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The Microeconomic Model
The Problem of the Agent Demographics

• Overlapping Generations Model.

• Agents are endowed with cognitive ability stock θ.

• Ψ (θ) is the cross-section distribution of θ.

• Agents live for aT years.

• Mandatory retirement aR ≤ aT .
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The Microeconomic Model: Notation

• Hs,a is the stock of type-s human capital at age a of an agent
with schooling S .

• Ka is the stock of physical capital of age a agent.

• Ia time spent on post-schooling training of age a agent.

• Ca is the consumption of age a agent.

• Rs,t is the price at period t of a type-s unit of human capital.
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Endowments:

• As (θ) is how ability θ affects the productivity of post-schooling
investment Ia.

• Hs,1 is the initial stock of type-s human capital.

• K1 is the initial stock of physical capital.
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Agent Solves:

Va (Hs,a,Ka, s, θ, rt ,Rs,t)

= max

{
Ca

γ − 1

γ
+ δVa+1 (Ha+1,Ka+1, s, θ, rt+1,Rs,t+1)

}
subject to:

Ca + Ka+1 = (1− τ)Rs,tHs,a (1− Ia) + (1 + (1− τ) rt)Ka

Hs,a+1 = As (θ) (Ia)αs (Hs,a)βs + (1− σ)Hs,a

0 < αs , βs < 1
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The Euler equations are:

(Ca)γ−1 = δ (1 + (1− τ) rt+1) (Ca+1)γ−1

(Ca)γ−1 Rs,tHs,a

= δ (Ca+1)γ−1 Rs,t+1 (1− Ia+1) + αsAs (θ) (Ia)αs−1 (Hs,a)βs
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The initial conditions and Euler equations define solutions to the
problem:

C ∗
a = gC

a (Hs,a,Ka, S , θ, rt ,Rs,t)

I ∗a = g I
a (Hs,a,Ka, S , θ, rt ,Rs,t)

K ∗
a = gK

a (Hs,a,Ka, S , θ, rt ,Rs,t)
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Comments:

1) The policy functions are age-specific because agents have a
finite lifetime (OLG model).

2) The policy functions depend on price Rs,t and rt because they
vary over time (perfect foresight).

Now, use the policy functions to obtain:

V1 (Hs,1,K1, s, θ, t) =
C ∗
a
γ − 1

γ

+δV2

(
As (θ) (I ∗a )αs (Hs,a)βs + Hs,a,K

∗
a , s, θ, t + 1

)
The agent then decides schooling by solving:

s∗ = arg max
s

[V1 (Hs,1,K1, s, θ, t)− Ds − εs ]
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The Problem of the Firm: Notation

• H̄s,t is the total amount of type-s human capital demanded by
the firm at period t.

• Kt is the total amount of physical capital demanded by the firm
at period t.

• σk is the depreciation of physical capital.
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The problem of the firm is:

π (R1,t ,R2,t , rt)

= max
{
F
(
H̄1,t , H̄2,t ,Kt

)
− R1,tH̄1,t − R2,tH̄2,t − (rt + σk) K̄t

}
The first-order conditions are:

Rs,t =
∂F
(
H̄1,t , H̄2,t , K̄t

)
∂H̄s,t

, s = 1, 2

(rt + σk) =
∂F
(
H̄1,t , H̄2,t , K̄t

)
∂K̄t
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The production function F is assumed to be:

F
(
H̄1,t , H̄2,t , K̄t

)
=
{
a2
(
K̄t

)ρ2 + (1− a2)
[
a1
(
H̄1,t

)ρ1 + (1− a1)
(
H̄2,t

)ρ1] ρ2ρ1} 1
ρ2
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Aggregation

• tc is the year of birth of cohort c .

• a = t − tc is the age of cohort c at year t.

• Ptc = {ri ,R1,i ,R2,i}tc+aR
i=tc

is the sequence of prices cohort c will
face during working life.

• Ns (θ, tc) is the number of agents of type.

• θ in cohort c and schooling level s.
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• Hs,a (θ,Ptc ) is the stock of type-s human capital at age a of an
agent of cohort c .

