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Prob Bother Soln Bounds Depend Info Info Model Ret Two

Define P(X ,Z ) = Pr(D = 1 | X ,Z ).

If UC is not perfectly predicted by (U0,U1), then we cannot, in
general, estimate the joint distribution of (Y0,Y1,C ) given
(X ,Z ) or the distribution of (U0,U1,UC ) from data on Y , D,
X and Z .
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However, under the conditions in Appendix B of Heckman and
Vytlacil (2007a), we can identify up to an unknown scale for I ,
FY0,I (y0, i | X ,Z ) and FY1,I (y1, i | X ,Z ).

The following intuition motivates the conditions under which
FY0,I (y0, i | X ,Z ) is identified.

A parallel argument holds for FY1,I (y1, i | X ,Z ).

First, under the conditions given in Cosslett (1983), Manski
(1988), Matzkin (1992) and Appendix B of Heckman and

Vytlacil (2007a), we can identify µI (X ,Z)
σUI

from

Pr(D = 1 | X ,Z ) = Pr(µI (X ,Z ) + UI ≥ 0 | X ,Z ).

σ2
UI

is the variance of UI .

We can also identify the distribution of UI

σUI
.
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Second, from this information and
F0(y0 | D = 0,X ,Z ) = Pr(Y0 < y0 | µI (X ,Z ) + UI < 0,X ,Z ), we
can form

F0(y0 | D = 0,X ,Z ) Pr(D = 0 | X ,Z ) = Pr(Y0 ≤ y0, I < 0 | X ,Z ).

The left hand side of this expression is known (we observe Y0 when
D = 0 and we know the probability that D = 0 given X ,Z ).

The right hand side can be written as

Pr

(
Y0 ≤ y0,

UI

σUI

< −µI (X ,Z )

σUI

| X ,Z
)
.

In particular if µI (X ,Z ) can be made arbitrarily small
(µI (X ,Z )→ −∞), for a given X , we can recover the marginal
distribution Y0 from which we can recover µ0(X ), and hence the
distribution of U0.
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From the definition of Y0, U0 = Y0 − µ0(X ).

We may write the preceding probability as

Pr

(
U0 ≤ y0 − µ0(X ),

UI

σUI

<
−µI (X ,Z )

σUI

| X ,Z

)
.

Note that the X and Z can be varied and y0 is a number.

Thus, by varying the known y0 and µI (X ,Z)
σUI

, we can trace out

the joint distribution of
(

U0,
UI

σUI

)
.

Thus we can recover the joint distribution of

(Y0, I ) =

(
µ0(X ) + U0,

µI (X ,Z ) + UI

σUI

)
.
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Notice the three key ingredients required to recover the joint
distribution:

(a) The independence between (U0,UI ) and (X ,Z ).

(b) The assumption that we can make µI (X ,Z)
σUI

arbitrarily small for

a given X (so we get the marginal distribution of Y0 and hence
µ0(X )). As noted in Heckman and Vytlacil (2007b), this type
of identification-at-infinity assumption plays a key role in the
entire selection and evaluation literature for identifying many
important evaluation parameters, such as the average
treatment effect and treatment on the treated.

(c) The assumption that µI (X ,Z)
σUI

can be varied independently of

µ0(X ). This enables us to trace out the joint distribution of(
U0,

UI
σUI

)
.
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A parallel argument establishes identification of the distribution
of (Y1, I ) given X and Z .
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Identification of the Roy model follows from this analysis.

Recall that the model assumes that UI = U1 − U0 so
σ2
UI

= Var (U1 − U0).

From the distributions of (Y0, I ) and (Y1, I ) given X and Z , we
can recover the joint distributions of (U0,

U1−U0

σUI
) and

(U1,
U1−U0

σUI
) and hence the joint distribution of (U0,U1).

We can recover the joint distribution of U1 − U0 even if
µI (X ,Z ) 6= µ1(X )− µ0(X ) as long as UC ≡ 0.
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Using Additional Information

We have established that data from social experiments or
observational data corrected for selection do not in general
identify joint distributions of potential outcomes.

