Efficiency Units, Elementary Hedonic Models (Gorman and Lancaster) With and Without Bundling Restrictions

James J. Heckman University of Chicago

Econ 350, Winter 2023

Wage Equations Part 1

Overview

Bringing in Selection of Workers to Firms or at Least Some Sectors to Wage Determination

- Pure efficiency units models keep firms in background.
- Let \overline{L} = aggregate labor, \overline{K} = aggregate capital.

$$Y = F(\bar{L},\bar{K})$$

$$W = \frac{\partial F}{\partial \bar{L}} \qquad R = \frac{\partial F}{\partial \bar{K}}$$

• No theory of which workers and firms are matched.

- Bring back the identity of firms to develop a theory of matching and heterogeneity.
- Issues: How to match workers to firms?
 - Sorting irrelevant in the case of pure efficiency units models.
 - Becomes important when workers have different efficiency at different firms.
- We start our investigation under the assumptions of perfect certainty on both sides (No private information).
- No transactions costs (mobility costs).

• Gorman-Lancaster is multi-attributed efficiency units model

- An efficiency units model makes the identity of the firm irrelevant (workers equally productive at all firms) – a model of general human capital. Rearrange workers among firms and get no change in output at each firm as long as total efficiency units the same in each firm.
- A model with comparative advantage emerges if workers have different advantages in different sectors but assignment of a worker to a sector does not preclude any other worker going there. Sectors may be firms or industrial sectors. Now sorting matters – and a nontrivial labor supply function and demand for labor function emerges.

Assignment Problem (Becker, 1974; Koopmans and Beckmann, 1957; Shapley and Shubik, 1971)

The Guiding Principle of the Assignment Problem Literature Is Neither Comparative Nor Absolute Advantage

- **1** It is opportunity cost.
- 2 Place worker A at firm α .
- **3** Means worker *B* can't go to firm α .
- Not just relative productivity, but who is best relative to the next best allocation determines the assignment. Continuous versions – worker and firms have close substitutes.
- Discrete version (Koopmans-Beckmann) no close substitutes. (Raises rent division problem). (See handout 6-4.)

- The discrete version requires no notion of comparing the "quality" or "efficiency" of any 2 workers (no need for a scale of labor quality).
- Roy model is a model of comparative advantage but without the 1-1 matching property.

Models of Wages and the Pricing of Skills

Standard model of efficiency units

- H = human capital measured in efficiency units
- R = price per unit efficiency unit

Observed wages are

- W = RH
 - Under competition, all workers receive the same price (R) per unit human capital
 - Discrimination, search frictions (including geographical immobility) may create different prices

Workers with different productive characteristics x may have different amounts of human capital
 H = φ(x)

$$rac{\partial \ln W}{\partial x} = rac{1}{\phi(x)} \, rac{\partial \phi(x)}{\partial x}$$

a purely technological relationship.

- Market forces operate only through the intercepts of the log wage equation, not slopes
- Widely used in empirical labor economics: Heckman and Sedlacek, Keane and Wolpin, etc. Used in multi-attribute matching literature as well.

a

Gorman Lancaster Model: Workers have endowments of vectors of traits, each priced like an efficiency unit, at least under certain conditions

- **1** Workers have a bundle of traits (X_i) for worker *i*.
- Firms' production functions depend on the aggregate of those traits.
 - Let \hat{X}^j be the aggregate of the characteristics of the workforce of firm j.

4 Under constant returns to scale, we can represent this as

$$Y^j = N^j f(\bar{X}^j)$$

where N^{j} is the number of workers at the firm and \bar{X}^{j} is the average quality at the firm. We will assume CRS as does the entire literature on the Edgeworth Box (see Mas-Colell, Whinston, and Green, 1995).

In the aggregate,

$$Y=G(\hat{X})$$

6 Marginal product of an extra unit of k is

$$\frac{\partial Y}{\partial X_k} = G_k = \pi_k$$

All workers face the same prices;

But now the map between wages and endowments depends on the prices.

