Skills, Tasks and Technologies Beyond the Canonical Model

David Autor and Daron Acemoglu

MIT and NBER

Econ 350, Winter 2023

Acemoglu-Autor (MIT and NBER)

Skills, Tasks, Techs

3 K K 3 K

Skills, Tasks and Technologies: Beyond the Canonical Model

- Canonical model Elegantly, powerfully operationalizes supply and demand for skills
 - A formalization of Tinbergen's "Education Race" analogy
 - Two distinct skill groups that perform two different and imperfectly substitutable tasks.
 - Technology is factor-augmenting—Always raises productivity/wages
- Model is a theoretical and empirical success
 - Katz and Murphy (1992), Card and Lemieux (2001), Autor, Acemoglu and Lyle (2004), Goldin and Katz (2008), Carneiro and Lee (2009).

イロト 不得下 イヨト イヨト 二日

Beyond the Canonical Model of Skills and Wages

- But model largely silent on some *central empirical facts* of last three decades:
 - In Falling real wages of low-skill workers (at least in U.S.)
 - In Non-monotone shifts in inequality, despite rising 'return to skill'
 - Widespread 'polarization' of employment across advanced economies
 - Directly skill-replacing (not augmenting) technologies
- Needed: Model with richer interplay btwn skills, tasks, technologies
 - Distinguish between 'skills' and 'tasks'
 - Indogenize assignment of skills to tasks: Comparative advantage
 - Oirect competition btwn skills, techs, trade in performing tasks
 - Nest canonical model as one possible case

イロト 不得 トイヨト イヨト

Beyond the Canonical Model of Skills and Wages Outline

- The canonical model: Implications and empirical successes
- Where the canonical model falls short
- What should an amended model offer?
- A Ricardian model of skills, tasks and technologies
- Some potential empirical directions
- 6 Conclusions

• • = • • = •

The Canonical Model

Basic assumptions

- **1** Two skills, high and low: *H*, *L*. Typically college v. high school
- No distinction between skills and 'tasks'—Skill is direct input into production
- **③** *H* and *L* are imperfect productive substitutes: $\sigma > 0$.
- Wages are set on the demand curve
- Canonical representation

$$Y = \left[(A_L L)^{rac{\sigma-1}{\sigma}} + (A_H H)^{rac{\sigma-1}{\sigma}}
ight]^{rac{\sigma}{\sigma-1}}$$
 ,

where A_L and A_H are factor-augmenting technology terms.

- Elasticity of substitution plays key role
 - $\sigma > 1$: H and L are gross substitutes. Rise in A_H/A_L is SBTC
 - $\sigma < 1$: *H* and *L* are gross complements. *Fall* in A_H/A_L is SBTC

<ロト <四ト <三ト < 三ト < 三ト 三 三

The Canonical Model

Skill premium

$$\ln\left(\frac{W_{H}}{W_{L}}\right) = \frac{\sigma - 1}{\sigma} \ln\left(\frac{A_{H}}{A_{L}}\right) - \frac{1}{\sigma} \ln\left(\frac{H}{L}\right)$$

• Supply and demand visible

• In (H/L) represents position of supply curve • $\frac{\sigma-1}{\sigma} \ln \left(\frac{A_H}{A_L}\right)$ represents position of demand curve • Impact of supply on wage inequality

$$\frac{\partial \ln \left(W_H / W_L \right)}{\partial \ln \left(H / L \right)} = -\frac{1}{\sigma}$$

 ${f 9}$ Impact of factor tech Δ on wage inequality

$$\frac{\partial \ln \left(W_H / W_L \right)}{\partial \ln \left(A_H / A_L \right)} = \frac{\sigma - 1}{\sigma} > 0 \text{ iff } \sigma > 1$$

Consensus is that $\sigma \in (1.4, 2.5)$, so technology that raises relative output of H also raises its relative wage.

