Robots and Jobs: Evidence from US Labor Markets

Daron Acemoglu and Pascual Restrepo

Journal of Political Economy, Volume 128, Issue 6, June 2020

James J. Heckman

Econ 350, Winter 2023

1. Introduction

Acemoglu & Restrepo

2. Robots, Employment and Wages: A Model

Acemoglu & Restrepo

2.1 Robots in Autarky Equilibrium

Acemoglu & Restrepo

The economy consists of |C| commuting zones. Each commuting zone $c \in C$ has preferences defined over an aggregate of the consumption of the output of $|\mathcal{I}|$ industries, given by

$$Y_c = \left(\sum_{i \in \mathcal{I}} \alpha_i Y_{ci}^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}},\tag{1}$$

where $\sigma > 0$ denotes the elasticity of substitution across goods produced in different industries, while the α_i 's are share parameters designating the importance of industry *i* in the consumption aggregate (with $\sum_{i \in \mathcal{I}} \alpha_i = 1$). In the autarky equilibrium, each commuting zone can consume only its own production of each good, denoted by X_{ci} for the output of industry *i* in commuting zone *c*. Hence, for all $i \in \mathcal{I}$ and $c \in \mathcal{C}$, we have

 $Y_{ci} = X_{ci}$.

Each industry produces output by combining a continuum of tasks indexed by $s \in [0, S]$. We denote by $x_{ci}(s)$ the quantity of task s utilized in the production of X_{ci} . These tasks must be combined in fixed proportions so that

$$X_{ci} = A_{ci} \min_{s \in [0,S]} \{ x_{ci}(s) \},$$

where A_{ci} designates the productivity of industry *i*. Differences in the A_{ci} 's and the α_i 's will translate into different industrial compositions of employment across commuting zones.

$$x_{ci}(s) = \begin{cases} r_{ci}(s) + \gamma l_{ci}(s) & \text{if } s \leq M_i \\ \gamma l_{ci}(s) & \text{if } s > M_i, \end{cases}$$

Acemoglu & Restrepo

Finally, we specify the supply of robots and labor in each commuting zone as follows

$$W_c = W_c Y_c L_c^{\varepsilon}, \text{ with } \varepsilon \ge 0; \text{ and}$$

$$Q_c = Q_c \left(\frac{R_c}{Y_c}\right)^{\eta}, \text{ with } \eta \ge 0,$$
(2)

An equilibrium is defined as a set of prices $\{W_c, Q_c\}_{c \in C}$ and quantities $\{L_c, R_c\}_{c \in C}$ such that in all commuting zones, firms maximize profits, labor and robot supplies are given by (2) and the markets for labor and robots clear, i.e.,

$$\sum_{i \in \mathcal{I}} \int_{[0,1]} l_{ci}(s) = L_c \qquad \text{and} \qquad \sum_{i \in \mathcal{I}} \int_{[0,1]} r_{ci}(s) = R_c. \tag{3}$$

Assumption 1 $\pi_c > 0$ for all $c \in C$.

This assumption allows us to focus on the case of interest in which improvements in automation (increases in M_i) are binding and affect wages and employment. Using this assumption, we can derive an expression for the demand for labor L_c^d .

PROPOSITION 1 The demand for labor L_c^d in commuting zone c satisfies:

$$d\ln L_c^d = -\sum_{i\in\mathcal{I}} \ell_{ci} \frac{dM_i}{1-M_i} - \sigma \sum_{i\in\mathcal{I}} \ell_{ci} d\ln P_{Xci} + d\ln Y_c, \tag{4}$$

PROPOSITION 2 In autarky, the impact of robots on employment and wages is given by

$$d\ln L_c = -\frac{1+\eta}{1+\varepsilon} \sum_{i\in\mathcal{I}} \ell_{ci} \frac{dM_i}{1-M_i} + \frac{1+\eta}{1+\varepsilon} \pi_c \sum_{i\in\mathcal{I}} \ell_{ci} \frac{s_{icL}}{s_{cL}} \frac{dM_i}{1-M_i}$$
(5)

$$d\ln W_c = -\eta \sum_{i \in \mathcal{I}} \ell_{ci} \frac{dM_i}{1 - M_i} + (1 + \eta) \pi_c \sum_{i \in \mathcal{I}} \ell_{ci} \frac{s_{icL}}{s_{cL}} \frac{dM_i}{1 - M_i}.$$
 (6)

Proposition 2 summarizes the effects of robots as a function of the changes in the robotics technology, dM_i . More convenient for our empirical work is to link the responses of employment and wages to changes in the adoption of robots. When $M_i \approx 0$ —a reasonable approximation to the US economy circa 1990—this can be done in the following fashion:⁸

$$\sum_{i\in\mathcal{I}}\ell_{ci}\frac{s_{icL}}{s_{cL}}\frac{dM_i}{1-M_i}\approx\sum_{i\in\mathcal{I}}\ell_{ci}\frac{dM_i}{1-M_i}\approx\frac{1}{\gamma}\sum_{i\in\mathcal{I}}\ell_{ci}\frac{dR_i}{L_i}=US \ exposure \ to \ robots \tag{7}$$

2.2 Robots When Commuting Zones Trade

Acemoglu & Restrepo

Preferences in each commuting zone are again defined by the same aggregate over consumption goods as in (1), but now these consumption goods are themselves assumed to be aggregates of varieties sourced from all commuting zones, given by

$$Y_{ci} = \left(\sum_{s \in \mathcal{C}} \theta_{si} X_{sci} \frac{\lambda_{-1}}{\lambda}\right)^{\frac{\lambda}{\lambda_{-1}}} \text{ (for all } c \text{ and } i\text{)}, \tag{8}$$

An equilibrium is defined in the same way as in the closed economy, but now requires, in addition, that trade is balanced for each commuting zone $c \in C$, i.e.,

$$Y_c = \sum_{i \in I} X_{ci} P_{X_{ci}}.$$

PROPOSITION 3 In the trading equilibrium, the demand for labor L_c^d in commuting zone c satisfies:

$$d\ln L_c^d = -\sum_{i\in\mathcal{I}} \ell_{ci} \frac{dM_i}{1-M_i} - \lambda \sum_{i\in\mathcal{I}} \ell_{ci} d\ln P_{Xci} + (\lambda - \sigma) \sum_{i\in\mathcal{I}} \ell_{ci} d\ln P_{Yi} + d\ln Y.$$
(9)

3. Empirical Specification

Acemoglu & Restrepo

We now discuss the implications of the autarky and the trading equilibria for our empirical strategy.

When $M_i \approx 0$, both our autarky and trade models imply that the effects of robots on employment and wages can be estimated using the following two equations:

$$d\ln L_c = \beta_c^L \sum_{i \in \mathcal{I}} \ell_{ci} \frac{dR_i}{L_i} + \epsilon_c^L \qquad \text{and} \qquad d\ln W_c = \beta_c^W \sum_{i \in \mathcal{I}} \ell_{ci} \frac{dR_i}{L_i} + \epsilon_c^W, \quad (10)$$

where ϵ_c^L and ϵ_c^W are unobserved shocks, and β_c^L and β_c^W are random (heterogeneous) coefficients. In the autarky equilibrium, equation (7) implies that these coefficients are given as

$$\beta_c^L = \left(\frac{1+\eta}{1+\varepsilon}\pi_c - \frac{1+\eta}{1+\varepsilon}\right)\frac{1}{\gamma} \qquad \text{and} \qquad \beta_c^W = \left((1+\eta)\pi_c - \eta\right)\frac{1}{\gamma}$$

In this autarky setting, aggregate effects of robots are also given by averages of these heterogeneous coefficients.

More realistic and relevant for our investigation is the setting with trade between commuting zones. In this case, when in addition $\pi_c \approx \pi$, the expressions in Proposition A3 can be simplified to yield the following approximations to β_c^L and β_c^W :

$$\beta_c^L \approx \left(\frac{1+\eta}{1+\varepsilon}(s_{cL}\lambda + (1-s_{cL})\sigma)\pi_c - \frac{1+\eta}{1+\varepsilon}\frac{s_{cL}\lambda + 1-s_{cL}}{s_{cL}}\right)\frac{\nu_c}{\gamma}$$
(11)
$$\beta_c^W \approx \left(\left((1+\eta)\frac{(1+\varepsilon)\lambda - 1}{1+\varepsilon} - (1+\eta(1-s_{cL}))(\lambda-\sigma)\right)\pi_c - \left(\eta(\lambda-1) + \frac{\varepsilon(1+\eta)}{(1+\varepsilon)s_{cL}}\right)\right)\frac{\nu_c}{\gamma},$$

where

$$\nu_c = \frac{(1+\varepsilon)s_{cL}}{(1+\varepsilon)s_{cL}\lambda + (1+\eta)(1-s_{cL})}.$$

In fact, again focusing on the case where $\pi_c \approx \pi$, the Appendix shows that the aggregate employment and wage effects are

aggregate employment effects =
$$\frac{1+\eta}{1+\varepsilon}(\pi-1)\frac{1}{\gamma}\mathbb{E}_c\sum_{i\in\mathcal{I}}\ell_{ci}\frac{dR_i}{L_i}$$
 (12)
aggregate wage effects = $((1+\eta)\pi-\eta)\frac{1}{\gamma}\mathbb{E}_c\sum_{i\in\mathcal{I}}\ell_{ci}\frac{dR_i}{L_i}$,