Call Labor earnings for worker i are

$$W_i = \sum_{k=1}^{K} \pi_k X_{i,k}$$

8

$$\ln W_i = \ln \left(\sum_{k=1}^{K} \pi_k X_{i,k} \right)$$
$$\frac{\partial \ln W_i}{\partial X_k} = \frac{\pi_k}{W_i} \qquad k = 1, \dots, K$$

Mapping not purely technological;

Suppose that there are two sectors with different skill intensities. (Define skill intensity.) (Same ratios of factors in the two sectors have different productivities.)

The Gorman-Lancaster Model: Two production functions for sectors \boldsymbol{A} and \boldsymbol{B}

$$egin{array}{lll} G^{A}(\hat{X}^{A}) & ext{and} & G^{B}(\hat{X}^{B}) \ \hat{X}^{A} + \hat{X}^{B} = \hat{X} \end{array}$$

Sectoral productivity of factor k in Sectors A and B are, respectively,

$$\frac{\partial G^A(\hat{X}^A)}{\partial X_k} \qquad \qquad \frac{\partial G^B(\hat{X}^B)}{\partial X_k}$$

As an equilibrium, we know that if workers could unbundle and sell their individual productive characteristics item by item, the law of one price \implies

$$\frac{\partial G^A(\hat{X}^A)}{\partial X_k} = \frac{\partial G^B(\hat{X}^B)}{\partial X_k}$$

But suppose that skills are bundled?

Firm buys a *bundle* of skills

$$X_{i,1},\ldots,X_{i,k},\ldots,X_{i,K}$$

when it buys worker *i*.

- 6 All skills used in each sector
- Consider a case where K = 2: Full employment of factors.
 Draw up an Edgeworth Box: Assume CRS and that workers can unbundle their skills
 (Box defines the feasible set)

Question: Why, as you expand Sector A, does the equilibrium price ratio (Skill 1 price to Skill 2 price) increase (i.e., the price of Skill 1 becomes relatively more expensive)? (End of Question.)

- Factor intensities differ across sectors
- As drawn, Sector A has greater Skill 1 intensity, i.e., at the same skills price, $\pi = (\pi_1, \pi_2)$, the firm has a bias toward using more of Skill 1.

- Notice that as Sector A expands, the only place it can get workers is from Sector B.
- \therefore it bids up the skill price of 1 in both sectors.
- Firms substitute toward Skill 2 (cheaper)
- Causes relative price of Skill 1 to expand
- Law of one price still applies.
- Workers are getting one price in both sectors.
- Workers are indifferent as to which sector they go into.

Heckman

Wage Equations Part 1

- A is more Skill 1 intensive
- Full employment assumed:
- As the output of Sector A expands, Sector B contracts.
- It releases relatively more 2 than 1 because of its skill intensity.
- .:. Skill price of 2 declines relative to 1.
- (Remember, we assumed constant returns to scale so we do *not* worry about scale effects which may be important.)

• Suppose now, that workers have bundled skill.

• Boundaries of Box change: Suppose that range of ratios is as shown

This restricts the range of feasible trades

Suppose that the boundaries are binding and Sector A is more skill intensive

Feasible Set

- If you could unbundle workers (so they could sell their personality or their brawn), contract curve would be dotted line above.
- But cannot unbundle.
- Relative price of Skill 1 to Skill 2 is higher in Sector A.
- ... unequal prices of skills in the sector

$$\frac{\pi_1^{(A)}}{\pi_2^{(A)}} > \frac{\pi_1^{(B)}}{\pi_2^{(B)}}$$

Now workers care about which sector they go into.

• Income maximizing worker *i* goes into Sector *A* if

 $\pi^{(A)}X_i > \pi^{(B)}X_i$ (Discrete choice model)

• Worker at the margin is a person with a bundle \widetilde{X} such that

$$\pi^{(A)}\widetilde{X} = \pi^{(B)}\widetilde{X}$$

- ... Now sectoral choice and associated price differences are factors that produce income inequality.
- (Same factor gets a different price in different sectors.)

Aggregate equilibrium: Workers have

- Demand Equal Supply; Workers sort into sectors
- (May or may not have equal skill prices)

How to implement this model empirically?