• Ks,a (θ,Ptc ) is the stock of type-s human capital at age a of an
agent of cohort c .
Therefore:

Ĥs,t =
t−1∑

tc=t−aR

∫
Ns (θ, tc)Hs,t−tc (θ,Ptc )

(1− It−tc (s, θ,Ptc )) dΨ (θ)

K̂t =
t−1∑

tc=t−aR

2∑
s=1

∫
Ns (θ, tc)Kt−tc (s, θ,Ptc ) dΨ (θ)
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• Earnings of a person age a at time t of cohort c :

W (a, t,Ha,s (θ,Ptc )) = Rs,tHa,s (θ,Ptc ) (1− Ia (s, θ,Ptc ))

• Suppose that for two consecutive ages
a and a + 1, Ia (s, θ,Ptc ) = Ia+1 (s, θ,Ptc ) = 0.

W (a + 1, t + 1,Ha+1,s (θ,Ptc ))

W (a, t,Ha,s (θ,Ptc ))
=

Rs,t+1Ha+1,s (θ,Ptc )

Rs,tHa,s (θ,Ptc )
=

=
Rs,t+1 (1− σs)Ha,s (θ,Ptc )

Rs,tHa,s (θ,Ptc )
=

Rs,t+1 (1− σ)

Rs,t

• We can get the ratio of
Rs,t+1

Rs,t
up to a constant. Next step, we

show how to get σ.

• We can get σ from microestimates of human capital production
function.
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• Consider the firm’s wage bill of schooling level s at period t:

WBs,t = Rs,tH̄s,t

• Rearranging terms:

WBs,t

(1− σ)t Rs,t

=
H̄s,t

(1− σ)t

• Thus:
R̃s,t = (1− σ)t Rs,t

H̃s,t =
H̄s,t

(1− σ)t
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Digression:
Identifying the Parameters of Interest: Identifying σ

• Let
Qt = (a1 (Ht,1)ρ1 + (1− a1) (Ht,2)ρ1)

1
ρ1 . (1)

• 1
1−ρ1 = elasticity of substitution

• The price RQ
t of one unit of the basket Qt is the solution to

RQ
t = min

Ht,1,Ht,2

Rt,1Ht,1 + Rt,2Ht,2

subject to

(a1 (Ht,1)ρ1 + (1− a1) (Ht,2)ρ1)
1
ρ1 = 1 .
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• The first-order conditions are:

Rt,1 = λ (a1 (Ht,1)ρ1 + (1− a1) (Ht,2)ρ1)
1−ρ1
ρ1 a1 (Ht,1)ρ1−1 (2)

Rt,2 = λ (a1 (Ht,1)ρ1 + (1− a1) (Ht,2)ρ1)
1−ρ1
ρ1 (1− a1) (Ht,2)ρ1−1

(3)

• The solution to this problem is well-known:

RQ
t =

[
(a1)

1
1−ρ1 (Rt,1)

ρ1
ρ1−1 + (1− a1)

1
1−ρ1 (Rt,2)

ρ1
ρ1−1

] ρ1−1
ρ1 (4)

• The problem of the firm can be recast as:

π
(
RQ
t , rt

)
= max

{
[a2Q

ρ2
t + (1− a2)K ρ2

t ]
1
ρ2 − RQ

t Qt − rtKt

}

Heckman, Lochner, and Taber Wage Inequality



• The first-order conditions are

[a2 (Qt)
ρ2 + (1− a2) (Kt)

ρ2]
1−ρ2
ρ2 a2 (Qt)

ρ2−1 = RQ
t (5)

[a2Q
ρ2
t + (1− a2)K ρ2

t ]
1−ρ2
ρ2 (1− a2) (Kt)

ρ2−1 = rt (6)

• Taking ratios of (5) and (6) and applying logs it follows that:

log
RQ
t

rt
= log

(
a2

1− a2

)
+ (ρ2 − 1) log

(
Qt

Kt

)
(7)

• But note that from (1) and (4) are defined in terms of Hs,t and
Rs,t .
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• However, we only observe H̃s,t and R̃s,t . Let Q̃t and R̃Q
t be

defined as in (1) and (4) but based on observables H̃s,t and R̃s,t :

Q̃t =
(
a1
(
H̃t,1

)ρ1
+ (1− a1)

(
H̃t,2

)ρ1) 1
ρ1

R̃Q
t =

[
(a1)

1
1−ρ1

(
R̃t,1

) ρ1
ρ1−1

+ (1− a1)
1

1−ρ1

(
R̃t,2

) ρ1
ρ1−1

] ρ1−1
ρ1

• It is easy to show that:

Qt = (1− σ)t Q̃t (8)

RQ
t = (1− σ)−t R̃Q

t (9)
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• Plugging (8) and (9) into (7) it follows that:

log
R̃Q
t

rt
= log

(
a2

1− a2

)
+ρ2 log (1− σ) t + (ρ2 − 1) log

(
Q̃t

Kt

)
(10)

• Suppose we run a regression:

log
R̃Q
t

rt
= β0 + β1t + β2 log

(
Q̃t

Kt

)
+ εt

• Then we can identify:

a2 =
eβ0

1 + eβ0
ρ2 = 1 + β2 σ = 1− e

β1
1+β2

• This assumes no technical progress and is a bad assumption.

