
Large Comparative Statics Change in income Uncompensated (Marshallian) change in price Slutsky-compensated change in price Hicks-compensated change in price Frisch-compensated change in price Monotonic Transformations Adding Endowments The Labor-Leisure Choice Application to a Life-Cycle Model References

Ordering Marshallian, Hicks, Frisch Responses to a
Price Change

James J. Heckman and David Malison
University of Chicago

Econ 350, Winter 2023

Heckman and Malison Ordering Responses



Large Comparative Statics Change in income Uncompensated (Marshallian) change in price Slutsky-compensated change in price Hicks-compensated change in price Frisch-compensated change in price Monotonic Transformations Adding Endowments The Labor-Leisure Choice Application to a Life-Cycle Model References

Consider the canonical consumer problem

max
x∈RN

+

U(x) subject to A ≥ p · x (1)

where U is the consumer’s utility function defined over consumption
bundles x = (x1, · · · , xN)′, A is the consumer’s income,
p = (p1, · · · , pN) is a vector of prices, and p · x =

∑N
i=1 pixi is the

consumer’s total spending on goods.
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• The Lagrangian for this problem is given by

L = U(x) + λ (A− p · x)

• The first order-conditions are

Ui ≤ λpi with equality if xi > 0, i = 1, · · · ,N (2)

A ≥ p · x, λ ≥ 0, (A− p · x)λ = 0 (3)

where Ui =
∂U
∂Xi

. If Ui ≥ 0 for all i with at least one strict
inequality, then λ > 0 and equation (3) reduces to

A = p · x (3′)
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• If in addition U is continuously differentiable and quasiconcave,
these conditions are necessary and sufficient for a solution by
the Kuhn-Tucker Theorem.

• That is, any solution to (1) must solve (2) and (3′) and any
solution to (2) and (3′) must be as solution to (1).

• Suppose we are at an interior solution so that all the equations
in (2) hold with equality.

• Furthermore, assume that U is strictly quasiconcave so that the
solution is unique.

• Then we can totally differentiate the system in (2) and (3′):

N∑
j=1

Uijdxj = λdpi + pidλ

dA =
N∑
i=1

(pidxi + xidpi)

where Uij =
∂2U
∂xi∂xj

.
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Place the N + 1 equations into a matrix:
U11 · · · U1N −p1
U21 · · · U2N −p2
...

. . .
...

...
UN1 · · · UNN −pN
−p1 · · · −pN 0


︸ ︷︷ ︸

J


dx1
...

dxN
dλ

 =


λdp1
...

λdpN
−dA+

∑
i xidpi

 (4)
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Using (2), the matrix J can be rewritten as

J =


U11 · · · U1N −U1

λ

U21 · · · U2N −U2

λ
...

. . .
...

...
UN1 · · · UNN −UN

λ

−U1

λ
· · · −UN

λ
0


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The determinant of J is given by

|J| = 1

λ2

∣∣∣∣∣∣∣∣∣∣∣

U11 · · · U1N U1

U21 · · · U2N U2
...

. . .
...

...
UN1 · · · UNN UN

U1 · · · UN 0

∣∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
|BH|
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• BH is the bordered Hessian of the utility function.

• A sufficient condition for strict quasiconcavity of U is that the
border-preserving principle minors of BH alternate in sign,
starting with a negative value.

• This condition also guarantees that the system of equations in
(4) has a unique solution. We will maintain this assumption for
the remainder of this note.
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Change in income
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• Suppose that dA ̸= 0 and dpi = 0 for all i .

• That is, we first consider the consumer’s response to a marginal
change in income holding prices fixed.

• In this case, the system in (4) reduces to


dx1
...

dxN
dλ

 =


0
...
0

−dA


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• Using Cramer’s Rule, we can solve for dxj as

dxj =

∣∣∣∣∣∣∣∣∣∣∣∣∣

U11 . . .

Column j︷︸︸︷
0 . . . UN1 −p1

U21 . . . 0 . . . UN2 −p2
...

