of cognitive ability (Behrman et al. 1980) or birth weight
(Amin et al. 2010). In these two cases, the estimates of interest are not changed much by
including these additional controls, but other applications could reveal different results.



In certain contexts, when the data include variables that satisfy the conditions for an
instrumental variable in the within-MZ model, an instrumental variable estimation of the
within-MZ model—to which we refer as within-MZ IV approach—can provide a direct
test of the assumption that e,, = 0. And if this assumption is rejected, the within-MZ 1V
model can provide an estimate for the effect of schooling on fertility under the condition
that ey, # 0. Finding a valid instrument that can be used in combination with within-MZ
analyses can sometimes be challenging, as these instruments need to predict differences in
schooling x within identical twins but affect fertility y only through the effect on school-
ing. Two broad category of instruments exit. On the one hand, one can envision for the
estimation of the within-MZ IV model an instrument z that i1s completely exogenous in
the sense that it predicts x but 1s not correlated with any of the unobserved endowments
that affect the schooling x and fertility y. In the context of twins reared together. instru-
ments meeting these criteria are likely to be rare, though random assignment to different
teachers who 1nspire different degrees of schooling might provide good instruments.



On
the other hand, within the within-MZ framework, an acceptable instrument can be found
under much weaker conditions. In particular, in observational studies, it is more likely that
there exists a variable 7 that is correlated with the genetic and social endowments that affect
x and y but 1s not correlated with the individual-specific environmental effects that affect
schooling x and/or fertility y. An example that has been used in the context of the eco-
nomic twins model is birth weight, where the birth weight of each twin 1n a pair 1s likely
to be affected by common endowments. However, in the case of the effect of studying the
effect of schooling x on fertility y, it might be reasonable to assume that the effect—net
of endowments—of birth weight on fertility works only through the effect of birth weight
on schooling. More formally, a suitable instrument z for the within-MZ IV approach is
provided by a variable, z, that depends on the social and genetic endowments that affect
schooling x and/or fertility y and 1s additionally determined by its own set of social and
genetic endowments and individual-specific influences in the form:

., — X X y ¥ Z Z z



with schooling x;; being determined by both z; and the endowments Aj; and Cj; as

ﬂz = SZQ' + Qyx f + C_u:cj + EHE:;:

i

and fertility y; depending, as is given in Eq. (5), on the endowments (A;;. C_f. AL and (Lj]
the individual-specific shocks to fertility E;:, and additionally on the individual-specific
shocks Ej; to twin i's schooling.



In this case, a valid instrument for the within-MZ IV approach can, therefore, depend
on the social and genetic endowments as long as 1t affect schooling z; and 1s not corre-
lated with the individual-specific shocks Ej; and E; that affect schooling x;; and fertility y;;.
respectively. If such an instrument exists, an unbiased estimate of the effect g of school-
ing on fertility can be obtained—even if e,; # 0 in Eq. (5)—Dby regressing the within-MZ
difference in fertility v,

mlﬂm — }:E}Z = ﬁ(xﬁz — zjz) + e_._,.}..(E;} — E;f) + ey (Ej; — E3)) (8)

on the within-MZ difference in schooling x,

UZ - zjz = B(E]'E! -ugJ, £) + EH[E \ (9)

using the within-MZ difference in z, zMZ — JE"F = Et,.,,.(EE — F% 5;) as an instrument for the
within-MZ difference in schooling xrl“}lz rqu Because theqe wnhm MZ 1V analyses dif-
ference out all endowments that are shared by twins within a twins pair and only because
this is the case, the difference z}7* — z5}* is a valid instrument in that it is not correlated with
the unobserved residuals for the within-MZ schooling and fertility differences in Egs. (8)

and (9).



Cross-twins Endowment Effects

In some applications of the within-MZ model in Figure I, it might seem plausible that the
value of x;; of twin 7 in pair j is affected by the endowments of i’s co-twin k. For example,
in contexts where x measures schooling attainment, i1t might be reasonable to assume that a
particularly high genetically determined *“ability” of i’s co-twin k has a positive spill-over
effect on 7 and that as a result of k’s endowments and high ability. twin 7 attains a higher
level of schooling than would otherwise be that case. To capture this possibility, Eq. (1)
can be modified as

Xij = ﬂixAE; + ﬂiﬂij + f'xrcf + €xx ;} (10)

where ay, 1s the effect of a twin’s own genetic endowments on twin i’s schooling attainment
x;. and @<, is the effect of the co-twin’s genetic endowment on i’s schooling.” Obtaining
the within-MZ estimator by differencing within monozygotic twins pairs the relations (10)
and (2) then shows that the cross-endowment effects as specified in Eq. (10) do not bias
the within-MZ estimator. Hence, conditional on the other assumptions of the within-MZ
approach’s being satisfied, analyses that focus on the differences in schooling x and fertility
y within MZ twins continue to provide an unbiased estimate of the causal effect g of
schooling on fertility.



Social Interactions: Twins Reacting to Each Other

A somewhat related concern in twins studies pertains to the empirical implications of one
twin’s behavior occuring in reaction to the other. For example. twin i’s schooling attain-
ment could be affected—positively in the case of imitation or negatively in the case of
competition for scarce resources such as money or parental time or by efforts of one twin
to distinguish her- or himself from her or his co-twin—by the co-twin k’s schooling attain-
ment. The implications of such social interactions for the fixed-effects approach, which
are somewhat distinct from the case of cross-twins endowments—can be investigated by
introducing a social interaction parameter s into the framework in Figure 1. In particular, in
the context of social interactions, a shock to co-twin k’s schooling will have implications
for i’s schooling attainment because of the social interaction among twins, whereas in the
case of cross-twins endowment effects discussed in the previous section, twin i’s schooling
responds only to the co-twin k’s endowment but not to ks specific schooling attainment
that 1s a function of both k’s endowments and individual specific shocks.



The implications of social interactions with respect to schooling can be investigated
by augmenting our earlier framework in relations (1) and (2) with a cross-twins effects on
schooling x, where the cross effects are assumed to be less than the own effects (|s| < 1).
Specifically, social interactions on x among twins can be incorporated as

x x X
Xij =0xx ij + CHCJ. + E;_[EH + SXkj
x x X x X X ,
—UxxAy; + C_I:ICJE + EI_IEH + s(axy kj + f'_ucj + exx kj + X)),

where sxi; 1s the effect of co-twin k's schooling, denoted xi, on twin i's schooling
attainment x;. The corresponding within-MZ expression can then be obtained as:

1 45

MZ 7 _
Xy — Xy =




This relation suggests that the usual MZ fixed-effects estimator is unbiased even though the
disturbance term includes Ej; in addition to Ej; under the assumption that the maintained
assumption that E:j does not enter the disturbance term in Eq. (2), which means that, as
is intuitively appealing, the schooling difference is less (more) than the difference in the
random shocks that affect schooling if there 1s imitation (reaction).

Instead of a social interaction processes that affects schooling x, we can assume a
cross-twins effect that affects y, say, because twins imitate each other’ fertility behavior,
with the social interaction effect less than their own effect so that |s| < 1:

}TU - ﬁxg + a}'.l’ -; + C_‘lr‘.]: C_II:: + a}t\-'Ai;' =+ C}v}' C; + E}u}.-E:; + j'}?kj
The manipulation of this relationship parallel to that for Eq. (11) leads to

MZ_ Mz _ B(xij — X)) + ey(E}; — E))
I+ '

— M
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In the case of social interactions regarding fertility y, and in contrast to our earlier dis-
cussion of social interactions on schooling x, this relation suggests that the usual twins
estimator of B 1s biased downward (if s > 0) or upward (if s < 0) even if ¢y, = 0 because
of the imitation/reaction effects with respect to the fertility y.

In summary, if there are social interactions—either in the form of imitation or
reaction—with respect to the right-side determinant, such as schooling in relation (2). there
1s no bias 1n etther direction for the MZ fixed-effects twins estimator. However. if there are
social interactions with regard to the dependent variable, such as fertility in relation (2),
the estimated g 1s a lower bound if there 1s positive imitation (if s > 0) and an upper bound
if there 1s negative imitation (reaction) with s < 0. If there 1s positive imitation on the
outcome y, the maximum downward bias 1s 50%. but the actual bias is likely to be consid-
erably less because the maximum is for the unlikely situation in which the twin’s fertility
1s weighted as much as the own direct determinants of one’s own fertility



Classical Measurement Error

Another critique of twins fixed-effects estimates—or, for that matter, of any fixed-effects
estimates—pertains to the consequences of classical random measurement error. Because
much more of the variation in schooling 1s across twins pairs rather than within twins pairs,
the fixed-effects estimator filters out much of the true signal of schooling without also
reducing measurement error (Bishop 1977; Griliches 1979). Because of this larger noise-
to-signal ratio. the fixed-effects twins estimator is subject to more of the measurement
error bias toward zero than is the cross-twins pairs or simple cross-sectional estimator. If
the coefficient estimate from the fixed-effects twins estimator is smaller. it may be because
it controls for the endogenously determined part of schooling or because of the larger bias
due to measurement error or due to some combination of these two factors.

To see the impact of measurement error, assume that measured schooling x;; 1s linearly
related to true schooling x7; but is measured with random measurement error &;;:

=
Xij = Xy + &jj



Bishop (1977) and Griliches (1979) show that if measurement error is not correlated across
siblings.'? the bias toward zero in 8%, the estimated within-sibling coefficient B, is:

| —o%(ey)

(11)
o 2(x5)(1 — py)

plimﬁ“’ =8

where p, 1s the correlation in schooling between siblings (which is zero in standard indi-
vidual estimates) and o *(g;) and o*(x};) denote the variance of &;; and x;;. respectively. This
bias toward zero due to measurement error is likely to be greater for within-DZ estimates
than for individual estimates and for within-MZ estimates than for within-DZ estimates
because p, is likely to be positive and greater for MZ than DZ twins.



Table 1
Implications of random measurement error for individual, within-DZ, and within-MZ

estimates

Noise-
to-signal Biases Towards Zero in Estimated Bs Ratio of Estimated s due to
ratio (percentages) Measurement Error Biases Alone

. Within Within
zfji‘j Individual Within DZ  Within MZ DZ/Individual ~ MZ/Individual
(1) (2) (3) (4) (5) (6)
0.02 2% 49 8% 0.98 0.94
0.04 4% 8% 16% 0.96 0.88
0.06 6% 12% 24% 0.94 0.81
0.08 8% 16% 32% 0.91 0.74
0.10 10% 20% 40% 0.89 0.67
0.12 12% 24% 48% 0.86 0.59
0.14 14% 28% 56% 0.84 0.51
0.16 16% 32% 64% 0.81 0.43
0.18 18% 36% 12% 0.78 0.34
0.20 20% 40% 80% 0.75 0.25

Note: Based on equation (11) in text with p, = 0 for individuals, 0.50 for DZ twins and 0.75 for
MZ twins.



Table 1 gives some illustrations, with each row representing different noise-to-signal
ratios o?(e;;)/o*(x*;) as given in column 1; the percentage biases in individual, within-
DZ and within-MZ estimates due to measurement error in columns 2—4, and the ratios
of the coefficients from DZ estimates and MZ estimates to individual estimates due to
measurement error in columns 5 and 6.