In the special case of the Roy model, choice data supplemented
with outcome data will identify the joint distribution.

But this result is fragile.

For more general choice criteria, we cannot without further
assumptions identify the joint distribution of potential
outcomes.

Recent approaches build on these results to supplement choice
models with dependence assumptions to identify the joint
distribution of (U0,U1).
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Aakvik et al. (2005), Carneiro et al. (2001, 2003), Cunha et al.
(2005, 2006), and Cunha and Heckman (2007a, 2008b) use
factor models to capture the dependence across the
unobservables (U0,U1,UI ) and to supplement the information
used in order to construct the joint distribution of
counterfactuals.

Their approach is a version of the proxy/replacement function
approach developed in Heckman and Robb (1985, 1986) that is
discussed in a section of Heckman and Vytlacil (2007b) and in
Matzkin (2007).

It extends factor models developed by Jöreskog and Goldberger
(1975) and Jöreskog (1977) to restrict the dependence among
the (U0,U1,UI ).
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A low dimensional set of random variables generates the
dependence across the outcome unobservables.

Such dimension reduction coupled with the use of choice data
and additional measurements that proxy or replace the factors
can provide enough information to identify the joint
distributions of (Y0,Y1) and (Y0,Y1,D).
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The factor models are built around a conditional independence
assumption.

Conditional on the factors, outcomes and choice equations are
independent.

Thus the factor models have a close affinity with matching
except that they do not assume that the analyst observes the
factors and must instead integrate them out and identify their
distribution.
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To demonstrate how this approach works, assume separability
between observables and unobservables:

Y1 = µ1(X ) + U1

Y0 = µ0(X ) + U0.

Denote I as the latent variable generating treatment choices:

I = µI (Z ) + UI

D = 1 [I ≥ 0] .

Allow any X to be in Z so the notation is general.
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To understand this approach, it is convenient but not essential
to assume that (U0,U1,UI ) is normally distributed with mean
zero and covariance matrix Σ.

Normality plays no essential role in the analysis of this section.

The key role is played by the factor structure assumption
introduced below.

Assume access to data on (Y ,D,X ,Z ).

We can identify F0 (y0 | D = 0,X ,Z ), F1 (y1 | D = 1,X ,Z )
and Pr (D = 1 | X ,Z ).

Under certain conditions presented in Appendix B, Heckman
and Vytlacil (2007a) and the preceding section, we can identify
the distributions of (U0,

UI

σUI
) and (U1,

UI

σUI
) nonparametrically.

We can sometimes identify the scale on UI .
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To restrict the dependence across the unobservables, we adopt
a factor structure model for the U0,U1,UI .

Other restrictions across the unobservables are possible.

Models for a single factor are extensively developed by Jöreskog
and Goldberger (1975).

Aakvik et al. (2005) and Carneiro et al. (2001, 2003) extend
their analysis to generate distributions of counterfactuals.
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Initially assume a one-factor model where θ is a scalar factor
(say unmeasured ability) that generates dependence across the
unobservables assumed to be independent of (X ,Z ):

U0 = α0θ + ε0,

U1 = α1θ + ε1,

UI = αUI
θ + εUI

,

θ ⊥⊥ (ε0, ε1, εUI
) , (ε0, ε1, εUI

) are mutually independent.

We discuss methods for multiple factors in the next section.

Assume that E (U0) = 0, E (U1) = 0 and E (UI ) = 0.

In addition, E (θ) = 0.

Thus E (ε0) = 0, E (ε1) = 0 and E (εUI
) = 0.
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To set the scale of the unobserved factor, normalize one
“loading” (coefficient on θ) to 1.

Note that all the dependence in the unobservables across
equations arises from θ.
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From the joint distributions of
(

U0,
UI

σUI

)
and

(
U1,

UI

σUI

)
we can

identify

Cov

(
U0,

UI

σUI

)
=

α0αUI

σUI

σ2
θ

Cov

(
U1,

UI

σUI

)
=

α1αUI

σUI

σ2
θ

assuming that the covariances on the left hand side exist.