UN1 . . . 0 . . . UNN −pN
−p1 . . . −dA . . . pN 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
|J|

=
JN+1,j

|J|
(−dA)

where JN+1,j is the (N + 1, j)th cofactor of the matrix J.

• This implies
dxj
dA

= −JN+1,j

|J|
(5)

• If this term is positive (negative), xj is a normal (inferior) good
at the given prices and income level.
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Uncompensated (Marshallian) change in price

Heckman and Malison Ordering Responses



Large Comparative Statics Change in income Uncompensated (Marshallian) change in price Slutsky-compensated change in price Hicks-compensated change in price Frisch-compensated change in price Monotonic Transformations Adding Endowments The Labor-Leisure Choice Application to a Life-Cycle Model References

• Now suppose that dpi ̸= 0, dpj = 0 for j ̸= i , and dA = 0.

• That is, we want to consider the consumer’s response to a
ceteris paribus change in the price of good i .

• The system in(4) reduces to

J


dxM1
...

dxMN
dλ

 =



0
...
0

λdpi
0
...
0

xidpi


where the superscript M is used to denote that the price
change is uncompensated (Marshallian).
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• Again appealing to Cramer’s Rule, we have

dxMj =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

U11 · · ·
Column j︷︸︸︷

0 · · · U1N −p1
...

... λdpi
...

...
...

UN1 · · · 0 · · · UNN −pN
−p1 · · · xidpi · · · −pN 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
|J|

=
Jij
|J|

λdpi+
JN+1,j

|J|
xidpi

which, upon rearrangement, becomes

dxMj
dpi

=
Jij
|J|

λ+
JN+1,j

|J|
xi =

Jij
|J|

λ− dxj
dA

xi (6)

where the last equation follows from (5).
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Slutsky-compensated change in price
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• Consider again a change in a single price pi .

• Slutsky-compensation adjusts the consumer’s income by
dAC = xidpi so that the original bundle remains affordable at
the new prices.

• Proceeding as before, the system in (4) reduces to

J


dxC1
...

dxCN
dλ

 =



0
...
0

λdpi
0
...
0


where the superscript C is used to denote that the price change
is compensated.
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• Cramer’s Rule now yields the expression

dxCj =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

U11 · · ·
Column j︷︸︸︷

0 · · · U1N −p1
...

... λdpi
...

...
...

UN1 · · · 0 · · · UNN −pN
−p1 · · · 0 · · · −pN 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
|J|

=
Jij
|J|

λdpi

or
dxCj
dpi

=
Jij
|J|

λ (7)

• Our assumption about the principle minors of the bordered
Hessian of U ensure that Jii and |J| have the opposite sign.

• This implies
dxCi
dpi

< 0 (8)

so that the compensated effect of an own-price change is
always negative.
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• TWe can substitute equation (7) into (6) to obtain

dxMj
dpi

=
dxCj
dpi

− dxj
dA

xi (9)

• This is the famous Slutsky equation, which says that the effect
of an uncompensated price change can be decomposed into a
compensated price (substitution) effect and an income effect.

• If Xi is a normal good, then equation (8) implies

dxMi
dpi

< 0

• This result is called the law of demand.
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Hicks-compensated change in price
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• Suppose we again consider a change in prices, but we adjust
the consumer’s income in such a way that he is indifferent
between the old and new price vectors.

• This is called Hicks compensation.

• To calculate how much utility changes, totally differentiate the
utility function:

dU =
∑
i

Uidxi

• By the first order conditions in (2), we can rewrite this as

dU = λ
∑
i

pidxi (10)

• We can also totally differentiate the budget constraint:

dA =
∑
i

(pidxi + xidpi)
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• Substituting into equation (10), we have

dU = λ

(
dA−

∑
i

xidpi

)

• This equation implies that the consumer is indifferent to a
small change in prices after receiving Slutsky-compensation.

• The equivalence of Slutsky and Hicks compensation breaks
down for non-marginal changes, a problem that can lead to
”substitution bias” in price indices.
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Frisch-compensated change in price
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• Up until now, λ has played a minor role in the analysis.