Twins studies that have reports from other respondents (i.e., the other member of a
twins pair, the twins’ adult children) so that they can estimate measurement error mod-
els report estimated noise-to-signal ratios of 0.04-0.12 (Amin et al. 2010; Ashenfelter and
Krueger 1994; Ashenfelter and Rouse 1998; Behrman et al. 1994). Therefore a noise-to-
signal ratio of about 0.08 1s suggestive of the extent of bias due to measurement error
near the midpoint of the range of noise-to-signal estimates from these studies and how
these biases differ across the three types of estimates: 8% for individual estimates, 16%
for within-DZ estimates. and 32% for within-MZ estimates. Thus, fairly substantial drops
in the coefficient estimates for the within-DZ and within-MZ estimates occur due to
measurement errors of this magnitude, even 1if in reality there are no biases due to unob-
served endowments. These measurement error biases result in the coefficient estimates
for the within-DZ estimates’ being 9% smaller and those for the within-MZ estimates
26% smaller 1in absolute magnitude than those for the individual estimates. Behrman et al.
(1980) observed that estimates of noise-to-signal ratios from other studies could account
for up to half of the difference between their fixed-effects estimates and OLS estimates.



Ashenfelter and Krueger (1994) and Behrman et al. (1994) introduced the use of another
report on the twin’s schooling to instrument schooling and, therefore, eliminate the bias
due to measurement error under the assumption that the measurement error in the other
report 1s independent of the measurement error under the assumption that the measure-
ment error in the other report 1s independent of the measurement error of one’s own. Both
studies find that this method for controlling for measurement error increases the estimated

returns to schooling in comparison with estimates that do not correct for measurement

EITD['.I I



Behavioral Genetics Structural Equation Models for Twins Resemblance

In contrast to the economic approach that has been outlined earlier, the behavioral genetics
approach to twins data has traditionally been concerned with identifying the contributions
of genetic and social endowments to variation in phenotypes and to use this approach to
measure aspects such as the “heritability” of phenotypes that reflect the proportion of vari-
ance of a phenotype in a given population that is attributable to genetic factors. We briefly
discuss 1n this section the univariate behavioral genetics model but then focus on the bivari-
ate behavioral genetics (ACE) model that 1s more closely related to the economic approach
discussed 1n the previous sections. The emphasis in interpreting the results and the assump-
tions underlying the analyses, however, differ in important ways between the economic and
behavioral genetics approaches to twins data, and these differences are highlighted 1n our
discussion next.



Univariate ACE Model

Resemblance between twins can be modeled using a two-group structural equation model
fit to variance-covariance matrices. Figure 2 presents the basic ACE model for a single
phenotype x;; (say. schooling). Parallel to the discussion of the previous MZ fixed-effects
twins model, the three latent components in the model refer to additive genetic influences
(Ajj). common environmental influences (Cj), and unique environmental influences (Ej).

5(DZ)/1(MZ) 1

Ilj Izj.'

Figure 2. ACE model for the analyses of genetic, shared environmental and unique environmental
components to variation in phenotype x.



These unobserved latent factors are independently distributed and standardized to a mean
of zero and a variance of one.'? The ACE model is usually identified (as for heritability) by
assuming different correlations between different types of twins. The ACE model 1s often
limited to MZ and same-sex DZ twins, although other models, such as the sex-limitation
model, consider cross-sex DZ pairs. The Cj; factors are correlated at 1, as they denote envi-
ronments shared by twins, and. therefore, C,; = C,; = C;. The A factors are correlated
at different levels depending on the type of twins. Because they represent unique influ-
ences (including measurement error) affecting only twin i in pair j, the Ej; factors are not
correlated within twins pairs. !4



Formally, the univariate behavioral genetics approach usually assumes an additive
genetic model with no assortative mating and with equal environmental influences across
kinship categories.'™'® In this additive genetic models, multiple genes each have small
effects on a particular phenotype x; (e.g.. schooling), and the overall influence of genetic
factors on the phenotype x;; can then be represented as aA;;. where A;; 1s the relevant genetic

endowment that affects the phenotype x;; and a measures the extent to which x;; 1s affected
by this genetic endowment. To establish the degree of genetic relatedness among DZ twins,
an additional assumption about assortative mating 1s required. As traditional twins data
often do not provide information that would allow the identification of assortative mating,
traditional behavioral genetics analyses assume that there is no assortative mating.'” In this
case, an immediate corollary of the additive genetic model 1s that the correlation in genetic
endowments between DZ (fraternal) twins is Cor(A}”, AY*) = .5. This correlation of .5 in
DZ twins occurs because, in the additive genetic model, DZ twins (like ordinary siblings)
share 50% of their genes on average. For MZ twins, who share all of their genes at con-
ception, this correlation is equal to one at conception. In the path diagram in Figure 2, the
paths linking the genetic endowments of twins 1 and 2, therefore, have a value of 1 for MZ
and .5 for DZ twins.



Similar to the structure of the economic model that we outlined earlier, the behavioral
genetics model can then be presented (again, as deviations from the means) as

Xij = Mrj T CC:'JF + 'EE:] (12)

where Aj;, Cjj and Ej; are independently distributed latent factors, standardized to a variance
of one, that represent, respectively, the additive genetic, shared environmental, and unique
environmental influences on the observed phenotype x;; of twin i in pair j. This specification
for the determinants of the phenotype x;; 1s analogous to the relation (1) that we specified
for schooling in our earlier discussion of the within-MZ model.



Assuming an additive genetic model with no assortative mating, the correlations
of the genetic endowments within twins pairs is Cor(AY”, A5%) = .5 for DZ twins and
CDI‘(A?}E,AS'}E} = 1 for MZ twins. Shared environmental factors, or social endowments,
are assumed to be identical for both members of a twins pair (Cor(C);, Cy) = 1, indepen-
dent of zygosity), and the individual-specific influences are independent within twins pairs.
Stacking the observed phenotype for both twin 1 and twin 2 1n a twins pair into a vector
P, which in the case of the univariate ACE model means that P; = (x;;, x2;)’, then allows
us to then obtain the variance and covariances of the observed phenotypes for MZ twins
(denoted V}¥) and DZ twins (denoted V%) as

2 2 2,2
a+ct+e a* +c
VJ-';IE:EMZIPP’IZ( .:12—|—|:3 {IE—I—CE—I—EE)

2 2 2, 2
] a’+ct+e S5a*+c¢
i IDEIPP’]:( Sa* + c? a2+r:2+€3)’

where the subscript j for twins pairs has been omitted for simplicity and EM# and £P%
denote the expectation operators taken for MZ and DZ twins respectively.



Heritability (usually denoted h*) in the behavioral genetics literature is defined as the
ratio of the variance of the genetic contributions to x, which are given by of aA;; in Eq. (12),
to the variance in the phenotype x for a given population. In the univariate ACE model, her-
itability 42 is obtained as a*/(a* + ¢* + €*) = a* /o2, where a* is the total genetic variance
in the phenotype x, and o7 = a® + ¢* + €* is the overall variance of x. In a similar fash-
ion, the proportion of the variance that can be attributed to social endowments (or shared
environmental factors) in this model can be obtained as ¢ /(a* + ¢ + €*) = ¢* /o 2.

An important advantage of the ACE model for obtaining estimates of the heritabil-
ity and the underlying parameter a, ¢ and e 1s the transparency of the approach and the
flexibility of its assumptions. As with other structural equation models, the assumptions
of the ACE model can be relaxed directly based on theory, prior perceptions, and relative
fit of different models. For example, if one assumes no genetic influence on a phenotype,
a model that freely estimates a can be compared with a model that constrains a to zero.
Likewise, if one knows that DZ twins share more than 50% of their genes owing to assor-
tative mating, the correlation between the A components can be increased (e.g., Neale and
Maes 2004). More complicated explorations are possible but require additional information
for identification. '8



Bivariate ACE Model

Of particular relevance to our previous discussion about the use of twins data in economics
is the extension of the ACE model to multivariate contexts. We focus here particularly
on the bivariate case where the observed phenotypes include x;; (say schooling) and yj
(say fertility) of twin 7 in pair j. Though several observationally equivalent specifications
for the bivariate behavioral genetics model are possible, Figure 3 shows the most common
specification that includes two latent additive genetic components (Aj; and A’;), two additive
latent shared environmental components (Cj; and C‘E,-): and two latent unique environmental
components E; and E*;.'g As 1n the univariate model, within a twins pair, the genetic and
shared environmental components are correlated within twins pairs. Assuming an additive
genetic model with no assortative mating, as 1s done in most applications, the correlation
for the genetic endowments Aj; and AL within-pairs 1s .5 for DZ and 1 for MZ twins, the
correlation for shared environmental factors 1s 1, and hence C’ff = ng. = Cj’ and C’fj =
Cgf = Cj independent of zygosity. The unique environmental factors Ej; and E; are not
correlated within twins pairs.



The bivariate ACE model is attractive because it allows for the possibility that school-
ing and fertility are affected by common genetic factors or are similarly affected by the
same shared environmental influences. For example, the paths ay, and ¢, indicate, respec-
tively. the effects of the latent genetic component A* and shared environmental component
C;; on schooling x;;, whereas the paths ayx and ¢y, reflect the effect of these latent genetic
and shared environmental factors on fertility y;.2” The path e,, measures the possibly effect
of the unique environmental factors E* on schooling x, and the path e,, measures the effect
of the unique environmental component E* on fertility y. In addition, fertility y 1s affected
by additional genetic, shared environmental, and unique environmental components A*, C*

and EY that contribute to variation in fertility, but not to variation in schooling.



Figure 3. Bivariate ACE model for schooling and fertility.

This graph shows the path-diagram for one twin, twin 7 in pair j only: an analogous diagram exists
for twin K in pair j, and the genetic and shared environmental components are correlated across twins
within the same pairs as Cor(ﬂ" MEA"" ME) = CDr(A" MZ A lq'{z) = 1 for MZ twins, CDI{A"‘ DZAI Dz} =

Cnr(A‘ DEA" DZ) = .5 for DZ twins, Cor(Cj;, C3;) = Cﬁr{C‘,’ I,C‘ ) = 1 independent of zygosity, and

Cor(E Ejj Cnr(E]j,Egj) = 0 also independent of zygosity.



In a close resemblance to the economic twins model outlined earlier in this paper,
the relationship between the observed phenotypes, x;; and y;;. and the latent genetic, share
environmental, and unique environmental factors are specified as

Xjj = Oxx };‘I’fxxcij"l‘fxxﬁﬁ' (13)
Yij = EJIA;;' + E}'_ICL;' + E}'IE-; + E}TA'E.' + C}{}-CE.' + 'E'“E;:. (14)

where in contrast to the economic model, there is no direct effect g of schooling x on
fertility y, and the model allows for a direct influence of the individual-specific factors
affecting schooling, Ej;, on fertility y (i.e., the path ey, in relation 14 can be non-zero).



To derive the variance-covariance matrix in the bivariate ACE model of the observed
phenotypes, stacked again in a vector P = (xy;, yij, X2j, ¥2;)', it is useful to arrange the
coefficients of the path diagram in Figure 3 (see also Eqs. 13-14) into lower triangular

matrices as
ay 0 Coy U I |
Lﬂ — 1 L{'- — - L.-_:' - =
Ayx  dyy Cyx Cyy Cyx Eyy

with their corresponding products being given by A = L,L,;". C = L.L/, and E = L.L,".
Maintaining the assumption of an additive genetic model with no assortative mating, we
then can obtain the variance and covariances of the observed phenotypes P = (xy;, yy;. X2,
V)" for MZ twins (denoted V') and DZ twins (denoted V5*) as

MZ _ oM7 o A+C+E A+C
VP“""PP'_( A+C A+CHE (1)

: A+C+E  SA+C
DZ __ oDZ "N
1P“"IT"‘(,5A+C A+C+E)’ (16)

where EM% and £P% denote again the expectation operator taken for MZ and DZ twins,

respectively.