4. Data, Descriptive Statistics and First Stage

Acemoglu & Restrepo

4.1 Data Sources

Acemoglu & Restrepo

4.2 Exposure to Robots

Acemoglu & Restrepo

These observations motivate the construction of our exposure to robots variable as

$$\frac{Exposure \ to \ robots}{from \ 1993 \ to \ 2007_c} = \sum_{i \in \mathcal{I}} \ell_{ci}^{1970} \left(p_{30} \left(\frac{R_{i,2007}}{L_{i,1990}} \right) - p_{30} \left(\frac{R_{i,1993}}{L_{i,1990}} \right) \right), \tag{13}$$

We construct the US exposure to robots in an analogous fashion:

$$\frac{US \ exposure \ to}{robots \ from \ 2004 \ to \ 2007_c} = \sum_{i \in \mathcal{I}} \ell_{ci}^{1990} \left(\frac{R_{i,2007}^{US}}{L_{i,1990}^{US}} - \frac{R_{i,2004}^{US}}{L_{i,1990}^{US}} \right), \tag{14}$$

where we use the 1990 distribution of employment across industries, ℓ_{ci}^{1990} , as the baseline for this measure to match it more closely to theory (and the mean reversion concern mentioned above is not pertinent in this case, since this measure will be instrumented by the exogenous

4.3 Descriptive Statistics

Acemoglu & Restrepo

4.4 First Stage

Acemoglu & Restrepo

Figure 5 provides a visual representation of our first-stage relationship in the form of a residual plot. The first stage, which will be used in our instrumental variables exercises and is shown in this figure, links the US exposure to robots to the (exogenous) exposure to robots computed from the European data. More precisely, our first stage takes the form

$$\sum_{i\in\mathcal{I}}\ell_{ci}^{1990}\left(\frac{R_{i,2007}^{US}}{L_{i,1990}^{US}} - \frac{R_{i,2004}^{US}}{L_{i,1990}^{US}}\right) = \pi\sum_{i\in\mathcal{I}}\ell_{ci}^{1970}\left(p_{30}\left(\frac{R_{i,2007}}{L_{i,1990}}\right) - p_{30}\left(\frac{R_{i,1993}}{L_{i,1990}}\right)\right) + \Gamma X_{c,1990} + \nu_c,$$
(15)

where $X_{c,1990}$ is a vector of controls, and as noted above, p_{30} denotes the 30th percentile.

Acemoglu & Restrepo

5.1 Baseline Results for Employment

Acemoglu & Restrepo

5.2 Baseline Results for Wages

Acemoglu & Restrepo

We next turn to the impact of robots on wages. Because robots affect employment, they are also likely to influence the composition of employed workers. To minimize the impact of such compositional changes, we estimate a variant of equation (10) that fully takes into account the differences in the observable characteristics of employed individuals. In particular, our estimating equation is now

 $\ln W_{cg,2007} - \ln W_{cg,1990} = \beta^W \cdot Exposure \text{ to robots } 1993\text{-}2007_c + \epsilon^W_{cg},$

5.3 Two-Stage Least Squares Estimates

Acemoglu & Restrepo

5.4 Quantitative Magnitudes

Acemoglu & Restrepo

5.5 Placebo Checks

Acemoglu & Restrepo

5.6 Robustness Checks

Acemoglu & Restrepo

5.7 Isolating the Impact of Robots

Acemoglu & Restrepo

5.8 Effects on Men and Women

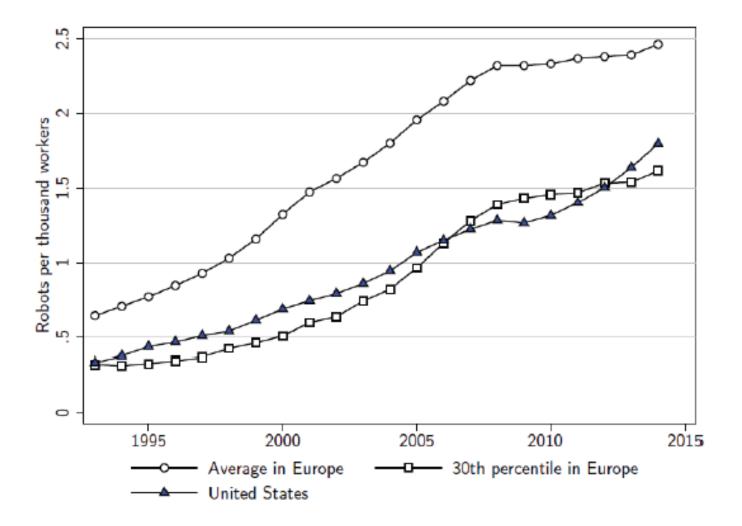
Acemoglu & Restrepo

5.9 Effects by Industry, Occupation, Education and Wage Percentile

Acemoglu & Restrepo

5.10 Total and Non-Labor Income

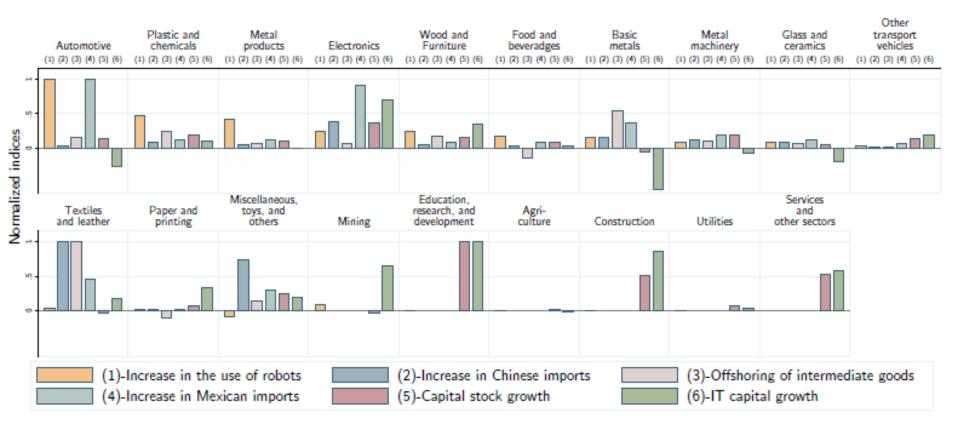
Acemoglu & Restrepo


5.11 Back to Quantitative Magnitudes

Acemoglu & Restrepo

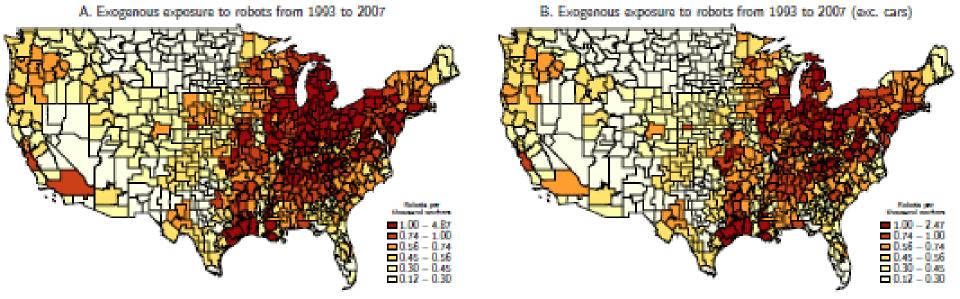
6. Concluding Remarks

Acemoglu & Restrepo


Figure 1: Industrial robots in the United States and Europe

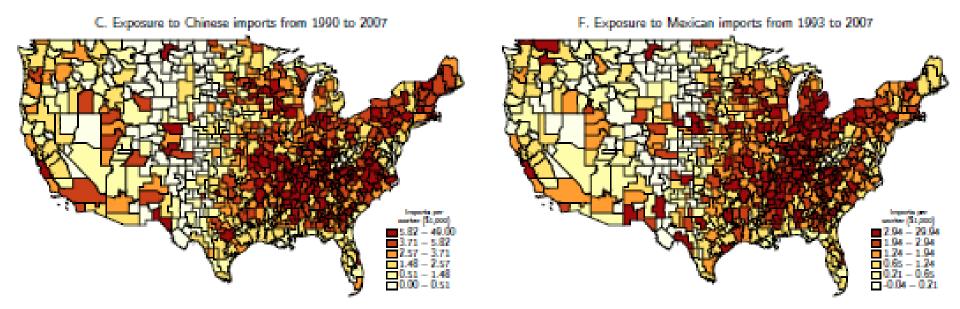
Note: Industrial robots per thousand workers in the United States and Europe. Data from the International Federation of Robotics (IFR).

Acemoglu & Restrepo


Figure 2: Industry-level changes in the use of robots, Chinese imports, capital stock and IT capital

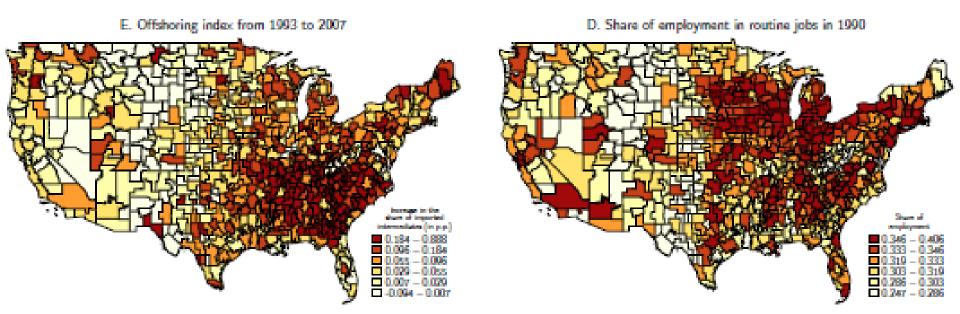
Note: This figure plots the increase in the number of robots per thousand workers between 1993 and 2007, the increase in the dollar value of Chinese imports per worker between 1990 and 2007, the growth of the capital stock between 1990 and 2007, and the growth of the stock of IT capital between 1990 and 2007 for the 19 industries for which we have the IFR data.