Easy if all components of X_i are observed

Difficult if not

See Heckman and Scheinkman (1987) on Reading List for empirical work and derivation under much more general conditions.

• This paves the way to the Roy model of comparative advantage: A basic framework for understanding counterfactuals, wage inequality, and policy variable. Workers have an endowment

(X_{iA}, X_{iB})

A worker can use only one skill in any sector. X_{iA} is associated with Sector A; X_{iB} is associated with Sector B.

• Thus workers have two mutually exclusive endowments.

The Empirical Importance of Bundling A Test of the Hypothesis of Equal Factor Prices Across All Sectors (From Heckman and Scheinkman, *Review of Economic Studies* 54(2), 1987)

- How to estimate the skill prices across sectors when there are unobserved skill prices?
- How to test equality of skill prices across sectors?
- Unobserved traits may be correlated with observed traits

$$Y_{in} = \underbrace{w}_{no} \underbrace{x_{io}}_{\text{observed}} + \{\underbrace{w}_{nu} \underbrace{x_{iu}}_{\text{unobserved}} + \varepsilon_{in}\}, \quad (1)$$
$$i = 1, \dots, I, \quad n = 1, \dots, N.$$

- Allow for unobserved skills.
- Skills are assumed constant over time for the individual.
- Suppose that persons stay in one sector and we have *T* time periods of panel data on those persons.
- Stack these into a vector of length T.
- Let κ_u be the number of unobserved components.
- Let κ_o be the number of observed components.

In matrix form we may write these equations for person i as

$$Y_{i} = w_{o} \chi_{io} + \{ w_{u} \chi_{iu} + \varepsilon_{i} \}, \quad \text{for each sector } n$$
 (2)

(Drop the *n* subscript for each sector.)

Following Madansky (1964), Chamberlain (1977) and Pudney (1982), assume $T \ge 2\kappa_u + 1$ and partition (2) into three subsystems:

- We can write a system down for each $n = 1, \ldots, N$.
- Assume for simplicity χ_{io} and χ_{iu} are time invariant.

 $\begin{array}{ll} \underset{\sim}{\overset{w}{}_{o}}\left(\mathcal{T}\times J_{0}\right) & J_{0} \text{ is the number of observed variables} \\ \underset{\scriptstyle}{\overset{w}{}_{u}}\left(\mathcal{T}\times J_{1}\right) & J_{u} \text{ is the number of unobserved variables} \\ \underset{\scriptstyle}{\overset{\times}{}_{io}}\left(J_{0}\times 1\right) & \underset{\scriptstyle}{\overset{\times}{}_{iu}} \text{ is } J_{u}\times 1 \end{array}$

- The time invariance of χ_{iu} is essential (at least for a subset).
- Time invariance of χ_{io} is easily relaxed (notationally burdensome).

(i) A basis subsystem of κ_u equations from (2)

$$Y_{(1)} = \underset{\sim}{w}_{o(1)} \underset{\sim}{x_{io}} + \{\underset{\sim}{w}_{u(1)} \underset{\sim}{x_{iu}} + \underset{\sim}{\varepsilon}_{(1)}\}, \quad n = 1, \dots, N$$
(3a)
$$\underset{w}{w}_{u(1)} \text{ is } \kappa_u \times \kappa_u$$

(ii) A second subsystem of equations all of which are distinct from the equations used in (i)

$$Y_{(2)} = \underbrace{w}_{o(2)} \underbrace{x}_{io} + \{\underbrace{w}_{u(2)} \underbrace{x}_{iu} + \underbrace{\varepsilon}_{(2)}\}, \quad n = 1, \dots, N$$
(3b)

(iii) The rest of the equations (at least κ_u in number)

$$Y_{(3)} = \underbrace{w}_{o(3)} \underbrace{x}_{io} + \{\underbrace{w}_{u(3)} \underbrace{x}_{iu} + \underbrace{\varepsilon}_{(3)}\}.$$
(3c)

Assuming that $w_{u(1)}$ is of full rank, the first system of equations may be solved for χ_{iu} , i.e.,

$$\underline{x}_{iu} = \underline{w}_{u(1)}^{-1} [\underline{Y}_{(1)} - \underline{w}_{o(1)} \underline{x}_{io} - \underline{\varepsilon}_{(1)}].$$
(4)