Acemoglu-Autor (MIT and NBER)

The Canonical Model

Some key testable predictions

• Rise in supply of H/L reduces skilled wage differential

• $\partial \ln (w_H/w_L) / \partial \ln (H/L) = -1/\sigma < 0$

2 Rise in supply of H/L also *raises* real wage of L: $\partial w_L/\partial H/L > 0$

- This follows from imperfect substitutability between H and L.
- Sector augmenting tech ∆ always raises wages of L workers: ∂W_L/∂A_L > 0 and ∂W_L/∂A_H > 0.
 - This also follows from imperfect substitutability.
- Predictions of this model are always monotone in skill
 - A bit tautological since there are only two skills/wages
 - But assume a continuum of efficiencies in ea. skill group: still true
 - *Loosely:* Wage inequality is either rising or falling in this model, *not both*

イロト 不得 トイヨト イヨト 二日

The Canonical Model: Implementation

- The two-factor model famously applied by Katz and Murphy (1992):
 - Used data from 1963 through 1987, fit by OLS

$$\ln\left(\frac{W_H}{W_L}\right) = \frac{\sigma - 1}{\sigma}\gamma_0 + \frac{\sigma - 1}{\sigma}\gamma_1 t - \gamma_2 \ln\left(\frac{H_t}{L_t}\right)$$

• Replicating their approach, we get

$$\ln \left(\frac{W_H}{W_L}\right) = \begin{array}{cc} 0.027 \times t & -0.612 \cdot \ln \left(\frac{H_t}{L_t}\right) \\ (0.005) & (0.128) \end{array}$$

- This estimate implies
 - Log relative demand for College/Non-College rising at 2.7 log points annually
 - 2 Elasticity of substitution $\hat{\sigma} = 1/\hat{\gamma}_2 \approx 1.6$
- You can see how well this works in the next figure...

・ロン ・聞と ・ヨン ・ヨン … ヨ

The Canonical Model: Easy to See Why K-M Model Fits!

The Canonical Model: Many more Successes

- Satz and Goldin (2008): Fit to data for 1915 2006
- ② Carneiro and Lee (2009): Fit to data for U.S. regions

Sard and Lemieux (2001):

- Fit to data for three countries: U.S., U.K., Canada
- Allow for imperfect substitutability among age cohorts
- Explain cross-country variation in timing of rise of college premium *and* within-country variation in magnitude of rise in premium by age groups within countries.
- See also Fitzenberger and Kohn (2006) for German application.

イロト イポト イヨト イヨト

The Canonical Model Explaining the College Premium by Experience Group

(日) (周) (三) (三)

Beyond the 'Canonical Model' of Skills and Wages

- O The canonical model: Implications and empirical successes
- Where the canonical model falls short
- What should an amended model offer?
- A Ricardian model of skills, tasks and technologies
- Some potential empirical directions
- Onclusions

Where the Canonical Model is Silent (or Mis-speaks)

- Wage inequality rises less than predicted
- 2 Real wage levels fall for some groups
- Wage changes non-monotone in skill
- Polarization of employment growth across high/low-skill occupations (also non-monotone)
- Ising importance of occupation as a predictor of earnings
- 6 Casual empiricism only
 - Directly skill-replacing technologies commonplace
 - Offshoring may function like a skill-replacing technology

- 4 週 ト - 4 三 ト - 4 三 ト

Wage Inequality Rises by Much Less than Predicted

- College premium rose by 12 points between 1992 and 2008. Model predicts a *rise* of 25 log points!
- Model implies demand *decelerated* after 1992 or elasticity (σ) rose

Real wage levels fall for low-education males

- 4 同 6 4 日 6 4 日 6

Generates a 'Convexification' of Return to Education See Lemieux (2006)

Wage changes non-monotone: Male indexed 90/50/10

()

Wage changes non-monotone: Female indexed 90/50/10

()

Non-monotone wage changes: Males full distribution

Non-monotone wage changes: Females full distribution

Skills, Tasks and Technologies: Beyond the Canonical Model Where the Canonical Model Falls Short

Polarization of Emp. Growth by Occupational Skill

Monotone in 1980s, Concentrated in Tails in 1990s and 2000s

()

Polarization of Emp Growth by Occupational Skill

- ∢ ≣ →

Polarization of Emp Growth by Occupational Skill Harmonized European LFS Data from Goos, Manning and Salomons (2009)

See also Dustmann, Ludsteck and Schonberg (2009), QJE

Acemoglu-Autor (MIT and NBER)