Acemoglu & Restrepo


Figure 3: Geographic distribution of the exposure to robots, the exposure to Chinese imports, Mexican imports, routine jobs, and the exposure to offshoring

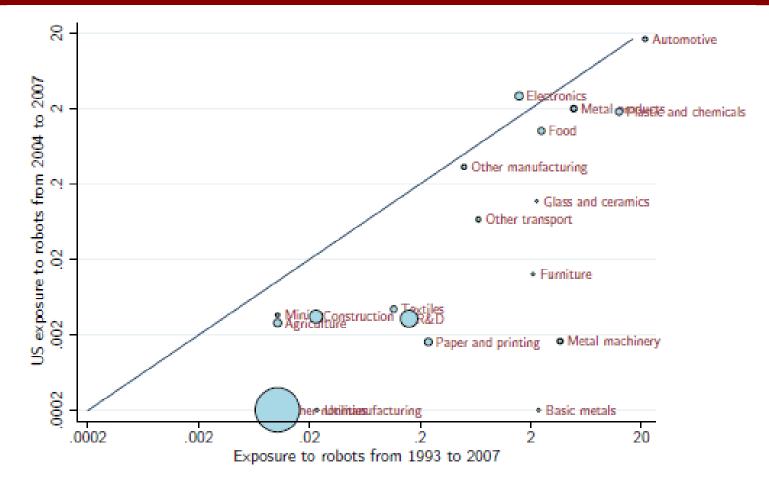
Note: The maps depict the distribution of our exposure to robots variable (both with and without the exposure resulting from automotive manufacturing), the exposure to Chinese imports from 1990 to 2007 (from Autor, Dorn and Hanson, 2013), the exposure to Mexican imports from 1991 to 2007, the share of employment in routine jobs (as defined in Autor, Dorn, and Hanson, 2015), and the exposure to the offshoring of intermediate inputs from 1993 to 2007 (from Feenstra and Hanson, 1999, and extended by Wright, 2014). The population-weighted correlation between exposure to robots and the exposure to Chinese imports is 0.049 (and -0.0518 conditional on the covariates included in column 3 of Table 2). The population-weighted correlation between the exposure to robots and exposure to robots and the share of routine jobs is 0.28 (and 0.11 conditional on the covariates included in column 3 of Table 2). The population-weighted correlation-weighted correlation between exposure to orbots and the exposure to robots and the exposure to robots and the share of routine jobs is 0.28 (and 0.11 conditional on the covariates included in column 3 of Table 2). The population-weighted correlation between exposure to robots and the exposure to robots and the exposure to offshoring is 0.054 (and -0.002 conditional on the covariates included in column 3 of Table 2).

Acemoglu & Restrepo


Figure 3: Geographic distribution of the exposure to robots, the exposure to Chinese imports, Mexican imports, routine jobs, and the exposure to offshoring, Cont'd

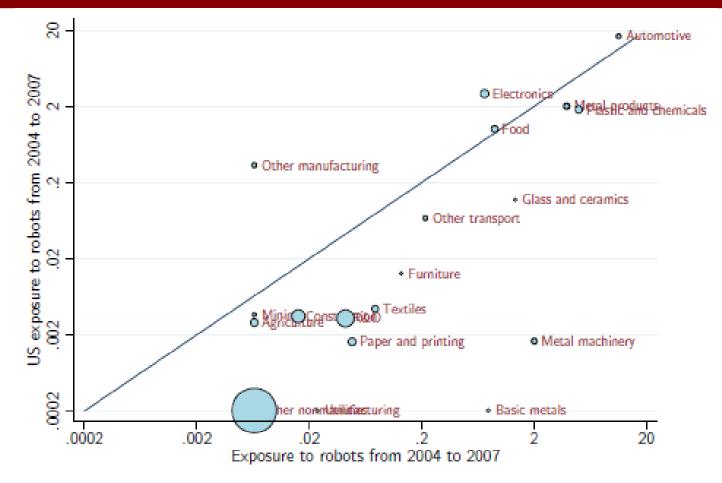
Note: The maps depict the distribution of our exposure to robots variable (both with and without the exposure resulting from automotive manufacturing), the exposure to Chinese imports from 1990 to 2007 (from Autor, Dorn and Hanson, 2013), the exposure to Mexican imports from 1991 to 2007, the share of employment in routine jobs (as defined in Autor, Dorn, and Hanson, 2015), and the exposure to the offshoring of intermediate inputs from 1993 to 2007 (from Feenstra and Hanson, 1999, and extended by Wright, 2014). The population-weighted correlation between exposure to robots and the exposure to Chinese imports is 0.049 (and -0.0518 conditional on the covariates included in column 3 of Table 2). The population-weighted correlation between the exposure to robots and exposure to robots and the share of routine jobs is 0.28 (and 0.11 conditional on the covariates included in column 3 of Table 2). The population-weighted correlation-weighted correlation between exposure to orbots and the exposure to robots and the exposure to robots and the share of routine jobs is 0.28 (and 0.11 conditional on the covariates included in column 3 of Table 2). The population-weighted correlation between exposure to robots and the exposure to robots and the exposure to offshoring is 0.054 (and -0.002 conditional on the covariates included in column 3 of Table 2).

Acemoglu & Restrepo


Figure 3: Geographic distribution of the exposure to robots, the exposure to Chinese imports, Mexican imports, routine jobs, and the exposure to offshoring, Cont'd

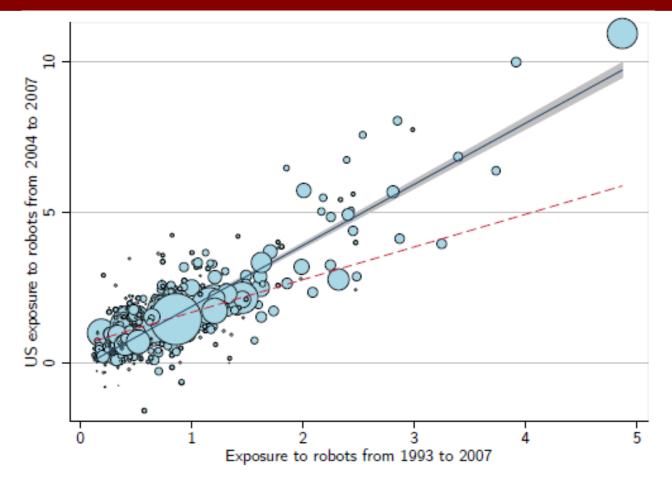
Note: The maps depict the distribution of our exposure to robots variable (both with and without the exposure resulting from automotive manufacturing), the exposure to Chinese imports from 1990 to 2007 (from Autor, Dorn and Hanson, 2013), the exposure to Mexican imports from 1991 to 2007, the share of employment in routine jobs (as defined in Autor, Dorn, and Hanson, 2015), and the exposure to the offshoring of intermediate inputs from 1993 to 2007 (from Feenstra and Hanson, 1999, and extended by Wright, 2014). The population-weighted correlation between exposure to robots and the exposure to Chinese imports is 0.049 (and -0.0518 conditional on the covariates included in column 3 of Table 2). The population-weighted correlation between the exposure to robots and exposure to robots and the share of routine jobs is 0.28 (and 0.11 conditional on the covariates included in column 3 of Table 2). The population-weighted correlation-weighted correlation between exposure to obtex and the exposure to robots and the exposure to robots and the exposure to robots and the share of routine jobs is 0.28 (and 0.11 conditional on the covariates included in column 3 of Table 2). The population-weighted correlation between exposure to robots and the exposure to robots and the exposure to offshoring is 0.054 (and -0.002 conditional on the covariates included in column 3 of Table 2).

Acemoglu & Restrepo


Figure 4: The relationship between robots adoption in Europe and the United States

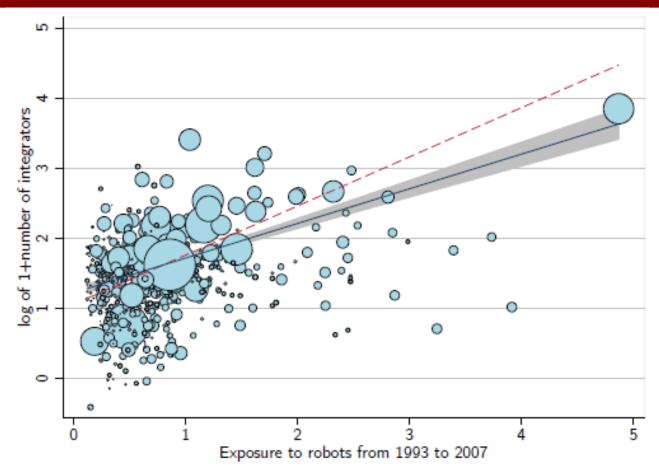
Note: The top panel gives the scatter plot of the change in the number of robots per thousand workers in Europe between 1993 and 2007 and in the United States between 2004 and 2007. The bottom panel shows the same relationship using the change in the number of robots per thousand workers in Europe between 2004 and 2007. The solid line corresponds to the 450 line. Marker size indicates the share of US employment in the corresponding industry.