Substituting (4) into (3b), we reach

$$\begin{split} Y_{(2)} &= \underset{\sim}{x_{io}} \left[\underset{\sim}{w_{o(2)}} - \underset{\sim}{w_{u(1)}} \underset{\sim}{u_{u(1)}} \underset{\sim}{w_{u(2)}} \underset{w_{o(1)}}{w_{o(2)}} \right] \\ &+ \underset{\sim}{w_{u(1)}} \underset{w_{u(2)}}{\overset{-1}{}} \underset{(1)}{\overset{w_{u(2)}}{}} \underset{(2)}{\overset{-1}{}} - \underset{w_{u(1)}}{\overset{w_{u(2)}}{}} \underset{w_{u(2)}}{\overset{w_{u(2)}}{}} , \\ &\underbrace{\underset{w_{u(1)}}{\overset{w_{u(2)}}{}} , \\ &\underbrace{\underset{w_{u(1)}}{\overset{w_{u(2)}}{} , \\ &\underbrace{w_{u(1)}}{ ,$$

- Gets rid of \underline{x}_{iu} .
- But OLS fails because, by construction, $\underline{\mathbb{Z}}_{(1)}$ is correlated with $\underbrace{Y}_{(1)}.$

Internal Instruments

- However, we have an internal instrument
- Use IV to instrument for $Y_{(1)}$. The natural instruments are $Y_{(3)}$. They are valid as long as $w_{u(3)}$ are nonzero and the rank condition is satisfied.
- Find a lot of evidence against equality of factor prices across sectors.

Simple Example $(J_u = 1)$

- $X_i^0(1)$: observed variable for *i* in the first period
- $X_i^u(1)$: unobserved in first period (dimension=1)
- $\varepsilon(j)$: a period j specific shock uncorrelated with $X^u(I), X^0(I)$ 1, and $\varepsilon(I)$; $I \neq j$.

$$Y_{i}(1) = \beta_{1}X_{i}^{0}(1) + \lambda_{1}X_{i}^{u}(1) + \varepsilon_{i}(1)$$
(*) $Y_{i}(2) = \beta_{2}X_{i}^{0}(2) + \lambda_{2}X_{i}^{u}(1) + \varepsilon_{i}(2)$
 $Y_{i}(3) = \beta_{3}X_{i}^{0}(3) + \lambda_{3}X_{i}^{u}(1) + \varepsilon_{i}(3)$

β_j is price of observed skills in period j; X_j is price of unobserved skill
Remember: ε(j) mutually independent, mean zero
X_i⁽⁰⁾(j) ⊭ X_i^(u)(l); all j, l (omitted variable bias)
Assume X_i^u(1) = X_i^u(2) = X_i^u(3)
λ_i, β_i and X_i⁰(j) can change with j

- $\varepsilon(I) \perp \varepsilon(k) \quad \forall I \neq k$
- Steps:
 - Step 1: Use equation for $Y_i(1)$ to solve for $X_i^u(1)$

$$\frac{Y_i(1) - \beta_1 X_i^0(1) - \varepsilon_i(1)}{\lambda_1} = X_i^u(1)$$

- Assumes $\lambda_1 \neq 0$ (price of unobserved skill in period 1)
- Step 2: Substitute in the second equation for $Y_i(2)$

$$Y_i(2) = \beta_2 X_i^0(1) + \frac{\lambda_2}{\lambda_1} (Y_i(1) - \beta_1 X_i^0(1) - \varepsilon_i(1))) + \varepsilon_i(2)$$

Collect terms

$$* \quad Y_i(2) = (\beta_2 - \frac{\lambda_2}{\lambda_1}\beta_1)X_i^0(1) + \frac{\lambda_2}{\lambda_1}Y_i(1) \\ + \varepsilon_i(2) - \frac{\lambda_2}{\lambda_1}\varepsilon_i(1)$$