From the ratio of the second covariance to the first we obtain
α1

α0
.

Thus we obtain the sign of the dependence between U0,U1

because
Cov(U0,U1) = α0α1σ

2
θ .

From the ratio, we obtain α1 if we normalize α0 = 1.
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Without further information, we cannot identify the variance of
UI , σ

2
UI

.

We normalize it to 1.

Alternatively, we could normalize the variance of εUI
to 1.

Below, we present a condition that sets the scale of UI .
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With additional information, one can identify the full joint
distribution of (U0,U1,UI ) and hence can construct the joint
distribution of potential outcomes.

In this section, we show this by a series of examples for a
normal model.

In a normal model, the joint distribution of (Y0,Y1) is
determined (given X ) if one can identify the variances of Y0

and Y1 and their covariance.

We then show that normality plays no essential role in this
analysis.

We first consider what can be identified from access to a proxy
M for θ (e.g., a test score).
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Some Examples

Abbring and Heckman Econometric Evaluation of Social Programs Part III, March 31, 2013 6:24pm 102 / 678



Prob Bother Soln Bounds Depend Info Info Model Ret Two

Example 1

Access to a single proxy measure (e.g., a test score)
Assume access to data on Y0 given D = 0, X , Z ; to data on
Y1 given D = 1, X , Z ; and data on D given X , Z .

Suppose that the analyst also has access to a proxy for θ.

Denote the proxy measure by M .
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In a schooling example, it could be a test score:

M = µM (X ) + UM ,

where
UM = αMθ + εM ,

so
M = µM (X ) + αMθ + εM ,

where εM is independent of ε0, ε1, εUI
and θ, as well as (X ,Z )

(εM ⊥⊥ (ε0, ε1, εUI
, θ,X ,Z )).

We can identify the mean µM (X ) from observations on M and
X .
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From this additional information, we acquire three additional
covariance terms, conditional on X ,Z , where we keep the
conditioning implicit and define I as normalized by σUI

:

Cov (Y1,M) = α1αMσ
2
θ ,

Cov (Y0,M) = α0αMσ
2
θ ,

Cov (I ,M) =
αUI

σUI

αMσ
2
θ .

Suppose that we normalize the loading on the proxy (or test
score) to one (αM = 1).

It is no longer necessary to normalize α0 = 1 as in the
preceding section.
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From the ratio of the covariance of Y1 with I with the
covariance of I with M , we obtain the right-hand side of

Cov (Y1, I )

Cov (I ,M)
=

α1αUI
σ2
θ

αUI
αMσ2

θ

= α1,

because αM = 1 (normalization).

From the discussion in the preceding section where no proxy is
assumed, we obtain α0 since

Cov (Y1, I )

Cov (Y0, I )
=
α1αUI

σ2
θ

α0αUI
σ2
θ

=
α1

α0
.

From knowledge of α1 and α0 and the normalization for αM ,
we obtain σ2

θ from Cov (Y1,M) or Cov (Y0,M).

We obtain αUI
(up to scale σUI

) from Cov (I ,M) =
αUI

αMσ
2
θ

σUI

since we know αM (= 1) and σ2
θ .
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The model is overidentified.

We can identify the scale of σUI
by a standard argument from

the discrete choice literature.

We review this argument below.

Observe that if we write out the decision rule in terms of costs,
we can characterize the latent variable determining choices as:

I = Y1 − Y0 − C ,

where C = µC (Z ) + UC and UC = αCθ + εC , where εC is
independent of θ and the other ε’s.
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E (UC ) = 0 and UC is independent of (X ,Z ).

Then, UI = U1 − U0 − UC and

αUI
= α1 − α0 − αC ,

εUI
= ε1 − ε0 − εC ,

Var
(
ε
UI

)
= Var (ε1) + Var (ε0) + Var (εC ) .

Identification of α0, α1 and αUI
implies identification of αC .

Identification of the variance of εUI
implies identification of the

variance of εC since the variances of ε1 and ε0 are known.