• Recall the Envelope Theorem result that λ can be interpreted as
the marginal utility of income, the additional amount of utility
the consumer can attain from a marginal increase in income.

• Using Cramer’s Rule on equation(4), we can calculate the
change in λ as we change income as

dλ =

∣∣∣∣∣∣∣∣∣
U11 · · · U1N 0
...

. . .
...

...
UN1 · · · UNN 0
−p1 · · · −pN −dA

∣∣∣∣∣∣∣∣∣
|J|

=
|H|
|J|

(−dA)

where H is the Hessian (not the bordered Hessian) of the utility
function.
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• This implies
dλ

dA
= −|H|

|J|
(11)

• A sufficient condition for the strict concavity of U is that the
principle minors of its Hessian alternate in sign, starting with a
negative value.

• We will assume this condition holds, so that (−1)N |H| > 0.

• From our assumption about the determinants of the bordered
Hessian, we also know that (−1)N |J| > 0.

• This implies marginal utility of income is falling.
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• The assumption that the utility function is concave is not
without loss of generality, since not all convex preference
orderings are “concavifiable”.

• Restrictions on preferences which guarantee a concave utility
representation, as well as what those restrictions imply about
consumer demand behavior, are explored in the mathematical
economics literature (see ????).
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• The effect of a Slutsky-compensated change in price on λ is
given by

dλC =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

U11 · · · U1N 0
...

...
. . .

... λdPi
...

UN1 · · · UNN 0
−p1 · · · −pN 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
|J|

=
Ji ,N+1

|J|
λdpi = −dxi

dA
λdpi

⇒ dλC

dpi
= −λ

dxi
dA

where the last equality comes from the symmetry of J and
equation (5).

• If xi is a normal good, the compensated marginal utility of
income falls as the price of xi goes up.

• The consumer cannot buy as much utility with a marginal
dollar because xi has gotten more expensive.

• If xi is inferior, the compensated marginal utility goes up when
the price of xi goes up.

• When the price of xi is higher, the consumer can purchase more
utility per marginal dollar since use of xi declines with an
increase in income.
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• Now consider the effect of a general price change:

dλ =

∣∣∣∣∣∣∣∣∣∣∣

U11 · · · U1N λdp1
U21 · · · U2N λdp2
...

. . .
...

...
UN1 · · · UNN λdpN
−p1 · · · −pN −dA+

∑
i xidpi

∣∣∣∣∣∣∣∣∣∣∣
|J|

=
∑
i

JiN
|J|

λdpi + (−dA+
∑
i

xidpi)
|H|
|J|

= −
∑
i

dxi
dA

λdpi − (−dA+
∑
i

xidpi)
dλ

dA

• Frisch compensation keeps the marginal utility of income
constant (dλ = 0):

0 = −
∑
i

dxi
dA

λdpi − (−dAF +
∑
i

xidpi)
dλ

dA

dAF =
∑
i

(
λ
dλ
dA

dxi
dA

+ xi

)
dpi
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• If all goods are normal and utility is strictly concave, dAF will
be smaller than Slutsky-compensation.

• A compensated increase in price will make the marginal utility
of income fall, since the consumer will be able to buy less with
a marginal dollar.

• To keep marginal utility constant, the consumer must be given
less compensation.

• The Frisch-compensated response to a ceteris paribus change
in pi will therefore exceed the Hicks-compensated response:

0 >
dxCi
dpi

>
dxFi
dpi

=
dxCi
dpi

+
λ
dλ
dA

(
dxi
dA

)2

(12)

• The difference between the uncompensated and
Frisch-compensated response is given by

dxUi
dpi

− dxFi
dpi

= −

(
xi +

λ
dλ
dA

dxi
dA

)
dxi
dAHeckman and Malison Ordering Responses



Large Comparative Statics Change in income Uncompensated (Marshallian) change in price Slutsky-compensated change in price Hicks-compensated change in price Frisch-compensated change in price Monotonic Transformations Adding Endowments The Labor-Leisure Choice Application to a Life-Cycle Model References

• Whether or not the uncompensated response exceeds the
Frisch-compensated response depend on the sign of the term in
parentheses.