- X^u_i(2) = X^u_i(1) eliminated; ∴ omitted variable eliminated
- From first equation: Y_i(1) *⊭* ε_i (out of the frying pan and into the fire)
- Step 3: $Y_i(3)$ is an instrument for $Y_i(1)$ in equation (*)
- Why? (Depends on $X_i^u(1)$ as does $Y_i(1)$)

•
$$\varepsilon_i(3) \perp (\varepsilon_i(2) - \lambda_2 \varepsilon_i(1))$$

• Conclusion: \therefore we get $(\beta_2 - \frac{\lambda_2}{\lambda_1}\beta_1)$ and $\frac{\lambda_2}{\lambda_1}$

- Switching the roles of 1, 2, and 3, we can get $\frac{\lambda_j}{\lambda_k}$; $j \neq k$
- All assumed to be non-zero
- Notice we need one normalization to separate λ_j from X^u_i (both unobserved)
- Set $\lambda_1 = 1$, \therefore we know λ_2, λ_3
- This normalization is essential: we do not directly observe X^u_i(i), X^u_i(2) or X^u_i(3) or the λ.
- They enter the wage equation as $[\lambda_1 X_i^u(1)], [\lambda_2 X_i^u(2)], [\lambda_3 X_i^u(3)].$

$$\begin{cases} \beta_3 - \lambda_3 \beta_1 = \phi_{31} \\ \beta_3 - \lambda_3 \beta_2 = \phi_{32} \\ \beta_1 - \lambda_1 \beta_2 = \phi_{12} \\ \beta_1 - \lambda_1 \beta_3 = \phi_{13} \\ \beta_2 - \lambda_2 \beta_1 = \phi_{21} \\ \beta_2 - \lambda_2 \beta_3 = \phi_{23} \end{cases} \phi_{l,k} \text{ all known}^1$$

- ¹But not necessarily the individual parameters on the left hand side (except λ_j)
- From previous analysis, the ϕ_{ij} all known as are λ_j
- 3 equations; 3 unknowns
- $\therefore \beta_1, \beta_2, \beta_3$ known (rank condition requires "sufficient" variation in prices of skills)
- Everything identified (prices of observed and unobserved skills) up to normalization.

TABLE I

(Basis described in the appendix)

(1) Sector	(2) System MSE	(3) Test	(4) F(DFN, DFD) =	(5) Prob > F	(6) Number of observations in each year
Durable vs. Nondurable	3.208210	1	(117, 1143) = 1.1448	0.1491	153
		2	(90, 1143) = 0.9213	0.6840	
		3	(27, 1143) = 1.7777	0.0087	
Manufacturing vs. Service	3.447400	1	(117, 3411) = 1.6754	0.0001	405
		2	(90, 3411) = 0.7336	0.9717	
		3	(27, 3411) = 3.0062	0.0001	
Blue vs. White Collar	2.600956	1	(156, 6648) = 2.4197	0.0006	580
		2	(120, 6648) = 1.2943	0.0176	
		3	(36, 6648) = 3.0714	0.0001	
North vs. South	2.299067	1	(156, 7056) = 1.9586	0.0001	614
		2	(120, 7056) = 1.4981	0.0007	
		3	(36, 7056) = 3.0844	0.0008	
Manufacturing vs. Non-mfg	4-746601	1	(117, 5787) = 1.4411	0.0015	669
		2	(90, 5787) = 1.1062	0.2323	
		3	(27, 5787) = 3.0978	0.0001	

Notes.

1. Test 1 tests equality of the coefficients of (12) in both sectors.

Test 2 tests equality of the coefficients associated with observed characteristics in (12).

Test 3 tests equality of the coefficients associated with the unobserved characteristics in (12) $(w_{u(1)}^{-1}, w_{u(2)})$.

Notes.