Acemoglu & Restrepo


Figure 4: The relationship between robots adoption in Europe and the United States, Cont'd

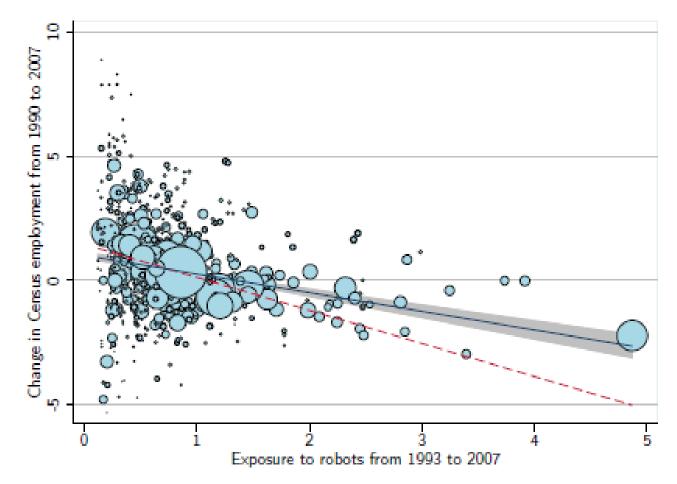
Note: The top panel gives the scatter plot of the change in the number of robots per thousand workers in Europe between 1993 and 2007 and in the United States between 2004 and 2007. The bottom panel shows the same relationship using the change in the number of robots per thousand workers in Europe between 2004 and 2007. The solid line corresponds to the 450 line. Marker size indicates the share of US employment in the corresponding industry.

Acemoglu & Restrepo


Figure 5: First-stage relationship

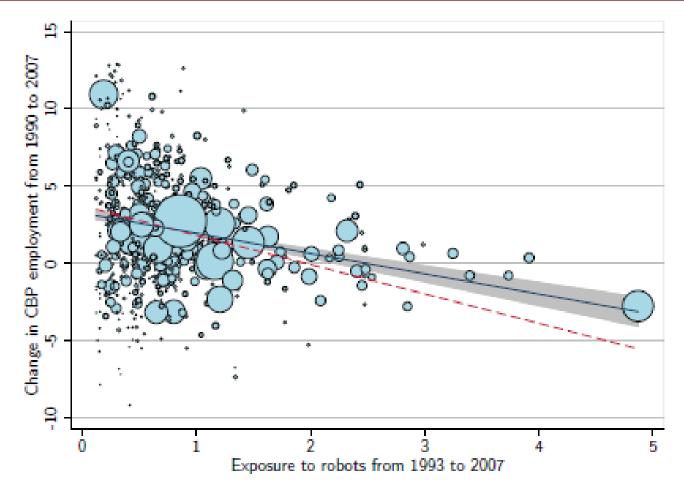
Note: The figure shows the residual plot of US exposure to robots between 2004 and 2007 (converted to a 17-year equivalent change) against the exposure to robots between 1993 and 2007 after the covariates in column 4 of Table 2 have been partialled out. The solid line shows the regression coefficient from a weighted regression with commuting zone working-age population in 1990 as weights (coefficient =2.026, standard error = 0.275). The dotted (red) line shows the weighted regression coefficient after the top 1% of the commuting zones with the highest exposure to robots is excluded (coefficient =1.083, standard error = 0.135). Marker size indicates the share of the 1990 US working age population in the corresponding commuting zone.

Acemoglu & Restrepo


Figure 6: Relationship between the exposure to robots and the number of robot integrators

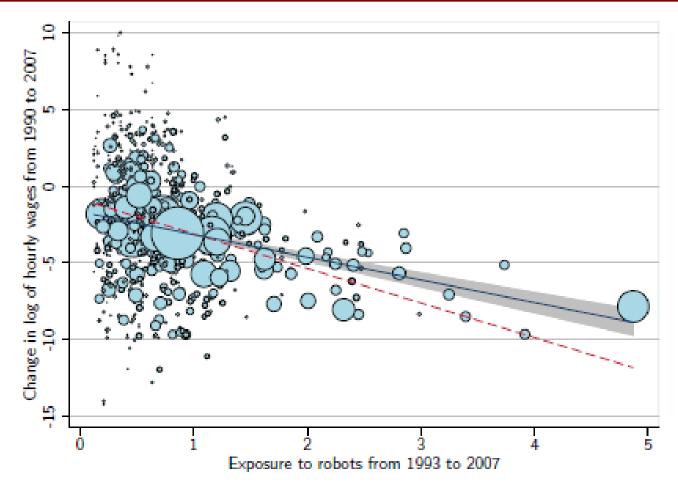
Note: The figure shows the residual plot of the log of one plus the number of integrators in a commuting zone against the exposure to robots between 1993 and 2007 after the covariates in column 4 of Table 2 have been partialled out. The data on the location of robot integrators—the companies that program and adapt robots for a given industrial application— is from Green Leigh and Kraft (2016). The solid line shows the regression coefficient from a weighted regression with commuting zone working-age population in 1990 as weights (coefficient =0.501, standard error = 0.072). The dotted (red) line shows the weighted regression coefficient after the top 1% of the commuting zones with the highest exposure to robots is excluded (coefficient =0.681, standard error = 0.142). Marker size indicates the share of the 1990 US working age population in the corresponding commuting zone.

Acemoglu & Restrepo


Figure 7: Relationship between the exposure to robots and employment

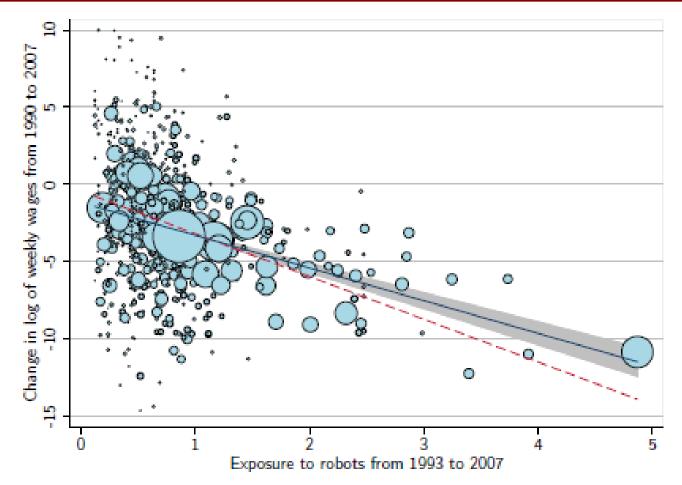
Note: The figure shows the residual plot of the change in the employment to population ratio (Census private employment in the top panel; CBP employment in the bottom panel) against the exposure to robots between 1993 and 2007 after the covariates in column 4 of Table 2 have been partialled out. In both panels, the solid line shows the regression coefficient from a weighted regression with commuting zone working-age population in 1990 as weights. The dotted (red) line shows the weighted regression coefficient after the top 1% of the commuting zones with the highest exposure to robots is excluded. Marker size indicates the share of the 1990 US working age population in the corresponding commuting zone.

Acemoglu & Restrepo


Figure 7: Relationship between the exposure to robots and employment, Cont'd

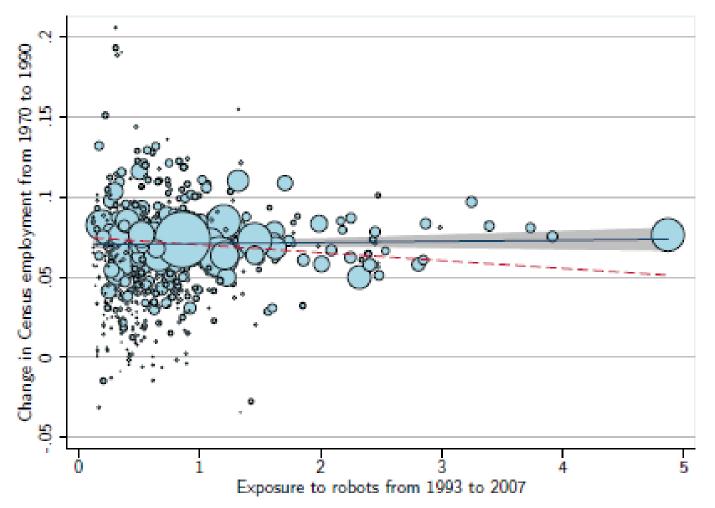
Note: The figure shows the residual plot of the change in the employment to population ratio (Census private employment in the top panel; CBP employment in the bottom panel) against the exposure to robots between 1993 and 2007 after the covariates in column 4 of Table 2 have been partialled out. In both panels, the solid line shows the regression coefficient from a weighted regression with commuting zone working-age population in 1990 as weights. The dotted (red) line shows the weighted regression coefficient after the top 1% of the commuting zones with the highest exposure to robots is excluded. Marker size indicates the share of the 1990 US working age population in the corresponding commuting zone.