Skills, Tasks, Techs

Polarization of Emp Growth by Occupational Skill U.S. + Eurostat Data: 10 Countries, 1992-2008. Correlation(US, EU) = 0.67

Acemoglu-Autor (MIT and NBER)

Skills, Tasks, Techs

Rising importance of occupation as a predictor of earnings

Rising importance of *job tasks* as a predictor of earnings

Acemoglu-Autor (MIT and NBER)

27 / 49

Where the Canonical Model is Silent (or Mis-speaks)

- Wage inequality rises less than predicted
- 2 Real wage levels fall for some groups
- Wage changes non-monotone in skill
- Polarization of employment growth across high/low-skill occupations (also non-monotone)
- Ising importance of occupation as a predictor of earnings
- 6 Casual empiricism only
 - Directly skill-replacing technologies commonplace
 - Offshoring may function like a skill-replacing technology

- 4 週 ト - 4 三 ト - 4 三 ト

Beyond the 'Canonical Model' of Skills and Wages Outline

- The canonical model: Implications and empirical successes
- Where the canonical models fall short
- What should an amended model offer?
- A Ricardian model of skills, tasks and technologies
- Some potential empirical directions
- Onclusions

A B F A B F

What should an amended model offer? Objectives

- Explicit distinction between skills and tasks
 - Tasks—Unit of work activity that produces output
 - Skill—Worker's endowment of capabilities for performing various tasks
- Illow for comparative advantage among workers in different tasks
 - Assignment of skills to tasks is endogenous (as in Roy, 1951)
- Solution Allow for multiple sources of competing task 'supplies'
 - Workers of different skill levels
 - Machines—Task can be routinized/automated
 - Offshoring—As per Grossman, Rossi-Hansberg (2008)
- Incorporate at least three skill groups—To study polarization
- Soal: well-defined set of skill demands, as in canonical model
- Obility to endogenize task-biased technological change

ヘロト 人間 とくほと くほとう

A Ricardian Model of Skills, Tasks and Technologies

Related models

- Heckman and Scheinkman (1987)
- Acemoglu and Zilibotti (2001)
- Autor, Levy and Murnane (2003)
- Gibbons, Katz, Lemieux, Parent (2005)
- Grossman and Rossi-Hansberg (2008)
- Autor and Dorn (2009)
- Goos, Manning and Salomons (2009)
- Costinot and Vogel (2010)
- Our model is *less* general than Costinot and Vogel, but quite broadly applicable (we think)

- 4 @ > - 4 @ > - 4 @ >

イロト 人間ト イヨト イヨト

A Ricardian Model of Skills, Tasks and Technologies Production technology: Tasks into goods

- Static environment with a unique final good, Y
- Y produced with continuum of *tasks* on the unit interval, [0, 1]
- Cobb-Douglas technology mapping tasks the final good:

$$\ln Y = \int_0^1 \ln y(i) di,$$

where y(i) is the "service" or production level of task *i*. • Price of the final good, *Y*, is numeraire.

A Ricardian Model of Skills, Tasks and Technologies Supply of skills to tasks

Three types of labor: High, Medium and Low

- Fixed, inelastic supply of the three types. Supplies are L, M and H
- We later introduce capital or technology (embedded in machines)

Each task on continuum has production function

$$y(i) = A_L \alpha_L(i) I(i) + A_M \alpha_M(i) m(i) + A_H \alpha_H(i) h(i) + A_K \alpha_K(i) k(i),$$

- A terms are factor-augmenting technologies
- $\alpha_{L}(i)$, $\alpha_{M}(i)$ and $\alpha_{H}(i)$ are task productivity schedules
- For example, A_Lα_L (i) is the productivity of low skill workers in task i, and l (i) is the number of low skill workers allocated task i.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 ● のへで

A Ricardian Model of Skills, Tasks and Technologies

Role of comparative advantage

• All tasks can be performed by low, medium or high skill workers

 $y(i) = A_{L}\alpha_{L}(i) I(i) + A_{M}\alpha_{M}(i) m(i) + A_{H}\alpha_{H}(i) h(i) + A_{K}\alpha_{K}(i) k(i)$

• But comparative advantage by skill differs thru $\alpha_L(i)$, $\alpha_M(i)$, $\alpha_H(i)$

