Factor Models: A Review

James J. Heckman
The University of Chicago

Econ 350, Winter 2023

Factor Models: A Review of General Models

$$
\begin{aligned}
E(\theta)=0 ; \quad E\left(\varepsilon_{i}\right) & =0 ; i=1, \ldots, 5 \\
& \Perp
\end{aligned}
$$

$$
\begin{array}{lll}
R_{1}=\alpha_{1} \theta+\varepsilon_{1}, & R_{2}=\alpha_{2} \theta+\varepsilon_{2}, & R_{3}=\alpha_{3} \theta+\varepsilon_{3}, \\
R_{4}=\alpha_{4} \theta+\varepsilon_{4}, & R_{5}=\alpha_{5} \theta+\varepsilon_{5}, & \varepsilon_{i} \Perp \varepsilon_{j}, i \neq j
\end{array}
$$

$$
\operatorname{Cov}\left(R_{1}, R_{2}\right)=\alpha_{1} \alpha_{2} \sigma_{\theta}^{2}
$$

$$
\operatorname{Cov}\left(R_{1}, R_{3}\right)=\alpha_{1} \alpha_{3} \sigma_{\theta}^{2}
$$

$$
\operatorname{Cov}\left(R_{2}, R_{3}\right)=\alpha_{2} \alpha_{3} \sigma_{\theta}^{2}
$$

- Normalize $\alpha_{1}=1$

$$
\frac{\operatorname{Cov}\left(R_{2}, R_{3}\right)}{\operatorname{Cov}\left(R_{1}, R_{2}\right)}=\alpha_{3}
$$

- \therefore We know σ_{θ}^{2} from $\operatorname{Cov}\left(R_{1}, R_{2}\right)$.
- From $\operatorname{Cov}\left(R_{1}, R_{3}\right)$ we know

$$
\alpha_{3}, \alpha_{4}, \alpha_{5}
$$

- Can get the variances of the ε_{i} from variances of the R_{i}

$$
\operatorname{Var}\left(R_{i}\right)=\alpha_{i}^{2} \sigma_{\theta}^{2}+\sigma_{\varepsilon_{i}}^{2}
$$

- If $T=2$, all we can identify is $\alpha_{1} \alpha_{2} \sigma_{\theta}^{2}$.
- If $\alpha_{1}=1, \sigma_{\theta}^{2}=1$, we identify α_{2}.
- Otherwise model is fundamentally underidentified.

2 Factors: (Some Examples)

$$
\begin{gathered}
\theta_{1} \Perp \theta_{2} \\
\varepsilon_{i} \Perp \varepsilon_{j} \forall i \neq j \\
R_{1}=\alpha_{11} \theta_{1}+(0) \theta_{2}+\varepsilon_{1} \\
R_{2}=\alpha_{21} \theta_{1}+(0) \theta_{2}+\varepsilon_{2} \\
R_{3}=\alpha_{31} \theta_{1}+\alpha_{32} \theta_{2}+\varepsilon_{3} \\
R_{4}=\alpha_{41} \theta_{1}+\alpha_{42} \theta_{2}+\varepsilon_{4} \\
R_{5}=\alpha_{51} \theta_{1}+\alpha_{52} \theta_{2}+\varepsilon_{5} \\
\text { Let } \alpha_{11}=1, \alpha_{32}=1 . \text { (Set scale) }
\end{gathered}
$$

$$
\begin{aligned}
& \operatorname{Cov}\left(R_{1}, R_{2}\right)=\alpha_{21} \sigma_{\theta_{1}}^{2} \\
& \operatorname{Cov}\left(R_{1}, R_{3}\right)=\alpha_{31} \sigma_{\theta_{1}}^{2} \\
& \operatorname{Cov}\left(R_{2}, R_{3}\right)=\alpha_{21} \alpha_{31} \sigma_{\theta_{1}}^{2}
\end{aligned}
$$

- Form ratio of $\frac{\operatorname{Cov}\left(R_{2}, R_{3}\right)}{\operatorname{Cov}\left(R_{1}, R_{2}\right)}=\alpha_{31}, \quad \therefore$ we identify $\alpha_{31}, \alpha_{21}, \sigma_{\theta_{1}}^{2}$, as before.
$\operatorname{Cov}\left(R_{1}, R_{4}\right)=\alpha_{41} \sigma_{\theta_{1}}^{2}, \quad \therefore$ since we know $\sigma_{\theta_{1}}^{2} \therefore$ we get α_{41}.
$\operatorname{Cov}\left(R_{1}, R_{k}\right)=\alpha_{k 1} \sigma_{\theta_{1}}^{2}$
- \therefore we identify $\alpha_{k 1}$ for all k and $\sigma_{\theta_{1}}^{2}$.