Acemoglu & Restrepo


Figure 8: Relationship between the exposure to robots and wages

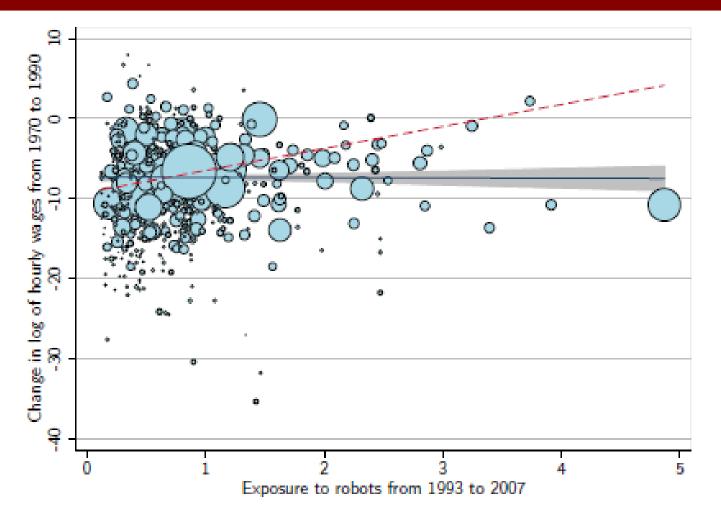
Note: The figure shows the residual plot of the change in the log of wages (hourly wages in the top panel; weekly wages in the bottom panel) against the exposure to robots between 1993 and 2007 after the covariates in column 4 of Table 2 have been partialled out. In both panels, the solid line shows the regression coefficient from a weighted regression with commuting zone working-age population in 1990 as weights. The red dot line shows the weighted regression coefficient after the top 1% of the commuting zones with the highest exposure to robots is excluded. Marker size indicates the share of the 1990 US working age population in the corresponding commuting zone.

Acemoglu & Restrepo


Figure 8: Relationship between the exposure to robots and wages, Cont'd

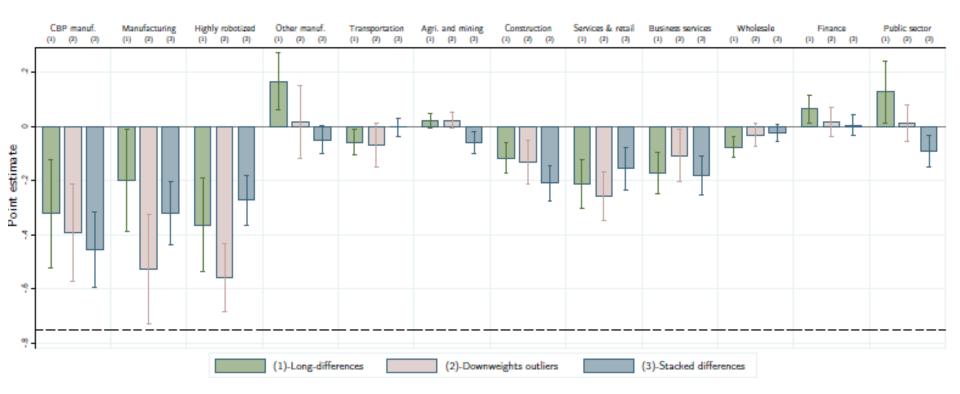
Note: The figure shows the residual plot of the change in the log of wages (hourly wages in the top panel; weekly wages in the bottom panel) against the exposure to robots between 1993 and 2007 after the covariates in column 4 of Table 2 have been partialled out. In both panels, the solid line shows the regression coefficient from a weighted regression with commuting zone working-age population in 1990 as weights. The red dot line shows the weighted regression coefficient after the top 1% of the commuting zones with the highest exposure to robots is excluded. Marker size indicates the share of the 1990 US working age population in the corresponding commuting zone.

Acemoglu & Restrepo


Figure 9: Placebo checks

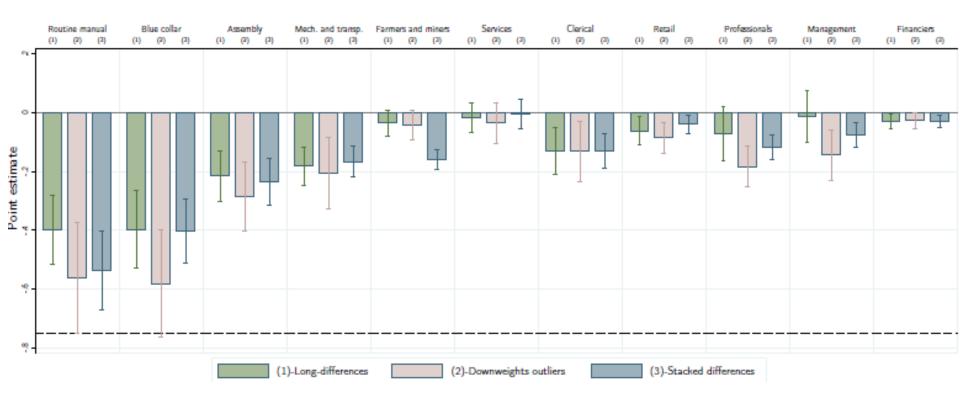
Note: The figure shows the residual plot of the past change in employment and wages between 1970 and 1990 (Census private employment to population ratio in the top panel; log of hourly wage in the bottom panel) against the exposure to robots between 1993 and 2007 after the covariates in column 4 of Table 2 have been partialled out. In both panels, the solid line shows the regression coefficient from a weighted regression with commuting zone working-age population in 1990 as weights. The dotted (red) line shows the weighted regression coefficient after the top 1% of the commuting zones with the highest exposure to robots is excluded. Marker size indicates the share of the 1990 US working age population in the corresponding commuting zone.

Acemoglu & Restrepo


Figure 9: Placebo checks, Cont'd

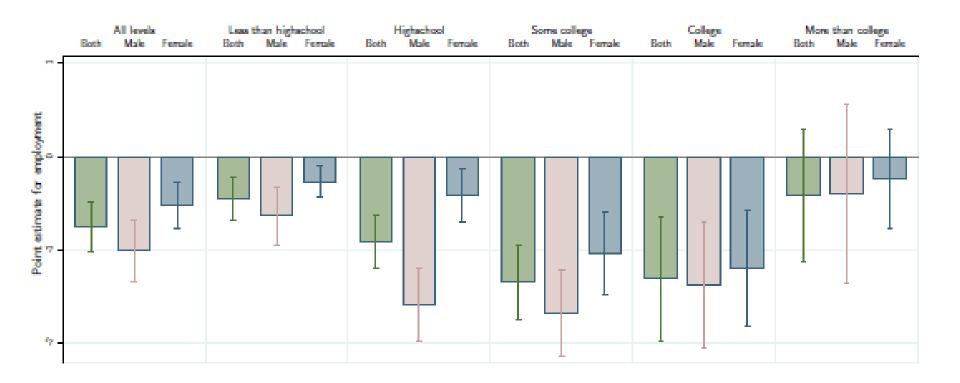
Note: The figure shows the residual plot of the past change in employment and wages between 1970 and 1990 (Census private employment to population ratio in the top panel; log of hourly wage in the bottom panel) against the exposure to robots between 1993 and 2007 after the covariates in column 4 of Table 2 have been partialled out. In both panels, the solid line shows the regression coefficient from a weighted regression with commuting zone working-age population in 1990 as weights. The dotted (red) line shows the weighted regression coefficient after the top 1% of the commuting zones with the highest exposure to robots is excluded. Marker size indicates the share of the 1990 US working age population in the corresponding commuting zone.

Acemoglu & Restrepo


Figure 10: Relationship between the exposure to robots and industry employment

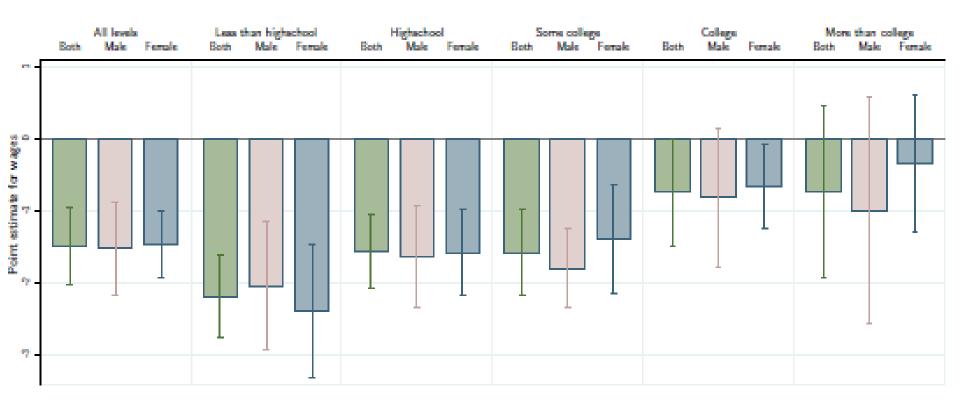
Note: The figure shows the estimates of the change in industry employment to population ratio against the exposure to robots between 1993 and 2007 conditional on the covariates in column 4 of Table 2. The green bars correspond to a long-differences specification similar to column 4 of Table 2; The rose bars correspond to a long-differences specification similar to column 6 of Table 2, in which we downweigh outliers; the blue bars correspond to a stacked-differences specification similar to column 2 of Table 3. For comparison, we also indicate with a dashed horizontal line the magnitude of the effect on Census private employment to population ratio.