The expected variance of the phenotypes, o for x and o for y in the bivariate ACE

nmde] 1S equa] for MZ 'md DZ twins ﬂnd can be obtained from Egs. (15-16) as o2 =

az_+c +e? and r::“‘ = a tas+ u:' —I—C“ + E' —I—E“ In addition, Table 2 provides
co-variances that are 1mplled by the bwarnte ACE deE] in Egs. (15-16) as a function of
the path values in Figure 3. Though there are a total of 20 variances and covariances in
the data, they correspond to only nine unique-moment conditions when stated as functions
of the coefficients @y, @yy, Qyy. Cxx. Cyx, Cyy €xx, €yy and ey,. The nine parameters of the
bivariate ACE model in Figure 3 are, therefore, exactly identified with data on twins reared
together.



In most empirical applications, similar to the univariate behavioral genetics model,
the bivariate ACE model in Figure 3 and Eqgs. (13-14) has primarily been used to decom-
pose the variance in the observed phenotypes x and y, say schooling and fertility, into the
latent genetic, shared environmental, and unique environmental components (Coolidge,
Thede, and Jang 2004; Willcutt Pennington, Olson, and DeFries 2007). In addition, the
bivariate ACE model in Figure 3 can reveal that a certain fraction of the variance in
fertility vy 1s due to genetic factors that also contribute to variation in schooling x (path
ayy). and that another part of the variation in fertility is due to genetic factors that
contribute to fertility but not schooling (path a,y). For example, Table 3 shows the con-
tributions of genetic endowments to the vartance and co-variance matrices implied by
ACE model in Egs. (15-16). The heritability of schooling x. using the genetic contribu-
tions Uivan in Table ‘% 1s then c}bhinﬁd from the top panel (VM# for monozygotic twins)
as hz = a /(HH - .-:'“ — E'H] = a f.-:r where the numerator is the genetic variance and

the denemumtm IS the overall varnnce Df X. A[]HIDUGUSI}F the heritabi]ity of f-f:rtilitj-,r y 18
2

given by hz (au + aﬂ)j{a + a,ﬂ +c + c'fj i ew} = (au + Hﬂ]fﬂ‘ where ay,,
in the numemtm and denominator reﬂecta the -:u:mtubutmn to the genetic variance 1n fertil-
ity v that stems from genetic factors that also affect schooling. In a similar vein, the ratio

Ayl [ (Arxyy + CxxCyx + €xx€yx) 18 the fraction of the covariance between schooling x and

fertility y within each individual that can be attributed to genetic factors that affect both

schooling and fertility, and .::tuau,f’\/a (az, + .{13 ) 1s the correlation between the genetic

endowments that affect schooling x and the genetic endowments that affect fertility y.
Stmilar calculations can be conducted for social endowments (shared environments) and
individual-specific factors.



Table 2
Variance and co-variance implied by ACE model in Egs. (15-16)

Observed Outcome (phenotype)

X1 ¥ij A

MZ Twins: V"
.l'|_;
Y
X3;
¥z
DZ Twins: V3©
.l'|_|.'
Y
.1'3_;
Yz

2 2 2
ﬂ.l:r+cx:r+€xx

2 2 2 2 2
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Nate: All unigue moment conditions that identify the parameters of the ACE model are given in black, while duplicate moment conditions are given in bold. The
expected variance of the phenotypes, o for x and u'}? for y is equal for MZ and DZ twins and can be obtained from the above table as o} = a_+ ¢, +¢€._ and

2
T, = ey + Crrlyp T Cpxliyr-



Table 3
Contribution of Genetic Endowments to the Variance and Co-Variance Matrices Implied
by the ACE Model in Egs. (15-16)

Observed Outcome (phenotype)

Xy Vij X2j ¥z
MZ Twins: VM%
2
X1 j Ay
. 2 2
Vij Uy yy Ayy + Ayy
2 ’ o 2
X2j a. Ay lyy Ay
1 2 2 2 -
}zj ﬂ,m'ﬂ_}'.t’ ﬂ".!‘_i' —I_ H_‘l"y H_!"_rﬂy_-‘- ﬂh..u- —I_ ﬂ-‘,}.
DZ Twins: VP*
2
X1 ayy
L 2 2
Vij Ayxyy H'.'.'r T HH‘
5 ) LA ,
X2 j Sa o Sa .t’.'t'H_‘r'.t' H.m'
- - S (2 2 - -
}2}, 1:){1;_1":1}:_1' ,j(l‘j}“ —I_ ﬂ}'}*} H..'i'-rﬂ_}:-"' Hy.r —I— a_‘l'y

Note: One set of unique elements of the table are given in black, while duplicate elements given in
bold.



For example, using data on Danish twins born between 1953 and 1970 and who partic-
ipated 1n a survey in 1994, Kohler and Rodgers (2003) conclude that a bivariate behavioral
genetics analysis confirms earlier findings that fertility in low-fertility settings, such as con-
temporary Denmark, 1s subject to important genetic influences whereas, at the same time,
the bivariate model shows the new and somewhat unexpected result that genetic variance in
fertility 1s not necessarily shared with genetic variance in completed schooling (measured
in years of tertiary schooling). Instead, Kohler and Rodgers’s, results show that for both
males and females, most genetic variance in fertility is residual variance that affects the
number of children but not schooling attainment. Overlapping influences mainly exist for
shared environmental factors analyses of females, where all shared environmental factors
affecting fertility also affect schooling.



Introducing Causal Pathways between Phenotypes: Extending the ACE
Framework

Though univariate, bi-, and multivariate behavioral genetics models have been widely used
in the behavioral genetics literature and have received some interest from social scientists,
their use within the social sciences remains limited. One possible reason for this 1s that,
from a social science perspective and 1n light of our earlier discussion of the economic
approach to twins data, the behavioral genetics model in Figure 3 1s not fully satisfactory
because 1t attributes the association between schooling x and fertility y exclusively to the

latent components in this model that reflect genetic, shared environmental or unique envi-
ronmental factors. Specifically, schooling and fertility within each individual 1n this ACE
model are correlated because at least one of the paths a,y. ¢, or ey, 1s non-zero. In addition,
a non-zero pathway a,, or ¢y, implies that fertility and schooling are correlated between
twins within the same twins pair. The ACE model, however, does not allow for the pos-
sibility that there 1s a direct effect of schooling x on fertility y (i.e., it explicity ignores a
direct pathway from schooling and fertility, a pathway that has been subject of an extensive
literature in the social sciences and the identification of which 1s the primary goal of the
economic model for twins data discussed earlier).



Therefore, to allow for a direct effect of schooling on fertility, as is shown in Figure 4,
it 1s desirable to introduce causal pathways between the variables x and y in the bivariate
ACE model. We denote the ACE model that includes such a direct effect of x (schooling)
on the outcome y (fertility) as an ACE-B model, where g refers to the causal effect of x
on y that is present in the ACE-g but absent in the conventional ACE model. Though con-
ceptually appealing, however, the ACE-8 model in Figure 4 1s not empirically identified in
twins or other family data. If one allows for the direct pathway from schooling to fertility,
the data do not contain enough moment conditions to identify all pathways included in the
model.?! Moreover, this lack of identification cannot be overcome by using an extended
twins design that would include other siblings that have a different degree of genetic relat-
edness or that include twins reared apart because identification of all pathways in Figure 4
would require more moments between the observed variables for each twin within a twins
pair (see below for formal statement of moment conditions).



Figure 4. ACE-pS model with direct effect of schooling on fertility.



Though there have been some models in the behavioral genetics tradition that include
causal pathways, such as for example directed causality models (e.g., Gillespie and Martin
2005; Gillespie et al. 2003; Health et al. 1993) and the children of twins design (D’ Onofrio
et al. 2009, 2003; Eaves, Silberg, and Maes 2005), these approaches are targeted for
research questions that are different from the ones emphasized in this paper. The directed
causality models are aimed at identifying the direction of causality between two variables
in cases where the genetic and social endowments for these variables are distinct. These
models, therefore, attempt to identify whether x has a causal effect on y or vice versa, with
y having a causal effect on x, in contexts where each of these variables 1s affected by 1its
own distinct set of latent influences (endowments and individual specific factors).?? The
children-of-twins (COT) design has been proposed as an alternative to the adoption study
to resolve the direct effects of parental treatment from secondary parent-child association
due to genetic factors. In particular, because parents provide the environmental context for
the family and transmit genetic makeup to their offspring, the genetic and environmental
processes responsible for associations between family risk factors and offspring adjustment
are confounded. The COT design, therefore, uses a twins design to delineate intergenera-
tional associations into (1) environmental processes specifically related to the risk factor,
(2) genetic factors that influence the risk factor and offspring characteristic, and (3) com-
mon environmental factors that vary between families.



Neither the directed causality model
nor the COT design provide a substitute for the framework developed here. In particular,
in the contexts that are of primary interest for our discussion in this paper, the direction of
causality 1s usually given from the context or the sequencing during the life-course (e.g.,
as in studying the causal effect of schooling attainment on completed fertility later in life),
and 1t 1s the potential presence of correlated unobserved endowments between schooling
x and fertility y that 1s of primary concern. In addition, the primary concern in this paper
1s about the interrelations of behaviors/outcomes that occur over the life course of an
individual, such as the effect of schooling on fertility, rather than on the intergenerational
aspects that link parental behaviors (or risk factors) to child outcome as studied in the COT
design.



Given our previous discussion, one might conclude that there 1s an inherent empirical
incompatibility between, on the one hand, the behavioral genetics analyses of schooling x
and fertility y within a multivariate ACE model that focuses on identifying the contributions
of genetic and social endowments on the variation and covariation of the phenotypes x and
y (see Figure 3) and, on the other hand, the conventional social science approaches that
would generally emphasize the direct effect of schooling x on fertility y as one of the
primary parameters that need to be inferred from data (see Figure 1).

This incompatibility, however, can be resolved if one 1s willing to make 1dentifying
assumptions that one of the diagonal paths within the ACE-B model in Figure 4 is known a
priori. Of particular interest in this context 1s the ACE-g model in Figure 5 that constrains
the path ey, to zero.



[t 1s important to emphasize that the restriction ey, = 0 1s a plausible—and probably the
most plausible—identifying assumption in the ACE-B model in Figure 5. This assumption
is equivalent to the assumption that underlies the identification of the parameter g in the
economic fixed-effects model for twins analyses and, similar to our earlier discussion,
this assumption implies that the unique environmental factors that affect schooling x are
assumed to affect fertility y only through its effect on schooling but not directly.?**

The ACE-B model in Figure 5, therefore, blends the economic fixed-effects approach
and the behavioral genetics bivariate ACE model. As in the twins fixed-effects model, this
model includes a direct effect g of schooling x on fertility y. In addition, the diagonal paths
ayy and ¢y, 1n the extended ACE-B model in Figure 5 also reflect the contributions of unob-
served endowments—either genetic or shared environmental factors—to both fertility and
schooling. As our earlier analyses have shown, if one of these paths 1s non-zero, standard
estimates of the effect g of schooling on fertility are biased. To avoid this bias, both the
economic fixed-effects model in Eqgs. (1-2) and the ACE-g model in Figure 5 explicitly
allow for the possibility that genetic and/or social endowments jointly affect schooling x

and fertility y.>>-26



The ACE-B model in Figure 5 has an important advantage over the within-MZ
approach discussed earlier in this paper in that it not only provides a consistent estimate
of the direct effect § of schooling x on fertility y, like the economic model in Egs. (1-2),
but differentiates between the genetic and shared environmental components contributing
to the (co-)variation in schooling x and fertility y within a population. The model, there-
fore, integrates the economic approach that has focused on identifying the causal effects
of schooling on fertility and the behavioral genetics approach that has focused on identify-
ing the sources of variation and covariation in schooling and schooling in term of genetic,
shared environmental and unique environmental factors. The ACE-B model in Figure 5
achieves both of these aims.