• Using equations (5) and (7), we can also write the Frisch
response in terms of determinants as

dxFi
dpi

= λ

(
Jii |H| − J2

N+1,i

|J||H|

)
(13)
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• Suppose without loss of generality that i = N (we can always
rearrange the labelling of the goods to make this the case).

• We can partition the adjutant matrix of J as

adj J =



J11 J21 · · · JN−1,1 JN,1 JN+1,1

J12
. . .

...
...

...
...

. . .
...

...
...

J1,N−1 · · · JN−1,N−1 JN,N−1 JN+1,N−1

J1,N · · · JN−1,N JN,N JN+1,N

J1,N+1 · · · JN−1,N+1 JN,N+1 |H|


=

(
A B
BT C

)
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• Using the partitioned determinant formula, we get

| adj J| = |C||A− BC−1BT | = |J|N

where the last equality comes from the fact that

1

|J|
adj J = J−1 (14)

• But |C| is just the numerator of equation (12). Thus we can
rewrite (12) as

dxFN
dpN

= λ
|J|N−1|(A− BC−1BT ))−1|

|H|
(15)
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• From the partitioned inverse formula, we know that

(adj J)−1 =

(
(A− BC−1BT )−1 −(A− BC−1BT )−1BC−1

−C−1BT (A− BC−1BT )−1 (C− BTA−1B)−1

)

• Equation (14) then implies

1

|J|
HNN = (A− BC−1BT )−1

so that equation (15) simplifies to

dxFN
dpN

= λ
|HNN |
|H|

(16)
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• A simpler way to obtain the expression in (16) is to consider
the system of equations in (2) as defining x as a function of p
and λ:

Ui(x(p, λ)) = λpi for i = 1, · · · ,N

• At a particular value of λ, these functions will satisfy the
original budget constraint. Differentiating this system yields

H


dx1
dx2
...

dxN

 =


λdp1
λdp2
...

λdpN

 (17)

• Cramer’s Rule applied to the system in (17) then yields
equation (16).
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Monotonic Transformations
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• Suppose we consider the utility function

V (x) = f (U(x))

where f is a differentiable, strictly increasing function.

• V represents the same underlying preferences as U , so we
should hope that our predictions remain unchanged if we
perform the above calculations using V .

• The first-order conditions in equation (2) become

Vi = Ui f
′ = λVpi

• Since (x, λ) was a solution to the original system of equations,
we know that (x, f ′λ) is a solution to the new system of
equations.

• Thus we must have

λ =
λV

f ′
(18)
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Replacing V with U causes the J matrix in equation (4) to become

JV =


U11f

′ + U2
1 f

′′ · · · U1N f
′ + U1UN f

′′ −p1
U21f

′ + U2U1f
′′ · · · U2N f

′ + U2UN f
′′ −p1

...
. . .

...
...

UN1f
′ + UNU1f

′′ · · · UNN f
′ + U2

N f
′′ −p1

−p1 · · · −pN 0



=


U11f

′ · · · U1N f
′ −p1

U21f
′ · · · U2N f

′ −p1
...

. . .
...

...
UN1f

′ · · · UNN f
′ −p1

−p1 · · · −pN 0

+ f ′′


U1
...
UN

0

(U1 · · · UN 0
)

= C1JC2 + f ′′zz′

where

C1 =


1

.
.
.

1
1
f ′

 , C2 =


f ′

.
.
.

f ′

1

 , z =


U1
...
UN

0

Heckman and Malison Ordering Responses
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• Using the matrix determinant lemma, we have

|JV | = |C1JC2|(1 + f ′′z′C−1
2 J−1C−1

1 z)

= |J|
(
1 +

f ′′

f ′
z′J−1z

)
(f ′)N−1 (19)

• Recalling the adjoint formula for a matrix inverse given in (14),
J−1 can be written as

J−1 =
1

|J|


J11 J21 · · · JN+1,1

J12 J22 · · · JN+1,2
...