$$
\begin{aligned}
& \operatorname{Cov}\left(R_{3}, R_{4}\right)-\alpha_{31} \alpha_{41} \sigma_{\theta_{1}}^{2}=\alpha_{42} \sigma_{\theta_{2}}^{2} \\
& \operatorname{Cov}\left(R_{3}, R_{5}\right)-\alpha_{31} \alpha_{51} \sigma_{\theta_{1}}^{2}=\alpha_{52} \sigma_{\theta_{2}}^{2} \\
& \operatorname{Cov}\left(R_{4}, R_{5}\right)-\alpha_{41} \alpha_{51} \sigma_{\theta_{1}}^{2}=\alpha_{52} \alpha_{42} \sigma_{\theta_{2}}^{2},
\end{aligned}
$$

- By same logic,

$$
\frac{\operatorname{Cov}\left(R_{4}, R_{5}\right)-\alpha_{41} \alpha_{51} \sigma_{\theta_{1}}^{2}}{\operatorname{Cov}\left(R_{3}, R_{4}\right)-\alpha_{31} \alpha_{41} \sigma_{\theta_{1}}^{2}}=\alpha_{52}
$$

- \therefore get $\sigma_{\theta_{2}}^{2}$ of "2" loadings.
- If we have dedicated measurements on each factor do not need a normalization on the factors of R.
- Dedicated measurements set the scales and make factor models interpretable:

$$
\begin{aligned}
& M_{1}=\theta_{1}+\varepsilon_{1 M} \\
& M_{2}=\theta_{2}+\varepsilon_{2 M}
\end{aligned}
$$

$\operatorname{Cov}\left(R_{1}, M\right)=\alpha_{11} \sigma_{\theta_{1}}^{2}$
$\operatorname{Cov}\left(R_{2}, M\right)=\alpha_{21} \sigma_{\theta_{1}}^{2}$
$\operatorname{Cov}\left(R_{3}, M\right)=\alpha_{31} \sigma_{\theta_{1}}^{2}$
$\operatorname{Cov}\left(R_{1}, R_{2}\right)=\alpha_{11} \alpha_{12} \sigma_{\theta_{1}}^{2}$,
$\operatorname{Cov}\left(R_{1}, R_{3}\right)=\alpha_{11} \alpha_{13} \sigma_{\theta_{1}}^{2}$,
so we can identify $\alpha_{12} \sigma_{\theta_{1}}^{2}$

- \therefore We can get $\alpha_{12}, \sigma_{\theta_{1}}^{2}$ and the other parameters.

General Case

$$
\underset{T \times 1}{R}=\underset{T \times 1}{M}+\underset{T \times K K \times 1}{\wedge}+\underset{T \times 1}{\varepsilon}
$$

- θ are factors, ε uniquenesses, $\theta \Perp \varepsilon$

$$
\begin{array}{r}
\text { } \begin{array}{cccc}
& E(\varepsilon)=0 \\
\operatorname{Var}\left(\varepsilon \varepsilon^{\prime}\right)=D=\left(\begin{array}{cccc}
\sigma_{\varepsilon_{1}}^{2} & 0 & \cdots & 0 \\
0 & \sigma_{\varepsilon_{2}}^{2} & 0 & \vdots \\
\vdots & 0 & \ddots & \vdots \\
0 & \cdots & 0 & \sigma_{\varepsilon_{T}}^{2}
\end{array}\right) \\
E(\theta)=0 \\
\operatorname{Var}(R)=\Lambda \Sigma_{\theta} \Lambda^{\prime}+D \quad \Sigma_{\theta}=E\left(\theta \theta^{\prime}\right)
\end{array}
\end{array}
$$

- The only source of information on Λ and Σ_{θ} is from the covariances.
- (Each variance is "contaminated" by a uniqueness.)
- Associated with each variance of R_{i} is a $\sigma_{\varepsilon_{i}}^{2}$.
- Each uniqueness variance contributes one new parameter.
- How many unique covariance terms do we have?
- $\frac{T(T-1)}{2}$.
- We have T uniquenesses; $T K$ elements of Λ.
- $\frac{K(K-1)}{2}$ elements of Σ_{θ}.
- $\frac{K(K-1)}{2}+T K$ parameters $\left(\Sigma_{\theta}, \Lambda\right)$.
- Need this many covariances to identify model "Ledermann Bound":

$$
\frac{T(T-1)}{2} \geq T K+\frac{K(K-1)}{2}
$$

Lack of Identification Up to Rotation

- Observe that if we multiply \wedge by an orthogonal matrix C, ($C C^{\prime}=I$), we obtain

$$
\operatorname{Var}(R)=\Lambda C\left[C^{\prime} \Sigma_{\theta} C\right] C^{\prime} \Lambda^{\prime}+D
$$

- C is a "rotation."
- Cannot separate ΛC from Λ.
- Model not identified against orthogonal transformations in the general case.