End of Digression
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• To identify the other parameters of interest, consider the log of
the ratio of (3) to (2):

log
Rt,2

Rt,1
= log

(
1− a1
a1

)
+ (ρ1 − 1) log

(
Ht,2

Ht,1

)
(11)

• Again, note that we do not observe either Rt,s or Ht,s , but only
R̃t,s and H̃t,s .

• Therefore

log

R̃t,2

(1−σ)t

R̃t,1

(1−σ)t
= log

(
1− a1
a1

)
+ (ρ1 − 1) log

(
(1− σ)t H̃t,2

(1− σ)t H̃t,1

)
⇒

⇒ log
R̃t,2

R̃t,1

= log

(
1− a1
a1

)
+ (ρ1 − 1) log

(
H̃t,2

H̃t,1

)
. (12)

• An OLS regression on (12) can identify ρ1 and a1.
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• This assumes that a1 is not time varying or, if it is, ln
(

1−a1
a1

)
is

not collinear with H̃t,2/H̃t,1.

• But we can get σ from the production function of human
capital.

• We bring this to the macro data.
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Estimating the Human Capital Production Function

• We use wage and schooling data on white males from the
NLSY.

• We assume that there are four observable θ types which we
define according to AFQT quartile.

• We assume that the interest rate is fixed at r = 0.05 and that
rental rates are fixed and normalized to one.
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• For any given (a, θ, S) and any set of parameters π we can
calculate the optimal wage

w(a, θ, S ; π) .

• We assume that these wages are measured with error and we
estimate the parameters, π, using nonlinear least squares,
minimizing

N∑
i=1

∑
a

(
w ∗
i ,a − w(a, θ, S ; π)

)2
,

where w ∗
i ,a is the observed wage.
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• Given these estimated parameters, we can obtain the present
value of earnings for each type as college graduates or high

school graduates, V̂ S
θ .

• We assume that the nonpecuniary tastes for college are
normally distributed, so

Pr
(
Coll | DS , θ

)
= Φ

(
(1− τ) (V 2

θ − V 1
θ )− DS + µθ

σε

)
• Using data on state tuition we estimate this model as a probit.
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• We take
τ = 0.15 δ = 0.96 γ = 0.10

• We calibrate the model to “look like” the NLSY in the original
steady state:

(1− τ) r = 0.05 R1 = 2.00 R2 = 2.00

• In order to match the capital-output ratio, we need a transfer
from old cohorts to young.

• We take an exogenous transfer from a cohort as it retires and
give it to a new cohort as it is born.

• This transfer is approximately $30,000.
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• We estimate a nested CES production function allowing for a
linear time trend

a3
(
a2
(
a1(H̄1

t )ρ1 + (1− a1)(H̄2
t )ρ1
)ρ2/ρ1 + (1− a2)K̄ ρ2

t

)1/ρ2
• We estimate ρ1 = 1− 1

σ

.
= 1

3
and ρ2 = 0 based on those

estimates.

• We calibrate (a1, a2, a3) and the transfer to yield prices
(r ,R1,R2) and a capital-output ratio of 4 in the initial steady
state.
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Skill-Biased Technical Change

• Unexpected shock resulting in a constant decline in a1 for 30
years.

• The total decline in the share of low skilled labor is 30%
(matching the rate of decline in the data).

• Perfect foresight.

• Transition period of 200 years.
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Skill-Biased Technical Change: The Effects of Skill-Biased
Technology Change

• Movements in measured wages are different from movements in
skill prices, especially for young workers.

• Without intervention, economy converges to a new steady state
with lower wage inequality than before the technology change.

• In the long run, society is richer and all types are better off. In
the short run, low ability/low skilled workers caught in the
transition are worse off.
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• In the new steady state, there are more high skilled workers,
but human capital per skilled worker is lower.