Acemoglu & Restrepo


Figure 11: Relationship between the exposure to robots and occupation employment

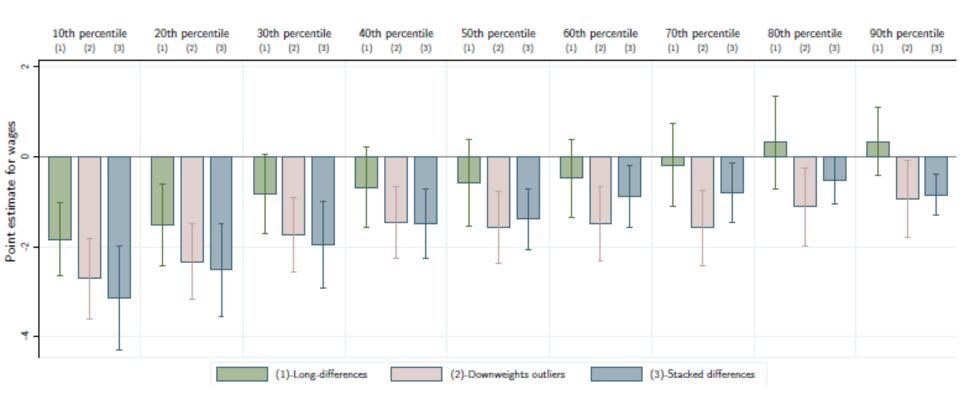
Note: The figure shows the estimates of the change in occupation employment to population ratio against the exposure to robots between 1993 and 2007 conditional on the covariates in column 4 of Table 2. The green bars correspond to a long-differences specification similar to column 4 of Table 2; The rose bars correspond to a long-differences specification similar to column 6 of Table 2, in which we downweigh outliers; the blue bars correspond to a stacked-differences specification similar to column 2 of Table 3. For comparison, we also indicate with a dashed horizontal line the magnitude of the effect on Census private employment to population ratio.

Acemoglu & Restrepo


Figure 12: Relationship between the exposure to robots and employment and wages by education group

Note: The figure shows the estimates of the change in Census private employment to population ratio (top panel) and log of hourly wage (bottom panel) against the (exogenous) exposure to robots between 1993 and 2007 conditional on the covariates in column 4 of Table 2. The figure shows the estimates separately by education level and gender. The top panel indicates the education level. For each level we present our baseline estimates (analogous to those in column 4 in Table 2) for all people, men and women.

Acemoglu & Restrepo


Figure 12: Relationship between the exposure to robots and employment and wages by education group, Cont'd

Note: The figure shows the estimates of the change in Census private employment to population ratio (top panel) and log of hourly wage (bottom panel) against the (exogenous) exposure to robots between 1993 and 2007 conditional on the covariates in column 4 of Table 2. The figure shows the estimates separately by education level and gender. The top panel indicates the education level. For each level we present our baseline estimates (analogous to those in column 4 in Table 2) for all people, men and women.

Acemoglu & Restrepo

Figure 13: Relationship between the exposure to robots and the wage distribution

Note: The figure shows the estimates of the change in the 10th, 20th, . . . , and 90th wage deciles against the (exogenous) exposure to robots between 1993 and 2007 conditional on the covariates in column 4 of Table 2. The green bars correspond to a long-differences specification similar to column 4 of Table 2; The rose bars correspond to a long-differences specification similar to column 6 of Table 2, in which we downweigh outliers; the blue bars correspond to a stacked-differences specification similar to column 2 of Table 3.

Acemoglu & Restrepo

		QUARTILES	OF THE CHANG	E IN EXPOSURE	TO ROBOTS
	ALL ZONES N = 722	Q1 N = 304	Q2 N = 202	Q3 $N = 129$	Q4 N = 87
		Р	anel A. Outcom	es	
Census private employment to population ratio	0.354	0.317	0.357	0.363	0.376
in 1990	[0.044]	[0.039]	[0.049]	[0.035]	[0.029]
CBP employment to population ratio in 1990	0.381	0.336	0.390	0.389	0.408
CBF employment to population ratio in 1990	[0.074]	[0.070]	[0.084]	[0.063]	[0.057]
Change in Census private employment to	0.294	1.486	0.418	-0.599	-0.117
population ratio from 1990 to 2007 (in p.p.)	[2.240]	[2.336]	[2.271]	[2.208]	[1.564]
Change in CBP employment to population	2.002	3.627	2.592	0.740	1.074
ratio from 1990 to 2007 (in p.p.)	[3.791]	[4.880]	[3.275]	[3.547]	[2.419]
Change of Census log employment from 1990	18.688	27.132	21.978	15,191	10.844
to 2007 (in p.p.)	[14.838]	[16.894]	[15.213]	[11.001]	[9.613]
Change of CBP log employment from 1990 to	23.208	32.942	27.559	18.919	13.857
2007 (in p.p.)	[17.439]	[21.023]	[16.549]	[13.146]	[10.871]
Heurika marana in 1000	15.609	15.493	14.979	15.862	16.096
Hourly wages in 1990	[2.493]	[3.055]	[2.364]	[2.337]	[2.004]
Change in the log of hourly wages from 1990 to	-3.844	-1.803	-1.871	-5.397	-6.236
2007 (in p.p.), adjusted for composition	[4.552]	[5.354]	[4.381]	[3.241]	[2.969]
Change in the log of weekly wages from 1990 to	-5.252	-2.047	-3.480	-7.236	-8.135
2007 (in p.p.), adjusted for composition	[5.210]	[5.456]	[4.885]	[3.791]	[3.922]

Note: Sample means and standard deviations (in brackets) for the entire sample of commuting zones and by (population- weighted) quartiles of the exposure to robots distribution. Panel A includes our main outcome variables, while Panel B is for the main covariates. See text for variable definitions and sources.

Acemoglu & Restrepo

Table 1: Summary statistics, Cont'd

		QUARTILES	OF THE CHANGE	IN EXPOSURE	TO ROBOTS
	ALL ZONES N = 722	Q1 N = 304	Q2 N = 202	Q3 N = 129	Q4 N = 87
		1	Panel B. Covari	ates	
Share of complement in memory fortuning 1000	0.225	0.150	0.233	0.252	0.262
Share of employment in manufacturing 1990	[0.079]	[0.053]	[0.073]	[0.073]	[0.062
Share of employment in durables 1000	0.136	0.085	0.135	0.153	0.167
Share of employment in durables 1990	[0.059]	[0.036]	[0.044]	[0.049]	[0.066
The second se	3.363	2.229	3.667	4.165	3.392
Exposure to Chinese imports from 1990 to 2007	[2.059]	[1.296]	[2.205]	[2.322]	[1.782
m	0.346	0.339	0.340	0.347	0.357
Share of employment in routine jobs 1990	[0.026]	[0.032]	[0.025]	[0.020]	[0.020
December 1000 - 000-	0.073	0.048	0.082	0.094	0.068
Exposure to offshoring from 1993 to 2007	[0.083]	[0.061]	[0.095]	[0.103]	[0.059
Exposure to Mexican imports from 1991 to	1.863	1.005	1.756	1.958	2.678
2007	[1.731]	[0.850]	[1.821]	[1.012]	[2.304
	0.658	0.651	0.659	0.663	0.658
Share of working-age population in 1990	[0.025]	[0.035]	[0.027]	[0.020]	[0.015
	0.193	0.196	0.200	0.187	0.190
Share of population with college in 1990	0.056	[0.063]	[0.064]	[0.050]	[0.047

Note: Sample means and standard deviations (in brackets) for the entire sample of commuting zones and by (population- weighted) quartiles of the exposure to robots distribution. Panel A includes our main outcome variables, while Panel B is for the main covariates. See text for variable definitions and sources.

Acemoglu & Restrepo

Table 2: The impact of the exposure to robots on employment and wages (long differences)

		ESTIMAT	ES FOR EMPLOY	MENT AND WA	GES FROM 1990) то 2007					
	(1)	(2)	(3)	(4)	(5)	(6)	(7)				
		Panel A. Census private employment to population ratio.									
Exposure to robots from 1993 to	-0.916***	-0.782***	-0.769***	-0.751***	-1.125***	-1.098***	-1.330***				
2007	(0.304)	(0.262)	(0.185)	(0.166)	(0.264)	(0.234)	(0.368)				
Observations	722	722	722	722	722	721	714				
	Panel B. CBP employment to population ratio.										
Exposure to robots from 1993 to	-1.435***	-1.175***	-1.231***	-1.310***	-1.118***	-1.018***	-1.899**				
2007	(0.503)	(0.377)	(0.372)	(0.347)	(0.410)	(0.327)	(0.883)				
Observations	722	722	722	722	722	719	714				
	Panel C. Log hourly wage.										
Exposure to robots from 1993 to	-2.273***	-1.941***	-1.409***	-1.476***	-1.950***	-2.107***	-2.253***				
2007	(0.391)	(0.249)	(0.272)	(0.322)	(0.399)	(0.382)	(0.566)				
Observations	163114	163114	163114	163114	163114	160027	160534				
	Panel D. Log weekly wage.										
Exposure to robots from 1993 to	-2.982***	-2.562***	-2.068***	-2.126***	-2.527***	-2.593***	-2.791***				
2007	(0.389)	(0.270)	(0.267)	(0.301)	(0.498)	(0.414)	(0.563)				
Observations	163114	163114	163114	163114	163114	159657	160534				
Covariates & sample restrictions:											
Census division dummies	4	1	×	×	×	×	1				
Demographics		×	×	×	×	×	1				
Broad industry shares			×	×	×	×	1				
Trade, Routinization and				1	1	1	1				
Offshoring				*	*	*	*				
Unweighted					<						
Down-weights outliers						1					
Removes highly exposed areas							1				