Observe further that the scale σUI
is identified if there are

variables in X but not in Z (see Heckman, 1976, 1979;
Heckman and Robb, 1985, 1986; Willis and Rosen, 1979).
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From the variance of M given X , we obtain Var (εM) since we
know Var(M) (conditional on X ) and we know α2

Mσ
2
θ :

Var(M)− α2
Mσ

2
θ = σ2

εM
.

Recall that we keep the conditioning on X implicit.

By similar reasoning, it is possible to identify Var (ε0), Var (ε1)
and the fraction of Var(UI ) due to εUI

.

We can thus construct the joint distribution of (Y0,Y1,C ) and
hence the joint distribution of (Y0,Y1) since we identified
µC (Z ) and all of the factor loadings.

Thus we can identify the objective outcome distribution for
(Y0,Y1) and the subjective distribution for C as well as their
joint distribution (Y0,Y1,C ).

We have assumed normality because it is convenient to do so.
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Carneiro et al. (2003), Cunha et al. (2005, 2006) and Cunha
and Heckman (2008b) show that it is possible to
nonparametrically identify the distributions of θ, ε0, ε1, εUI

and
εM so our results do not hinge on arbitrary distributional
assumptions as we establish in the next section.

We next show by way of example that choice data are not
strictly required to secure identification of the joint
distributions of counterfactuals.

It is the extra information joined with the factor restriction on
the dependence that allows us to identify the joint distribution
of outcomes.
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Example 2

Identification Without Choice Data This example builds
on Example 1.

Let M be two dimensional so M = (M1,M2), and M1, M2 are
indicators that depend on θ and assume that they are both
observed.

In place of I from choice theory as in the preceding section, we
can work with a second indicator of θ, i.e., a second
measurement M2.

Suppose that either by limit operations (P(X ,Z )→ 0 or
P(X ,Z )→ 1 along certain sequences in its support) or some
randomization we observe triplets (Y0,M1,M2), (Y1,M1,M2)
but not Y0 and Y1 together.

Abbring and Heckman Econometric Evaluation of Social Programs Part III, March 31, 2013 6:24pm 111 / 678



Prob Bother Soln Bounds Depend Info Info Model Ret Two

We can still identify the joint distribution of (Y0,Y1).

Example 1 applies to this case with only trivial modifications.

We can identify all of the variances and covariances of the
factor model as well as the factor loadings up to one
normalization.

Thus we can identify the joint distribution of (Y0,Y1).

Since the (M1,M2) are assumed to be observed and their scale
is known, we can identify the variances of M1 and M2 directly.
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In this example, we do not need to use any of the apparatus of
discrete choice theory except to govern the limit operations
that control for selection.

There are other ways to construct the joint distributions that
do not require a proxy M that may be extended to the model.

Access to panel data on earnings affords identification.

One way, that motivates our analysis of ex ante vs. ex post
returns developed later, is given next.
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Example 3

Two (or more) periods of panel data on outcomes
Suppose that for each person we have two periods of outcome
data in one counterfactual state or the other.

Thus we observe (Y0,1,Y0,2) or (Y1,1,Y1,2) but never both pairs
of vectors together for the same person.

We also observe choices.
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We assume that Yj ,t = µj ,t(X ) + Uj ,t , j = 0, 1, t = 1, 2, and
write

U1,t = α1,tθ + ε1,t and U0,t = α0,tθ + ε0,t

to obtain

Y1,t = µ1,t(X ) + α1,tθ + ε1,t , t = 1, 2,

Y0,t = µ0,t(X ) + α0,tθ + ε0,t , t = 1, 2.
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In the context of a schooling choice model as analyzed by
Carneiro et al. (2001, 2003) and Cunha et al. (2005, 2006), if
we assume that the interest rate is zero and that agents
maximize the present value of their income, the index
generating choices is

I = (Y1,2 + Y1,1)− (Y0,2 + Y0,1)− C

D = 1 [I ≥ 0] ,

where C was defined previously, and

I = µ1,1(X ) + µ1,2(X )− µ0,1(X )− µ0,2(X )− µC (Z )

+ U1,1 + U1,2 − U0,1 − U0,2 − UC .
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We assume no proxy — just two periods of panel data.