The ability of the ACE-g model to not only infer the causal effect g of schooling
x on fertility y, but also to distinguish between the genetic and social endowments that
contribute to the variation and covariation of x and y within individuals and within twins
pairs, 1s attained at the cost of some-what more restrictive assumptions. In particular, for
the ACE-B model to accurately identify the model parameters (see Figure 5), one needs to
accept the assumptions of the bivariate behavioral genetics model that are more restrictive
than those required for the economic fixed-effects model to provide an unbiased estimate
of B. In addition to the assumption that the path e, = 0 in Figure 5, which is common to
both the economic fixed-effects model and the ACE-8 model proposed in this section, the
ACE-B model requires two assumptions underlying the bivariate ACE model to provide
accurate estimates of the model parameters: (1) an additive genetic model with no assorta-
tive mating, which establishes the correlation of genetic endowments between DZ twins as
Cﬂr(ﬂgz:ﬁg}z} = .5, and (2) the absence of gene-environment interactions, which implies

that AJ; and Aj}; are independent of C¥, C.. E}; and Ej.*" In comparison, the within-MZ
approach requires only the assumption that MZ twins share their genetic endowments but
not a specific genetic model and, in the economic model, gene-environment latent variable

interactions do not affect the unbiasedness of the within-MZ estimator of 8.



More formally, the ACE-B model in Figure 5 1s obtained by introducing a direct effect
of x on y into the earlier relation (14) for the ACE model that specified fertility y in terms of
the latent genetic, shared environmental, and unique environmental factors. The resulting
specification then 1s

Vi = BXit + yAj; + oG + an Ay + ey G + ey Ey, (17)

which 1s merely a restatement of the corresponding Eq. (2) of the economic twins model.
The relation for schooling x;; 1s as in the standard bivariate ACE model (13), which 1s
equivalent to the corresponding relation of the economic twins model (1).

Stacking the observed phenotype for each twins pair as P; = (xyj, yij, X2, y2;), we
can restate the ACE-g model in Eqgs. (13) and (17) as P, =BP; + (I, ® Lﬂ]G? +(I, ®

Lb)Gf +(L® L,:}Gf: or equivalently, as
P=(,—B)"' (LR®L)G! + (1, ® LG’ + (I, ® L)GY).

where B=1, ® U D). I, 1s the m x m identity matrix, and Gf, Gf and G}E are

g 0

the stacked latent genetic, shared environmental, and unique environmental factors that
- 3 . A _ ax  4Y  px ¥ C _ X ¥ X LY E __
for twins pair j are given by GJ- = (A Ij’AIj‘AiﬁAEj) . GJ- = (CU, Cu:Czj= Czj) and GJ- =

y ; ¥
(E.E) .E3.E)).



Figure 5. ACE-p model with direct effect of schooling on fertility, including identifying assump-
tion e12 = 0.



- Similar to the bivariate behavioral genetics model discussed in the previous section,
the variance and covariances of the observed phenotypes P = (xy;, yij, X2;. ¥2;)’ for MZ
twins (denoted Vi¥) and DZ twins (denoted VR%) can then be obtained as

VMZ — eMZIpp'| = (1—B) ' VM1 - B)™' (18)
V£ = Y PP| = (1—-B)"' VP41 —B)~ (19)

1 0
g 1
tation operator taken for MZ and DZ twins, respectively. The matrices V g"z and ng
denote, respectively, the variance/covariance matrix of the combined latent genetic, shared
environmental, and unique environmental model that are given by

where the inverse (I —B) ' =L ® ( ) EMZ and EP?% denote again the expec-
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To illustrate the moment conditions that are used 1n the estimation of the model parameters,
Table 4 gives the variance and covariances of x; and yj; that implied by the ACE-g model
in Egs. (18-19) as a function of the coefficient g and V|, k], which refers to row [ and
column k of the variance/covariance matrix for MZ or DZ twins in Egs. (15-16) under the
maintained assumption that e,, = 0 (see also Table 2). Specifically, the expected variances
of the phenotypes, o for x and o7 and y, that are implied by Egs. (18-19) are equal for
MZ and DZ twins and are given by o2 = a2, + ¢2, + €2, and o) = B*(0})* + 2B (anay, +
CxxCyx) + (&}2-1 + a}z_,y + Cf?x + -:'}2}, + e_fx + ef@,). Though for schooling x, the components of
the variance merely reflect the influence of the three latent factors A*, C*, and E*, the terms
in the relation for the variance of fertility y reflect, respectively, the different pathways that
determine variation in y: (1) variation in schooling x that results in variation in y because
of the direct effect B of schooling x on fertility y: (2) variation 1n y that results from the
fact x has a direct effect on y and the genetic and social endowments affecting schooling x
and fertility y are correlated; and (3) the direct influences on fertility y of the genetic and
social endowments (A*, AY, C* and C7) and the unique environmental factor EY.



Table 4
Variance and co-variance implied by ACE-g model (Egs. 18-19)

MZ and DZ Twins: VE.E and V}[J’E
Observed Outcome (phenotype)

X1j Vij X2j Y2j

X1 Vi1, 1]
Vij BVI1, 11+ V[2,1] B*V[1, 1]+ 2BV
12,114 V]2, 2]

X2 VI3. 1] BVI3. 1] + V[4. 1] VI1. 1]
vsi  BVI[3. 11+ V[4, 1] B>V[3,1]+28V  BV[I. 1]+ V[2,1] B2V[I, 1]+
|4, 1] + V[4, 2] 2BV[2, 1]+

Vi2,2

Note: V|1, k] refers to row [ and column k of the variance /covariance matrix for MZ or DZ twins in
Egs. (15-16) with e;, = 0 (see also Table 2). The expected variance of the phenotypes. o> for x and Uﬁj
for y is equal for MZ and DZ twins and can be obtained from the above table as o> = a7+ ¢+ e-,

2 p2fn2y2 : 2 2 2 2 2 y
and o= (0,)" + 2B(Anlyy + CuxCy) + (ay, +ay, + 5, + 6 e +6).



In addition, Table 4 shows that the observed covariance between schooling x and fer-
tility y for individuals, which 1s given in row 2 and column 1 of the table, 1s the result of a
direct effect of schooling on fertility, which 1s measured by g, and the fact that a part of the
genetic and social endowments affecting schooling also affect fertility, which 1s measured
by V[2, 1]. Schooling 1s correlated among members of the same twins pair because the
genetic and social endowments are correlated within twins pairs, which 1s reflected in row
3 and column 1 of Table 4 by V[3, 1]. And schooling of twin | will be correlated with the
fertility of twin 2 (see row 4 and column 1) because (1) twin 1’s schooling 1s correlated
with twin 2’s schooling, and twin 2’s schooling has a direct effect on 2’s fertility through
B, and (2) because the genetic and social endowments that jointly affect schooling and
fertility are correlated within twins pairs.



The variances/covariances in Table 4 are also informative because they illustrate how
the effect B of schooling x on fertility y can be obtained from MZ twins, and only from MZ
twins, as

Eml_yuxul — EMEI_}’Ejlul

g =

EMZLxyxj] — EMZx)jxy)]

which represents—in terms of the parameters of the ACE-g model—the moment condition
that 1s used by the economic within-MZ model for the estimation of the causal effect g of
schooling x on fertility y.?®



Within the twofold goals of the ACE-B model to identify both the effect g of
schooling x on fertility y and the contribution of genetic and social endowments to the
variation/covariation of schooling and fertility within and across individuals, the defini-
tion of heritability deserves some discussion. For schooling x, the definition is analogous
to the bivariate ACE model and can be obtained from the model parameters as h* =
az /(a2 +ci +e2)=al /o?. For fertility, however, one needs to consider the fact that
the genetic variation in schooling 1s through three distinct pathways: first, direct influences
of the genetic factors Ay on fertility y (path a,y in Figure 5); second, direct influences of
the genetic factors A, that directly affect schooling x (via path a,,) and subsequently affect
schooling y through the causal effect of schooling on fertility (path g in Figure 5).

One could think of heritability as the contribution of the first two pathways to the total
variation y. In this case, heritability would be defined, as in the bivariate ACE model, as
{aﬁx + az,)/o;.* This definition of heritability, however, would ignore the third indirect
pathway through which genetics affect fertility (1.e., the extent to which the genetic factors
A, affect fertility y through their effect on schooling x).



To avoid this limitation, we therefore propose as a measure of heritability of y, say
fertility, in the ACE-B model that 1s based on the expressions in Table 4. In particular,
the genetic contributions to all the variances and covariances in the ACE-$ model can be
obtained in Table 4 by replacing V[/, k] with Vﬂ’{zli, k]. where VTEI:’, k] refers to row [ and
column k of the top panel of Table 3 (for monozygotic twins). An appropriate definition of
heritability in the ACE-B model, then, 1s obtained from Table 4 as

2,2 2 2
2 pray, + 2Bauay, + a5, + a,,

¥ 2
oy

(22)

which expresses heritability of y, say fertility, as the overall contribution of genetic
endowments—including genetic factors that affect fertility y directly and genetic factors
that affect y indirectly through schooling x—to the variance of y. In particular, the three
components in the numerator of the heritability A* in Eq. (22) reflect. respectively, the con-
tributions to the variation in y of (1) genetic factors that affect schooling x and then fertility
y through x; (2) the genetic factors that are common to both schooling x and fertility y and
affect fertility y through x: and (3) the direct influences of the genetic endowments A, and

Ay on fertility y.



Variations of the ACE-$ Model

An attractive feature of the ACE-8 model introduced in the previous section is that several
of the extensions of the economic within-MZ approach can be applied also to the ACE-p
model to investigate and/or ameliorate concerns about the validity of the estimates. We
discuss some of the most important 1ssues in this context next, and the formal presentation
of the corresponding models is provided in the Appendix.



Measurement Error in x

Earlier in this paper, we discussed the potential relevance of measurement error in x;
(schooling) for obtaining a correct estimate of the causal effect g of schooling x on fer-
tility y. These concerns about measurement error in x carry over analogously to the ACE-
framework and. 1n particular, measurement error in schooling has received extensive atten-
tion in the economic literature on twins. Measurement error in x (e.g., schooling) 1s known
to bias the inferences of 8 and other parameters of the ACE model. In contrast, random
measurement error in y is usually subsumed in the unique environmental influences EY
affecting v, and it causes no biases in the estimated impact 8 of schooling x on fertility y.
To control for the measurement error in x, some twins datasets contain multiple mea-
sures of x. For example, to control for measurement error in schooling, some twins data
contain a twin’s own report of schooling, denoted .rg- and a co-twin’s report of the twin’s
schooling, denoted x;;. Figure 6 presents the corresponding path diagram where both a
twin’s own and co-twin’s report on schooling x are available. under the maintained assump-
tion that the measurement error between a twin’s own and co-twin’s report on schooling x
are independent. The Appendix provides the corresponding formal representation. Using
these dual reports about the schooling of each twin, the ACE-$ model can control for mea-
surement error in both the estimation of the causal effect g of schooling x on fertility y and
the inference of heritabilities and the contributions of the genetic and social endowments

to the variation in schooling and fertility.



Social Interactions: Twins React to Each Other

Social interactions among twins is a second frequently raised criticism leveled against the
use of twins data in the social sciences. We have already discussed earlier that, within the
economic twins model, social interaction between twins with respect to x does not affect
the estimate of 8, whereas social interactions with respect to y will bias the estimates.