Acemoglu & Restrepo

Table 3: The impact of the exposure to robots on employment and wages (stacked differences)

		STACKED-DIFFE	RENCES ESTIMA	TES 1990-2000	and 2000-2007				
-	(1)	(2)	(3)	(4)	(5)	(6)			
		Panel A. Ce	nsus private emp	ployment to pop	ulation ratio.				
	-0.951***	-0.953***	-1.384***	-1.346***	-1.249***	-0.613***			
Exposure to robots	(0.152)	(0.146)	(0.174)	(0.139)	(0.339)	(0.111)			
Observations	1444	1444	1444	1441	1427	1444			
	Panel B. CBP employment to population ratio.								
	-1.891***	-1.958***	-1.877***	-1.695***	-2.459***	-1.922***			
Exposure to robots	(0.300)	(0.310)	(0.256)	(0.209)	(0.674)	(0.379)			
Observations	1444	1444	1444	1436	1427	1444			
	Panel C. Log hourly wage.								
Exposure to robots	-1.939***	-1.919***	-2.176***	-1.485***	-2.428**	-2.519***			
	(0.342)	(0.375)	(0.513)	(0.436)	(0.918)	(0.489)			
Observations	326377	326377	326377	318420	321643	326377			
	Panel D. Log weekly wage.								
E	-3.266***	-3.200***	-3.979***	-2.471***	-4.117***	-3.734***			
Exposure to robots	(0.399)	(0.434)	(0.609)	(0.457)	(1.084)	(0.764)			
Observations	326377	326377	326377	317850	321643	326377			
Covariates & sample restrictions:									
Demographic, industry shares and	1	1	1	1	1	1			
census division dummies	*	*	*	*	*	*			
Trade, routinization and offshoring		1	1	1	1	1			
Unweighted			1						
Down-weights outliers				1					
Removes highly exposed areas					1				
Commuting zone fixed effects						1			

Acemoglu & Restrepo

Table 4: IV estimates of the change in exposure to robots on employment and wages

	IV estimates from 1990 to 2007									
	(1)	(2)	(3)	(4)	(5)	(6)	(7)			
	Panel A. First-stage for exposure to robots in the US.									
Exposure to robots from 1993 to	2.175***	2.178***	2.094***	2.026***	1.535***	1.536***	1.083***			
2007	(0.285)	(0.272)	(0.269)	(0.275)	(0.257)	(0.255)	(0.135)			
Observations	722	722	722	722	722	721	714			
	Panel B. Census private employment to population ratio.									
Instrumented exposure to robots	-0.421**	-0.359**	-0.367***	-0.371***	-0.733***	-0.714***	-1.228***			
from 1993 to 2007	(0.180)	(0.155)	(0.123)	(0.115)	(0.210)	(0.193)	(0.395)			
First-stage F statistic	58.3	64.2	60.6	54.2	35.7	36.3	64.2			
Observations	722	722	722	722	722	721	714			
			Panel C. CBP e	mployment to p	opulation ratio					
Instrumented exposure to robots	-0.660**	-0.540**	-0.588***	-0.647***	-0.728***	-0.647***	-1.754**			
from 1993 to 2007	(0.270)	(0.217)	(0.218)	(0.207)	(0.263)	(0.197)	(0.877)			
First-stage F statistic	58.3	64.2	60.6	54.2	35.7	37.1	64.2			
Observations	722	722	722	722	722	719	714			

Table 4: IV estimates of the change in exposure to robots on employment and wages, Cont'd

			IV ESTIMA	TES FROM 1990) то 2007					
	(1)	(2)	(3)	(4)	(5)	(6)	(7)			
		Panel D. Log hourly wage.								
Instrumented exposure to robots	-1.043***	-0.891***	-0.675***	-0.732***	-1.259***	-1.274***	-2.062***			
from 1993 to 2007	(0.257)	(0.196)	(0.173)	(0.219)	(0.337)	(0.352)	(0.471)			
First-stage F statistic	60.4	66.2	61.4	55.5	34.5	25.9	68.3			
Observations	163114	163114	163114	163114	163114	160027	160534			
	Panel E. Log weekly wage.									
Instrumented exposure to robots	-1.368***	-1.176***	-0.991***	-1.054***	-1.631***	-1.571***	-2.555***			
from 1993 to 2007	(0.286)	(0.229)	(0.179)	(0.226)	(0.409)	(0.414)	(0.457)			
First-stage F statistic	60.4	66.2	61.4	55.5	34.5	25.7	68.3			
Observations	163114	163114	163114	163114	163114	159657	160534			
Covariates & sample restrictions:										
Densus division dummies	1	×	×	×	×	×	1			
Demographics		×	×	1	1	×	1			
Broad industry shares			×	×	1	×	1			
Irade, Routinization and										
Offshoring				1	*	×	*			
Unweighted					×					
Down-weights outliers						1				
Removes highly exposed areas							1			

Acemoglu & Restrepo

		PLACEBO CHECKS USING OUTCOMES FOR 1970-1990								
	(1)	(2)	(3)	(4)	(5)	(6)	(7)			
		Panel A. Census private employment to population ratio.								
Exposure to robots from 1993 to	-0.046	0.040	0.141	0.070	-0.594	-0.398	-0.489			
2007	(0.234)	(0.136)	(0.176)	(0.202)	(0.474)	(0.412)	(0.552)			
Observations	722	722	722	722	722	718	714			
			Pane	B. Log hourly	wage.					
Exposure to robots from 1993 to	-1.364**	-1.397*	-0.048	0.066	-0.545	0.189	2.418			
2007	(0.646)	(0.743)	(1.044)	(0.964)	(1.506)	(0.882)	(1.577)			
Observations	96487	96487	96487	96487	96487	94832	95109			
		Panel C. Log weekly wage.								
Exposure to robots from 1993 to	-1.120*	-1.149	0.339	0.440	-0.236	0.519	1.982			
2007	(0.658)	(0.687)	(1.000)	(0.934)	(1.623)	(0.873)	(1.763)			
Observations	96487	96487	96487	96487	96487	94701	95109			
Covariates & sample restrictions:										
Census division dummies	×	<	<	1	1	1	1			
Demographics		×	×	×	×	×	1			
Broad industry shares			×	×	×	×	1			
Trade, Routinization and										
Offshoring				~	1	~	*			
Unweighted					<					
Down-weights outliers						<				
Removes highly exposed areas							1			

Acemoglu & Restrepo

Table 6: The impact of the exposure to robots on employment and wages (controlling for the automobile industry)

	Estimates that control for changes in the auto industry								
	Long-I	DIFFERENCES ES	TIMATES	Stacked	-DIFFERENCES I	STIMATES			
	(1)	(2)	(3)	(4)	(5)	(6)			
	Panel A. Census private employment to population ratio.								
Exposure to robots in other	-1.325***	-1.254***	-1.246***	-0.988**	-1.628***	-1.607***			
industries	(0.363)	(0.342)	(0.283)	(0.464)	(0.414)	(0.326)			
Exposure to robots in automotive	-0.653***	-1.029***	-0.993***	-0.945***	-1.220***	-1.162***			
manufacture	(0.123)	(0.323)	(0.296)	(0.128)	(0.243)	(0.214)			
Observations	722	722	721	1444	1444	1441			
		Panel I	3. CBP employn	ient to population	on ratio.				
Exposure to robots in other	-1.839	-0.883	-0.502	-2.285*	-1.897***	-1.490***			
industries	(1.175)	(0.629)	(0.447)	(1.235)	(0.696)	(0.530)			
Exposure to robots in automotive	-1.220***	-1.292**	-1.338***	-1.884***	-1.863***	-1.819***			
manufacture	(0.279)	(0.483)	(0.434)	(0.224)	(0.335)	(0.282)			
Observations	722	722	718	1444	1444	1436			

Table 6: The impact of the exposure to robots on employment and wages (controlling for the automobile industry), Cont'd

	1	STIMATES THAT	CONTROL FOR	CHANGES IN THE	AUTO INDUSTR	Y				
	Long-	DIFFERENCES ES	TIMATES	STACKED-	DIFFERENCES ES	TIMATES				
	(1)	(2)	(3)	(4)	(5)	(6)				
		Panel C. Log hourly wage.								
Exposure to robots in other	-1.948**	-2.269***	-1.846***	-1.800	-2.182**	-0.614				
industries	(0.730)	(0.781)	(0.646)	(1.285)	(1.000)	(0.789)				
Exposure to robots in automotive	-1.395***	-1.726***	-2.243***	-1.946***	-2.172***	-1.920***				
manufacture	(0.278)	(0.441)	(0.387)	(0.309)	(0.465)	(0.383)				
Observations	163114	163114	160030	326377	326377	318414				
	Panel D. Log weekly wage.									
Exposure to robots in other	-2.136***	-2.801***	-2.302***	-3.252**	-4.264***	-1.611				
industries	(0.663)	(1.000)	(0.648)	(1.585)	(1.427)	(1.014)				
Exposure to robots in automotive	-2.124***	-2.334***	-2.745***	-3.189***	-3.795***	-2.907***				
manufacture	(0.289)	(0.536)	(0.427)	(0.372)	(0.520)	(0.438)				
Observations	163114	163114	159658	326377	326377	317853				
Covariates & sample restrictions:										
Baseline covariates	1	×	1	1	1	1				
Unweighted		1			1					
Down-weights outliers			1			1				