1.	1. Test 1 tests equality of the coefficients of (12) in both sectors.				
	Test 2 tests equality of the coefficients associated with observed characteristics in (12).				
	Test 3 tests equa	lity of the coefficients associated with the unobserved characteristics in (12) $(w_{u(1)}^{-1}, w_{u(2)})$.			
2.	Durable:	Metal Industries, Machinery including Electrical, Motor Vehicles and other Transportation Equipment, other durables.			
	Non Durable:	Food, Tobacco, Textile, Paper, Chemical and other Non Durables.			
	Manufacturing:	All Durable and Non Durable plus "manufacturing unknown".			
	Services:	Retail Trade, Wholesale Trade, Finance, Insurance, Real Estate, Repair Service, Business			
	Service, Personal Service, Amusement, Recreation and Related Services, Printing, Publish-				
	ing and Allied Services, Medical and Dental Services, Educational Services, Professional				
		and Related Services.			
	North:	Conn., Del., Ill., Ind., Maine, Mass., Mich., Minn., N.H., N.J., N.Y., Ohio, Penn., R.I., W. Va., Wis., Vermont.			
	South:	Alab., Ark., Fla., Geo., Ky., La., Miss., N.C., S.C., Tenn., Tex., Va., Ok.			
	White Collar:	Professional, Technical and Kindred; Managers, Officials and Proprietors; Self Employed Businessmen; Clerical and Sales Work.			
	Blue Collar:	Craftsmen, Foremen and Kindred Workers; Operatives and Kindred Workers; Labourers and Service Workers, Farm Labourers.			

TA	BL	Æ	Π

4 Factor models

(1) Sector	(2) System MSE	(3) Test	(4) F(DFN, DFD) =	(5) Prob > F	(6) Number of observations in each year
Durable vs. Nondurable	1.480446	1	(144, 1089) = 1.2902	0.0166	153
		2	(108, 1089) = 1.1722	1.1197	
		3	(36, 1089) = 1.3644	0.0756	
Manufacturing vs. Service	1.271277	1	(144, 3357) = 2.6513	0.0001	405
Ũ		2	(108, 3357) = 1.2957	0.0231	
		3	(36, 3357) = 6.6334	0.0001	
Blue vs. White Collar	3.830300	1	(192, 6576) = 1.7228	0.0001	580
		2	(144, 6576) = 1.3400	0.0045	
		3	(48, 6576) = 1.8698	0.0003	
North vs. South	2.456318	1	(192, 6984) = 1.9893	0.0001	614
		2	(144, 6984) = 0.8240	0.9381	
		3	$(48, 1836) = 2 \cdot 3018$	0.0001	
Manufacturing vs. Non-mfg.	1.617166	1	(180, 1836) = 1.7121	0.0001	669
5		2	(132, 1836) = 1.4107	0.0020	
		3	(48, 1836) = 2.0701	0.0001	

TABLE III

5 Factor models

(1) Sector	(2) System MSE	(3) Test	(4) F(DFN, DFD) =	(5) Prob > F	(6) Number of observations in each year
Blue vs. White Collar	1.573852	1	(228, 6912) = 2.0534	0.0001	580
		2	(168, 6912) = 1.6639	0.0001	
		3	(60, 6912) = 3.8733	0.0001	
North vs. South	1.418750	1	(228, 6504) = 3.8840	0.0001	614
		2	$(168, 6504) = 2 \cdot 2027$	0.0001	
		3	(60, 6504) = 10.0017	0.0001	

APPENDIX

For the 3 factor models we adopt the following basis:

Years for wages $(Y_{(2)})$	Basis years
1968, 1969, 1970	1971, 1972, 1973
1971, 1972, 1973	1968, 1969, 1970
1974, 1975, 1976	1971, 1972, 1973
1977, 1978, 1979	1974, 1975, 1976

For the 4 factor models we adopt the following choice of basis:

Years for wages $(Y_{(2)})$	Basis years
1968, 1969, 1970, 1971	1972, 1973, 1974, 1975
1972, 1973, 1974, 1975	1968, 1969, 1970, 1971
1976, 1977, 1978, 1979	1972, 1973, 1974, 1975

For the 5 factor models we adopt the following choice of basis:

Years for wages (Y(2))Basis years1968, 1969, 1970, 1971, 19721973, 1974, 1975, 1976, 19771973, 1974, 1975, 1976, 19771968, 1969, 1970, 1971, 19721978, 19791968, 1969, 1970, 1971, 1972