Cxx Eyy

© ®  ®

Figure 6. ACE- model with measurement error in x: own and co-twin report of schooling are
indicators of the unobserved true schooling level x;*.



The corresponding key questions in the ACE-f model are twofold: On the one hand,
does the fact that social interaction with respect to x does not bias the inferences, which was
the case in the within-MZ model, also apply to the ACE-f model? And on the other hand,
given that additional data—DZ and MZ twins—are used for the analyses, is it possible to
empirically infer the extent of social interactions?

Social interaction with respect to schooling x can be included in the path-diagram for
the ACE-B model by introducing paths s (with |s| < 1) from schooling of twin i, x;; to
the schooling of i’s co-twin k, x;; (Figure 7). There will be positive (s > 0) social inter-
action if schooling of twin ¢ benefits from the schooling attainment of twin k, and there
will be negative (s < 0) or competitive social interaction if the twins compete for limited
resources—such as money or parental time—to increase their schooling attainment or if
twins attempt to distinguish themselves from their co-twins through different behaviors.
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Figure 7. ACE-g model with social interaction on schooling x. The paths connecting the endow-
ments AL, CE, A} and C}; between twin 1 and twin 2 in pair j have been omitted for clarity of the

diagram.



Table 5
Variance of x;; and y; implied by ACE-g model with social interaction on x (Egs. 18-19)

Variance x;; w((1 4+ s2)V[1, 1]+ 2sV[[3. 1])
Variance y;; w(BX(1 4+ sHV[1, 114+ 28(1 —sH)V[2, 1]+ (1 — 25*)>V[2,2] +
2B%sV[3,1] — 2Bs(1 — s*)V[4.1])

where w = 1/[(1 + $)? (1 — 5)*] and V[I, k] refers to row [ and column k of the variance /covariance
matrix for MZ or DZ twins in Eqs. (15-16) with e,, = 0 (see also Table 2)



[t turns out that an attractive feature of the ACE-B model is the fact that not only
can B be estimated in the presence of social interactions on x but the degrees of social
interaction can be estimated. In particular, solving for the variance/covariance matrix of
the observed phenotypes x and y (Appendix) reveals that social interaction results in a
different variance for x for DZ and MZ twins. Table 5 shows that the variance of x depends
on the social interaction parameter s and V[3, 1], which is equal to a2, + ¢Z, for MZ and
5a%_+ ¢ for DZ twins (see Table 4). Using this differential variance in x, the coefficient
of social interaction can be identified in addition to the other parameters of the ACE-f
model (Plomin, Defries, McLearn, and McGuffin 2005). An important advantage of the
ACE-B model, therefore, 1s that, subject to the model assumptions, the analyses can jointly
estimate (1) the causal effect # of schooling x on fertility y, (2) the extent s to which social
interactions affect schooling within twins pairs, and (3) the contributions of genetic and
social endowments to the variation and covariation of schooling x and fertility y within and
across individuals.



[n addition, despite the presence of social interaction on x, the coefficient 8 can be
inferred from the observed variances / covariances of MZ twins (and only those of MZ
twins) as

_ EM Ly ] — EMyyxy)]
EMEIIUIU] — fmzlxlszj]

B

as long as the assumption ey, = 0 remains valid,”® which is congruent with the fact that
the within-MZ model continues to give an accurate estimate of g in the presence of social
interactions on Xx.

Social interaction with respect to fertility y can also be incorporated in the ACE-f
model and. in contrast to the within-MZ approach, all parameters can be estimated because
social interactions with respect to fertility y imply a different variance of y for MZ and DZ
twin whereas the variance of x remains equal for MZ and DZ twins.

Because of the effect of social interactions on the variance of schooling x and/or fer-
tility y and the fact that in the presence of social interactions the variance of these outcomes
will differ between MZ and DZ twins, the possible presence of social interactions can be
inferred from the pattern of variances of x and y by zygosity (see Table 6). For example, in
a situation in which one expects 8 > 0, a pattern where Var™%(x) > Var®%(x) and Var™%(y)
> VarP%(y) is indicative of positive (s > 0) or reinforcing social interaction with respect
to schooling x; a pattern where Var™4(x) = Var%(x) and VarM4(y) > VarP%(y) possibly
indicates positive (s > 0) or reinforcing social interaction with respect to fertility y.



Table 6
Indications of social interactions in the ACE-8 model with twins data (under assumption
that 8 > 0)

Variance Social Interaction

VarMZ(x) > VarP(x) and VarM%(y) > VarP%(y) possible reinforcement interaction
onx:s >0

VarM%(x) < VarP(x) and VarM%(y) < VarP%(y) possible competition on x: 5 < 0

VarM%(x) = VarP(x) and VarM%(y) > VarP%(y) possible reinforcement interaction
ony

VarM?(x) = Var?(x) and VarM%(y) < VarP%(y) possible competition on y




Correlated Cross-Equation Shocks

A further assumption for the estimation of g in the ACE-f model 1s the assumption that
eyx = 0: that 1s, that any individual-specific shocks that affect x (say, schooling) have an
effect on fertility y only through x but not directly. In the first part of this paper in the
context of the economic twins model, we discussed that, if this assumption is not satisfied,
an instrumental variable estimation can be used. The requirement for the instrument 1s that
it predicts the within-MZ difference in schooling x and that it 1s not correlated with the
unobserved determinants of fertility y.



Figure 8 shows the corresponding integration of the instrumental variable estimation
in the ACE-g model, to which we refer as the ACE-B IV model. In the top part of Figure 8,
the available instrument z 1s completely exogenous in the sense that it predicts x but 1s not
correlated with any of the unobserved endowments that affect schooling x and fertility y.
The bottom part of Figure 8 shows the more likely scenario for social-science applications
of the ACE-B IV model of an instrument that is correlated with the endowments affecting
schooling x and fertility y. The crucial advantage of the ACE-g IV approach in Figure 8,
which 1s formally presented in the Appendix, 1s the ability—conditional on a valid instru-
ment being available—to test the assumption that ey, = 0 and, 1f its assumption 1s rejected,
to estimate an ACE-B model that allows for ey, # 0. That is, if a suitable instrument 1s
available, the assumption that individual-specific influences on schooling x affect fertility
y only through schooling and not directly can be relaxed. The ACE-B model in Figure 8,
therefore, allows the estimation of (1) the causal effect § of schooling x on fertility y,
(2) the contributions of genetic and social endowments to the variation and covariation
of schooling x and fertility y within and across individuals, and (3) the extent to which
individual-specific factors that affect schooling Ej; affect fertility y through x and directly
along the path ey,.



Application to the Minnesota Twins Data

We illustrate the models discussed earlier in this paper using analyses of the effect of
schooling on three outcomes—self-reported health, schooling of the first spouse, and
fertility—for which the relationship with schooling has received considerable attention
in the literature (Wolfe and Haveman 2003). The data used for these analyses 1s provided
by a subset of the Minnesota Twin Family Registry (MTFR) Data. The MTFR is one of
the largest birth record-based twins registries in the world; details of the sample and its
characteristics are in Lykken, Bouchard, McGue, and (1990). The specific data that we use
consists of a socioeconomic survey conducted in 1994 of about 3,600 twins born between
1936 and 1955. The interesting features of these data include the availability of birth weight
information that 1s obtained through a link with the birth registry and the inclusion of a
co-twin’s report about a twin’s schooling that will allow us to control for measurement

error. These data have previously been used by Behrman et al. (1994, 1996) and Behrman
and Rosenzweig (1999, 2002, 2004). We focus in our analyses on female twins only (same-

sex MZ twins and same-sex DZ twins) with complete information on own schooling and
the co-twin’s report of schooling. Descriptive statistics of our study population are pro-
vided in Table 7. Scripts and data for replicating the analyses presented in this section are
available online at http://www.ssc.upenn.edu/~hpkohler.



(a) “Fully exogenous” instrument z

Yij




(b) Instrument z that is correlated with endowments

Zij » | Xij »| Yij

0

Figure 8. ACE-g IV model: combining the ACE-g model with instrumental variable estimation
Note: the coefficients for the paths between the latent variables and the phenotypes have been omitted
for clarity of the diagram.



Table 7
Descriptive statistics for MTR study population

MZ T wins DZ T wins

Mean Std. Dev. N  Mean Std. Dev. N

Birth year” 1947 5.51 858 1946 5.82 682
Schooling (years)“ 13.4 2.27 858 133 2.28 682
Co-twin report of schooling® 13.4 2.20 858 13.1 2.08 682
Self-reported health®” 4.34 0.69 838 4.30 0.69 668
Schooling (years) of 1st spouse®® 134 230 484 132 2.25 406
Fertility (# of children)®? 2.17 1.42 758 2.38 1.42 606
Subset for twin pairs for within-MZ IV analyses®

Birth weight (kg) 2.51 0.47 672  2.65 0.49 516
Mother age at birth of twins 28.4 6.14 672 294 5.30 516
Mother died before twins were age 30 0.033 0.18 672  0.027 0.16 516
Schooling (years) 13.6 2.31 672 133 2.27 516
Fertility (# of children) 2.13 1.39 672 230 1.35 516

Notes: '“Includes twins in pairs for whom complete information on (own) schooling and co-twin
report of schooling is available; " Twins in pairs for whom information on subjective health is avail-
able for both twins; subjective health is coded as 5 = excellent, 4 = good, 3 = fair, 2= poorand 1 =
bad; ‘““Twins in pairs in which both twins were ever married and for whom information on schooling
of the first spouse is available for both twins; ‘“Twins in pairs for whom fertility is available for both
twins; “"Twins in pairs for which data on schooling, co-twin report of schooling, fertility, mother age
at birth of twins, mother mortality and birthweight are complete.



In our illustrations of the different methods for the analyses of twins data in this sec-
tion, we do not present any analyses that allow for social interactions on schooling among
twins because the equal variance of schooling between DZ and MZ twins does not pro-
vide an indication that social interaction among twins is an important determinant of the
schooling outcome in the study population. There is also no differential variation between
MZ and DZ twins in health, fertility, or schooling of the first spouse. thereby providing
no indication that social interaction processes of the form outlined earlier in this paper are
important for the outcomes considered in this section.



Within-MZ Analyses of the Effect of Schooling on Health, Spouse’s Schooling,
and Fertility

Table 8 compares within-MZ analyses—with and without correction for measurement
error—with standard OLS analyses for the relationship between schooling on the one hand
and self-reported health, schooling of the first spouse, and fertility, respectively, on the
other. Because the twins were between 39 and 355 years old at the time of the survey, these
outcomes reflect completed schooling and near-completed fertility.



Table 8
The effect of schooling on health, spouse schooling and fertility: Comparison of OLS and
within-MZ analyses (female twins only)

MZ Twins
Within-MZ Within-MZ with meas. error OLS

Suhjective Health (z-score)
Schooling (z-score) 0.007 0.014 0.110%*

(0.069) (0.103) (0.038)
Observations 338 838 838
Spouse Schooling (z-score)
Schooling (z-score) 0.259** 0.285* 0.510%*

(0.081) (0.118) (0.044)
Observations 484 484 484
Fertility (z-score)
Schooling (z-score) —0.239* —0.232* —0.220%*

(0.066) (0.092) (0.038)
Observations 758 758 758

Note: The analyses are based on complete MZ twin pairs (females only) with non-missing infor-
mation on the respondent’s schooling, the co-twin’s report of the respondent’s schooling, and the
outcome variable (subjective health, spouse’s schooling and fertility). For spouse’s schooling, only
twin pairs where both twins have been married are included. All variables have been converted
into z-scores with mean zero and a variance of one using cohort-specific estimates of the mean and
standard-deviation for each variable.

p-values: ¥*p < .01, *p < .05, *p =< .1.