...
. . .

...
J1,N+1 J2,N+1 · · · JN+1,N+1


• Thus we have

z′J−1z =
1

|J|
∑
i

∑
j

UiUjJji
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• Notice that for i = 1, · · · ,N , the term
∑

j UjJji is the cofactor
expansion of the determinant of the matrix which replaces the
i th column J with the vector z.

• By the first order conditions, we know that z is proportional to
the (N + 1)th-column of J, so the determinant of this matrix
must thus be zero.

• This implies
∑

j UjJji = 0 for all i , so that the expression in
(19) simplifies to

|JV | = |J|(f ′)N−1 (20)

• Using similar methods, it can be shown that

JV
N+1,j = JN+1,j(f

′)N−1 for j = 1, · · · ,N (21)

JV
ij = Jij(f

′)N−2 for i = 1, · · · ,N , j = 1, · · · ,N
(22)
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• Equations (18)-(22) then imply

−
JV
N+1,j

|JV |
= −JN+1,j

|J|
for j = 1, · · · ,N (23)

JV
ij

|JV |
λV =

Jij
|J|

λ for i = 1, · · · ,N , j = 1, · · · ,N (24)

• Equations (23) and (24) imply that the income and
Slutsky-Hicks compensated price effects will be the same when
V is used instead of U .

• Equation (9) then implies that the uncompensated effects will
also be the same.
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What about the Frisch response? Proceeding as before, we find that

|HV | = |H|

1 +
f ′′

f ′
(
U1 · · · UN

)
H−1

U1
...
UN


︸ ︷︷ ︸

κ

 (f ′)N (25)

and

|HV
ii | = |Hii |


1 +

f ′′

f ′
(
U1 · · · Ui−1 Ui+1 · · · UN

)
H−1



U1
...

Ui−1

Ui+1
...
UN


︸ ︷︷ ︸

κi


(f ′)N−1

(26)Heckman and Malison Ordering Responses
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• This time, the terms in the parentheses does not simplify to
unity unless f ′′ = 0.

• We thus have

λV |HV
ii |

|HV |
= λ

|Hii |
|H|

(
1 + f ′′

f ′
κi

)(
1 + f ′′

f ′
κ
)

where κ and κi refer to the quadratic forms in equation (25)
and (26), respectively.

• This result implies the Frisch response is not invariant to
arbitrary monotonic transformations.

• Some transformations may reverse the ordering in equation
(12).
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Adding Endowments
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• Now suppose we assume the consumer’s income comes in the
form of a vector of endowments of the goods x̄ = (x̄1, · · · , x̄N)′.

• The consumer’s budget constraint is

p · x ≤ p · x̄

• The first-order conditions in (2) are unchanged. The system of
equations in (4) is now

J


dx1
...

dxN
dλ

 =


λdp1
...

λdpN∑
i(xi − x̄i)dpi


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• The Slutsky equation in (9) becomes

dxUj
dpi

=
dxCj
dpi

− dxj
dA

(xi − x̄i) (27)

• If the consumer is a net seller of xi and xi is a normal good, the
income effect is positive. Slutsky compensation is given by

dAC =
∑
i

(xi − x̄i)dpi

• In the case where only pi changes and the consumer is a net
seller of xi , Slutsky compensation is negative.

• Frisch compensation can be written as

dAF =
∑
i

(
λ
dλ
dA

dxi
dA

+ xi − x̄i

)
dpi
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• In the case of normal goods and strictly concave utility, Frisch
compensation remains more negative than Slutsky
compensation.

• We can order the responses to an own-price change as

dxUi
dpi

>
dxCi
dpi

>
dxFi
dpi

where
dxCi
dpi

and
dxFi
dpi

are both negative but
dxUi
dpi

may be positive.
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The Labor-Leisure Choice
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• Suppose we consider the case where there are two goods,
consumption c and leisure l .

• The consumer is endowed with 1 unit of time and A units of
consumption.

• The consumer works for 1− l hours and earns a wage w .