Acemoglu & Restrepo

Table 7: The impact of the exposure to robots on employment and wages: isolating the impact of robots

	Estimates that control for other trends							
	Emplo	YMENT TO POPU	JLATION	L	OG HOURLY WA	3E		
	(1)	(2)	(3)	(4)	(5)	(6)		
	Panel A. Control for the decline of industries from 1970 to 1990							
Exposure to robots from 1993 to	-0.641***	-0.965***	-0.923***	-1.310***	-1.698***	-1.830***		
2007	(0.156)	(0.254)	(0.221)	(0.311)	(0.394)	(0.347)		
Exposure to industries in decline	-0.229***	-0.277***	-0.285***	-0.352***	-0.436***	-0.460***		
from 1970 to 1990	(0.065)	(0.080)	(0.072)	(0.121)	(0.144)	(0.084)		
Observations	722	722	721	163114	163114	160022		
	Panel B. Control for the use of capital in different industries							
Exposure to robots from 1993 to	-0.674***	-1.111***	-1.073***	-1.385***	-1.877***	-1.921***		
2007	(0.146)	(0.263)	(0.234)	(0.303)	(0.419)	(0.384)		
Exposure to capital from 1990 to	3.132**	0.436	0.875	3.660*	2.230	5.207***		
2007	(1.437)	(1.164)	(0.978)	(2.110)	(2.599)	(1.708)		
Observations	722	722	721	163114	163114	160022		
	Pane	l C. Control for	the use of comp	uters at work ac	ross commuting	zones		
Exposure to robots from 1993 to	-0.743***	-1.075***	-1.058***	-1.491***	-2.035***	-2.153***		
2007	(0.165)	(0.260)	(0.234)	(0.321)	(0.404)	(0.388)		
Change in number of computers	0.341*	0.090	0.066	-0.629**	-0.737**	0.001		
per worker from 1990 to 2006	(0.194)	(0.193)	(0.161)	(0.300)	(0.280)	(0.157)		
Observations	696	696	695	159411	159411	156390		
Covariates & sample restrictions:								
Baseline covariates	1	1	1	1	1	1		
Unweighted		1			1			
Down-weights outliers			1			1		

Acemoglu & Restrepo

Robots and Job Evidence

Table 8: The impact of the exposure to robots on employmentand wages: differential effects on men and women

Long-differences estimates			Stacked-differences estimates				
(1)	(2)	(3)	(4)	(5)	(6)		
		ESTIMATE	S FOR MEN				
Panel A. Census private employment to population ratio.							
-1.007***	-1.416***	-1.316***	-1.049***	-1.709***	-1.699***		
(0.198)	(0.315)	(0.280)	(0.182)	(0.208)	(0.164)		
722	722	720	1444	1444	1442		
		Panel B. Log	t hourly wage.				
-1.518***	-1.826***	-2.297***	-1.952***	-1.945***	-1.473**		
(0.393)	(0.453)	(0.384)	(0.430)	(0.588)	(0.551)		
80930	80930	79453	162106	162106	158267		
Estimates for women							
	Panel C. Ce	nsus private em	ployment to pop	ulation ratio.			
-0.522***	-0.869***	-0.881***	-0.856***	-1.063***	-1.052***		
(0.147)	(0.243)	(0.208)	(0.122)	(0.175)	(0.144)		
722	722	721	1444	1444	1442		
		Panel D. Log	t hourly wage.				
-1.457***	-2.095***	-1.950***	-1.900***	-2.423***	-1.518***		
(0.287)	(0.496)	(0.488)	(0.322)	(0.546)	(0.380)		
82184	82184	80540	164271	164271	160146		
1	1	1	1	1	1		
	1			1			
		1			1		
	(1) -1.007*** (0.198) 722 -1.518*** (0.393) 80930 -0.522*** (0.147) 722 -1.457*** (0.287) 82184	(1) (2) Panel A. Ce -1.007^{***} -1.416^{***} (0.198) (0.315) 722 722 -1.518^{***} -1.826^{***} (0.393) (0.453) 80930 80930 Panel C. Ce -0.522^{***} -0.869^{***} (0.147) (0.243) 722 722 -1.457^{***} -2.095^{***} (0.287) (0.496) 82184 82184 \checkmark \checkmark	(1) (2) (3) ESTIMATE Panel A. Census private emp -1.007*** -1.416*** -1.316*** (0.198) (0.315) (0.280) 722 722 720 Panel B. Log -1.518*** -1.826*** -2.297*** (0.393) (0.453) (0.384) 80930 80930 79453 ESTIMATES Panel C. Census private emp -0.522*** -0.869*** -0.881*** (0.147) (0.243) (0.208) 722 722 721 Panel D. Log -1.457*** -2.095*** -1.457*** -2.095*** -1.950*** (0.287) (0.496) (0.488) 82184 82184 80540 ✓ ✓ ✓ ✓ ✓ ✓	(1) (2) (3) (4) ESTIMATES FOR MEN Panel A. Census private employment to pop -1.007*** -1.416*** -1.316*** -1.049*** (0.198) (0.315) (0.280) (0.182) 722 722 720 1444 Panel B. Log hourly wage. -1.518*** -1.826*** -2.297*** -1.952*** -1.518*** -1.826*** -2.297*** -1.952*** (0.430) 80930 (0.453) (0.384) (0.430) 80930 80930 79453 162106 ESTIMATES FOR WOMEN Panel C. Census private employment to pop -0.522*** -0.869*** -0.881*** -0.856*** (0.147) (0.243) (0.208) (0.122) 722 722 721 1444 Panel D. Log hourly wage. -1.457*** -2.095*** -1.950*** -1.900*** (0.287) (0.496) (0.488) (0.322) 82184 80540 164271 \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark <	(1) (2) (3) (4) (5) ESTIMATES FOR MEN Panel A. Census private employment to population ratio. -1.007^{***} -1.416^{***} -1.316^{***} -1.049^{***} -1.709^{***} (0.198) (0.315) (0.280) (0.182) (0.208) 722 722 720 1444 1444 Panel B. Log hourly wage. -1.518*** -1.826^{***} -2.297^{***} -1.952^{***} -1.945^{***} (0.393) (0.453) (0.384) (0.430) (0.588) 80930 79453 162106 162106 ESTIMATES FOR WOMEN ESTIMATES FOR WOMEN Panel C. Census private employment to population ratio. -0.522*** -0.869^{***} -0.856^{***} -1.063^{***} (0.147) (0.243) (0.208) (0.122) (0.175) 722 722 721 1444 1444 Panel D. Log hourly wage. -1.457^{***} -2.095^{***} -1.950^{***} -1.900^{***} -2.423^{***} (0.287) (0.496) (0.488) (0.322)		

Acemoglu & Restrepo

Table 9: The impact of the exposure to robots on different typesof income

		MODELS	IN LEVELS			Models	IN LOGS	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
				DATA FROM	THE BEA			
				Panel A. Te	stal income.			
Change in exposure to robots from	-169.350	-228.797	-747.209**	-673.540	-1.841***	-2.458**	-2.815***	-2.704**
1993 to 2007	(239.508)	(466.035)	(336.641)	(552.959)	(0.520)	(1.199)	(0.847)	(1.166)
Observations	722	722	713	714	722	722	715	714
				Panel B. W	age income.			
Change in exposure to robots from	-605.314*	-422.293	-734.602**	-1517.846**	-2.688***	-3.397**	-3.757***	-5.036***
1993 to 2007	(334.307)	(318.826)	(289.337)	(627.278)	(0.855)	(1.322)	(1.165)	(1.502)
Observations	722	722	715	714	722	722	719	714
				Panel C. Non	-wage income.			
Change in exposure to robots from	435.953	198.496	-234.250**	844.306	0.383	-1.201	-1.425	1.780
1993 to 2007	(299.861)	(323.711)	(112.478)	(555.366)	(1.309)	(1.438)	(1.029)	(3.143)
Observations	722	722	706	714	721	721	713	713
					M THE IRS			
				Panel D. T	stal income.			
Change in exposure to robots from	120.673	-115.604	-345.401*	-159.057	-1.618***	-1.961*	-2.164**	-2.402**
1993 to 2007	(148.264)	(242.298)	(195.813)	(313.112)	(0.430)	(1.020)	(0.891)	(0.982)
Observations	722	722	714	714	722	722	714	714
				Panel E. W	age income.			
Change in exposure to robots from	-15.643	-204.039	-476.333***	-157.722	-1.910***	-2.512**	-2.842***	-2.897***
1993 to 2007	(100.845)	(187.578)	(171.103)	(221.908)	(0.428)	(0.966)	(0.835)	(0.966)
Observations	722	722	718	714	722	722	721	714
				Panel F. Non	-wage income.			
Change in exposure to robots from	135.316*	88.435	-34.301	-1.335	-0.391	0.141	0.612	-1.084
1993 to 2007	(72.716)	(161.154)	(83.917)	(139.083)	(0.743)	(1.831)	(1.464)	(1.837)
Observations	722	722	698	714	722	722	711	714
Covariates & sample restrictions:								
Baseline covariates	1	1	×	1	4	×	×	4
Unweighted		1				×		
Down-weights outliers			1				1	
Removes highly exposed areas				4				4

Acemoglu & Restrepo