In all analyses that are shown in Table 8, the twin’s schooling, health, fertility, and
schooling of the first spouse have been converted into z-scores with zero means and
variances of one by first regressing each variable, and then the residual of this regression,

on a quadratic function of birth year. Cohort-specific mean and standard deviations (SDs)
were then used to standardize each variable to a mean of zero and a variance of one using
the cohort-specific mean and variance. In addition to removing secular cohort trends in
schooling, health, and fertility, this standardization of all variables renders the coefficients
comparable across models and outcomes. A coefficient of .11, as is shown for the OLS
analyses for health in Table 8, for example, suggests that a 1-SD increase in schooling is
associated with an .11-SD increase in subjective health.



Several interesting substantive and methodological issues emerge from our analyses in
Table 8. First, in contrast to the extensive literature on health and schooling (Cutler, Deaton
and Lleras-Muney 2006; Cutler and Lleras-Muney 2007) that has documented a strong
association—that has often been interpreted as a causal effect—between schooling and
health (see also the OLS analyses for health in Table 8), the within-MZ analyses of school-
ing and subjective health in Table 8 show that the effect of schooling on health is essentially
zero. This finding is unchanged after controlling for measurement error using a twin’s co-
twin report of her schooling. Very similar results have also obtained by Behrman et al.
(forthcoming) using data on Danish twins. Through the within-MZ regression that under-
lies this result relies on an assumption that individual-specific “shocks™ to schooling affect
health only through schooling (i.e., the assumption that e,, = 0), it seems unlikely that
the near-zero coefficient estimate in the within-MZ model is caused by a violation of this
assumption. In particular, the most plausible violation of this assumption are individual-
specific shocks such as an accident that affect schooling and health in the same direction
(which would imply ey, > 0). Examples of such shocks are accidents that disrupt school-
ing and have long-term health consequences. If the true effect of schooling and health were
positive and in violation of the model assumptions e,, were positive (instead of e¢,, = 0)
because such shocks are important, the within-MZ estimate would be biased upward. This
upward bias, however, is inconsistent with a within-MZ point estimate of almost zero if the
true effect of schooling on health were positive.



This finding of a close-to-zero coefficient in the within-MZ analyses of schooling and
health hence raises questions about the usual attribution to schooling of substantial pos-
itive effects on health-related behaviors and outcomes and the existence of an important
causal schooling-health gradient. In terms of causal effects, despite the strong associa-
tions with schooling, the real stratification appears to be with regard to social and genetic
endowments. “Better” endowments, thus, apparently tend to lead to more schooling and
better self-reported health, and the resulting positive association between schooling and
health does not appear to reflect causal effects of schooling toward improved health in the
population studied here.



In contrast to the preceding findings for health, the within-MZ results in Table 8 sug-
gest a significant effect of own schooling on schooling of a twin’s first spouse: a 1-SD
increase in the twin’s own schooling would on average imply a .26-SD increase in the
schooling of the first spouse. The presence of measurement error in schooling, which is
exacerbated in within-MZ analyses, implies that this estimate might be biased downward.
Consistent with this expectation, the within-MZ analyses that control for measurement
error find a somewhat stronger effect of .28 of own schooling on that of the first spouse.
In both cases, however, the within-MZ analyses provide an estimate of the effect of own
schooling on spouse education that is substantially below the association of .51 that is
suggested by the OLS estimates. This finding, therefore, suggests that the cross-sectional
association between own and spouse’s schooling results to a substantial extent from assor-
tative mating on endowments: Both own and spouse’s schooling are affected by unobserved
social and genetic endowments that tend to move own and spouse’s schooling in the same
direction. For example, if there is positive assortative mating in the marriage market on
aspects such as “ability” or “motivation™ or if sorting on unobserved dimensions such as
parents” socioeconomic status, own and spouse’s schooling would tend to be correlated as
a result of correlated endowments, and OLS analyses are biased upward. Consistent with
such assortative mating on schooling-related endowments, the OLS estimate in Table 8 is
between 80% and 95% above the estimated within-MZ effect of own schooling on spouse’s
schooling and. arguably, the within-MZ estimates provide a better estimate of the casual
effect of own on spouse’s schooling that suggests that a 1-SD increase in own schooling
implies a .26- to .28-SD increase in spouse’s schooling. Behrman and Rosenzweig (2002)
report similar results.



The final set of our within-MZ analyses considers the relationship between schooling
and fertility, where the within-MZ analyses suggest that a 1-SD increase in own schooling
for women reduces fertility by about .24 SD. This estimate remains essentially unchanged
if co-twin reports are used to control for measurement error in schooling. Moreover, the
reduction in fertility as a result of schooling that is suggested by the within-MZ analyses
is only marginally larger in magnitude than the association obtained from a OLS analyses
of fertility and schooling, suggesting that unobserved social and genetic endowments that
affecting schooling are only weakly associated with the social /genetic endowments that
affect (completed or near-completed) fertility.



In assessing this estimate of the negative effect of schooling on fertility that is revealed
by the within-MZ estimate in Table 8, the possible robustness—or not—of the results with
respect to the assumption ey, = 0 of the within-MZ model is an important consideration.
In the context of fertility, individual-specific shocks that affect schooling and fertility in
the opposite direction might be expected, such as, for example, an unintended pregnancy
during high-school/college education or an “unexpectedly” early marriage that disrupts
schooling. In terms of our empirical model, if these and similar shocks are important
determinants of both schooling and fertility, the path coefficient e, would be negative in
violation of the within-MZ model assumptions. As a result, the within-MZ estimate of the
reduction in fertility as a result of schooling would be biased toward zero, and the true effect
of schooling on fertility would be more negative than suggested by the within-MZ analyses.



The combination of instrumental variable estimation with within-MZ analyses is one
strategy to explore the potential importance of a non-zero e,, path on the estimation results,
provided that there is an instrumental variable(s) that predicts schooling but affects fertil-
ity only through its effect on schooling. In the Minnesota Twins Data that are used in this
paper, one possible instrument that predicts schooling and, arguably, affects fertility only
through schooling, is birth weight. Previous studies using within-MZ twins have found
significantly effects of birth weight on schooling. though they have not addressed the ques-
tion of possible direct effects on fertility beyond any indirect effects through schooling
(Almond, Chay, and Lee 2005; Behrman and Rosenzweig 2004; Conley et al. 2003). The
impact of birth weight on schooling arguably differs depending on various parental charac-
teristics, such as mother’s age or whether mothers died before the child reached adulthood.
Therefore. we also interact birth weight with mother’s age at birth of the twins and an
indicator variable for whether a twin’s mother died before the twins reached age 20. It is
important to notice that the instruments—birth weight and its interactions with mother’s
age at the birth of the twins and maternal mortality—are likely to be correlated with the
social and genetic endowments of the twins. The instruments would, therefore, not be
acceptable in standard IV analyses that do not control for endowments, but they may con-
stitute valid instruments in within-MZ IV analyses because social and genetic endowments
are controlled.



In our application using the Minnesota Twins Registry data. birth weight and its inter-
actions significantly predict the z-score of schooling (and schooling directly), with the
F(3,333)-statistic of the first-stage fixed-effect regression equal to 2.62 (p = .05) and
the instruments explaining 2.3% of the within-MZ wvariation in schooling. Though the
F-statistic is statistically significant, a better predictive power of the instruments in the
first-stage regression would clearly be desirable, and our analyses are potentially subject
to concerns about weak instruments (Staiger and Stock 1997; Stock 2010; Stock and Yogo
2002). However, as finding suitable instruments that predict schooling differences among
MZ twins is often challenging, as is the case in our application using the Minnesota Twins
Registry data, we present our within-MZ IV analyses that allow an assessment of the poten-
tial biases that are incurred if the assumption of e,, = 0 is violated with an important
cautionary note about potential concerns about weak instruments.



Table 9 presents the within-MZ IV regression results for the effect of schooling on
fertility, using birth weight and its interactions as instruments for schooling in the within-
MZ analyses. Clearly, the precision of the estimate for the effect of schooling substantially
declines in the within-MZ IV estimates, in part due to the weak first-stage instruments. At
the same time, the within-MZ 1V estimate of the effect of schooling on fertility is about
(.84, suggesting that the reduction in fertility as a result of increased schooling might
be substantially larger than is suggested by the within-MZ analyses (without IV). In par-
ticular, taking the within-MZ IV estimate in Table 9 at face value suggests that a 1-SD
increase in schooling for women in the study population reduces fertility by about .84
standard deviation, about 3.5 times the effect indicated by the within-MZ analyses without
instrumenting. This substantial increase in the magnitude of the fertility-reducing effect of
schooling in the within-MZ IV estimates would be consistent with a considerable impor-
tance of individual-specific shocks—such as unintended early pregnancies—that affect
schooling and fertility in opposite directions.



Table 9
The effect of schooling on fertility: within-MZ IV analyses

Within-MZ + IV Within-MZ
Schooling (z-score) —0.8467 —0.250%
(0.509) (0.070)
Observations 672 672

Note: Instruments for schooling include birth weight (z-score) and interactions between birth
weight and (a) mother’s age at birth of the twins and (b) an indicator that the twins” mother died
before the twins reached age 20. The within-MZ model 1s reestimated for the same set of respondents
for whom the instruments are available.

p-values: *p < .01,*p < .05, *p = .1.



In summary, the different within-MZ analyses in Tables 8 and 9 illustrate a broad
spectrum of results that are obtained from such analyses: For the relationship between
schooling and health, the analyses suggest that the true effect of schooling on health might
be zero and that the observed strong association between schooling and health might be
the result of stratification on endowments that jointly affect schooling and health. Neither
measurement error in schooling nor the presence of individual-specific shocks that jointly
affect schooling and health are likely explanations for this finding. For schooling of the first
spouse, which is an important indicator of marriage market outcomes, our within-MZ anal-
yses show that more own schooling is likely to imply also substantially more schooling of
the spouse. With controls for measurement error, our analyses suggest that a 1-SD increase
in own schooling increases schooling of the spouse by about .28 SD. However, our anal-
yses also point to the presence of assortative mating on social and genetic endowments.



In particular, these assortative mating processes imply that the cross-sectional associa-
tion between own and spouse’ schooling is substantially higher—nearly 80% higher in
our analyses—than the effect that is found in the within-MZ analyses. Finally, for fertil-
ity, both our OLS and within-MZ analyses in Table 8 point to an important reduction of
fertility as a result of increased schooling. Because the within-MZ results might be an
underestimate of the true reduction of fertility that is implied by more schooling, we use
within-MZ IV analyses to explore the potential importance of individual-specific shocks
that affect schooling and fertility in opposite directions. Though we emphasize a cautionary
note about possibly weak instruments in these analyses, the within-MZ IV results sug-
gest a substantially larger reduction in fertility as a result of increased schooling than do
the within-MZ analyses without instrumenting. This pattern suggests that, in the context
of assessing the relationship between schooling and fertility, potential individual-specific
shocks—such as unintended early pregnancies—that affect schooling and fertility in oppo-
site directions might be an important aspect that cannot be ignored in within-MZ analyses.



ACE Analyses for the Relationship between Schooling and Health, Spouse’s Schooling,
and Fertility

A limitation of the previous within-MZ analyses is that they are not very informative about
the nature of endowments, and the pathways of how genetic and social endowments affect
the relationship between a twin’s schooling and the outcomes health, spouse’s school-
ing, and fertility. In Tables 10 to 12, therefore, we present univariate and multivariate
ACE models for these phenotypes, including ACE-f models that are closely related to the
within-MZ analyses discussed earlier. For each table, all analyses (with the exception of

the instrumental variable model for fertility in Table 12) are estimated on the same sample
so that differences in the estimates across the models are not the result of different samples.
We also continue to use z-scores for all variables to remove secular cohort/age trends in the
outcomes and to make the estimated model coefficients more comparable across different
specifications and outcome variables.