Some common assumptions:
(1) $\theta_{i} \Perp \theta_{j}, \forall i \neq j$

$$
\Sigma_{\theta}=\left(\begin{array}{cccc}
\sigma_{\theta_{1}}^{2} & 0 & \cdots & 0 \\
0 & \sigma_{\theta_{2}}^{2} & 0 & \vdots \\
\vdots & 0 & \ddots & \vdots \\
0 & \cdots & 0 & \sigma_{\theta_{K}}^{2}
\end{array}\right)
$$

joined with

$$
\Lambda=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & \cdots & 0 \\
\alpha_{21} & 0 & 0 & 0 & \cdots & 0 \\
\alpha_{31} & 1 & 0 & 0 & \cdots & 0 \\
\alpha_{41} & \alpha_{42} & 0 & 0 & \cdots & 0 \\
\alpha_{51} & \alpha_{52} & 1 & 0 & \cdots & 0 \\
\alpha_{61} & \alpha_{62} & \alpha_{63} & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & 1 & & \vdots
\end{array}\right)
$$

- We know that we can identify of the Λ, Σ_{θ} parameters.

$$
\frac{K(K-1)}{2}+T K \leq \frac{T(T-1)}{2}
$$

- Can get more information by looking at higher order moments.
- (See, e.g., Bonhomme and Robin, 2009.)
- Normalize: $\alpha_{I^{*}}=1, \alpha_{1}=1 \quad \therefore \sigma_{\theta}^{2} \quad \therefore \alpha_{1}$.
- Can make alternative normalizations.

Recovering the Distributions Nonparametrically

Theorem 1

Suppose that we have two random variables T_{1} and T_{2} that satisfy:

$$
\begin{aligned}
& T_{1}=\theta+v_{1} \\
& T_{2}=\theta+v_{2}
\end{aligned}
$$

with θ, v_{1}, v_{2} mutually statistically independent, $E(\theta)<\infty$, $E\left(v_{1}\right)=E\left(v_{2}\right)=0$, that the conditions for Fubini's theorem are satisfied for each random variable, and the random variables possess nonvanishing (a.e.) characteristic functions, then the densities $f(\theta), f\left(v_{1}\right)$, and $f\left(v_{2}\right)$ are identified.

Proof.

See Kotlarski (1967).

- Suppose

$$
\begin{aligned}
I & =\mu_{I}(X, Z)+\alpha_{l} \theta+\varepsilon_{I} \\
Y_{0} & =\mu_{0}(X)+\alpha_{0} \theta+\varepsilon_{0} \\
Y_{1} & =\mu_{1}(X)+\alpha_{1} \theta+\varepsilon_{1} \\
M & =\mu_{M}(X)+\theta+\varepsilon_{M} .
\end{aligned}
$$

- System can be rewritten as

$$
\begin{aligned}
& \frac{I-\mu_{l}(X, Z)}{\alpha_{l}}=\theta+\frac{\varepsilon_{l}}{\alpha_{l}} \\
& \frac{Y_{0}-\mu_{0}(X)}{\alpha_{0}}=\theta+\frac{\varepsilon_{0}}{\alpha_{0}} \\
& \frac{Y_{1}-\mu_{1}(X)}{\alpha_{1}}=\theta+\frac{\varepsilon_{1}}{\alpha_{1}} \\
& M-\mu_{M}(X)=\theta+\varepsilon_{M}
\end{aligned}
$$

- Applying Kotlarski's theorem, identify the densities of
$\theta, \frac{\varepsilon_{1}}{\alpha_{l}}, \frac{\varepsilon_{0}}{\alpha_{0}}, \frac{\varepsilon_{1}}{\alpha_{1}}, \varepsilon_{M}$.
- We know α_{1}, α_{0} and α_{1}.
- Can identify the densities of $\theta, \varepsilon_{I}, \varepsilon_{0}, \varepsilon_{1}, \varepsilon_{M}$.
- Recover the joint distribution of $\left(Y_{1}, Y_{0}\right)$.

$$
F\left(Y_{1}, Y_{0} \mid X\right)=\int F\left(Y_{1}, Y_{0} \mid \theta, X\right) d F(\theta)
$$

- $F(\theta)$ is known.

$$
F\left(Y_{1}, Y_{0} \mid \theta, X\right)=F\left(Y_{1} \mid \theta, X\right) F\left(Y_{0} \mid \theta, X\right)
$$

- $F\left(Y_{1} \mid \theta, X\right)$ and $F\left(Y_{0} \mid \theta, X\right)$ identified

$$
\begin{aligned}
& F\left(Y_{1} \mid \theta, X, S=1\right)=F\left(Y_{1} \mid \theta, X\right) \\
& F\left(Y_{0} \mid \theta, X, S=0\right)=F\left(Y_{0} \mid \theta, X\right)
\end{aligned}
$$

- Can identify the number of factors generating dependence among the Y_{1}, Y_{0}, C, S and M.