• The consumer’s budget constraint is now

pc ≤ a + w(1− l)

which can be arranged as

pc + wl ≤ A+ w

• The system of equations in (4) is then given byUcc Ucl −p
Ulc Ull −w
−p −w 0

dc
dl
dλ

 =

 λdp
λdw

(c − A)dp + (l − 1)dw


(28)
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• The income effect for leisure can be calculated from equation
(5) as

dl

dA
=

Ulcp − Uccw

−p2Ull + 2pwUlc − Uccw 2

• The compensated effect of an increase in w can be calculated
from equation (7):

dlC

dw
=

−λp2

−p2Ull + 2pwUlc − Uccw 2

and the uncompensated price effect can be calculated using
equation (27):

dlU

dw
=

−λp2 + (Ulcp − Uccw)(1− l)

−p2Ull + 2pwUlc − Uccw 2

• All these effects are invariant to monotonic transformations of
the utility function.
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• The Frisch effect can be calculated using equation (16):

dLF

dW
=

λUcc

UccUll − U2
cl

• Define labor supply as n = 1− l . Substituting for λ using the
first-order condition Ul = λw , we can write the Frisch elasticity
of labor supply as

ϵF =
dnF

dw

w

n
= −1

n

UccUl

UccUll − U2
cl

• If consumption and leisure are additively separable in the utility
function, this expression simplifies to

ϵF = −1

n

Ul

Ull
(29)

Heckman and Malison Ordering Responses



Large Comparative Statics Change in income Uncompensated (Marshallian) change in price Slutsky-compensated change in price Hicks-compensated change in price Frisch-compensated change in price Monotonic Transformations Adding Endowments The Labor-Leisure Choice Application to a Life-Cycle Model References

• Suppose that the utility function is given by

U(c , l) = ϕ(c)− γ
ϵ

1 + ϵ
(1− l)

1+ϵ
ϵ

• Then equation (29) simplifies to

ϵF = ϵ

• This utility function has a constant Frisch elasticity of labor
supply. As an exercise, determine the Frisch elasticity of labor
supply for the utility function

U(c , l) =
(cγ l1−γ)

1−σ

1− σ

• Both these specifications are commonly used in the literature.
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Application to a Life-Cycle Model
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• Suppose a consumer lives for T + 1 periods and that the
consumer’s preferences over consumption and leisure streams
{ct , lt}Tt=0 are ordered by the utility function

T∑
t=0

βtU(ct , lt) (30)

• The consumer earns a real wage wt in period t and is endowed
with one unit of time each period.

• The consumer is also endowed with some initial assets A0 at
t = 0 and can borrow and lend freely at constant interest rate
r .

• The consumer’s lifetime budget constraint is given by
T∑
t=0

ct
(1 + r)t

+
T∑
t=0

wt lt
(1 + r)t

≤ A0 +
T∑
t=0

wt

(1 + r)t
= Ā (31)

where Ā is the present value of the consumer’s lifetime income.
The consumer’s problem is

max
{ct ,lt}Tt=0

T∑
t=0

βtU(ct , lt) subject to (31) (32)
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• Suppose instead of considering the lifetime problem all at once,
the consumer first solves the period t problem first:

max
ct ,lt

U(ct , lt) subject to ct + wt lt ≤ Et (33)

where Et are the resources allocated to period t. Let V (wt ,Et)
denote the value function of this problem. The consumer then
solves the problem

max
{Et}Tt=0

T∑
t=0

βtV (wt ,Et) subject to
T∑
t=0

Et

(1 + r)t
≤ Ā (34)

• The first-order conditions to the problem in (34) is

βt ∂V
t

∂E
= λt =

λ

(1 + r)t
(35)

where V t = V (wt ,Et) and λt = βt ∂V t

∂E
.
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• Totally differentiating this expression yields

∂λt

∂Et
dEt +

∂λt

∂wt
dwt =

dλ

(1 + r)t
for t = 0, 1, · · · ,T (36)

• Differentiating the budget constraint yields

T∑
t=0

dEt

(1 + r)t
=

T∑
t=0

dwt

(1 + r)t
+ dA0 (37)
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Placing these equations into a matrix gives us
∂λ0

∂E
−1

∂λ1

∂E
− 1

1+r
. . .