Table 10
Univariate, bivariate ACE and ACE-f models for schooling and health (z-scores)

ACE-g with
Univariate ACE  Bivariate ACE ACE-p Meas. Err.
Model (1) (2) (3) (4)
ox 0.678* 0.681* 0.681* 0.603*
(0.069) (0.067) (0.067) (0.064)
(yx — 0.044 0.031 0.055
(0.099) (0.127) (0.156)
(yy 0.537** 0.534* 0.534** 0.549*
(0.127) (0.079) (0.079) (0.123)
Cox 0.439** 0.436% 0.436** 0.524*
(0.098) (0.096) (0.096) (0.07)
Cyx — 0.271% 0.263* 0.186
(0.131) (0.127) (0.118)
Cyy 0.267 0.000 0.000 0.124
(0.213) (0.576) (0.58) (0.483)
€y 0.580** 0.579* 0.579** 0.466**
(0.020) (0.020) (0.020) (0.020)
Eyx — 0.011 — —
(0.039)
Eyy 0.821* 0.820* 0.820** 0.819*
(0.027) (0.026) (0.026) (0.027)



Table 10
Univariate, bivariate ACE and ACE-S models for schooling and health (z-scores)

ACE-B with
Univariate ACE  Bivariate ACE ACE-p Meas. Err.
Model (1) (2) (3) (4)
B — — 0.019 0.034
(0.067) (0.093)
y — — — 0.982*
(0.018)
a?(x?) — — — 0.13**
(0.013)
o?(x*) — — — 0.075*
(0.012)
h? 0.465 0.469 0.469 0.425
c? 0.195 0.192 0.192 0.321
h? 0.279 0.278 0.278 0.297
c2 0.069 0.071 0.071 0.055
N 1,506 1,506 1,506 1,506

p-values (for model coefficients only): *p < .01, *p < .05, *p < .1. N refers to individuals.
Note: All variables have been converted to z-scores with mean zero and a variance of one using
cohort-specific estimates of both mean and variance of each variable. The subscripts x, y indicate the
variables as: x = schooling; y = self-reported health.



Table 11
Univariate, bivariate ACE and ACE-S models for (own) schooling and schooling of first

spouse
Univariate ACE Bivariate ACE ACE-p ACE-B with Meas.Err.
Model (1) (2) (3) (4)
Ay 0.678** 0.577+ 0.577** 0.559**
(0.084) (0.078) (0.078) (0.07)
(yx — 0.257* 0.156 0.087
(0.114) (0.135) (0.142)
dyy 0.547** 0.286* 0.286* 0.296*
(0.133) (0.124) (0.124) (0.118)
Cox 0.317 0.456% 0.456%* 0.485**
(0.165) (0.088) (0.088) (0.076)
Cyx — 0.491* 0.412* 0.376**
(0.099) (0.093) (0.092)
Cyy 0.337F 0.000 0.000 0.000
(0.188) (0.162) (0.162) (0.163)
€y 0.56** 0.574+ 0.574** 0.447**
(0.025) (0.026) (0.026) (0.026)
€yx — 0.101* — —
(0.044)
€y 0.708** 0.719** 0.719** 0.717*
(0.031) (0.03) (0.03) (0.029)



Table 11
Univariate, bivariate ACE and ACE-S models for (own) schooling and schooling of first
spouse

Univariate ACE Bivariate ACE ACE-p ACE-f with Meas.Err.

Model (1) (2) (3) (4)
B — _ 0.175* 0.254*
(0.076) (0.109)
% — _ _ 0.996**
(0.024)
o2(x%) — — — 0.121%
(0.014)
o (x*) — — — 0.072**
(0.013)
h? 0.529 0.383 0.383 0.418
c 0.111 0.239 0.239 0.315
h? 0.327 0.162 0.162 0.153
cf_ 0.124 0.264 0.264 0.272
N 890 800 800 800

p-values (for model coefficients only): **p < .01, *p < 05, *p < .1. N refers to individuals.
Note: All variables have been converted to z-scores with mean zero and a variance of one using
cohort-specific estimates of both mean and variance of each variable. The subscripts x, y indicate the
variables as: x = schooling; y = schooling of first spouse. The analyses include only twin pairs in
which both twins are ever-married and data on schooling of the first spouse are available.



Table 12

Univariate, bivariate ACE and ACE-S models for schooling and fertility

ACE-pg ACE-pg
Univariate  Bivariate with Meas. ACE-f withlV &
ACE ACE ACE-pg Err. with IV ey: =0
Model (1) (2) (3) (4) (3) (6)
Ayx 0.68** 0.682** 0.682** 0.618** 0.721* 0.721*
(0.072) (0.072) (0.072) (0.068) (0.076) (0.076)
Qyy —0.231* —0.073 —0.071 0.517 —0.001
(0.115) (0.14) (0.15) (0.38) (0.143)
dyy 0.611* 0.565** 0.565** 0.559** 0.458* 0.481*
(0.105) (0.108) (0.107) (0.111) (0.138) (0.126)
Cx 0.424** 0.421* 0.421* 0.501** 0.384* 0.384**
(0.106) (0.107) (0.107) (0.079) (0.131) (0.131)
Cyx — 0.094 0.192 0.196 0.459 0.155
(0.179) (0.162) (0.124) (0.284) (0.190)
Cyy 0.114 —0.069 0.069 0.108 0.3457 0.297
(0.474) (0.89) (0.873) (0.532) (0.184) (0.201)
€y 0.574** 0.574** 0.574** 0.471* 0.573* 0.573*
(0.021) (0.021) (0.021) (0.021) (0.022) (0.022)
€yx — —0.133 — — 0.448 07
(0.037) (0.298)
Eyy 0.745** 0.733** 0.733** 0.734* 0.742* 0.742%
(0.026) (0.026) (0.026) (0.026) (0.027) (0.027)



Table 12
Univariate, bivariate ACE and ACE-£ models for schooling and fertility

ACE-p ACE-p
Univariate  Bivariate with Meas. ACE-f  withIV &
ACE ACE ACE-pB Err. with IV ey =0
Model (1) (2) (3) (4) () (6)
B — — —0.232*%*  —0.275*%*  —1.025* —0.265*
(0.064) (0.088) (0.512) (0.068)
) — — — — 0.126* 0.126%*
(0.045) (0.045)
% — — — 0.972* — —
(0.019)
o H(x%) — — — 0.114* — —
(0.013)
o 2(x%) — — — 0.08** — —
(0.012)
h? 0.476 0.478 0.478 0.446 0.515 0.515
c? 0.185 0.183 0.183 0.294 0.144 0.144
h? 0.397 0.395 0.395 0.393 0.280 0.292
c*;?. 0.014 0.014 0.014 0.016 0.099 0.090
N 1,364 1,364 1.364 1,364 1,188 1,188




The univariate ACE model (Model 1) for the z-score of schooling (coefficients ayy, €y,
and ey) in Table 10 indicates that schooling 1s strongly influenced by genetic endowments,
resulting in a heritability estimate for schooling of about 47% (h? = .465), with an impor-
tant influence of social endowments (shared environments) that 1s consistent with about
20% of the variation in schooling in this study population (¢2 = .195). Self-reported health,
conversely, 1s less affected by social or genetic endowments. In particular, the univari-
ate ACE model for health (coefficients ayy, ¢yy. and eyy in Table 10) suggests that about
28% of the variation in self-reported health is related to genetic endowments (h? = .279),
whereas 7% of the variation stems from social endowments such as parental characteristics
{t?,% = .069). Almost two-thirds of the variation in self-reported health 1s attributed in the
univariate ACE model to individual-specific factors that are not shared by twins.



The bivariate ACE model for schooling and health (Model 2 in Table 10) provides the
same estimates for the heritability (h?) and the variance contribution from social endow-
ments (c?) for these outcomes, but it points to more complex underlying processes that
shape the observed relationship between schooling and health. Most important, the bivari-
ate ACE model suggests that an important source for the observed association between
schooling and health stems from the fact that social endowments (e.g., parental charac-
teristics or socioeconomic status) that affect schooling in early adulthood have long-term
influences on self-reported health. The coefficient of ¢y, = .27 in this model, for exam-
ple, implies that about 76% of the observed correlation between schooling and health
results from social endowments that are shared between twins, with genetic factors con-
tributing about 19% to the observed correlation. Moreover, after accounting for the extent
to which endowments jointly affect schooling and health, there are no unique contribu-
tions of social endowments to subjective health, and the coefficient ¢yy 1s estimated to be
insignificantly different from zero. The very small estimate for ey, suggests that individ-
ual factors affecting schooling are not associated with health once the endowments are
controlled.



The ACE-g model (Model 3 in Table 10), which includes the possibility of a direct
of effect g of schooling on health, confirms the findings of our earlier within-MZ analyses
of the schooling—health relationship and also does not suggest a relevant direct effect of
schooling on health after the influence of endowments 1s accounted for.

The ACE-g model with measurement error (Model 4) additionally identifies that
schooling reports include some measurement error, with measurement error contributing
13% to the variance of own schooling and 8% to the variance in the co-twin’s report of
schooling. Controlling for measurement error in schooling reduces somewhat the esti-
mate for heritability of the “true” unobserved schooling of the twins, and it suggests social
endowments contribute about 32%—about 50% more then the ACE-S model without mea-
surement error—to the variation in schooling. However, similar to our earlier within-MZ
analyses, controlling for measurement error does not affect the conclusion of our analyses
that there does not seem to be a direct effect of schooling on health in this study population.

Table 11 presents the different ACE analyses for the relationship between own school-
ing and schooling of the first spouse. The univariate ACE results for the subset of
ever-married twins suggest a somewhat higher heritability and lower variance contribu-
tion of social endowments than found in our earlier analyses. For the schooling of the first
spouse, the univariate ACE model (Model 1 in Table 11) suggests a “heritability” of 32%,
implying that about a third of the variation in spouse schooling is related to genetic endow-
ments that are shared by the twins and indicating a substantial extent of assortative mating
on genetically determined traits (for related studies of assortative mating, see Buss 1984,
1985; Eckman, Williams, and Nagoshi 2002; Schwartz and Mare 2005).



The bivariate ACE model for spouse’s schooling (Model 2 in Table 11) indicates that
there 1s a substantial overlap in the latent social and genetic endowments affecting own
and spouse’s schooling. For example, the coefficient estimates of a,, = .26 and ¢,, = .49
suggest that about 34% of the observed correlation between own and spouse’s schooling 1s
due to genetic endowments that affect both own schooling and spouse’s schooling through
assortative mating, and 52% of the correlation is due to social endowments that affect
both own and spouse’s schooling. After accounting for overlapping influences of social
and genetic endowments, the bivariate ACE model no longer identifies social endowments
that affect spouse’s schooling only, whereas there remain important genetic endowments
that affect spouse’s schooling but not own schooling. All in all, the bivariate ACE model
suggests somewhat lower heritabilities for both own and spouse’s schooling than the uni-
variate ACE model. whereas social endowments make a somewhat stronger contribution
to the variation in own and spouse’s schooling.