Comparative advantage schedule

- Assumption: $\alpha_L(i) / \alpha_M(i)$ and $\alpha_M(i) / \alpha_H(i)$ are continuously differentiable and strictly decreasing
- Higher indices correspond to "more complex" tasks
- In all tasks, *H* has absolute advantage relative to *M*, *M* has abs. adv. relative to *L*
- But comparative advantage determines task allocations

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = ∽○へ⊙

A Ricardian Model of Skills, Tasks and Technologies

Equilibrium objects: Task thresholds, I_L , I_H

• In any equilibrium there exist I_L and I_H such that $0 < I_L < I_H < 1$ and for any $i < I_L$, m(i) = h(i) = 0, for any $i \in (I_L, I_H)$, I(i) = h(i) = 0, and for any $i > I_H$, I(i) = m(i) = 0

Allocation of tasks to skill groups determined by I_H , I_L

- Tasks $i > I_H$ will be performed by high skill workers (Abstract)
- Tasks $i < I_L$ will be performed by low skill workers (Manual)
- Middle tasks $I_L \leq i \leq I_H$ will be performed by medium skill workers (Routine)

Boundaries of these sets are endogenous

• Given skill supplies, firms (equivalently workers) decide which skills perform which tasks → *Substitution of skills across tasks*.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

A Ricardian Model of Skills, Tasks and Technologies

A ton of algebra happens... then, these wage equations pop out!

• Relative wages solely a function of labor supplies and task thresholds

$$\frac{w_H}{w_M} = \left(\frac{1-I_H}{I_H-I_L}\right) \left(\frac{H}{M}\right)^{-1},$$
$$\frac{w_M}{w_L} = \left(\frac{I_H-I_L}{I_L}\right) \left(\frac{M}{L}\right)^{-1}$$

- So, labor supplies L, M, H plus compare adv. $\alpha(L)$, $\alpha(M)$, $\alpha(L)$ determine task allocation, I_L and I_H , and hence wages.
- It's that simple!

Equilibrium Task Thresholds: No Arbitrage Across Skill Groups

Figure 22. Determination of Equilibrium Threshold Tasks

37 / 49

Skill-Biased Technical Change: A Rise in

 A_H

Rise in productivity of H workers broadens their task set, lowers I_H
Squeezes M workers (excess supply of M) so I_L also falls

Acemoglu-Autor (MIT and NBER)

Skills, Tasks, Techs

38 / 49

Some Key Comparative Statics

Consider a rise in A_H (SBTC):

- Increase share of tasks done by H
- Raises W_H / W_m and W_H / W_L
- Lowers W_M/W_L ! Why? Because H and M are closer substitutes than H and L.

Consider a rise in high-skilled labor supply H:

- Increase share of tasks done by H
- Lowers W_H / W_m and W_H / W_L
- Lowers W_M/W_L (Rise in A_H is isomorphic to rise in H)

Identical comparative statics for rise in A_L or L.

イロト 不得 トイヨト イヨト 二日

Change in productivity or supply of middle-skill workers Subtle effects

What happens when either M or A_M rises?

• Depends critically on this term:

$$\left|\beta_{L}^{\prime}\left(I_{L}\right)I_{L}\right| \stackrel{\geq}{\gtrless} \left|\beta_{H}^{\prime}\left(I_{H}\right)\left(1-I_{H}\right)\right|$$

- Measures comparative advantage of L versus H workers in M tasks
- If $\beta'_{L}(I_{L})$ is low relative to $\beta'_{H}(I_{H})$), high skill workers have strong comparative advantage for tasks above I_{H} .

Hence, rise in M displaces L workers more than H iff:

$$\frac{d\ln\left(w_{H}/w_{L}\right)}{d\ln M} > 0 \text{ iff } \left|\beta_{L}'\left(I_{L}\right)I_{L}\right| < \left|\beta_{H}'\left(I_{H}\right)\left(1-I_{H}\right)\right|$$

• Implicitly I_L falls more than I_H rises.

ヘロト 人間 ト 人 ヨト 人 ヨトー

How Technology Enters

Easy to model a 'task replacing technology'

- Both K and Labor can supply tasks (all are perfect substitutes)
- K will supply task if can accomplish more cheaply than L, M, or H.