The multiple periods of earnings serve as the proxy.

Under normality, application of the standard normal selection
model allows us to identify µ1,t(X ) for t = 1, 2; µ0,t(X ) for
t = 1, 2 and µ1,1(X ) + µ1,2(X )− µ0,1(X )− µ0,2(X )− µC (Z ),
the latter up to a scalar σUI

where

UI = U1,1 + U1,2 − U0,1 − U0,2 − UC .

Following our discussion of Example 1, we can recover the scale
σUI

if there are variables in X that are not in Z such that
(µ1,1(X ) + µ1,2(X )− (µ0,1(X ) + µ0,2(X ))) can be varied
independently from µC (Z ).
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To simplify the analysis, we assume that this condition holds.

From normality, we can recover the joint distributions of
(I ,Y1,1,Y1,2) and (I ,Y0,1,Y0,2) but not directly the joint
distribution of (I ,Y1,1,Y1,2,Y0,1,Y0,2).

Thus, conditioning on X and Z , we can recover the joint
distribution of (UI ,U0,1,U0,2) and (UI ,U1,1,U1,2) but
apparently not that of (UI ,U0,1,U0,2,U1,1,U1,2).

However, under our factor structure assumptions, this joint
distribution can be recovered as we next show.
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From the available data, we can identify the following
covariances:

Cov(UI ,U1,2) = (α1,2 + α1,1 − α0,2 − α0,1 − αC )α1,2σ
2
θ

Cov(UI ,U1,1) = (α1,2 + α1,1 − α0,2 − α0,1 − αC )α1,1σ
2
θ

Cov(UI ,U0,1) = (α1,2 + α1,1 − α0,2 − α0,1 − αC )α0,1σ
2
θ

Cov(UI ,U0,2) = (α1,2 + α1,1 − α0,2 − α0,1 − αC )α0,2σ
2
θ

Cov(U1,1,U1,2) = α1,1α1,2σ
2
θ

Cov(U0,1,U0,2) = α0,1α0,2σ
2
θ .
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If we normalize α0,1 = 1 (recall that one normalization is
needed to set the scale of θ), we can form the ratios

Cov(UI ,U1,2)

Cov(UI ,U0,1)
= α1,2,

Cov(UI ,U1,1)

Cov(UI ,U0,1)
= α1,1,

Cov(UI ,U0,2)

Cov(UI ,U0,1)
= α0,2.

From these coefficients and the remaining covariances, we
identify σ2

θ using Cov(U1,1,U1,2) and/or Cov(U0,1,U0,2).
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Thus if the factor loadings are nonzero, we can identify σ2
θ from

two relationships, both of which are identified:

Cov(U1,1,U1,2)

α1,1α1,2
= σ2

θ

and
Cov(U0,1,U0,2)

α0,1α0,2
= σ2

θ .

Since we know α1,1α2,2 and α0,1α0,2, we can recover σ2
θ from

Cov(U1,1,U1,2) and Cov(U0,1,U0,2).

We can also recover αC since we know σ2
θ ,

α1,2 + α1,1 − α0,2 − α0,1 − αC , and α1,1, α1,2, α0,1, α0,2.
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We can form (conditional on X ) Cov(Y1,1,Y0,1) = α1,1α0,1σ
2
θ ;

Cov(Y1,2,Y0,1) = α1,2α0,1σ
2
θ ; Cov(Y1,1,Y0,2) = α1,1α0,2σ

2
θ and

Cov(Y1,2,Y0,2) = α1,2α0,2σ
2
θ .

We can identify µC (Z ) from the schooling choice equation
since we know µ0,1 (X ) , µ0,2 (X ) , µ1,1 (X ) , µ1,2 (X ) and we
have assumed that there are some Z not in X so that σUI

is
identified.

Thus we can identify the joint distribution of
(Y0,1,Y0,2,Y1,1,Y1,2,C ).
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These examples extend to nonnormal and nonparametric
models.