Though the ACE-g model (Model 3 in Table 11) provides similar estimates for her-
itability A% and the variance contribution of social endowments (¢?) for both own and
spouse’s schooling, the ACE-g model that allows for a direct effect of own schooling on
spouse’s schooling suggests a different story regarding the underlying processes that lead
to the observed association between own and spouse’s schooling. Foremost, and similar
to the within-MZ analyses earlier in this paper, the ACE-g model (Model 3) suggests that
an increase in own schooling has a direct effect on the spouse’s schooling. This effect 1s
sizable in that a 1-SD in own schooling implies a .18-SD increase in spouse’s schooling in
our analyses without controls for measurement error and a .25-SD increase 1n the spouse’s
schooling once measurement error 1s controlled.



Once this direct effect of own on spouse’s schooling is allowed. the ACE-g models
(Models 3 and 4 in Table 11) reveal a different explanation than the bivariate ACE model
about the underlying processes that lead to the pronounced association between own and
spouse’s schooling that 1s well documented in many populations. Focusing on the ACE-B
model with measurement error (Model 4), where these changes in interpretation are most
clearly expressed. the introduction of a direct pathway g from own to spouse’s school-
ing leads to a substantial drop in the coefficient ay, that measures the extent to which the
genetic endowments A7 that a twin’s own schooling directly affects the schooling of the
spouse. In contrast, the bivariate ACE model for the relationship between own and spouse’s
schooling (Model 2) suggested that this effect 1s sizable and importantly contributes the
observed covariance between these outcomes. The results of the ACE-g model (Model
4), however, imply that this pathway is relatively unimportant. In particular, though the
ACE-B model with measurement error suggests that about 30% of the correlation between
the unobserved “true” own schooling and spouse’s schooling is due to genetic factors, the
primary pathway operates through schooling: The genetic endowments Aj; are an impor-
tant source of variation in a twin’s own schooling, and these genetic factors affect spouse’s
schooling primarily through the effect on twin’s own schooling. Specifically, in the ACE-
f model with measurement error, only 11% of the correlation between own and spouse’s
schooling is attributed to a direct effect of the genetic endowments for own schooling Aj;
on spouse’s schooling, whereas 19% are due to the indirect pathway in which Aj; affects a
twin’s own schooling and spouse’s schooling only through the effect on own schooling.



Shared environmental factors that affect schooling account for about 57% of the cor-
relation between own and spouse’s schooling, and three-fourth, of this contribution are
accounted for by the direct effect ¢y, on spouse’s schooling of the social endowments for
own schooling Cj,.



In terms of assortative mating in the marriage market, the bivariate and ACE-p

model present two different scenarios (see also Behrman et al. 1994). The bivariate ACE
model (Model 2) suggests strong assortative mating on unobserved genetic and social

endowments—including, for example aspects such as ability, personality characteristics,
parental socioeconomic status—that directly affect, a twin’s own schooling, and via assor-
tative mating on these characteristics, also spouse’s schooling. In contrast, the ACE-g
model (Models 3 and 4) emphasizes a direct effect g of own schooling on spouse’s
schooling that may arise due to social processes such as assortative mating on observed
schooling (rather than the latent determinants of schooling), bargaining in the marriage
market where own schooling affects the ability to attract more-schooled spouses, or a mar-
riage search process where educational institutions are an important source of potential
partners. The results of Model 4 that control for measurement error, for example, imply
that a 1-SD increase in own schooling increases spouse’s schooling by a .25 SD. Once
this direct effect of own on spouse’s schooling 1s accounted for, the ACE-g model suggests
a substantially reduced extent of assortative mating on genetic endowments that affect a
twin’s own schooling (such as, for example, genetic factors underlying ability). The ACE-
B model continues to attribute a substantial fraction of the observed correlation between
own and spouse’s schooling to social endowments that affect a twin’s own schooling (e.g.,
parental socioeconomic status) but to a lesser extent than 1s suggested in the bivariate ACE
model because the bivariate ACE model does not allow for the possibility that these social
endowments affect the spouse’s schooling through the twin’s own schooling.



Table 12 presents the results of our different ACE models for the relationship between
schooling and fertility. The negative relationship between schooling and fertility, espe-
cially for women, has been widely documented across many populations (e.g., Kravdal
and Rindfuss 2008) and the determinants and changes of this negative schooling—fertility
relation have been the topic of extensive investigations (Kohler and Rodgers 2003).



The univariate ACE analyses of fertility (Model 1 in Table 12) yield an estimate of
heritability h? for fertility of about 40%, with social endowments providing a negligible
contribution to the variation in (completed/near-completed) fertility. These conclusions
from the Minnesota Twins Registry data are similar to findings obtained from Danish twins
data and NLSY data (Rodgers and Doughty 2000: Rodgers et al. 2001a,b). In its univari-
ate form, however, the ACE model 1s not informative about the process that contribute to
the negative association between schooling and fertility. To explain the observed negative
association between schooling and fertility, the bivariate ACE model (Model 2 in Table 12)
points in particular to the genetic endowments of schooling that exert a strong negative
influence on fertility ay, = —.23. This model would, therefore, suggest that genetic factors
that tend to increase schooling (e.g., the genetic factors affecting ability) have a direct neg-
ative effect on fertility through the path a,,. In addition, the bivariate ACE model suggests
that individual-specific shocks to schooling have a strong direct effect on schooling (e,
= —.13), for instance, in the form of an unintended pregnancy that disrupts schooling and
leads to an overall increase in completed fertility.



The Iimitation of this model that there 1s no direct effect of schooling on fertility 1s
avoided 1n the ACE-B model (Model 3) that estimates a coefficient g suggesting that a
I-SD increase in schooling reduces fertility by .23 SD, which 1s very similar to our earlier
results obtained from within-MZ analyses. Controlling for measurement error in schooling
(Model 4) increases this negative effect of schooling on fertility to —0.27. Most impor-
tant, and in contrast to the bivariate ACE model, the coefficient ayy in the ACE-S model
with measurement error has become insignificant and small in magnitude, suggesting that
the genetic factors affecting schooling {AE}} do not affect fertility directly, but primarily
indirectly through their effect on schooling.



The ACE-g IV model, which uses birth weight in interaction with mother’s age at
the birth of twins and maternal mortality as instruments for schooling, provides a test of
the assumption ey, = 0 that underlies the within-MZ and the ACE-g model. The ACE-pB
IV model (Model 6 in Table 12) provides an estimate of g = —1.02 that is very similar
to our earlier within-MZ IV estimate in Table 9 and substantially larger than the effect
of schooling on fertility that is estimated by the ACE-g model (Models 4 and 5 in Table
12). Though there are some concerns about possibly weak instruments in these analyses
that we recognize but cannot resolve with the data used for the analyses in this paper,
the ACE-g IV analyses (Model 5) show that the null-hypothesis of ey, = 0 cannot be
rejected. In the final column of Table 12 (Model 6), therefore, we re-estimate the ACE-g IV
model with the coefficient ey, constrained to zero. This final model, which 1s our preferred
specification for the ACE-g IV model for the schooling—health relationship, suggests that
a 1-SD increase in schooling reduces fertility by about .26 SD, which is an effect that is
about 15% larger in magnitude than suggested by the ACE model without measurement
error correction (Model 3). In addition, the final ACE-g IV estimates (Model 6) confirm
our earlier conclusions that, once direct effects of schooling on fertility are allowed in the
model specification, there 1s no longer evidence that the genetic endowments for schooling
(A};) have a direct effect on fertility and. instead. these endowments affect fertility primarily
through schooling and, through this pathway, account for about three-fourth of the negative
association between schooling and fertility in the data.



Appendix

Measurement Error Model

To formally represent measurement error in the ACE-g model (Figure 6), we distinguish
between the “true”—but unobserved—values of the phenotypes, which are denoted as
P* = (x;» ¥}j- X3;- ¥5;)" and the observed phenotypes that are denoted as P. If the concern is
particularly with respect to measurement error in schooling x and the data contain both
a twin’s own report of schooling, denoted xj; and a twin’s sibling’s report of his/her
schooling, denoted xj;, the observed data ﬁ}r each twins pair can be written as P =
{xjj.x‘h,}u:xgj f vgJ) Moreover, the observed data P is related to the latent phenotypes
as

P=TIP* +GYE (23)
where
| .
r=hLhe(y 0O
0 1

and GME is a vector containing the random “measurement error component”™ in own and
Hling’ - I ME 0 L5 ()Y
sibling’s report of schooling that is given as G™* = (e{;. €};. €. €3;. 0)".



The variance/covariances  among  the  observed  phenotypes P =
(x] }11 x" r‘ ¥o;) is then given as

VM — eMZIPP'] = T'(1 — B)"'VM%(1 — BY ™' T + Var(G"E) (24)
VoZ = PZ[PP'] = T(1 — B) "' V241 — BY "I’ + Var(G'E) (25)

where Var(GME) is variance of the random measurement error in own and sibling’s report
of x that, due the assumption of independent measurement error across twins, is given by

Var(GME) = £|GMEGME'| = Diag(Var(e?), Var(e®), 0, Var(e?), Var(e®), 0).



Social Interactions in the ACE-f Model

Social interaction between twins within the same twins pair can be captured by modifying
the matrix B in the ACE-8 model to reflect both the effect of schooling x on fertility y
and the interaction between the twins. We focus first on social interaction that affects the
schooling attainment x. Similarly to the economic fixed-effects model, where we discussed
social interactions, interaction with respect to x between twins is represented by modifying
the relation for the first phenotype x in Eq. 13 as follows:

Xjj = $Xg + Ao Aj + G + eEj, (26)

where s (with |s| < 1) is the social interaction parameter. Stacking the observed pheno-
types as P = (xy;yyjX2j. ¥2;)" and redefining the matrix B to include the social interaction

parameter § as

(27)
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the relationships (18—19) continue to hold. Social interaction in the ACE-S model is, there-
fore, straightforward to implement, and the variance-covariance matrix of the observed
phenotypes P can be obtained from Eqs. (18-19), using the matrix B as specified in

Eq. (27). As the inverse of Iy — B in this case is given by

Iy—B)' = :
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which 1s no longer block-diagonal as in the ACE-g model without social interaction Eqgs.
(18), (19), and (27) imply that MZ and DZ twins will have a different variance of x when-
ever s = 0 (see also Table 5). This fact allows the ACE- model to estimate not only the
causal effect B of schooling x on fertility y but the extent s to which social interactions

affect schooling.



Social interaction with respect to the primary outcome, fertility y, can be incorporated
into the ACE-S model by specifying the matrix B as

00 0 0
B 0O 0 s

B=10 0 0 o (28)
0 s B 0

Following similar steps as in the case of social interactions with respect to schooling x, the
variance-covariance matrix of the observed phenotypes P can be obtained from Eqs. (18—
19), using the matrix B as specified in Eq. (28). Because social interactions with respect to
y imply a different variance of y for MZ and DZ twins, the parameter s can be estimated
along with the other model parameters.



Instrumental Variable Estimation in the ACE-f Model

The path-diagram for the instrumental variable estimation in the ACE-8 model, which 1s
given in Figure 8(b) for the case where the instruments are possibly correlated with the
genetic and social endowments, can be obtained by stacking the observed phenotypes as
P = (x1j. V1, 21j, X2j. ¥2j. 22, ). We can then represent the ACE- model with instrumental
variables as

P=BP+(L®L,)G4s + (I, ® Lp)Gp + (I, ® L.)Geg,

where

and



With the preceding notation, the variance/covariances among the observed phenotypes z,

x and y can be written—similar to the ACE-B model in Eqgs. (18-19)—as
Ve =M PP =1-B) V41 —-B) !

Vi =EY4PP | =(1-B)'VZ*01—B)

where A =L,L,.C=L.L., and E =L_.L,” and

‘IME o A+C+E A+C
CA A+C A+C+E

ng — (

A+C+E  SA+C
SA+C  A+CHE

).
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