Example: Routine Task Replacing technology

• Capital that out-competes M in a subset of tasks i' in the interval $I_L < i' < I_H$

Own wage effects

• Immediately lowers wage of M by narrowing set of M tasks

Cross-price effects on W_L and W_H ?

- Again depend on $\left| eta_L' \left(I_L
 ight) I_L \right| \gtrless \left| eta_H' \left(I_H
 ight) \left(1 I_H
 ight)
 ight|$
- If M workers better suited to L than H tasks, then W_H/W_L rises

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Routine Task Replacing Technology

Focal case

- Task replacing technology concentrated in middle-skill/routine tasks
- Strong comparative advantage of *H* relative to *L* at respective margins with *M*

Leads to wage and employment 'polarization'

- Wages:
 - Middle wages fall relative to top and bottom.
 - Top rises relative to bottom
- 2 Employment:
 - Middle-skill/routine tasks mechanized
 - Declining labor input in Routine tasks
 - Given comparative advantage, middle-skill workers move disproportionately downward in task distribution.

3

イロト イポト イヨト イヨト

Offshoring

Offshoring works identically to capital that competes for tasks

- In this sense, our model is like Grossman and Rossi-Hansberg (2008)
- But the comparative advantage setup here is more general (plausible)

イロト 人間ト イヨト イヨト

ヘロト 人間 ト 人 ヨト 人 ヨトー

Two further extensions

Endogenous choice of skills

- Workers can have a bundle of *I*, *m*, and *h* skills
- When comparative advantage of one skill sufficiently eroded, may switch skills
- Example: Former manager, now driving delivery truck

Endogenous technical change

- Endogenous tech change favoring *skills* is well understood from Acemoglu (1998, 2007)
- We also consider endogenous technical change *favoring tasks* in this model

Ricardian Model: Summary

Model's inputs

- Explicit distinction between skills and tasks
- ② Allow for *comparative advantage* among workers in different tasks
- Solution Allow for multiple sources of competing task 'supplies'

What the model delivers

- A natural concept of occupations (bundles of tasks)
- An endogenous mapping from skill to tasks via comparative advantage
- Technical change (offshoring) that can raise and *lower* wages
- Migration of skills across tasks as technology changes
- Polarization of wages and employment as one possible outcome

イロト 人間ト イヨト イヨト

Where the Canonical Model is Silent (or Mis-speaks)

Can the Ricardian model rationlize these facts?

- Wage inequality rises less than predicted
- 2 Real wage levels fall for some groups
- Wage changes non-monotone in skill
- Polarization of employment growth across high/low-skill occupations (also non-monotone)
- Ising importance of occupation as a predictor of earnings
- Casual empiricism only
 - Directly skill-replacing technologies commonplace
 - Offshoring may function like a skill-replacing technology

Beyond the 'Canonical Model' of Skills and Wages Outline

- The canonical model: Implications and empirical successes
- Where the canonical models fall short
- What should an amended model offer?
- A Ricardian model of skills, tasks and technologies
- Some potential empirical directions
- Onclusions

A B F A B F

Some potential empirical directions

Some loose observations only

- Model suggests that we want to relate technical change to prices of skills via *changes in comparative advantage*
 - Measuring comparative advantage is difficult, but not impossible
 - One idea is to look at patterns of occupational specialization from 'pre-period' as a measure
- More generally, model makes conceptual link btwn skills, tasks and occupations
 - Occupations do not really exist in standard competitive wage models
 - Here, they do exist. But there is *still a 'law of one price' for skill*

ヘロト 人間ト 人造ト 人造トー

Conclusions

Canonical model has been a huge conceptual and empirical success

- But not able to shed light on some key phenomena of interest
 - Falling real wages for some groups
 - Non-monotone wage changes
 - Polarization of employment
 - Reallocation of skill groups across occupations
 - Rising power of occupation as predictor of wages

Possible additional insights gained by

- Distinguishing between skills and tasks
- Illowing for comparative advantage among workers in different tasks
- Illowing for multiple sources of competing task 'supplies'

イロト 不得 トイヨト イヨト