• During transition periods, cross-section estimates of “returns”
to skill are substantially different from the actual returns faced
by cohorts making educational decisions.
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Tuition Subsidy

• Partial equilibrium analysis ignores the effects of changes in skill
quantities on the price of skill.

• As individuals acquire more skill in response to policy change,
the returns to skill decline.

• This lowers the proportion of individuals taking advantage of
the policy.

• The increase in aggregate skill also affects the earnings of
individuals who do not take advantage of the new policy.
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• Partial equilibrium analysis fails for two reasons:

(1) Overstates the effect of the program on participants.
(2) Misses the effect of the program on non-participants

• Accounting for these effects in evaluating policy requires a
general equilibrium, structural model of skill formation.
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Tuition Subsidy: Example

• $500 tuition subsidy.

• Balance the budget in the steady states.

• Perfect foresight.

• Transition period of 200 years.
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Main Findings

• Estimates of college enrolment responses based on cross-section
variations in tuition are substantially overstated.

• Individuals who do not change their schooling decision are
affected.
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Summary

• We develop an empirically-grounded dynamic overlapping
generations general-equilibrium model of skill formation with
heterogeneous human capital.

• Model roughly consistent with changing wage structure.

• Partial equilibrium program evaluation can be very misleading.

• We distinguish between effects measured in a cross-section and
the effects on different cohorts.
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Extensions

• Additional tax and subsidy policies.

• Closer link between macro and micro models.

• Relax perfect foresight assumption.

• Incorporate a separate sector for schooling–education requires
high skilled labor inputs.

Heckman, Lochner, and Taber Wage Inequality



Tables and Figures
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Figure 1: Estimated parameters for human capital production function
and schooling decision (standard errors in parentheses)
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Figure 2: Estimated parameters for human capital production function
and schooling decision (standard errors in parentheses)
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Figure 3: Derived parameters for human capital production function and
schooling decision (units are thousands of dollars)
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Figure 4: Derived parameters for human capital production function and
schooling decision (units are thousands of dollars)
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Figure 5: Estimates of aggregate production function estimated from
factor demand equations (III-1) and (III-2), 1965–1990, allowing for
technical progress through a linear trend (standard errors in parentheses)
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Figure 6: Simulated changes in wages and wage inequality from
1960–1990. Includes the estimated trend in technology and entrance of
baby boom cohorts from 1965–80 (multiplied by 100)
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Figure 7: Predicted vs. actual hourly wages (in 1992 dollars) by AFQT
quartile (high school category)
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Figure 8: Predicted vs. actual hourly wages (in 1992 dollars) by AFQT
quartile (college category)
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Figure 9: Comparison of Mincer vs. estimated investment profiles (high
school)
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Figure 10: Comparison of Mincer vs. estimated investment profiles
(college)
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Figure 11: Labor and capital shares over time

Note: The breakdown of labor’s share is based on wages and excludes other forms of compensation.
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Figure 12: Estimated trend in α1 for 30 years
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Figure 13: Estimated trend in α1 for 30 years
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Figure 14: Estimated trend in α1 for 30 years
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Figure 15: Estimated trend in α1 for 30 years
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Figure 16: Estimated trend in α1 for 30 years.
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Figure 17: Estimated trend in α1 for 30 years
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Figure 18: Estimated trend in α1 for 30 years
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Figure 19: Figure 11B: Estimated trend in α1 for 30 years

Heckman, Lochner, and Taber Wage Inequality



Figure 20: Estimated trend in α1 for 30 years
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Figure 21: Estimated trend in α1 for 30 years
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Figure 22: Estimated trend in α1 for 30 years
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Figure 23: Estimated trend in α1 for 30 years
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Figure 24: Estimated trend in α1 for 30 years
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Figure 25: Estimated trend in α1 for 30 years
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Figure 26: Estimated trend in α1 for 30 years

Heckman, Lochner, and Taber Wage Inequality



Figure 27: Estimated trend in α1 for 30 years
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Figure 28: Estimated trend in α1 for 30 years
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Figure 29: Estimated trend in α1 for 30 years
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Figure 30: Estimated trend in α1 for 30 years
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Figure 31: Estimated trend in α1 for 30 years. Baby boom (expansion of
cohort size by 32%) between years 1965–80
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Figure 32: Estimated trend in α1 for 30 years. Baby boom (expansion of
cohort size by 32%) between years 1965–80
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