...
∂λT

∂E
− 1

(1+r)T

−1 − 1
1+r

· · · − 1
(1+r)T


︸ ︷︷ ︸

J


dE0

dE1
...

dET

dλ

 =


− ∂λ0

∂w0
dw0

− ∂λ1

∂w1
dw1

...
− ∂λT

∂wT
dwT

−
∑T

t=0
dwt

(1+r)t
− dA0


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• Due to its diagonal structure, the determinant of J can easily
be found using the partitioned determinant formula:

|J| = −

(
T∏
t=0

∂λt

∂E

)(
T∑
t=0

(
1

1 + r

)2t (
∂λt

∂E

)−1
)

(38)

• If utility within each period is strictly concave, then we already
showed above that ∂λt

∂E
< 0 for all t.

• It is easy to see that the border-preserving principle minors of J
alternate in sign, so that the utility function in equation (34) is
strictly quasiconcave.
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• We first solve for the effect of a small change in initial assets
dA0. Proceeding as before, we have

dEt

dA0
= −JT+2,t+1

|J|
(39)

• To find JT+2,t+1, expand along row t + 1.

• The only non-zero element in this row occurs in the final
column.

• Once this row and column are removed, only the final row
contains more than a single element.
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• Expanding along column t + 1 then yields a diagonal matrix.

• To illustrate how this works, suppose T = 3 and t = 1.

• We seek to find the determinant

J5,2 =

∣∣∣∣∣∣∣∣∣∣∣

∂λ0

∂E
−1
− 1

1+r
∂λ2

∂E −
1

(1+r)2
∂λ3

∂E
− 1

(1+r)3

−1 −1 − 1
(1+r)2

− 1
(1+r)3

∣∣∣∣∣∣∣∣∣∣∣
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Expanding on the second row yields

J5,2 =
1

1 + r

∣∣∣∣∣∣∣∣
∂λ0

∂E
∂λ2

∂E
∂λ3

∂E

−1 −1 − 1
(1+r)2

− 1
(1+r)3

∣∣∣∣∣∣∣∣
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Expanding along the second column yields

J5,2 = − 1

1 + r

∣∣∣∣∣∣
∂λ0

∂E
∂λ2

∂E
∂λ3

∂E

∣∣∣∣∣∣ = − 1

1 + r

∏
t ̸=1

∂λt

∂E
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• In general, this procedure will yield the expression

JT+2,t+1 = − 1

(1 + r)t

∏
t′ ̸=t

∂λt′

∂E

which implies from equation (38) and (39) that

dEt

dA0
=

(
1

1 + r

)t (
∂λt

∂E

)−1
(

T∑
t′=0

(
1

1 + r

)2t′ (
∂λt′

∂E

)−1
)−1

> 0
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Interpretation:

• The Frisch elasticity estimates the effect of evolutionary wage
change.

• In a perfect foresight model, it is the effect of changing the
relative price of time in different periods.

• These price changes are perfectly anticipated.

• Marshallian effects refer to wage changes with income effects
(Blundell and MaCurdy, 1999; MaCurdy, 1978, 1981).
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Questions to address:

(1) Add uncertainty about future wages and incomes (see e.g.,
MaCurdy, 1978). Does the interpretation survive?

(2) Are the Frisch elasticities useless for interpreting data?
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Explain better utility constant (this is lifetime utility) from utility
constant within a period.
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Show the Hessian for the lifetime utility problem. Interpret within a
utility tree model
Life cycle model:
Et = expenditure in t
Ut is utility in t

Agent: Max Ut + λt(Et − P ′
t · Xt)

This solves the expenditure constant (for t period problem)

Stage 2: Allocate
T∑
t=0

Et

(1+r)t
= A over the life cycle so that the

λt = λ all t (with r > 0, λt =
λ

(1+r)t
)

Question: In this representation, what is the Frisch effect of a
change in P1t on X1t?
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