The key idea to constructing joint distributions of
counterfactuals using the analysis of Cunha and Heckman
(2008b) and Cunha et al. (2005, 2006) is not the factor
structure for unobservables although it is convenient.

The crucial idea is the assumption that a low dimensional set of
random variables generates the dependence across outcomes.

Other low dimensional representations such as the ARMA
model or the dynamic factor structure model (see Sargent and
Sims, 1977) can also be used.
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Cunha and Heckman (2008a) and Cunha et al. (2006) extend
factor models to more general frameworks where the θ evolve
over time as in state space models.

The factor structure model presented in this section is easy to
exposit and has been used to estimate joint distributions of
counterfactuals.

Abbring and Heckman Econometric Evaluation of Social Programs Part III, March 31, 2013 6:24pm 124 / 678



Prob Bother Soln Bounds Depend Info Info Model Ret Two

We present some examples in a later subsection.

That subsection reviews recent work that generalizes the
analysis of this section to derive ex ante and ex post outcome
distributions, and measure the fundamental uncertainty facing
agents in the labor market.

With these methods it is possible to compute the distributions
of both ex ante and ex post returns to treatments.

Before presenting a more general analysis, we relate factor
models to matching models.
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Relationship to Matching

If the analyst knew θ and could condition on it, the analyst would
obtain the conditional independence assumption of matching, (M-1):

U-1
(Y0,Y1) ⊥⊥ D | X ,Z , θ.

This is also the general control function assumption (U-1) in
Heckman and Vytlacil (2007b).
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The approach developed by Aakvik et al. (2005), Carneiro et al.
(2001, 2003), Cunha et al. (2005, 2006), and Cunha and
Heckman (2007a,b, 2008b) extends matching and treats θ as
an unobservable.

It uses proxies for θ and identifies the distribution of θ under
the following assumption:

U-2
θ ⊥⊥ X ,Z .

Thus the factor approach is a version of matching on
unobservables, where the unobserved match variables are
integrated out.
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Nonparametric Extensions

The analysis of the generalized Roy model developed in
Appendix B of Heckman and Vytlacil (2007a) establishes
conditions under which it is possible to nonparametrically
identify the joint distribution of (Y0, I ,M) given X ,Z and the
joint distribution of (Y1, I ,M) given X ,Z , where we also allow
the functions determining M to be nonparametrically
determined.
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These conditions can be extended to provide identification of
the distributions of (Y0, I ,M) and (Y1, I ,M) where M is
observed for all persons treated or not whereas Y0 and Y1 are
observed only if D = 0 or D = 1, respectively.

The identification conditions are also easily extended to
account for vector Y0 and Y1 (e.g., Y0 = (Y0,1,Y0,2) and
Y1 = (Y1,1,Y1,2)) as our third example.
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We present a general theorem for the identification of
state-contingent outcomes free of selection bias in the next
section and in the appendix of this presentation.

With the state-contingent distributions nonparametrically
identified, we can apply factor analysis to identify the factor
loadings because we identify the required covariances as a
by-product of our nonparametric analysis.
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With the αj (or αi ,j) in hand, we can nonparametrically identify
the distribution of θ and the εj (or εi ,j) for the different models
assuming mutual independence between θ and all of the
components of εj (or εi ,j) using Kotlarski’s Theorem (Kotlarski,
1967; Prakasa Rao, 1992).

That theorem states that, for any pair of random variables
T1,T2 generated by a common random variable θ, we can
nonparametrically identify the distribution of θ and the
associated components of errors: ε1 and ε2.
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Stated precisely:

Theorem 1
If

T1 = θ + ε1

and
T2 = θ + ε2

and (θ, ε1, ε2) are mutually independent, the means of all three
generating random variables are finite and are normalized to
E (ε1) = E (ε2) = 0, and the random variables possess nonvanishing
(a.e.) characteristic functions, then the densities of
(θ, ε1, ε2) , gθ(θ), g1(ε1), g2(ε2), respectively, are identified.
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Proof
Kotlarski (1967). See also Prakasa Rao (1992).
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